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Long-term ideal and resistive magnetohydrodynamics (MHD) simulations in full general relativity are
performed for a massive neutron star formed as a remnant of binary neutron star mergers. Neutrino
radiation transport effects are taken into account as in our previous papers. The simulation is performed in
axial symmetry and without considering dynamo effects as a first step. In the ideal MHD, the differential
rotation of the remnant neutron star amplifies the magnetic-field strength by the winding in the presence of
a seed poloidal field until the electromagnetic energy reaches ∼10% of the rotational kinetic energy, Ekin, of
the neutron star. The timescale until the maximum electromagnetic energy is reached depends on the initial
magnetic-field strength and it is ∼1 s for the case that the initial maximum magnetic-field strength is
∼1015 G. After a significant amplification of the magnetic-field strength by the winding, the magnetic
braking enforces the initially differentially rotating state approximately to a rigidly rotating state. In the
presence of the resistivity, the amplification is continued only for the resistive timescale, and if the
maximum electromagnetic energy reached is smaller than ∼3% of Ekin, the initial differential rotation state
is approximately preserved. In the present context, the post-merger mass ejection is induced primarily by
the neutrino irradiation/heating and the magnetic winding effect plays only a minor role for the mass
ejection.
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I. INTRODUCTION

Theoretical exploration for the evolution of the merger
remnants of binary neutron stars has become a hot topic in
this decade [1], because such systems can shine as an
electromagnetic counterpart of gravitational waves emitted
in their inspiral stage and the signals bring us a variety of
information for the nature of the merger process and
neutron stars that cannot be obtained only by the gravita-
tional-wave observation, as the first observation of the
binary neutron star merger shows [2,3]. There are a variety
of the possibilities for the remnants of the binary neutron
star mergers [1] and for the corresponding electromagnetic
counterparts [4,5]. Irrespective of the possibilities, the key
for the strong electromagnetic emission is the mass ejection
from the remnant. Thus, one important aspect of the

theoretical study is to clarify the properties of the ejecta
such as total mass, typical velocity, and typical elements.
The promising component of the remnant that induces

the mass ejection is a disk (or torus) surrounding the central
compact object, which is either a massive neutron star or a
black hole. The reason for this is that the disk is differ-
entially rotating, approximately with the Keplerian rota-
tional profile, and is likely to be magnetized because the
disk matter stems from neutron stars. In this situation, the
magnetorotational instability (MRI) [6] is activated, and as
a result, a turbulence would be developed, enhancing the
turbulence viscosity. The resulting viscous heating and
angular momentum transport inevitably enhance the activ-
ity of the disk, and eventually, the mass ejection is induced
[7–18]. In addition, the amplified magnetic field could
eventually constitute a aligned poloidal magnetic field
along the rotational axis and this could further enhance
the mass ejection efficiency [10,14,15]. With these con-
siderations, numerical simulations have been extensively
performed in the last decade to clarify the details of the
mass ejection from the accretion disks.
Although many works have been done for exploring the

evolution of the accretion disks formed as remnants of the
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neutron-star merger, there are only a few works for directly
evolving the remnant massive neutron star for a long
timescale of ≳1 s [11,17] (more specifically, no long-term
magnetohydrodynamics (MHD) simulation has been done:
but see [19] for a short-term simulation). A unique property
of the remnant massive neutron stars is found in their
angular velocity profile, ΩðϖÞ, where ϖ is the cylindrical
radius: Reflecting the nearly irrotational velocity field of
the pre-merger stage of two neutron stars, the inner region
of the remnant neutron stars should be differentially
rotating with the angular velocity that increases with the
cylindrical radius (dΩ=dϖ > 0; e.g., Ref. [20]). This
situation is in contrast to that for the disk rotating around
a central object, which approximately has a Keplerian
profile, i.e., the angular velocity decreases with the increase
of the cylindrical radius, and thus, unstable to the MRI. For
the inner region of the remnant neutron stars (in particular
for the central part of it) for which dΩ=dϖ > 0, the MRI
does not play any role.
However, irrespective of the sign of dΩ=dϖ, the winding

of the magnetic-field lines occurs in the presence of a seed
poloidal magnetic field together with differential rotation.
In contrast to the MRI for which the growth of the
magnetic-field strength exponentially proceeds, the (toroi-
dal) magnetic-field strength increases only linearly with
time by the winding. Nevertheless, the growth rate is not
still negligible in the presence of the rapid rotation because
the amplification factor is approximately written as Ωt
(e.g., Refs. [21–23]) and Ω ∼ 5000 rad=s (see Sec. III) for
the merger remnants. Thus in 0.2 s, the magnetic field can
be amplified by ∼103 times unless strong resistive proc-
esses are present. That is, even in the presence of a seed
poloidal magnetic field typically of 1013 − 1014 G (which
may be a conservative value for the merger remnants [24]),
the (toroidal) magnetic field could be amplified to the order
of 1016 − 1017 G in ∼0.2 s after the merger. The resulting
magnetic pressure could be a substantial fraction of the
matter pressure, and hence, the MHD effect could play an
important role for the late time evolution of the remnant
neutron star.
Motivated by this consideration, we perform general

relativistic MHD (GRMHD) simulations for a massive
neutron star formed as a remnant of equal-mass binary
neutron star mergers: As in our series of papers [11,17,25],
we employ a numerical result of a simulation for binary
neutron star mergers as the initial condition and perform an
axisymmetric simulation. We solve Einstein’s equation,
GRMHD equations, and neutrino-radiation hydrodynamics
equations altogether. Both the ideal and resistive MHD
simulations are performed. We here note that the origin of
the resistivity of the neutron stars is not certain. The
purpose here is to simply show that in the presence of a
hypothetical resistive MHD process, the evolution of the
remnant massive neutron stars can be significantly
modified.

In the assumption of axial symmetry, the poloidal
magnetic field is not amplified even when the toroidal-
field strength is significantly enhanced, due to the anti-
dynamo property [26]. As a first step toward more detailed
exploration of this topic, we do not consider any dynamo
effects for the growth of the magnetic-field strength in this
paper. Thus, we focus only on the growth of the toroidal
magnetic field and its effect on the evolution of the remnant
neutron star. The effect of the dynamo is planned to be
studied in the subsequent work.
The paper is organized as follows: In Sec. II, we

summarize the basic equations employed in the present
numerical simulation paying particular attention to the
GRMHD equations and our method for solving resistive
MHD equations. Section III presents numerical results of
the simulations paying particular attention to the growth of
the electromagnetic energy by the winding and the resulting
mass ejection. Section IV is devoted to a summary. In
Appendix A, a number of the results of test simulations for
our newly developed resistive MHD implementation are
presented. Throughout this paper, we use the geometrical
units of c ¼ 1 ¼ G where c andG denote the speed of light
and the gravitational constant, respectively (but c is often
recovered to clarify the units in the following sections).
Latin and Greek indices denote the spacetime and space
components, respectively. In Sec. II, we suppose to use
Cartesian coordinates for the spatial components whenever
equations are written.

II. BASIC EQUATIONS AND METHOD FOR
NUMERICAL COMPUTATIONS

A. Brief summary

In this work, we numerically solve Einstein’s equation,
ideal or resistive MHD equations, evolution equations for
the lepton fractions including the electron fraction, and
(approximate) neutrino-radiation transfer equations. Except
for the MHD parts (see the following subsections for
details), the numerical implementation is the same as that
in our latest viscous-hydrodynamics work [16,17]:
Einstein’s equation is solved using the original version
of the Baumgarte-Shapiro-Shibata-Nakamura formalism
[27] together with the puncture formulation [28], Z4c
constraint propagation prescription [29], and 5th-order
Kreiss-Oliger dissipation. The axial symmetry for the
geometric variables is imposed using the cartoon method
[30,31] with the 4th-order accuracy in space. For evolving
the lepton fractions, we take into account electron and
positron capture, electron-positron pair annihilation,
nucleon-nucleon bremstrahlung, and plasmon decay
[11,17]. We employ a tabulated equation of state based
on the DD2 equation of state [32] for a relatively high-
density part and the Timmes (Helmhoitz) equation of state
for the low-density part [33]. In this tabulated equation of
state, thermodynamics quantities such as ε, P, and h are
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written as functions of ρ, Ye, and T where ε, P,
hð¼ c2 þ εþ P=ρÞ, ρ, Ye and T are the specific internal
energy, pressure, specific enthalpy, rest-mass density,
electron fraction, and matter temperature, respectively.
We choose the lowest rest-mass density to be 0.1 g=cm3

in the table, and the atmosphere density for ρ� ≔ ρut
ffiffiffiffiffiffi−gp

in the hydrodynamics simulation is chosen to be 103 g=cm3

in the central region of r ≤ 100 km and it is decreased
down to 1 g=cm3 with the dependence of ∝ r−3 in the outer
region (i.e., for the far region it is 1 g=cm3). Here uμ and g
denote the four velocity of the fluid and the determinant of
the spacetime metric gμν, respectively. ρ� obeys the con-
tinuity equation in the form of

∂tρ� þ ∂iðρ�viÞ ¼ 0; ð1Þ

where vi ¼ ui=ut is the three velocity, dxi=dt. From
Eq. (1), the conserved rest mass is defined by

M� ≔
Z

ρ�d3x: ð2Þ

B. Maxwell’s equations

First we write down the equations for the electromag-
netic fields, which are derived from Maxwell’s equations:

∇μFμν ¼ −4πjν; ð3Þ

∇μ
�Fμν ¼ 0: ð4Þ

Here ∇μ is the covariant derivative with the respect to gμν,
Fμν is the electromagnetic tensor, jμ is the current four
vector, and �Fμν is the dual of Fμν defined by

�Fμν ≔
1

2
ϵμναβFαβ; ð5Þ

with ϵμναβ the Levi-Civita tensor of ϵtxyz ¼ ffiffiffiffiffiffi−gp
. Using the

unit timelike vector normal to the spacelike hypersurface,
nμ, we define the electric and magnetic fields by

Eμ ≔ Fμνnν; ð6Þ

Bμ ≔
1

2
nαϵαμνβFνβ; ð7Þ

and thus, the electromagnetic tensor and its dual are written
as

Fμν ¼ nμEν − nνEμ þ ϵμναBα; ð8Þ
�Fμν ¼ ϵμναEα − nμBν þ nνBμ; ð9Þ

where ϵναβ ¼ nμϵμναβ. Since Eμnμ ¼ Bμnμ ¼ 0, Et ¼
Bt ¼ 0. Note the definition of nμ ¼ −α∇μt with α the
lapse function.
Then Maxwell’s equations are written in terms of Eμ and

Bμ as follows: For the constraint equations,

DkEk ¼ 4πρe; ð10Þ

DkBk ¼ 0; ð11Þ

and for the evolution equations,

∂tEi − LβEi ¼ αKEi −DkðαϵkijBjÞ − 4παj̄i; ð12Þ

∂tBi − LβBi ¼ αKBi þDkðαϵkijEjÞ; ð13Þ

where ρe ≔ −jana and j̄i ≔ γikjk with γij the spatial metric
defined by γμν ≔ gμν þ nμnν. Dk denotes the covariant
derivative with respect to γij, βi the shift vector, K the
trace of the extrinsic curvature Kij, and Lβ denotes the Lie
derivative with respect to βi. We numerically solve the
evolution equations in the forms [34]

