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General recipe to realize photonic-crystal surface-
emitting lasers with 100-W-to-1-kW single-mode
operation
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Realization of one-chip, ultra-large-area, coherent semiconductor lasers has been one of the

ultimate goals of laser physics and photonics for decades. Surface-emitting lasers with two-

dimensional photonic crystal resonators, referred to as photonic-crystal surface-emitting

lasers (PCSELs), are expected to show promise for this purpose. However, neither the general

conditions nor the concrete photonic crystal structures to realize 100-W-to-1-kW-class

single-mode operation in PCSELs have yet to be clarified. Here, we analytically derive the

general conditions for ultra-large-area (3~10mm) single-mode operation in PCSELs. By

considering not only the Hermitian but also the non-Hermitian optical couplings inside

PCSELs, we mathematically derive the complex eigenfrequencies of the four photonic bands

around the Γ point as well as the radiation constant difference between the fundamental and

higher-order modes in a finite-size device. We then reveal concrete photonic crystal struc-

tures which allow the control of both Hermitian and non-Hermitian coupling coefficients to

achieve 100-W-to-1-kW-class single-mode lasing.
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Realization of one-chip single-mode high-power semi-
conductor lasers, which surpass the performance of all
other lasers such as solid-state lasers, fiber lasers, and gas

lasers, has been one of the ultimate goals of laser physics and
photonics for decades. The demand for such semiconductor lasers
has been rapidly increasing for a wide variety of applications
including next-generation laser processing1,2 and remote
sensing3,4. Conventional semiconductor lasers such as edge-
emitting lasers and vertical-cavity surface-emitting lasers involve
fundamental difficulties for single-mode high-power operation
because an increase of the device size inevitably results in the
onset of multiple transverse-mode lasing5–8. On the other hand,
photonic-crystal surface-emitting lasers (PCSELs)9–16, which
utilize a two-dimensional standing-wave resonance at a singu-
larity point (Γ point, etc.) of the photonic band for lasing oscil-
lation, show promise for overcoming this difficulty; the mutual
coupling coefficients among propagating waves and radiative
waves inside PCSELs can be manipulated by the unit cell
design11,14, which can greatly enhance the threshold margin
between the fundamental mode and the other higher-order
modes. Towards the realization of ultra-large-area single-mode
PCSELs, a double-lattice photonic crystal, in which two lattice-
point groups are shifted in the x and y directions by one quarter
of the lattice constant a (which is almost equal to the wavelength
in the material), was recently proposed14. In the double-lattice
photonic crystal, the optical feedback (coupling coefficient) is
weakened by the destructive interference for 180° diffraction of
the waves reflected by each lattice point, with which the optical
losses of the higher-order modes are increased more than those of
the fundamental mode. Based on this concept, 10-W-to-20-W-
class single-mode lasing was experimentally demonstrated with
PCSELs with a diameter of as large as 400–500 µm15,16. In
addition, by introducing destructive interference of not only 180°
diffraction but also 90° diffraction, the possibility of single-mode
lasing in a larger device area with a diameter up to 2.5 mm was
suggested14. However, the conditions to realize single-mode las-
ing in an even larger area (3–10 mm), which are essential to
realize 100-W-to-1-kW single-mode lasing, have not yet been
derived, nor have the concrete photonic crystal structures to
satisfy the conditions been clarified. This is because the non-
Hermitian process inside photonic crystals, which accompanies
energy loss, has not been so far utilized effectively.

In this paper, we first mathematically derive the complex
eigenfrequencies of the four photonic bands around the Γ point,
which form two-dimensional broad-area cavity modes, by con-
sidering not only the Hermitian but also the non-Hermitian
optical couplings inside PCSELs using the three-dimensional
coupled-wave theory17,18. Next, we provide a formula for the

threshold margin of the fundamental mode over the higher-order
modes in the finite-size device, and reveal the general conditions
for the Hermitian and non-Hermitian optical coupling coeffi-
cients to realize broad-area single-mode lasing. We show that the
key to realize such broad-area single-mode lasing is in the utili-
zation of a carefully designed double-lattice photonic crystal
structure with an appropriate backside reflection, by which the
flexible control of both the Hermitian and non-Hermitian cou-
pling coefficients becomes possible. Finally, we investigate the
lasing stability of the designed PCSELs through a comprehensive
analysis by considering carrier-photon interactions, and reveal
more detailed requirements for the Hermitian and non-
Hermitian coupling coefficients, with which stable 100-W-to-1-
kW-class single-mode lasing can be expected in an ultra-large
lasing diameter (3–10 mm).