∂tEi ¼ −∂kðβiEk − βkEi þ αϵkijBjÞ
− 4πðJ i −QβiÞ; ð14Þ

∂tBi ¼ −∂kðβiBk − βkBi − αϵkijEjÞ; ð15Þ

where Ei ≔ ffiffiffi
γ

p
Ei, Bi ≔ ffiffiffi

γ
p

Bi, J i ≔ ffiffiffiffiffiffi−gp
j̄i, and Q ≔ffiffiffi

γ
p

ρe with γ ¼ detðγijÞ (in curvilinear coordinates, the
definition should be appropriately modified by excluding
the contribution of the coordinates in γ). We note
ð−gÞ ¼ α2γ. In this notation, the constraint equations are
written in the simple forms as

∂iEi ¼ 4πQ; ð16Þ

∂iBi ¼ 0: ð17Þ

To close the equations, we in general need the Ohm’s
law, for which we here write as

jμ ¼ ρ̃euμ þ σcðFμνuν þ αd
�FμνuνÞ; ð18Þ

where ρ̃e ≔ −jμuμ ¼ w−1ðρe − σcEμuμ þ σcαdBμuμÞ is the
charge density observed in the frame comoving with the
fluid, and σc is the conductivity with w ≔ −nμuμ ¼ αut.
Note that the resistivity is defined by η ≔ 1=ð4πσcÞ. The
third term in the right-hand side of Eq. (18) denotes a
dynamo term (in the simplest version) with αd being the so-
called α-dynamo parameter (see, e.g., Ref. [35] for the
dynamo theory and Ref. [36] for the relativistic formu-
lation). The dynamo term is a phenomenological one and
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we do not consider it in this paper (i.e., αd ¼ 0) except for
Appendix A 5. Note that Fμνuν and −�Fμνuνð≕ bμÞ denote
the electric and magnetic fields in the frame comoving with
the fluid.
In the ideal MHD case for which we suppose σc → ∞, it

is convenient to write the electromagnetic tensor in terms
of the magnetic field in the frame comoving with the fluid,
bμ, as

Fμν ¼ ϵμναβuαbβ; ð19Þ

�Fμν ¼ bμuν − bνuμ: ð20Þ

Then, it becomes trivial that the corresponding electric
field, Fμνuν, vanishes. Then, the condition of Fμνuν ¼ 0

with Eq. (8) gives the electric field, Ei, as

Ei ¼ −
1

w
ϵijkujBk; ð21Þ

and thus, Eμuμð¼ EiuiÞ ¼ 0.
In the ideal MHD case, the current is not determined

from Eq. (18) due to the fact that σc → ∞. Instead, it has to
be determined from Eq. (12) for Ei given by Eq. (21). Thus,
only Eq. (13) or (15) becomes the evolution equation for
the electromagnetic field, which determines the magnetic-
field evolution. Using Eq. (21), this equation is written in
the well-known form as

∂tBi ¼ ∂kðBkvi − BivkÞ: ð22Þ

C. Ideal MHD

In the ideal MHD, the energy-momentum tensor is
written as

Tμν ¼
�
ρhþ b2

4π

�
uμuν þ

�
Pþ b2

8π

�
gμν − bμbν; ð23Þ

where b2 ¼ bμbμ. Here, we have the relations as

αbt ¼ Bkuk; ð24Þ

wbi ¼ Bi þ Bkukui; ð25Þ

w2b2 ¼ B2 þ ðBkukÞ2; ð26Þ

with B2 ¼ BkBk, and thus, the energy-momentum tensor is
also written in terms of Bk.
For evolving the MHD equations, we define S0 ≔ffiffiffi
γ

p
Tμνnμnν and Si ≔ − ffiffiffi

γ
p

Tμνnμγνi, which are written as

S0 ¼ ρ�hw −
ffiffiffi
γ

p
Pþ

ffiffiffi
γ

p
4π

�
B2 −

1

2w2
fB2 þ ðBkukÞ2g

�
;

ð27Þ

Si ¼ ρ�hui þ
ffiffiffi
γ

p
4π

ðB2ui − BkukBiÞ: ð28Þ

Their evolution equations are

∂tS0 þ ∂j

�
S0vj þ

ffiffiffi
γ

p
Ptotðvj þ βjÞ −

ffiffiffiffiffiffi−gp
4πw

BkukBj

�
¼ ffiffiffiffiffiffi

−g
p

KijSij − SkDkα; ð29Þ

∂tSi þ ∂j

�
Sivj þ

ffiffiffiffiffiffi
−g

p
Ptotδi

j

−
ffiffiffiffiffiffi−gp

4πw2
BjðBi þ uiBkukÞ

�

¼ −S0∂iαþ Sk∂iβ
k −

1

2

ffiffiffi
γ

p
Sjk∂iγ

jk; ð30Þ

where Ptot ≔ Pþ b2=8π and Sij ≔ γi
μγj

νTμν.
Multiplying Bi to Eq. (28), we obtain BiSi ¼ ρ�hBiui.

Thus, Eq. (28) is rewritten as

Si þ
ffiffiffi
γ

p
4πρ�h

BkSkBi ¼
�
ρ�hþ

ffiffiffi
γ

p
4π

B2

�
ui: ð31Þ

Using this, the normalization relation of uμ is written in
terms of γij, ρ�, Si, and Bi as

γij
�
Si þ

ffiffiffi
γ

p
4πρ�h

BkSkBi

��
Sj þ

ffiffiffi
γ

p
4πρ�h

BkSkBj

�

×
�
ρ�hþ

ffiffiffi
γ

p
4π

B2

�
−2

þ 1 ¼ w2: ð32Þ

Hence, for given (evolved) values of γij, ρ�, Si, S0, and Bi

together with a given equation of state, this equation
together with Eq. (27) constitute simultaneous equations
for h and w, and thus, they are used for the so-called
primitive recovery procedure in the ideal MHD. Our
numerical approach for the primitive recovery when
employing tabulated equations of state is essentially the
same as that in the viscous hydrodynamics case [25].

D. MHD in general cases

In the general MHD case, not only the magnetic field but
also the electric field are explicitly included in the energy-
momentum tensor as
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Tμν ¼ ρhuμuν þ Pgμν

þ 1

4π

�
E2 þ B2

2
ðγμν þ nμnνÞ − EμEν − BμBν

þ ðnμϵναβ þ nνϵμαβÞEαBβ

�
; ð33Þ

where E2 ¼ EkEk. We note that in the ideal MHD case,
using Eq. (21) together with the fact that Ei=

ffiffiffiffiffiffiffiffiffiffiffi
EkEk

p
,

Bi=
ffiffiffiffiffiffiffiffiffiffiffi
BkBk

p
, and γijuj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γklukul

p
can constitute the ortho-

normal bases of the three space, the energy-momentum
tensor of Eq. (23) is derived in a straightforward manner.
For the general MHD case, S0 and Si are written as

S0 ¼ ρ�hw −
ffiffiffi
γ

p
Pþ 1

8π

ffiffiffi
γ

p ðE2 þ B2Þ; ð34Þ

Si ¼ ρ�hui þ
ffiffiffi
γ

p
4π

ϵijkEjBk; ð35Þ

and their evolution equations are

∂tS0 þ ∂j

�
S0vj þ ffiffiffi

γ
p �

P −
E2 þ B2

8π

�
ðvj þ βjÞ

þ 1

4π

ffiffiffiffiffiffi
−g

p
ϵjklEkBl

�
¼ ffiffiffiffiffiffi

−g
p

KijSij − SkDkα; ð36Þ

∂tSi þ ∂j

�
Sivj þ

ffiffiffiffiffiffi
−g

p �
Pþ E2 þ B2

8π

�
δi

j

−
ffiffiffiffiffiffi−gp
4π

ðEiEj þ BiBjÞ −
ffiffiffi
γ

p
4π

ðvj þ βjÞϵiklEkBl

�

¼ −S0∂iαþ Sk∂iβ
k −

1

2

ffiffiffiffiffiffi
−g

p
Sjk∂iγ

jk; ð37Þ

where

Sij ¼ ρhuiuj þ Pγij

þ 1

4π

�
−EiEj − BiBj þ

1

2
γijðE2 þ B2Þ

�
: ð38Þ

Using Eq. (35), the normalization relation for uμ is
written as

γil
�
Si −

ffiffiffi
γ

p
4π

ϵijkEjBk

��
Sl −

ffiffiffi
γ

p
4π

ϵljkEjBk

�
ðρ�hÞ−2

þ 1 ¼ w2: ð39Þ

Thus, for the resistive MHD, this equation together with
Eq. (34) constitute the simultaneous equations for h and w
for given (evolved) values of γij, ρ�, Si, S0, Bi, and Ei, and
are used for the primitive recovery procedure.

Practically, we solve the MHD equations (both in ideal
and resistive MHD) using the cylindrical coordinates
ðϖ;φ; zÞ in this work. For this procedure, we write the
equations for S0, Sy, ρ�, and the conservation equations for
the lepton fraction in a conservative form as in our viscous
hydrodynamics simulations [16,17]. This is in particular
important to guarantee the conservation of the rest mass and
angular momentum in numerical computation.

E. Numerical methods for solving Maxwell’s equations

We solve the ideal MHD equations mostly in the same
method as described in Ref. [37]: We evolve the hydro-
dynamics equations for S0, Si, ρ�, and the lepton fraction
using a high-resolution shock capturing scheme (a 3rd-
order upwind scheme). In the new implementation, one
improvement is made for solving the induction equation on
the evolution of the magnetic field, Bk. The previous
implementation solved the equations for Bx and Bz using
a constraint transport scheme [38] and that for By by an
upwind scheme, which is the same as for evolving S0, Si,
and ρ�. However, wewere aware of the fact that this method
was so diffusive that the electromagnetic energy was
spuriously decreased with a short timescale within
100 ms with the typical grid resolution of the grid spacing
∼200 m (we use the grid resolution of DD2-135M of
Ref. [17] for most of the present simulations and that of
DD2-135L of Ref. [17] for 4 test simulations). Thus, for a
long-term simulation with the duration more than seconds,
this scheme is practically useless (although a sophisticated
high-order scheme may solve this problem). In the new
implementation, we solve the induction equation for Bx and
Bz by a high-resolution upwind scheme, which is the same
as for evolving S0, Si, and ρ�, and the induction equation
for By by the 4th-order centered finite differencing with the
operation of the 5th-order Kreiss-Oliger dissipation. To
approximately preserve the divergence-free condition of
Eq. (17), a divergence cleaning is introduced (in the same
manner as in the resistive MHD scheme: see below). We
find that in this method, the stable numerical evolution is
feasible and also spurious oscillation is suppressed with the
reasonable choice for the coefficient of the Kreiss-Oliger
term. By this procedure, the diffusive evolution of the
magnetic field is suppressed in a much better manner than
in our previous implementation. The maximum error size of
the divergence-free condition, which is defined by
jð∂iBiÞΔx=Bzj where Δx is the grid spacing that covers
remnant neutron stars, remains to be ∼10−5 for the entire
simulation time in the present numerical resolution.
In the resistive MHD, we also employ the same shock

capturing scheme as that employed in the ideal MHD for
the hydrodynamics part that evolve S0, Si, ρ�, and the
lepton fraction. On the other hand, Maxwell’s equations are
solved in a different procedure. In addition, we change the
method of the time evolution depending on the magnitude
of the conductivity. In the following, we describe the
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methods for the low- and high-conductivity cases sepa-
rately, focusing only on the case that the timescale of
1=ð4πσcÞ is shorter than the time step interval of the
numerical simulation, Δt: A partially implicit scheme is
employed for appropriately handling the equation of the
electric field for the high values of σc.
For the low-conductivity case, we evolve the electro-

magnetic equations using the method that is used for
evolving geometrical variables and incorporating a diver-
gence cleaning prescription. Specifically, we rewrite
Eqs. (14) and (15) in the forms:

∂tEi ¼ −∂kðβiEk − βkEi þ αϵkijBjÞ
− 4πðJ i −QβiÞ; ð40Þ

∂tBi ¼ −∂kðβiBk − βkBi − αϵkijEjÞ;
− αγ1=2γij∂jϕB ð41Þ

∂tϕB ¼ βk∂kϕB − ακϕB − αγ−1=2∂kBk; ð42Þ

where ϕB is a new auxiliary variable associated with the
divergence cleaning, κ is a constant, and J i −Qβi is
written as

J i −Qβi ¼ Qvi þ σcαdBkukðvi þ βiÞ
þ ασc½wAi

jEj þ ϵijkujBk

þ αdð−wBi þ ϵijkujEkÞ�; ð43Þ

with Ai
j ¼ δij − w−2ūiuj and ūi ¼ γijuj. We notice that in

our scheme, we always evaluate Q by ∂kEk=4π.
In numerical implementation, the transport terms

in Eqs. (40) and (41) are evaluated by the 4th-order
centered finite differencing, and the transport term in
Eq. (42) is evaluated by the 4th-order upwind scheme as
done for the geometric variables. Whenever we evolve Ei,
Bi, and ϕB, we operate the Kreiss-Oliger dissipation
procedure in the same manner as we do for the geometric
variables.
To evolve the system, we basically use the 4th-order

Runge-Kutta scheme but for Ei we partially employ an
implicit scheme. This is implemented in the following
manner: In Eq. (40), we move the term of 4πσcαwAi

jEj that
appears in the current term to the left-hand side and write
the left-hand side of the evolution equation in the form

∂tEi þ 4πσcαwAi
jEj

¼ 1

Δt
ðEi þ 4πσcαwAi

jEjΔt − Ei
0Þ

¼ 1

Δt
ðMi

jEj − Ei
0Þ; ð44Þ

where Ei
0 denotes the values of Ei in a previous time-step

and Mi
j ¼ ð1þ ζÞδij − ζūiuj=w2 with ζ ¼ 4πσcαwΔt.

Here, the inverse of Mi
j is simply written as

ðM−1Þij ¼
1

1þ ζ
δij þ

ζ

ð1þ ζÞðw2 þ ζÞ ū
iuj: ð45Þ

Thus, the updated values of Ei is easily obtained in each
Runge-Kutta time step as

Ei ¼ ðM−1Þij½Ej
0 − ΔtFj

T

− 4πΔtfQvj − σcð−αdBkukÞðvj þ βjÞ
þ ασcðϵjklukBl þ αdð−wBj þ ϵjklukE0lÞÞg�; ð46Þ

where Fj
T denotes the term associated with the transport

term, which is evaluated in the explicit manner. We suppose
that αd is small (or zero) and thus the last term of Eq. (46) is
not included for the implicit prescription, although it is
straightforward to include it.
As we illustrate in Appendix A, this implementation

enables to solve several test-bed problems successfully
even for the case that σc is large such that ζ ≫ 1. The
electromagnetic fields are also evolved stably even in the
absence of the upwind scheme.
For the high-conductivity case close to the ideal MHD

case (specifically for ζ ≥ 100 in our present implementa-
tion), we modify this procedure. The reason for the
modification is that the equation of the magnetic field
approximately reduces to the induction equation (with a
weak diffusion term: see below) as

∂tBi ≈ ∂kðviBk − vkBiÞ þOðσ−1c Þ: ð47Þ

Here in Eq. (47) we omit the divergence cleaning term for
simplicity, although we include it in the practical simu-
lations. As a natural consequence of reducing approxi-
mately to a transport equation, for the case of the long
resistive dissipation timescale, the centered finite differ-
encing could introduce a long-term growing unstable mode
in numerical computation, in particular for the evolution of
the poloidal magnetic field leading to the violation of
divergence-free condition of ∂kBk ¼ 0 (note that this
condition is written only by the poloidal-field component
in the axially symmetric case). Below, we first derive
Eq. (47) from Eq. (41).
For the case that ζð¼ 4πσcαwΔtÞ ≫ 1, the expression of

the solution by the implicit method of Eq. (46) should be
mathematically modified by replacing ðM−1Þij by

ðM−1Þij ¼
1

ζ
δij þ

1

w2 þ ζ
ūiuj: ð48Þ

This is easily understood that the stiff term associated with
σc in the right-hand side of the evolution equation for Ei
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enforces the exponential decay of the initial electric field.
Then, Eq. (46) is rewritten into the form

Ei ¼ ðM−1ÞijðEj
0 − ΔtFj

T − 4πΔtðQvj þ αdσcdjÞÞ

−
1

w
ϵjklukBl

≕ Ẽi −
1

w
ϵjklukBl; ð49Þ

where dj ¼ Bkukðvj þ βjÞ þ αð−wBj þ ϵjklukE0lÞ denotes
the term associated with the dynamo. Hence, the terms
associated with the transport for Ei [see Eq. (41)] is
rewritten as

− βiBk þ βkBi þ αϵkijEj

¼ viBk − vkBi þ αϵkijẼj: ð50Þ

Thus, Eq. (47) is derived from Eq. (41) (here we suppose
again that αd is small).
As in the ideal MHD case, the transport part of Eq. (47)

should be evaluated by using an upwind scheme for the
numerical stability. On the other hand, the last term of
Eq. (50) constitutes a diffusion term in Eq. (41), which can
be evaluated by the centered finite differencing. In our
numerical implementation, the transport term is handled in
the same manner as in the ideal MHD case, while the
diffusion term is handled by the 4th-order centered finite
differencing. In addition, the divergence cleaning and 5th-
order Kreiss-Oliger dissipation are implemented as in the
relatively low conductivity case.
Before closing this subsection, we briefly comment on

our artificial prescription for handling the region in which
the electromagnetic energy density is much larger than the
rest-mass energy density, because such regions often
cannot be solved accurately in the MHD simulation. In
the present paper, if the ratio of B2=ð4πρc2Þ (in the ideal
MHD case) or ðE2 þ B2Þ=ð8πρc2Þ (in the resistive MHD
case) is larger than 103, we set ui ¼ 0 artificially. In
addition, if wð¼ αutÞ exceeds 5 or ε exceeds 103 after
the primitive-recover process, we also artificially set ui ¼ 0
and ε is determined from the condition that the temperature
is kT ¼ 0.1 MeV where k is the Boltzmann constant. The
reason for this is that in these high-electromagnetic-energy
cases, the primitive recovery often fails. The region with
these extreme conditions appears for the case that the
magnetic winding proceeds significantly and as a result a
strong outflow is driven from the neutron-star surface
toward a low-density atmosphere. In the absence of these
artificial prescriptions, the computation often crashed in our
current implementation. Since we give up resolving the
region with w ≥ 5, we cannot explore a very-high Lorentz-
factor jet in the present simulations.

F. Initial condition and relevant timescales

As in our series of the papers [11,17,25], the initial
condition for the matter field is supplied from the result of a
simulation for binary neutron star mergers. Specifically, we
employ the DD2-135M model of Ref. [17]: a merger
remnant of binary neutron stars with each neutron-star
mass 1.35 M⊙. As touched in Sec. II E, four simulations
are also performed using a lower-resolution model, DD2-
135L, to check the dependence of the results on the grid
resolution.
We then superimpose electromagnetic fields for which

the energy density is much smaller than the internal and
kinetic energy density of the fluid. In this work, we initially
give a poloidal magnetic field written in the form

Bϖ ¼ −
1

ϖ
∂zAφ; ð51Þ

Bz ¼ 1

ϖ
∂ϖAφ; ð52Þ

where

Aφ ¼ A0ϖ
2 max

�
P

Pmax
− δA; 0

�
; ð53Þ

with δA ¼ 10−5 and Pmax is the maximum pressure. A0

determines the initial field strength. With this setting, the
magnetic field is present for a high-density region with
ρ≳ 1011.5 g=cm3. The toroidal magnetic field is set to be
zero (By ¼ ϖBφ ¼ 0) initially. The electric field is deter-
mined by the ideal MHD condition (21). We also per-
formed two ideal MHD simulations with δA ¼ 10−2 (for
which the settings agree approximately with Bh-R0-Y and
Bh-R0-N in Table I). Irrespective of the values of δA, the
magnetic-field is strong only inside the remnant massive
neutron star for which the magnetic-field effect appears in
the most remarkable manner in the present context (i.e., in
the axisymmetric simulation with no dynamo effect).
Indeed, it is found that the results on the evolution of
the electromagnetic energy and angular velocity profile
depend only weakly on the value of δA. Thus in the
following, we focus only on the results of δA ¼ 10−5.
As Eq. (53) shows, we pay attention to the MHD effect

only for the high-density region, i.e., for the remnant
neutron star, and do not pay attention to the MHD effect
in the disk. Because the angular velocity of the disk
decreases along the cylindrical-radius direction, the MRI
would play a crucial role for its evolution. For exploring the
evolution, we need a long-term nonaxisymmetric simula-
tion that can capture the effects of turbulent motion and
resulting effective viscosity induced. This is beyond the
scope of this paper.
We also performed simulations initially with a purely

toroidal magnetic field of
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By ¼ A0ϖzmax

�
P

Pmax
− 10−5; 0

�
: ð54Þ

Here the dependence on the coordinates, ϖz, stems from
the required symmetry for By in the axially and planely
(with respect to the z ¼ 0 plane) symmetric assumption. In
axisymmetric simulations with this initial condition, the
magnetic field should be simply preserved or decay with
the timescale determined by σc (cf. Eq. (59) below). In
Appendix B, we show that our implementation can derive
the expected numerical results.
Table I lists the initial conditions (with the purely

poloidal magnetic field). B̂init and EB denote the maximum
value of Bzγ−1=3ð¼ Bzγ−1=6Þ and the electromagnetic
energy at the initial state. Here, the electromagnetic energy
is defined by