Results
Hermitian and non-Hermitian optical couplings inside
PCSELs. Figure 1 shows a schematic of mutual couplings of
waves inside a square-lattice PCSEL, where a double-lattice
photonic crystal is employed. The Hermitian couplings, which
express the optical couplings without accompanying energy loss
(or vertical radiation loss), are shown in Fig. 1a, while the non-
Hermitian couplings, which express the optical couplings with
accompanying energy loss (or vertical radiation loss), are shown
in Fig. 1b. Here, a back-side reflector is placed beneath the
photonic crystal to reflect the downward radiation to the upward
direction and to control especially the magnitude of non-
Hermitian coupling coefficient. In the analysis below, we focus
on the transverse-electric-like (TE-like) modes of the photonic
crystal since the active layer of the typical PCSELs consists of
multiple quantum wells with TE gain. Note that the analysis
below can be also applied to other square-lattice photonic crystals
that have the same reflection symmetry as the double-lattice
photonic crystal (i.e. reflection symmetry along y= x).

According to Bloch’s theorem, the electric fields distribution
E(r) inside the photonic crystal with a lattice constant of a is
expressed by the superposition of many propagating plane waves
as follows;

EðrÞ ¼ ∑
m;n

Em;ne
�iðkxxþkyyÞe�iðmβ0xþnβ0yÞ: ð1Þ

Here, Em,n is an electric field vector of each Fourier component
(m, n are integers), β0= 2π/a is the magnitude of the reciprocal
lattice vector, and k= (kx, ky) is a wavevector representing a
deviation from the Γ point. Resonance at the Γ point, which is
used for typical PCSELs, is composed of four fundamental waves
expressed with (m, n) = (±1, 0), (0, ±1), where the complex
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Fig. 1 Hermitian and non-Hermitian optical couplings inside PCSELs. a Hermitian couplings between the four fundamental waves (Rx, Sx, Ry, Sy) inside a
PCSEL. b Non-Hermitian couplings via radiated waves, where a backside reflector is used for the control of the non-Hermitian coupling coefficient iμ.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30910-7

2 NATURE COMMUNICATIONS |         (2022) 13:3262 | https://doi.org/10.1038/s41467-022-30910-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


electric-field amplitudes of these waves are expressed as Rx, Sx, Ry,
and Sy as illustrated in Fig. 1a. These four waves are directly
coupled with each other, and are also indirectly coupled via
higher-order waves (m2+ n2 > 1) and radiative waves (m= n=
0). Considering the reflection symmetry along y= x in the
double-lattice photonic crystal as shown in Fig. 1, the mutual
couplings between these fundamental waves can be expressed
with the following matrix equations in the framework of the
three-dimensional coupled-wave theory (3D-CWT)17,18;

�
δ þ i

α

2

�
Rx

Sx
Ry

Sy

0
BBB@

1
CCCA ¼ ðCHermitian þ Cnon�Hermitian þ Cnon�GammaÞ

Rx

Sx
Ry

Sy

0
BBB@

1
CCCA;

ð2Þ

CHermitian ¼

κ11 κ1D κ2Dþ κ2D�
κ*1D κ11 κ*2D� κ2Dþ
κ2Dþ κ2D� κ11 κ1D
κ*2D� κ2Dþ κ*1D κ11

0
BBB@

1
CCCA; ð3Þ

Cnon�Hermitian ¼

iμ iμeiθpc 0 0

iμe�iθpc iμ 0 0

0 0 iμ iμeiθpc

0 0 iμe�iθpc iμ

0
BBB@

1
CCCA; ð4Þ

Cnon�Gamma ¼

βk;1;0 � β0 0 0 0

0 βk;�1;0 � β0 0 0

0 0 βk;0;1 � β0 0

0 0 0 βk;0;�1 � β0

0
BBB@

1
CCCA

�

kx 0 0 0

0 �kx 0 0

0 0 ky 0

0 0 0 �ky

0
BBB@

1
CCCA;

ð5Þ

βk;m;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx þmβ0Þ2 þ ðky þ nβ0Þ2

q
:

Expressions for each term on the right-hand side of Eqs. (3)
and (4) are provided in Supplementary Section 1. The real and
imaginary part of the eigenfrequency (δ and α) on the left side of
Eq. (2) denote the wavenumber (frequency) and loss (radiation
constant) of each resonant mode, respectively.