EB ¼ 1

8π

Z
ðB2 þ E2Þ ffiffiffiffiffiffi

−g
p

d3x: ð55Þ

Note that E2 is much smaller than B2. Since the volume of
the neutron star is of the order of 1019 cm3, the volume
averaged magnetic-field strength is initially ∼1015 G for
EB ∼ 1048 erg. The labels, Bv, Bh, Bm, and Bl, in the
model name of Table I refer to the initial magnetic-field
strength (very high, high, medium, and low).
Because the remnant neutron star which we employ is

differentially rotating, with this setting, the toroidal mag-
netic-field strength is initially increased linearly with time
by the winding effect as (e.g., Refs. [21–23])

BT ≈ Bϖ
0

dΩ
d lnϖ

t; ð56Þ

where Bϖ
0 is the initial local magnitude of theϖ component

of the magnetic field. This growth continues until the
electromagnetic energy increases to ∼10% of the rotational
kinetic energy, Ekin, of the neutron star. Thus the winding
timescale is defined approximately by

τwind ≔

ffiffiffiffiffiffiffiffiffi
Ekin

EB;0

s
ðΩmax −Ω0Þ−1

≈ 0.2 s

�
Ekin

1053 erg

�
1=2

�
EB;0

1047 erg

�
−1=2

×

�
Ωmax − Ω0

5000 rad=s

�
−1
; ð57Þ

where Ωmax and Ω0 denote the maximum value of the
angular velocity and angular velocity at the center, respec-
tively. EB;0 is the initial electromagnetic energy, and Ekin is
defined by

Ekin ≔
1

2

Z
ρ�huφvφd3x: ð58Þ

For the model employed in this paper, the initial value of
Ekin is ≈1.16 × 1053 erg. In the estimate of Eq. (57), we
supposed that the region of the maximum angular velocity
would be located in an outer region of the remnant massive
neutron star (see, e.g., Ref. [16]) and it governs the winding
and the growth of the electromagnetic energy. Also, we
assumed that a part of the poloidal magnetic field for which
the electromagnetic energy is ∼10% of EB;0 contributes to
the winding.
In the case of the finite value of σc, the electromagnetic

fields are dissipated. The dissipation timescale is approx-
imately written as

τdis ≈
4πl2σc

c2

¼ 0.13 s

�
l

3 km

�
2
�

σc
108 s−1

�
; ð59Þ

where l denotes the typical variation scale of the magnetic
field. Because we do not know the typical size of σc, we pay
attention to the cases for which τdis is comparable to τwind,
i.e., σc ¼ 107 − 109 s−1.
For the case of τdis ≫ τwind, obviously, the resistive

dissipation does not play a role. By contrast, for
τdis ≪ τwind, the magnetic field is diffused out before the
magnetic winding significantly amplifies the magnetic-
field strength. Also, the winding effect does not directly
determine the final magnetic-field profile for τdis ≪ τwind.
This point is understood by the following model for the

TABLE I. Initial condition and set-up for the numerical
simulation. We list the maximum value of B̂init ¼ Bzγ−1=3, the
electromagnetic energy, and the value of σ−1c in units of
milliseconds. The last column shows the on or off of the
irradiation/heating and pair-annihilation of neutrinos. For all
the initial conditions, the total baryon mass is M� ¼ 2.95 M⊙,
the gravitational mass is M ¼ 2.64 M⊙, the total rotational
kinetic energy is Ekin ≈ 1.16 × 1053 erg, and the total angular
momentum is J ¼ 4.65 × 1049 g cm2=s.

Model B̂init (G) EB (erg) σcðs−1Þ Pair & Heat.

Bv-R0-Y 4.4 × 1015 9.4 × 1047 ∞ On
Bh-R0-Y 2.2 × 1015 2.4 × 1047 ∞ On
Bh-R0-N 2.2 × 1015 2.4 × 1047 ∞ Off
Bh-Rw-Y 2.2 × 1015 2.4 × 1047 1011 On
Bh-Rl-Y 2.2 × 1015 2.4 × 1047 109 On
Bh-Rm-Y 2.2 × 1015 2.4 × 1047 108 On
Bh-Rh-Y 2.2 × 1015 2.4 × 1047 107 On
Bm-R0-Y 1.1 × 1015 5.9 × 1046 ∞ On
Bm-R0-N 1.1 × 1015 5.9 × 1046 ∞ Off
Bm-Rl-Y 1.1 × 1015 5.9 × 1046 109 On
Bm-Rm-Y 1.1 × 1015 5.9 × 1046 108 On
Bm-Rh-Y 1.1 × 1015 5.9 × 1046 107 On
Bl-Rl-Y 5.6 × 1014 1.5 × 1046 109 On
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evolution of By, for which the evolution equation is
approximately written as

∂tBy ≈ϖBi∂iΩþ ηΔBy; ð60Þ
where Δ denotes the Laplacian operator (different from the
operator that denotes the infinitesimal variation). Here, we
picked up only the terms related to the winding and resistive
dissipation. For this equation, we consider a toy model in
which the first term in the right-hand side is not time-varying
as ϖBi∂iΩ ¼ FðxiÞ≕ ηΔF2ðxiÞ (again Δ denotes the
Laplacian operator). Then, it is easily found that for
t ≪ τdis, the magnetic winding approximately determines
the solution as By ≈ tFðxiÞ. On the other hand, for t≳ τdis,
the asymptotic solution is By ≈ −F2ðxiÞ. Thus, the winding
history is not reflected, although the order of magnitude of
F2 is written as ∼ΩτdisjBij, which reflects the winding in
t ≤ τdis. We note that near the rotational axis, F ∝ ϖ3, and
hence, F2 ∝ ϖ5. Thus, even if By is positive during the
winding, the final relaxed value for it can be negative.

III. EVOLUTION OF A REMNANT
NEUTRON STAR

A. Summary of the evolution

Table I lists the models for which we performed
simulations. The initial electromagnetic energy is varied
among 1.5 × 1046–9.4 × 1047 erg. With this setting, the
magnetic winding timescale is approximately 0.1–1 s.
The simulations are performed for the ideal MHDmodels

(referred to as R0 in the model name) and for the resistive
MHDmodelswith σc ¼ 107,108,109, and1011 s−1 (referred
to as Rh, Rm, Rl, and Rw in the model name). For
σc ¼ 1011 s−1, the dissipation timescale by the resistivity
is ∼100 s, which is much longer than the winding timescale
in our setting. Thus, this model is employed to check that the
ideal MHD results are approximately reproduced in the
resistive MHD implementation.
For most of the models, neutrino effects including the

irradiation/heating and pair annihilation are taken into
account as in our previous papers [17,25]. To clarify the
importance of the neutrino effects on the evolution of the
massive neutron stars and on the mass ejection, for the ideal
MHD case, we perform two simulations in which the
effects of both the neutrino irradiation/heating and neutrino
pair annihilation are switched off (models Bh-R0-N and
Bm-R0-N: in the presence of the neutrino effects, the model
is referred to with the label Y).
As we touched in Secs. II E and II F, numerical simu-

lations were performed with two grid resolutions for two
ideal MHD (Bh-R0-Y and Bh-R0-N) and two resistive
MHD (Bh-Rw-Y and Bh-Rl-Y) cases. By comparing the
results of two different resolutions, we find that the
numerical results depend weakly on the grid resolution
(see Appendix C). Specifically, for the lower grid reso-
lution, the amplification of the magnetic-field strength is

suppressed, and thus, the maximum electromagnetic energy
becomes smaller, in particular in the presence of the
neutrino irradiation/heating and pair-annihilation effects.
For the resistive MHD simulation, we also find that the
dissipation is spuriously enhanced for the lower grid
resolution. However, besides these quantitative effects,
the evolution process of the neutron star is not modified
qualitatively by changing the grid resolution.
In the present context, the typical MHD process in the

remnant neutron star of neutron-star mergers in the presence
of an initial seed poloidal magnetic field is governed by the
magnetic winding effect, for which the growth timescale of
the toroidal magnetic-field energy is written approximately
by Eq. (57).When the electromagnetic energy exceeds a few
%of the rotational kinetic energy of the remnant neutron star
(for this case Ekin ≈ 1.16 × 1053 erg), the magnetic braking
starts playing an important role. As a consequence, the
angular momentum in the neutron star is redistributed and
the differentially rotating configuration of the angular
velocity is enforced to approach a (approximately) rigidly
rotating one. Then, the angular velocity in the central region
exceeds∼5000 rad=s (i.e., the rotational period is∼1.2 ms).
After the toroidal magnetic-field strength is significantly
increased by the winding, the mass outflow from the
neutron-star surface is enhanced by the increased magnetic
pressure (although themass ejection in the present context is
driven primarily by the neutrino irradiation/heating: see
Sec. III B). After the magnetic braking works significantly,
the increase of the angular velocity in the central region is
decelerated. In addition, the magnetic-field profile in the
neutron star is modified significantly by the mass outflow
(and resulting magnetic-flux escape) process. The detail on
these findings is described in Sec. III A 1.
In the presence of only low resistivity (i.e., a high value

of σc), the evolution process of the remnant neutron star is
essentially the same as in the ideal MHD case. In the
presence of a high resistivity with which the dissipation
timescale of the magnetic field is shorter than the winding
timescale, not only the winding but also the magnetic-field
dissipation plays an important role. For such cases, the
magnetic winding does not occur significantly and the
magnetic-field effect on the angular velocity profile is
minor (see Sec. III A 2 for details).