CHermitianin Eq. (3) is a Hermitian matrix, where the condition
CHermitian ¼ Cy

Hermitian is satisfied. CHermitian expresses the cou-
plings among the fundamental waves (Fig. 1a), which consists of a
180° (or 1D) coupling coefficient (κ1D), 90° (or 2D) coupling
coefficients (κ2Dþ, κ2D�), and self-coupling coefficient (κ11),
where all the couplings do not accompany vertical emission loss.
Note that κ2Dþ and κ2D� differ in value, because the double-
lattice photonic crystal does not have C4 symmetry unlike a
general single-lattice photonic crystal with circular lattice points.
We should also note that κ1D and κ2D� are complex numbers
because the double-lattice structure does not have C2 symmetry,
while κ2Dþ is a real number because of the reflection symmetry
about the line of y= x. κ11 is a real number, which expresses self-
coupling for fundamental four waves without accompanying
vertical emission loss.

Cnon�Hermitian in Eq. (4) shows non-Hermitian couplings of the
fundamental waves through radiative waves, where the condition
Cnon�Hermitian ¼ �Cy

non�Hermitian is satisfied. Note that in previous
references on 3D-CWT17,18, mutual couplings via radiative waves

were expressed with another coupled-wave matrix Crad. The
difference between Crad and Cnon�Hermitian is that the former
contains both non-Hermitian and Hermitian couplings, while the
latter retains only non-Hermitian couplings. Such reconstruction
of the coupled-wave matrices facilitates the derivation of
analytical formulae of the radiation constants and threshold
margin in a finite-sized PCSEL, as shown later. In Cnon�Hermitian,
iμ is a purely imaginary number, which expresses self-coupling of
four fundamental waves through radiative waves with accom-
panying vertical emission loss (Fig. 1b). The magnitude of μ can
be continuously changed by changing the phase difference
between the upward-radiated wave and the downward-radiated
wave that is reflected at the bottom reflector. iμe ±iθpc expresses
±180° coupling through radiative waves with accompanying
vertical emission loss. θpc represents the phase change associated
with ±180° coupling [see Supplementary Eq. (S14) and
Supplementary Fig. S1 in Supplementary Section 1 for details].

Cnon�gamma in Eq. (5) denotes the deviation of the wavevector
from the Γ point, which induces the change in frequency.

Frequencies and radiation constants at the Γ point. In this
section, we consider a PCSEL with infinite size, for which the
electric field distribution is periodic in the plane of a photonic
crystal (the effect of a finite size is considered in the next section).
For the infinite-size PCSEL, the loss originates from the vertical
loss (non-Hermitian process) expressed by a radiation constant.
Because there are four possible band-edge modes at the Γ point
(A, B, C, D), we derive the radiation constants for these modes,
together with their resonant frequencies by using Eq. (2).

Before doing so, we first consider only the Hermitian process
expressed by the first term of the right hand side of Eq. (2)
(CHermitian), while ignoring the non-Hermitian process. In this
case, the optical couplings for the four fundamental waves can be
expressed as:

�
δ þ i

α

2

� Rx

Sx
Ry

Sy

0
BBB@

1
CCCA ¼

κ11 κ1D κ2Dþ κ2D�
κ*1D κ11 κ*2D� κ2Dþ
κ2Dþ κ2D� κ11 κ1D
κ*2D� κ2Dþ κ*1D κ11

0
BBB@

1
CCCA

Rx

Sx
Ry

Sy

0
BBB@

1
CCCA

ð6Þ
This equation can be divided into the following equations by

considering the reflection symmetry of the photonic crystal along
y= x:�

δ þ i
α

2

��
Rx þ Ry

Sx þ Sy

�
¼

�
κ11 þ κ2Dþ κ1D þ κ2D�
κ*1D þ κ*2D� κ11 þ κ2Dþ

��
Rx þ Ry

Sx þ Sy

�
;

ð7Þ
�
δ þ i

α

2

��
Rx � Ry

Sx � Sy

�
¼

�
κ11 � κ2Dþ κ1D � κ2D�
κ*1D � κ*2D� κ11 � κ2Dþ

��
Rx � Ry

Sx � Sy

�
:

ð8Þ
The physical meanings of the above equations are shown in Fig. 2.