1. Ideal MHD

Figure 1 shows the electromagnetic energy as a function
of time. The left panel plots the results for all the ideal
MHD models together with one resistive model of a high
conductivity (Bh-Rw-Y) and the right panel plots those for
all the resistive MHD models. In the ideal MHD cases, the
electromagnetic energy, EB, is initially increased by the
magnetic winding effect by several orders of magnitude. In
this early stage, EB is approximately proportional to t2

irrespective of the models (including the resistive MHD
models except for the case of σc ¼ 107 s−1 for which the
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resistive dissipation timescale is quite short; the order
of 10 ms).
For the ideal MHD case, after EB exceeds ∼3% of Ekin,

the increases of EB is decelerated (i.e., the slope of EB

becomes shallower than t2), indicating that the winding
effect is weaken and the magnetic braking becomes
important. However, the increase of EB still continues
until it reaches ∼10% of Ekin, and then, the growth of the
electromagnetic field is saturated. The saturation energy is
slightly smaller for the smaller initial field strength. This is
primarily due to the fact that more magnetic fluxes are
escaped associated with the mass outflow for longer-term
evolution, and may be partly due to the numerical dis-
sipation, i.e., in the longer-term evolution the damage by
the numerical dissipation is more serious: We note that the
simulations are always performed for ∼103 rotational
period of the neutron star.
The saturated energy is slightly higher in the absence of

the neutrino irradiation/heating and pair-annihilation
effects. Our interpretation for this is that in the absence
of these effects, the mass outflow from the neutron star is
suppressed (cf. Sec. III B), resulting escape of the magnetic
flux (associated with the mass outflow) is also suppressed,
and as a result, the amplification of the electromagnetic
field proceeds to a higher level.
As we already mentioned briefly, the mass ejection is

driven primarily by the neutrino irradiation/heating (see
Sec. III B for details). However, with the increase of the
electromagnetic energy toward the saturation, the mass
ejection from the neutron star is slightly enhanced. This is
due to the magnetic pressure primarily resulting from the
significantly amplified toroidal magnetic field. By this
enhancement of the outflow, a part of the magnetic flux
escapes from the neutron star, and as a result, the total
electromagnetic energy decreases. However, the decrease
rate becomes eventually low (EB eventually shows the
oscillatory behavior) and the electromagnetic energy in

average appears to relax to ∼1051 erg, i.e., ∼1% of the
rotational kinetic energy of the neutron star. We note that
the rotational kinetic energy does not change significantly
by the magnetic braking effects because it is always larger
by more than one order of magnitude than the electromag-
netic energy, and thus, the magnetic-field effect is minor.
Instead, the rotational kinetic energy slightly increases with
time because the neutron star contracts due to the emission
of neutrinos of total energy of ∼1053 erg, and hence, the
neutron star slightly spins up in the absence of the
electromagnetic effect, as shown in Ref. [17].
For the nearly ideal MHD case, i.e., for the resistive

MHD case with a tiny resistivity (high conductivity,
σc ¼ 1011 s−1; model Bh-Rw-Y), the curve of EB is similar
to the corresponding ideal MHD model (Bh-R0-Y) as
found in the left panel of Fig. 1. This is natural because for
this model, the resistive dissipation timescale is quite long
∼100 s (cf. Eq. (59). In the late stage with t≳ 1 s, the
disagreement between the results for models Bh-R0-Y and
Bh-Rw-Y is not negligible. Our interpretation for this is that
the formulation and the finite-differencing scheme are not
completely the same for the ideal and resistive MHD
computations; e.g., in the resistive MHD we solve the
equations for the electric field but in the ideal MHD we do
not. In particular, for regions in which the electromagnetic
energy density is much higher than the rest-mass energy
density, we have to introduce an artificial treatment to avoid
the crush of the computation, and for such regions the
prescription becomes different in the two MHD implemen-
tations. Hence, in the long-term simulation, the numerical
error accumulated by such an artificial treatment could
cause this difference (accordingly, for t≳ 1 s, the numeri-
cal results are not very accurate).
Associated with the magnetic braking by the amplified

toroidal magnetic fields, the angular velocity profile of the
neutron star is always modified for the ideal MHD case (see
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FIG. 1. Evolution of the electromagnetic energy for all the ideal MHD models, Bv-R0-Y, Bh-R0-Y, Bh-R0-N, Bm-R0-Y, Bm-R0-N,
and for a resistive model with a high conductivity, Bh-Rw-Y (left panel) and for all the resistive models employed in this paper
(right panel).
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top two panels of Fig. 2).1 As we mentioned in Sec. I,
initially, the angular velocity is an increase function ofϖ in
the central region of the neutron star. This profile is
modified and approaches gradually a rigidly rotating state

for the region in which the strong magnetic field is present.
Figure 2 illustrates that the angular velocity in the central
region is increased by a factor of ∼2 by this effect. Thus, the
degree of the differential rotation is reduced by the winding
and its back reaction. The timescale for this process is
determined by the Alfvén timescale [21,22]

τa¼
R

BT=
ffiffiffiffiffiffiffiffiffiffiffi
4πρh

p

≈0.11 s

�
R

10 km

��
BT

1015G

�−1� ρ

1015 g=cm3

�
1=2

; ð61Þ

FIG. 2. Evolution of the angular velocity profile for models Bh-R0-Y (top left), Bm-R0-Y (top right), Bm-Rl-Y (middle left), Bm-Rm-
Y (middle right), Bm-Rh-Y (bottom left), and Bh-Rw-Y (bottom right). We note that due to the neutrino cooling, the remnant neutron
star contracts and its central region spins up. For model Bm-Rh-Y, the increase of the angular velocity is predominantly due to this effect.

1We note that due to the neutrino cooling, the remnant neutron
star contracts and its central region spins up. The increase of the
angular velocity is partly due to this effect. For the high-resistivity
cases such as models Bh-Rh-Y and Bm-Rh-Y, the increase of the
angular velocity in the central region is caused mainly by this
effect: This was confirmed by comparing the numerical result
with no magnetic fields [17].
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where R, BT , and ρ denote the typical radius, toroidal
magnetic-field strength, and rest-mass density of the
neutron star, and we set h ≈ 1 for simplicity. Unless the
magnetic-field profile is significantly modified, after
the magnetic braking occurs, the angular velocity should
basically show oscillatory behavior with the timescale of τa,
because the angular velocity approximately obeys a hyper-
bolic equation [21]. However, in the present context, the
poloidal magnetic flux is significantly escaped by the
neutrino-driven mass outflow and a simple oscillation is
not seen. We also note that in the nonaxisymmetric case, the
turbulence and dynamo effects also would modify the
magnetic-field profile significantly [23].
The top and bottom panels of Fig. 3 show the poloidal

(left) and toroidal (right) magnetic-field strength along x-
direction with z ¼ 1 km (top) and along the z-direction
with x ¼ 1 km (bottom) for model Rm-B0-Y. The
poloidal and toroidal magnetic-field strengths are defined,
respectively, by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BxBx þ BzBz

p
γ−1=2 and signðByÞ×ffiffiffiffiffiffiffiffiffiffiffi

ByBy
p

γ−1=2ð≈Byγ−1=3Þ. It is found that the toroidal-field
strength (absolute value) is increased far beyond 1015 G
inside the neutron star quite uniformly. By contrast, the
maximum value of the poloidal field strength does not
increase but rather decreases in the late phase. This
decrease is due to the fact that associated with the matter
outflow, themagnetic flux is ejected from the neutron star. By
this process, instead, a strong poloidal field is produced in the
polar direction outside the neutron star (see the bottompanels
of Fig. 3): The typical poloidal-field strength at the neutron-
star pole is ∼1014 G and ∼1013 G at z ∼ 100 km.
Associated with the mass outflow from the neutron-star

surface, magnetic-fluxes escape toward a large ϖ and large
z direction. Because the angular velocity of the escaped
matter decreases with the motion toward ϖ-direction, the
generation of a negative toroidal magnetic field is pro-
ceeded along the field lines of the escaped matter. This
effect subsequently makes the toroidal magnetic field in the
neutron star negative. For model Bm-R0-Y, the mass
outflow from the neutron-star surface is appreciably caused
by the neutrino-driven wind. As a result, the region with the
negative toroidal field expands gradually with time (see the
top-right panel of Fig. 3). By contrast, for model Bm-R0-N,
the neutrino-driven wind is absent and the mass outflow
from the neutron-star surface is weak. Consequently, the
region with the negative toroidal field appears only in the
vicinity of the neutron star surface (see the second-top-right
panel of Fig. 3).
As indicated in Fig. 3, the toroidal magnetic-field energy

dominates over the poloidal magnetic-field one after the
significant winding: The poloidal-field energy is< 0.1% of
the toroidal field energy. However, this may be an artifact in
axisymmetric computations in which no dynamo effect is
present [26]. In reality, the poloidal-field strength may
become much higher than the present results.

2. Resistive MHD

For the resistive MHD models with low values of the
conductivity (i.e., high resistivity), the magnetic-field
strength and the maximum value of EB reached by the
magnetic winding depend on the values of σc, and thus, are
different from those for the ideal MHD case (see the right
panel of Fig. 1 as well as Figs. 2 and 3). Specifically, the
maximum magnetic-field strength depends on the ratio,
τdis=τwind≕Rτ: For smaller values of Rτ (i.e., Rτ ≲ 1), the
maximum values of the magnetic-field strength and EB are
smaller because the resistive dissipation of the electromag-
netic energy proceeds faster than the magnetic winding.
Thus, for the smaller values of the initial electromagnetic
energy, these maximum values are smaller for a given value
of σc. This is found clearly from the results for σc ¼ 107

and 108 s−1 (compare the results of models Bh-Rm-Y and
Bh-Rh-Y with Bm-Rm-Y and Bm-Rh-Y, respectively). By
contrast, for Rτ ≳ 1, the resistive effect is not very remark-
able: For example, themaximumvalue ofEB always exceeds
1% of the rotational kinetic energy, Ekin, because the
magnetic winding sufficiently proceeds until the saturation
of the growth is reached: See the results with σc ≥ 109 s−1.
We note that irrespective of the maximum value of EB

reached, the toroidal magnetic-field energy dominates over
the poloidal magnetic-field one in the end as in the ideal
MHD case. Again, this could be an artifact in axisymmetric
computations with no dynamo effect in which the poloidal
field cannot be amplified [26]. In the nonaxisymmetric
case, this is unlikely to be the case, and hence, the poloidal
field may be also enhanced in the later stage.
For the case that the maximum value of EB is smaller

than ∼3% of Ekin, the effect of the magnetic braking is
weak, and hence, the differential rotation is modified
weakly. As found from the middle-right and bottom-left
panels of Fig. 2, the angular velocity near the rotational axis
(x ¼ 0) does not increase appreciably for σc ≤ 108 s−1 (see
also footnote 1). By contrast, the angular-velocity profile
for σc ≥ 109 s−1 evolves in a similar manner to that in the
ideal MHD case (compare the top-left and bottom-right
panels or the top-right and middle-left panels of Fig. 2).
The third row of Fig. 3 shows the evolution of the

magnetic-field profile near the equatorial plane for a
resistive model (Bm-Rm-Y). Figure 3 illustrates that the
magnetic-field strength depends strongly on σc: For
σc ≤ 108 s−1, the magnetic field is dissipated in 0.1 s
and the resulting field strength is by 1–2 orders of
magnitude smaller than that in the ideal MHD case
(compare the top and third-top panels of Fig. 3). For
model Bm-Rm-Y, the toroidal field component varies from
the positive to negative values in the neutron star for late
times. As we mentioned our interpretation for this by an
analysis at the end of Sec. II, this reflects the resistive
evolution of the toroidal magnetic field in axial symmetry.
For the case that the resistive dissipation timescale is

short, ≲0.1 s, the thermal energy is generated in the phase
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FIG. 3. Poloidal (left) and toroidal (right) magnetic-field strength along the x-direction with z ¼ 1 km at selected time slices for
models Bm-R0-Y (top panel), Bm-R0-N (2nd top panel), and Bm-Rm-Y (3rd panel). The bottom panel shows the poloidal and toroidal
magnetic-field strengths along the z-direction with x ¼ 1 km for model Rm-B0-Y. The field strengths of the poloidal and toroidal
components are defined by BP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BxBx þ BzBz

p
γ−1=2 and BT ¼ signðByÞ ffiffiffiffiffiffiffiffiffiffiffi

ByBy

p
γ−1=2ð≈Byγ−1=3Þ, respectively.
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in which the neutrino-driven mass outflow is most efficient.
However, for such cases, Rτ is small, < 1, and hence, the
electromagnetic energy caused by the winding is much
smaller than the rotational kinetic energy and internal
energy of the neutron star. Hence, the generated thermal
energy plays only a minor role for the mass outflow and
evolution of the neutron star (although this may contribute a
bit to enhancing the mass ejection). For Rτ ≳ 1, the
electromagnetic energy reached is ∼10% of the rotational
kinetic energy. For such cases, however, the dissipation
timescale is quite long; in our present setting, it is longer
than ∼1 s. Since the timescale for launching the neutrino-
driven outflow is shorter than or as short as this timescale,
the thermal energy generated by the resistive dissipation is
not likely to play a major role for the evolution of the
remnant neutron stars and mass ejection.