Figure 2a shows the electric field vectors of the four fundamental
waves in a general case, which are coupled with each other according
to Eq. (6), where ex and ey are unit vectors in the x and y directions,
respectively. Following the division of Eq. (6) into Eq.(7) and Eq. (8),
Fig. 2a can be divided into Fig. 2b and Fig. 2c; Fig. 2b corresponds to
Eq. (7), where the electric-field pairs that have anti-symmetric
vectors about the axis of y= x with the amplitudes of Rx+ Ry and
Sx+ Sy are coupled with each other, while Fig. 2c corresponds to Eq.
(8), where the electric-field pairs that have symmetric vectors about
the axis of y= x with the amplitudes of Rx−Ry and Sx− Sy are
coupled with each other. The coupling coefficients between the anti-
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symmetric electric-field pairs (Rx+Ry and Sx+ Sy) in Fig. 2b are
represented by κ1D þ κ2D� and κ*1D þ κ*2D� as shown in the non-
diagonal terms in Eq. (7), and thus, κ1D þ κ2D� represents the
Hermitian coupling coefficient for the anti-symmetric modes (which
we define as modes A and C). Similarly, the coupling coefficients
between the symmetric electric-field pairs (Rx− Ry and Sx− Sy) in
Fig. 2c are represented by κ1D � κ2D� and κ*1D � κ*2D�, and thus
κ1D � κ2D� represents the Hermitian coupling coefficient for the
symmetric modes (which we define as modes B and D).

Now, we introduce the non-Hermitian process in addition to
the Hermitian process to obtain the radiation constants for the
infinite photonic crystal structure. If we consider the non-
Hermitian coupling coefficients (iμ and iμe±iθpc ) in Eq. (4)
together with the aforementioned Hermitian coupling coefficients
in Eq. (3), the analytical formulae of the complex eigenfrequen-
cies, which express the resonant frequencies δi and radiation
constants αi, of the four modes at the Γ point (i=A, B, C, D) can
be derived as follows (the detailed derivation of these formulae
are provided in Supplementary Section 2).

For modes A and C:

δA;C þ iαA;C=2 ¼ κ11 þ κ2Dþ þ iμ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðκ1D þ κ2D�Þ þ iμeiθpc �½ðκ1D þ κ2D�Þ* þ iμe�iθpc �

q

¼ κ11 þ κ2Dþ þ iμ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðκ1D þ κ2D�Þe�iθpc þ iμ�½fðκ1D þ κ2D�Þe�iθpcg* þ iμ�

q
;

ð9Þ

and, for modes B and D:

δB;D þ iαB;D=2 ¼ κ11 � κ2Dþ þ iμ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðκ1D�κ2D�Þþ iμeiθpc �½ðκ1D � κ2D�Þ*þ iμe�iθpc �

q
¼ κ11�κ2Dþþiμ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðκ1D � κ2D�Þe�iθpc þ iμ�½fðκ1D � κ2D�Þe�iθpcg* þ iμ�

q
:

ð10Þ

In Eqs. (9) and (10), the Hermitian coupling coefficients κ1D þ
κ2D� and κ1D � κ2D� in Eqs. (7) and (8) are rewritten as ðκ1D þ
κ2D�Þe�iθpc and ðκ1D � κ2D�Þe�iθpc respectively. These modifica-
tions allow us to consider the relative phase of κ1D þ κ2D� and
κ1D � κ2D� with respect to the phase of non-Hermitian ±180°-
coupling θpc, wherein the coefficients are made invariant with
respect to global translation of the air holes inside the unit cell
(see Supplementary Fig. S1c in the Supplementary Section 1 for
details). Hereafter, we call ðκ1D þ κ2D�Þe�iθpc the “phase-invariant
effective Hermitian coupling coefficient” for modes A and C, and

we call ðκ1D � κ2D�Þe�iθpc the phase-invariant effective Hermitian
coupling coefficient for modes B and D.

Next, we consider the specific case of
jðκ1D þ κ2D�Þe�iθpc j ¼ jκ1D þ κ2D�j � 0, which corresponds to
the case in which destructive interference of not only 180°
diffraction but also 90° diffraction is achieved, as we discussed in
our previous paper14. In this case, the radiation constants of the
four modes can be derived from Eqs. (9) and (10) as follows:

αA �0 ðcontrollableÞ
αC �4μ � 0

αB �2μ� 2 Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ1De�iθpc þ iμÞð2κ*1Deiθpc þ iμÞ

q����
����> 0

αD �2μþ 2 Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ1De�iθpc þ iμÞð2κ*1Deiθpc þ iμÞ

q����
���� � 0:

ð11Þ

In Eq. (11), it is seen that the radiation constant αA of mode A
is much smaller than those of the other modes (B, C, D).
Specifically, the difference in the radiation constant between
mode A and the other three modes can be shown to be
sufficiently large (>20 cm−1) (see Supplementary Fig. S2 in
Supplementary Section 3 for detail), which indicates that the
lasing oscillation occurs stably in mode A. Therefore, we hereafter
focus on mode A along with mode C as its counterpart, since
these two modes have the same symmetry as described above.

Next, we show that the value of αA is controllable by changing
the value of the phase-invariant effective Hermitian coupling
coefficient ðκ1D þ κ2D�Þe�iθpc around zero, in addition to the
value of the non-Hermitian coupling coefficient iμ. Toward this
purpose, we define here the real and imaginary parts of ðκ1D þ
κ2D�Þe�iθpc as R and I, respectively, and we assume that |I | is
much smaller than |R+ iμ | . The physical meaning of this
assumption and the role of I in radiation process are explained in
Supplementary Section 4. Under this assumption, Eq. (9) for
modes A and C can be then transformed as

δA;C þ iαA;C=2 ¼ κ11 þ κ2Dþ þ iμ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ iμÞ2 þ I2

q

� κ11 þ κ2Dþ þ iμ� ðRþ iμÞ 1þ I2

2ðRþ iμÞ2
� 	

ð12Þ

= +

x x

y

x

y y

a b c

Rxey

Ry(-ex)

Syex

Sx(-ey)

Electric field vectors

y=x y=x y=x

General case Anti-symmetric case
      (Modes A, C)

Symmetric case
  (Modes B, D)

(-ex)/2

(-ey)/2

ex/2

ey/2

ex/2

(-ey)/2

(-ex)/2
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Sx+Sy
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Sx-Sy
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Κ1D+Κ2D-
* * Κ1D-Κ2D-

* *

Fig. 2 Physical meaning of Hermitian coupling coefficients. a Electric field vectors of the four fundamental waves in a general case. b Electric field vector
pairs that have anti-symmetric vectors about the axis of y= x with the amplitudes of Rx+ Ry and Sx+ Sy, where their Hermitian coupling coefficients are
expressed as κ1D þ κ2D� and κ�1D þ κ�2D�. The resultant anti-symmetric modes are defined as modes A and C. c Electric field vector pairs that have
symmetric vectors about the axis of y= x with the amplitudes of Rx− Ry and Sx− Sy, where their Hermitian coupling coefficient are expressed as
κ1D � κ2D� and κ�1D � κ�2D�. The resultant symmetric modes are defined as modes B and D.
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Equation (12) gives the following analytical expressions for the
frequency difference between modes A and C at the Γ point (δAC)
and the radiation constants (αA and αC):

δAC ¼ δA � δC ¼ �2R� R

μ2 þ R2 I
2 � �2R ð13Þ

αA ¼ μ

μ2 þ R2 I
2; αC ¼ 4μ� αA ð14Þ

It is seen in these equations that the frequency gap δAC between
modes A and C is mostly determined by the real part of the
phase-invariant effective Hermitian coupling coefficient, R, while
αA is determined by both real and imaginary parts of the phase-
invariant effective Hermitian coupling coefficients, R and I, as
well as the absolute value of the non-Hermitian coupling
coefficient μ. Thus, αA can be controlled by appropriately
choosing the values of R, I, and μ.