3. Outcome after the winding

Figure 4 displays the profiles for the density, temper-
ature, specific entropy, electron fraction (left for these four

plots), poloidal and toroidal magnetic-field strength, the
ratio of the rest-mass to magnetic energy density, and the
ratio of the gas pressure to the magnetic pressure (right for
these four plots) after the saturation of the electromagnetic
energy is reached for models Bm-R0-Y (ideal MHDmodel:
top panels) and Bm-Rm-Y (moderately high resistivity
model: bottom panels). These plots show that the system is
composed of a massive neutron star surrounded by a disk
and an outflow driven from the polar region of the neutron
star toward the z-direction irrespective of the presence or
absence of the resistivity.
However, by comparing the profiles for the two models,

two quantitative differences are found. First, the magnetic-
field strength for Bm-R0-Y is stronger than for Bm-Rm-Y
as we already mentioned in Sec. III A 2 (see Fig. 3). This is
clearly reflected outside the neutron star in Fig. 4. Second,
the property of the outflow driven from the polar surface of
the neutron star depends on the strength of an MHD effect:
In the presence of the strong MHD pressure (i.e., the ideal
MHD case), the matter density in the polar region is
smaller, and also, the velocity of the outflow is higher.

FIG. 4. Profiles for the density, temperature, specific entropy, electron fraction (left for these four plots), poloidal and toroidal
magnetic-field strength, the ratio of the rest-mass to magnetic energy density, and the ratio of the gas pressure to the magnetic
pressure (right for these four plots) after the saturation of the growth of the electromagnetic field for models Bm-R0-Y (top panels) and
Bm-Rm-Y (bottom panels).
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This modifies the electron fraction of the matter in the polar
region and ejecta: The electron fraction is lower for model
Bm-R0-Y for which the outflow velocity is higher and the
effect of the neutrino irradiation to the ejecta is weaker (see
also Sec. III B).

4. Remark: Comparison with previous work

In the present work, we find that the massive neutron star
does not contract significantly and its structure is not
modified essentially, after the magnetic winding and brak-
ing processes. This conclusion is in contrast to previous
work [39–41], which showed that differentially rotating
neutron stars significantly contract, and if they are hyper-
massive, they collapse to a black hole, after the magnetic
winding effect and associated angular momentum transport
by the magnetic braking take place. The major reason for
the absence of the significant contraction is that in the
present work, a realistic angular velocity profile is deter-
mined by the merger simulation (i.e., dΩ=dϖ > 0 in the
central region of the neutron star) while in Refs. [39–41],
they assumed that the angular velocity decreases steeply
with the cylindrical radius. For dΩ=dϖ > 0, the centrifugal
force in the central region of the neutron star increases after
the magnetic winding and subsequent magnetic braking
proceed, whereas for dΩ=dϖ < 0 (in the previous work),
the centrifugal force in the central region decreases by the
magnetic-field effects, and hence, the eventual collapse of
the hypermassive neutron stars to a black hole can occur.
Moreover, the outward angular momentum transport pro-
ceeds efficiently for dΩ=dϖ < 0, while for dΩ=dϖ > 0
(the present case) an inward angular momentum transport
occurs. Our present work indicates that the choice of the
angular velocity profile is an important factor for exploring
a realistic evolution process of the hypermassive neutron
stars in numerical simulations.

B. Ejecta

As we reported in our previous papers [11,17,25], the
mass ejection proceeds from the remnant of binary neutron
star mergers through the neutrino irradiation/heating even
in the absence of any other effects like the MHD and
viscous effects. The rest mass of this neutrino-irradiation
component is not very large as ≲10−3 M⊙ [17,25]. In the
context of the present paper, the mass ejection may be
enhanced by the MHD effect that results primarily from the
amplified toroidal magnetic field. In this subsection, we
pay attention to this enhancement. Because we finally find
that the mass ejection by the magnetic pressure enhanced
by the magnetic winding in the neutron star is a minor
effect, we here pay attention to this topic focusing only on
the ideal MHD results.
The ejecta component is determined using the same

criterion as in Refs. [16,17]; we identify a matter compo-
nent with jhutj > hmin as the ejecta. Here hmin denotes the
minimum value of the specific enthalpy in the adopted

equation-of-state table, which is ≈0.9987c2. For the matter
escaping from a sphere of r ¼ rext, we define the ejection
rates of the rest mass and energy (kinetic energy plus
internal energy) at a given radius and time by

_Meje ≔
I

ρ
ffiffiffiffiffiffi
−g

p
uidSi; ð62Þ

_Eeje ≔
I

ρê
ffiffiffiffiffiffi
−g

p
uidSi; ð63Þ

where ê ≔ hαut − P=ðραutÞ. The surface integral is per-
formed at r ¼ rext with dSi ¼ δirr2ext sin θdθdφ for the
ejecta component. rext is chosen to be 1000 km in this work.
ρ

ffiffiffiffiffiffi−gp
utð¼ ρ�Þ obeys the continuity equation for the rest

mass [see Eq. (1)], and thus, the time integration for it is a
conserved quantity. Also in the absence of gravity and
magnetic-field effects, ρê

ffiffiffiffiffiffi−gp
ut obeys the energy con-

servation equation, and far from the central region, the sum
of its time integration and its gravitational potential energy
are approximately conserved (assuming that the electro-
magnetic energy is much smaller than the kinetic energy).
Thus, the total rest mass and energy (excluding the
gravitational potential energy and electromagnetic energy)
of the ejecta (which escape away from a sphere of r ¼ rext)
are calculated by

Meje;escðtÞ ≔
Z

t
_Mejedt; ð64Þ

Eeje;escðtÞ ≔
Z

t
_Eejedt: ð65Þ

Far from the central object, Eeje;esc is approximated by

Eeje;esc ≈Meje;escc2 þU þ Tkin þ
GMMeje;esc

rext
; ð66Þ

where U and Tkin are the values of the internal energy and
kinetic energy of the ejecta at rext → ∞, respectively. The
last term of Eq. (66) approximately denotes the contribu-
tion of the gravitational potential energy of the matter at
r ¼ rext with M being the total gravitational mass of the
system [16]. Since the ratio of the internal energy to the
kinetic energy of the ejecta decreases with its expansion,
we may approximate U=Tkin ≈ 0, and hence, Eeje;esc by
Eeje;esc ≈Meje;escc2 þ Tkin þGMMeje;esc=rext for the region
far from the central object. We then define the average
velocity of the ejecta (for the component that escapes from
a sphere of r ¼ rext) by

veje ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEeje;esc −Meje;escc2 −GMMeje;esc=rextÞ

Meje;esc

s
: ð67Þ

In the setting of the present paper, the mass outflow and
resulting ejection occur only from the polar region of the
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neutron star (cf. Fig. 4), because we do not take into
account the realistic evolution of the disk surrounding the
neutron star, and mass outflow does not occur from it.
Thus, in the present work, we perform the surface integral
of Eqs. (62) and (63) only for θ ≤ 15° where θ denotes the
polar angle. Since the initial condition of our simulations is
prepared using the result of a merger simulation for binary
neutron stars, the dynamical ejecta component is present
from the beginning in the computational domain [17].
However, the dynamical ejecta component is located
primarily near the equatorial plane. Thus, with the restric-
tion for the surface integral of θ ≤ 15°, we can focus
approximately on the post-merger mass ejection, which
comes primarily from the polar region of the neutron star in
the present context.
Figure 5 shows the rest mass of the post-merger ejecta

component as a function of time for four ideal MHD
simulations. For comparison, we also plot the result in the
absence of the magnetic field (but with the neutrino effects:
model B0-Y) [17]. Figure 5 shows that the mass ejection is
driven primarily by the neutrino irradiation/heating and

pair-annihilation heating toward the polar region, because
the rest mass of the ejecta in the absence of these neutrino
effects is less than half of that in their presence and also less
than that in the absence of the magnetic-field effect (model
B0-Y). By comparing the results of models Bh-R0-Y and
Rm-R0-Y with that of model B0-Y, it is still found that the
magnetic pressure enhanced by the magnetic winding
increases the ejecta mass. However, as obviously found
from Fig. 5, the rest mass of this ejecta component is of the
order of 10−4 M⊙ and by two orders of magnitude smaller
than that of the viscosity-driven ejecta, which comes from
disks (tori) around the neutron star [11,17]. Therefore, the
MHD effect that stems from the winding in the neutron star
does not contribute appreciably to increasing the ejecta
mass. This is likely to be due to the facts that (i) the MHD
effect can strip the material only in a thin polar surface layer
of the neutron star for which the total rest mass is tiny and
(ii) the gravitational potential near the neutron star is so
deep that the mass ejection cannot efficiently occur from its
surface.
The present work indicates that the mass ejection by the

MHD effect from the neutron star is much less significant
than the viscosity-driven mass ejection from disks (tori)
surrounding the neutron star. These results suggest that the
major source of themass ejection from the remnant of binary
neutron starmergersmaybe thedisk, not the remnant neutron
star. However, this speculation should be explored in the
future by the simulations in which other important effects
such as dynamo effects are taken into account.
A noticeable MHD effect is found in the average velocity

and electron fraction of the ejecta (see Fig. 6; cf. Fig. 4 as
well). In the absence of the MHD effect (model B0-Y), the
average velocity of the ejecta is at most 0.15c. However, in
the presence of the strong MHD effect (models Bh-R0-Y
and Bm-R0-Y) the average velocity of the ejecta is
enhanced to be ∼0.3c at t ∼ 1 s. The comparison of the
results for models Bh-R0-Y and Bm-R0-Y with Bh-R0-N
and Bm-R0-N (models with no irradiation and pair-
annihilation of neutrinos) shows that the neutrino effects

FIG. 5. Ejecta mass as a function of time for the ideal MHD
cases. Model B0-Y refers to the result in the absence of the
magnetic-field effect but with the neutrino effects.

FIG. 6. Average velocity (left panel) and electron fraction (right panel) of the ejecta as functions of time for the ideal MHD simulations
and for one simulation without the MHD effect (B0-Y).
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also enhance the average velocity by the magnitude similar
to that by the MHD effect.
Due to the acceleration by the MHD effect, the influence

of the irradiation/heating by neutrinos to the electron
fraction of the ejecta becomes weak: In the absence of
the MHD effect, the electron fraction of the ejecta becomes
always high, ≳0.45, due to the irradiation both by electron
neutrinos and anti electron neutrinos, while in the presence
of the MHD effect, the electron fraction becomes slightly
lower, ∼0.4. For example, for the ideal MHD models Rh-
B0-Y and Rm-B0-Y, the electron fraction in the polar
region is as high as ≳0.4 before the magnetic field is
amplified, but it decreases below 0.4 after the growth of the
magnetic field and associated onset of the accelerated mass
outflow. This is due to the fact that the neutron-rich nature
of the matter outflowed originally from the neutron-star
surface is preserved stronger. Thus, the MHD effect in
the neutron star does not contribute much to increasing the
ejecta mass, but still has the influence to modify the
property of the outflow and ejecta. However, this effect
is not as strong as the neutrino irradiation/heating effect
(compare models Bh-R0-Y and Bm-R0-Y with Bh-R0-N
and Bm-R0-N) as already mentioned.

IV. SUMMARY

We performed ideal and resistive MHD simulations for a
remnant neutron star of binary neutron star mergers in
general relativity with neutrino effects. As a first step, we
paid attention to the effect of the magnetic winding for the
evolution of the remnant neutron star and resulting mass
ejection. The initial matter profile for the simulations was
obtained fromamerger simulation.A seed poloidalmagnetic
field, for which the electromagnetic energy is much smaller
than the rotational kinetic and internal energy of the system,
was initially superimposed inside the remnant neutron star,
and we focused only on the evolution of it; we did not pay
attention to the MHD evolution of the disk (torus) surround-
ing the neutron star.
Because of the magnetic winding effect, the toroidal

magnetic field is generated and amplified in this setting.
Since the toroidal magnetic-field strength increases linearly
with time, the electromagnetic energy increases as ∝ t2 in
the early growth stage. When the electromagnetic energy
exceeds ∼3% of the rotational kinetic energy, the magnetic
braking plays an important role for the redistribution of the
angular momentum inside the neutron star. For the ideal
MHD case, this always occurs and, as a result of the angular
momentum redistribution, the angular velocity, which is
initially an increase function of the cylindrical radius, is
enforced to approach a rigidly rotating state for the region
in which the magnetic braking works well. The maximum
electromagnetic energy reached is ∼10% of the rotational
kinetic energy of the neutron star, i.e., the maximum value
of EB is ∼1052 erg. By the angular-momentum redistrib-
ution, the rotational kinetic energy of the neutron star is not

significantly changed, while at the late stage, the electro-
magnetic energy relaxes to ∼1051 erg after the magnetic
braking is exerted, because the magnetic flux escapes from
the neutron star associated with the mass outflow.
For the resistive MHD simulation, the maximum electro-

magnetic energy reached by the winding effect depends
strongly on the magnitude of the conductivity; specifically,
the maximum value is determined by the ratio, Rτ ¼
τdis=τwind. For Rτ ≳ 1, the magnetic winding proceeds until
the electromagnetic energy reaches ∼10% of the rotational
kinetic energy as in the ideal MHD case. On the other hand,
for Rτ < 1, the resistive dissipation plays a role for sup-
pressing the growth of the electromagnetic energy. If the
electromagnetic energy does not reach∼3% of the rotational
kinetic energy, the magnetic braking effect is weak, and
hence, the differentially rotating state of the neutron star is
preserved; the increase of the angular velocity near the
central region is suppressed.
It is also found that the magnetic field amplified by the

winding in the neutron star does not contribute much to
enhancing the mass ejection; for the mass ejection from the
neutron star, the neutrino effects such as neutrino irradi-
ation/heating and pair-annihilation heating are more impor-
tant than the MHD effect. Our interpretation for this result
is that (i) the MHD effect in the neutron star can strip the
material only in the thin polar surface region of the neutron
star for which the total rest mass is tiny and (ii) the
gravitational potential near the neutron star is so deep that
the mass outflow cannot be efficient. The present result
suggests that the major source of the mass ejection from the
remnant of binary neutron star mergers may not be remnant
neutron star but the disk surrounding it. However, this
speculation should be examined in more detail by the
simulations in which other important effects such as
dynamo effects are taken into account.
In the present work, we performed axisymmetric simu-

lations. This implies that wemight overlook importantMHD
effects. One important missing effect is the turbulence
induced by Parker [42] and Taylor instabilities [43] (e.g.,
Ref. [44]). As we showed in this paper, the toroidal magnetic
field is inevitably amplified in the presence of a seed poloidal
magnetic field. It is well-known that in the presence of the
strong toroidal magnetic fields, (nonaxisymmetric) Parker
and Taylor instabilities can induce a turbulence, which could
further induce the magnetic-field amplification through the
dynamo effect. It is not clear at all what happens in such a
situation. In addition, it is not very clear what the final
configuration of themagnetic field profile is after the onset of
the turbulence (e.g., Ref. [45]). To explore these questions,
we obviously need three-dimensional MHD simulations in
the subsequent work. An alternatively phenomenological
approach is to incorporate a dynamo term to induce the
turbulence state [35,36]. By this prescription, we do not need
three-dimensional simulations: An axisymmetric simulation
would be reasonable to obtain some insight on the effect of
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the turbulence. We plan to perform simulations with a
dynamo term in the subsequent work.

ACKNOWLEDGMENTS

We thank Kenta Kiuchi and Federico Carrasco for helpful
discussions. M. S. and S. F. thank Yukawa Institute for
Theoretical Physics, Kyoto University for their hospitality
during the first corona pandemic time in Germany, in
which this project was started. This work was in part
supported by Grant-in-Aid for Scientific Research (Grants
No. JP16H02183 andNo. JP20H00158) of JapaneseMEXT/
JSPS. Numerical computations were performed on Sakura
and Cobra clusters at Max Planck Computing and Data
Facility.

APPENDIX A: TEST-BED SIMULATIONS FOR
RESISTIVE MHD IMPLEMENTATION

We here present the results for a suit of test-bed
simulations performed with our resistive MHD implemen-
tation. We employed several test-bed problems introduced
in Ref. [36] (see also Refs. [46–49]): the problems of self-
similar current sheet, resistive shock tube, and resistive
rotor. We also performed test simulations for the propaga-
tion of the electromagnetic wave packet in the flat space-
time and for a dynamo closure.

1. Self-similar current sheet

This test-bed problem was first proposed in Ref. [46] and
subsequently employed in many references [36,47–49].
This is the test to check whether the magnetic field
correctly diffuses out with the special-relativistic resistive
MHD implementation in the limit that the gas pressure is
much higher than the magnetic pressure. In the one
dimensional problem in which all the quantities depend
only on the x coordinate, an approximate (nearly exact)
solution is written, e.g., in the following form:

Byðx; tÞ ¼ C erf

� ffiffiffiffiffi
σc

p
xffiffi
t

p
�
; ðA1Þ

where erf denotes the error function and C is a constant
with C2=8π much smaller than the gas pressure. Here we
set C ¼ 1 as the choice of the units for simplicity. Note that
our notation for the basic MHD equations is different from
the previous papers because of the presence of the factor 4π
in front of jμ in Eq. (3).
Following Ref. [36], we employ the initial condition at

t ¼ 1 as ρ ¼ 1, p ¼ 50, Ei ¼ 1, ui ¼ 0, Bx ¼ Bz ¼ 0,
and By ¼ Byðx; t ¼ 1Þ. The Γ-law equation of state, p ¼
ðΓ − 1Þρεwith Γ ¼ 4=3 is employed. σc is set to be 100 [the
resistivity is 1=ð4πσcÞ]. The computational domain is set up
as x ¼ ½−0.6∶0.6� which is covered by 201 uniform grid
points. The simulation is performed until t ¼ 10. Figure 7

plots By at t ¼ 1 and 10. For t ¼ 10, we also plot the
functional form of By described in Eq. (A1). Figure 7
illustrates that our implementation can reproduce the
solution well. In this setting the maximum relative error
is ≈2.5 × 10−4.

2. Resistive shock tube

This problem was first proposed in Ref. [47]. The initial
condition for this problem proposed in Ref. [36] is

ðρ;p;vx;vy;vz; B̂x; B̂y:B̂zÞ

¼
�ð1.08;0.95;0.4;0.3;0.2;2.0;0.3;0.3Þ for x< 0;

ð1.0;1.0;−0.45;−0.2;0.2;2.0;−0.7;0.5Þ for x≥ 0;

where B̂i ¼ Bi=
ffiffiffiffiffiffi
4π

p
(this renormalization is necessary to

align the unit with the previous work) and vi ¼ ui=ut. The
initial electric field is given by Ei ¼ −ϵijkvjBk. The Γ-law
equation of state with Γ ¼ 5=3 is employed. σc is chosen to
be 10−3, 1, 10, 102, and 1010. The computation is
performed from t ¼ 0 to 0.55 covering the computational
domain of x ¼ ½−0.5∶0.5� by 401 uniform grid points. The
results are shown for ρ and By in Fig. 8 as in Ref. [36]. A
small unphysical oscillation could be seen for the curves of
ρ and By in the absence of the Kreiss-Oliger dissipation for
evolving Maxwell’s equations. However, this dissipation
term with a small coefficient of 1=640 cures the unphysical
oscillation. We find that the numerical solutions are quite
similar to those found in Ref. [36].

3. Resistive rotor

This is a two-dimensional problem with the coordinates
ðx; zÞ and the initial condition proposed in Ref. [36] is
given in the following manner. Inside a radius of
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t=10
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FIG. 7. Numerical solution of By at t ¼ 1 (dotted curve) and 10
(solid curve) with the analytic solution of Eq. (A1) at t ¼ 10
(dashed curve).
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
≤ 0.1, a uniformly rotating medium with

ρ ¼ 10 and the uniform angular velocity of Ω ¼ 8.5 is
prepared (i.e., vx ¼ −zΩ and vz ¼ xΩ). Outside the circle
of r ¼ 0.1, on the other hand, we set ρ ¼ 1 and Ω ¼ 0. For
the entire region, the pressure and the magnetic field are
initially uniform as p ¼ 1 and ðB̂x; B̂y; B̂zÞ ¼ ð1; 0; 0Þ. The
initial electric field is again determined by Ei ¼ −ϵijkvjBk.

The Γ-law equation of state with Γ ¼ 4=3 is employed, and
the system is evolved from t ¼ 0 to 0.3.
The computational domain is chosen to be x ¼

½−0.5∶0.5� and z ¼ ½−0.5∶0.5� and is covered by a uniform
grid of 401 × 401 points. This problem is numerically
solved for σc ¼ 1010 (nearly ideal MHD case) and 1. The
results for the profiles of the pressure and z-component of
the electric field are shown in Fig. 9. By comparing these
results with Fig. 3 of Ref. [36], we find a good (qualitative/
semi-quantitative) agreement.

4. Evolving electromagnetic fields

To check that our implementation for evolving the
electromagnetic fields works well in a practical computa-
tional domain, we also performed several test-bed simu-
lations in three spatial dimensions varying the value of σc
from 0 to high values. For σc ¼ 0 and σc → ∞ in the flat
spacetime of ui ¼ 0, it is easy to derive analytic solutions
for the electromagnetic equations, and thus, we compare
the results of the simulations with these analytic solutions.
For σc ¼ 0, the electromagnetic fields obey wave equa-

tions in vacuum, and general solutions for the basic
equations are easily derived. For example, an axisymmetric
general solution for the dipole radiation is written as
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Br ¼ 1

r
∂
∂r

�
fðrþ tÞ − fðr − tÞ

r

�
cos θ;

Bθ ¼ −
1

2r2
∂
∂r

�
r
∂
∂r

�
fðrþ tÞ − fðr − tÞ

r

��
sin θ; ðA2Þ

and Bφ ¼ 0. For this case, Eφ is only nonzero component
of Ei and it is derived straightforwardly from the field
equation. Here, fðuÞ is an arbitrary regular function, and
for fðuÞ ¼ −ue−u2=2, the initial condition becomes

Bx ¼ xze−r
2=2;

By ¼ yze−r
2=2;

Bz ¼ ð2 − x2 − y2Þe−r2=2; ðA3Þ

and Ei ¼ 0. Note here that we choose the width of the wave
packet (i.e., unity) as the unit of the length in this problem.
We then evolve this wave packet in the domain of

x ¼ ½−10∶10�, y ¼ ½−10∶10�, and z ¼ ½0∶10� with the grid
spacing of dx ¼ 0.1. The reflection-symmetric boundary
condition is imposed on the z ¼ 0 plane and an outgoing
wave boundary condition is imposed on the outer bounda-
ries. The left panel of Fig. 10 plots the numerical profiles of
Bz along the x axis at t ¼ 0, 5, 10, and 15 (solid curves)
together with the analytic solutions (dashed curves). Note
that at t ¼ 15, the wave packet already propagated away
from the computational domain. The relative error of the
numerical solution to the analytic one, e.g., at t ¼ 5, is of
order 10−3 with this setting (except for the outer bounda-
ries). This illustrates that our implementation can well
follow the propagation of the electromagnetic waves.
For large values of σc, on the other hand, the field

equations relax to parabolic ones. For the parabolic

equations with the initial condition of Eq. (A3), a solution
for the dipole magnetic field is written as

Br ¼ 2

�
1þ t

2πσc

�
−5=2

exp

�
−

r2

2þ t=πσc

�
cos θ;

Bθ ¼ −
1

r

�
1þ t

2πσc

�
−5=2

�
2 −

r2

1þ t=2πσc

�

× exp

�
−

r2

2þ t=πσc

�
cos θ;

Bφ ¼ 0: ðA4Þ

We again evolve this wave packet in the domain of
x ¼ ½−10∶10�, y ¼ ½−10∶10�, and z ¼ ½0∶10� with dx ¼
0.1 and 4πσc ¼ 50. The right panel of Fig. 10 plots the
profiles of Bz along the x axis at t ¼ 0, 50, and 100 (solid
curves) together with the analytic solutions (dashed
curves). With the chosen grid resolution, the maximum
relative error size is ≈4% at t ¼ 100 (except for the region
near the outer boundaries). The largest error is always
located near the region at which Bz ¼ 0, and for other
regions, the accuracy is much better.

5. Steady dynamo

Following Ref. [36], we also performed this simple test to
check that our implementation works well in the presence of
a dynamo term. In this test-bed problem, again, we pay
attention only to solving the electromagnetic field setting
ui ¼ 0.
First we assume that Bx ¼ Ex ¼ 0, and By, Bz, Ey, and

Ez are functions of expðiωt − ikxÞ where ω and k are the
angular frequency and the wave number. Then, the follow-
ing dispersion relation is derived:
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FIG. 10. Left: propagation of electromagnetic waves (Bz) in the flat spacetime for σc ¼ 0 at t ¼ 0, 5, 10, and 15. At t ¼ 15, the
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dispersion of electromagnetic waves in the flat spacetime for 4πσc ¼ 50 at t ¼ 0, 50, and 100. The solid and dashed curves show the
numerical and exact solutions, respectively (both curves approximately agree). For x < 0, the solution has the reflection symmetry for
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ω2 − 4πiσcω − k2 � 4πσcαdk ¼ 0: ðA5Þ

For this equation, we find that the exponential growth mode
is present for the case that k < 4πσcαd, and the resultant
expression of ω is

ω ¼ 2πiσc

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðk=2πσcÞ2 þ kαd=πσc

q �
; ðA6Þ

and for the fastest growing mode with k ¼ 2πσcαd, this
becomes

ω ¼ −2πiσc
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2d

q
− 1

	
: ðA7Þ

Because the basic equation is linear in Ei and Bi, it is
straightforward to extend this analysis in the multidimen-
sional case as long as we focus only on the transverse
component. That is, for the case that we initially prepare
two independent modes proportional to, e.g., expðiωt −
ikxxÞ and expðiωt − ikzzÞ where kx and kz are the wave
numbers, the stability of the system is determined simply
by analyzing the dispersion relations in the x and z
direction independently. Taking into account this fact,
we perform two-dimensional simulations setting the region
of x ¼ ½−1∶1� and z ¼ ½−1∶1� with the periodic boundary
conditions in both coordinates.
We then prepare the following initial condition:

Bx ¼ −b cosðkzzÞ; ðA8Þ

By ¼ a sinðkxxÞ þ b sinðkzzÞ; ðA9Þ

Bz ¼ −a cosðkxxÞ; ðA10Þ

and Ei is determined by the ideal MHD condition. Here, a
and b are constants. In this setting, for the case that
2λiσcαd > 1, the initial seed field should grow exponen-
tially with time, where λi ≔ 2π=ki (i is x or z) denotes the
wave length. Note that our setting of the computational
domain can follow the waves only with λi ≤ 2. Thus, the
simulations are performed for σc ¼ 10 and αd ¼ 0.2. For
this setting, the fastest growing mode has λi ¼ 1=2 while
the marginally stable mode has λi ¼ 1=4 (i.e., the mode
with λi > 1=4 is unstable).
Figure 11 plots the evolution of the maximum value of

By for σc ¼ 10 and αd ¼ 0.2 with λx ¼ 2, 1, 1=2, 1=3, 2=7,
1=4, 2=9, a ¼ 0.1, and b ¼ 0 (no perturbation in the z
direction) and with λx ¼ 1=4, λz ¼ 1=2, a ¼ 0.1, and
b ¼ 0.01. The growth rates of the unstable modes are well
captured in each simulation. This figure illustrates that our
implementation can derive the predicted results irrespective
of the prepared initial conditions.

APPENDIX B: RESISTIVE EVOLUTION OF THE
MASSIVE NEUTRON STAR WITH PURELY

TOROIDAL MAGNETIC FIELD

In this section, we present the results for the resistive
MHD evolution of the merger remnant neutron star with
purely toroidal magnetic fields and demonstrate that our
implementation can follow the resistive dissipation of the
toroidal magnetic field successfully.
Figure 12 plots the evolution of the electromagnetic

energy for the remnant massive neutron star, for which a
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FIG. 11. The maximum value of By for the steady dynamo test
for σc ¼ 10 and αd ¼ 0.2with λx ¼ 2, 1, 1=2, 1=3, 2=7, 1=4, 2=9,
a ¼ 0.1, and b ¼ 0 (no perturbation in the z direction) and with
λx ¼ 1=4, λz ¼ 1=2, a ¼ 0.1, and b ¼ 0.01. Note that the fastest
growing mode has the wavelength of 1=2while for the marginally
stable mode it is 1=4. λ in the inset of the plot implies λx.
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purely toroidal magnetic field of Eq. (54) is superimposed
at t ¼ 0, in the axisymmetric resistive MHD simulations
with σc ¼ 107, 108, 109, and 1011 s−1 (solid curves). The
result of an ideal MHD simulation is shown together
(dashed curve). Since the toroidal magnetic field is simply
superimposed and thus the initial condition is not exactly in
an equilibrium state, the electromagnetic energy initially
decreases by 10%–20% even in the absence of the
resistivity during the early relaxation stage. The subsequent
long-term gradual decrease of the electromagnetic energy
for the ideal MHD case would be partly due to the
numerical dissipation or diffusion.2 Note again that this
evolution process is valid only in the assumption of the
axial symmetry. In general cases, nonaxisymmetric insta-
bility such as Parker and Taylor instability [42,43] could
occur and the evolution process could be significantly
modified.
For the resistive MHD case, the magnetic field decreases

exponentially with time after the early relaxation stage. The
short-dashed slopes denote the relation of ∝ expð−t=τdissÞ
where τdiss is the decay timescale, and are plotted for
approximately fitting the curves for the resistive MHD
results. It is found that the dissipation timescale of the
magnetic field is ≈0.01, 0.1, and 1.0 s for σc ¼ 107, 108,
and 109 s−1, which are consistent with the timescales
estimated by Eq. (59). For σc ¼ 1011 s−1, the dissipation
timescale would be ∼102 s, and much longer than the
simulation time. Therefore, the result for this case agrees
approximately with that in the ideal MHD simulation: Our
ideal and resistive MHD implementations can derive
approximately the identical results.

APPENDIX C: GRID RESOLUTION
DEPENDENCE

As a convergence test, we performed numerical simu-
lations with two lower grid resolutions for two ideal MHD
(Bh-R0-Y and Bh-R0-N) and two resistive MHD (Bh-Rw-
Y and Bh-Rl-Y) cases. Figure 13 is the same as Fig. 1 but
for the comparison in the evolution of the electromagnetic
energy for two different resolutions. The solid and dashed

curves show the results for the cases that the neutron star is
resolved with the grid spacing of Δx ¼ 200 m and
Δx ¼ 250 m, respectively.
As found from Fig. 13, the growth of the magnetic-field

strength by the winding effect is followed with the lower
grid resolution fairly well. However, the amplification of
the magnetic-field strength is suppressed for the lower
resolution, and thus, the maximum electromagnetic energy
becomes smaller. This effect is not appreciable for the case
that the effects of the neutrino irradiation/heating and pair-
annihilation are switched off. However, in the presence of
these neutrino effects, the suppression is quite large: The
maximum magnetic-field strength for the lower resolution
is by a factor of ∼2 smaller than for the higher one. It
appears that the mass ejection associated with these
neutrino effects enhance the magnetic-field dissipation or
magnetic flux outflow from the neutron star. Thus the poor
convergence is likely to be associated with a poor con-
vergence in the neutrino transfer (cf. Ref. [25]).
For the resistive MHD simulations, we also find the

tendency similar to that found for the ideal MHD case with
neutrino effects. That is, the dissipation or magnetic flux
escape from the neutron star is spuriously enhanced for the
lower grid resolution. However, overall, the evolution
process of the neutron star is not modified qualitatively
by the grid resolution.
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