Figures 3a, b show examples of the radiation constant αA and
the mode gap frequency δAC, respectively, which are calculated
using Eq. (9), as functions of κ1D þ κ2D� in the complex plane,
where μ is fixed to 90 cm−1 (μ is also changed in the next section).
Note that the axes of the phase-invariant effective Hermitian
coupling coefficients R and I are also drawn in the figures; these
axes are rotated with respect to those for κ1D þ κ2D� by θpc,
which is fixed to 0.92π as a typical value for the double-lattice
structure whose midpoint is taken as the origin (see Supplemen-
tary Section 1). It is seen in Fig. 3a that the radiation constant αA
becomes 0 cm−1 on the R axis (namely, when I= 0 cm−1), and
this value can be set to a desirable value (from 0 cm−1 to 30 cm
−1) by adjusting |I | . From this result, a photonic crystal with a
double-lattice structure, or more generally a structure without C2

symmetry, enables the flexible control of the radiation constant
αA. It is also seen in Fig. 3b that the frequency gap δAC becomes
0 cm−1 on the I axis (namely, R= 0 cm−1) in the range of jIj≤ μ.
The frequency degeneracy of the two bands A and C at the Γ
point is due to the complete cancellation of the in-plane optical
feedback.

On the other hand, unlike double-lattice photonic crystals,
when a photonic crystal has a more general symmetry, such as C2

or C4 symmetry, κ1D, κ2D� are purely real numbers and θpc= π,
so I= 0. In this case, Eqs. (9) and (10) can be transformed into
the following simpler expressions:

δA ¼ κ11 þ κ2Dþ þ κ1D þ κ2D�; αA ¼ 0

δC ¼ κ11 þ κ2Dþ � κ1D � κ2D�; αC ¼ 4μ

δB ¼ κ11 � κ2Dþ þ κ1D � κ2D�; αB ¼ 0

δD ¼ κ11 � κ2Dþ � κ1D þ κ2D�; αD ¼ 4μ:

ð15Þ

The radiation constants of modes A and B are exactly zero,
which prohibits laser emission in the vertical direction. Even
when a small structural perturbation is added to the photonic
crystal to enable vertical emission, the radiation constant
difference between modes A and B remains small, which results
in multiple-mode lasing.

Threshold margin for single-mode lasing in a finite-sized
PCSEL. Next, we consider a finite-sized PCSEL and derive the
conditions for increasing the threshold margin between the fun-
damental mode and higher-order modes originating from the same
band-edge mode (mode A). As we explained in the previous sec-
tion, the difference of radiation constant between mode A and the
other three modes can be shown to be large enough (>20 cm−1) to
ensure that lasing occurs on band-edge A, and that the threshold
margin between the fundamental mode and the higher-order
modes within band-edge A is the “global threshold margin” of
the large-area device (see Supplementary Section 5 for details).
Figure 4a shows typical electric field distributions of the funda-
mental mode and the first higher-order mode inside a finite-sized
device with a diameter of L, wherein the in-plane wavenumbers of
the envelope functions of the two modes are approximately π/L and
2π/L, respectively18,19 (the electric field distributions of other
higher-order modes are shown in Supplementary Section 5).
Therefore, by increasing the sensitivity of change of the radiation
constant of mode A with respect to the in-plane wavenumbers (or
dαA/dΔk), we can increase the threshold margin between the
fundamental and higher-order modes. In the following analysis, we
consider the band structure and radiation constants in the vicinity
of the Γ point and derive the general conditions to maximize the
threshold margin for single-mode lasing.

We first consider that the in-plane wavevector of the Bloch
waves are slightly shifted along the y= x axis of reflection
symmetry (i.e., in the Γ-M direction, for which
kx ¼ ky ¼ Δk=

ffiffiffi
2

p
). By solving Eq. (2), we obtain the analytical

formula of the complex eigenfrequencies as follows (see
Supplementary Section 2);

δA;C þ iαA;C=2 ¼ κ11 þ κ2Dþ þ iμ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ1D þ κ2D� þ iμeiθpc Þðκ*1D þ κ*2D� þ iμe�iθpc Þ þ ðΔk=

ffiffiffi
2

p
Þ2

q

¼ κ11 þ κ2Dþ þ iμ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ iμÞ2 þ I2 þ ðΔk=

ffiffiffi
2

p
Þ2

q
;

ð16Þ
where not only mode A but also mode C are considered as the
counterpart. Figures 4b and 4c show the calculated frequencies
(δA and δC) and radiation constants (αA and αC) as functions of
Δk, where R is taken as a parameter and μ and I are fixed to the
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constant values (μ= 90 cm−1, I= 30 cm−1 in Fig. 4b and
μ= 40 cm−1, I= 20 cm−1 in Fig. 4c). As seen in the left panels
of Figs. 4b and 4c, the frequency gap δAC between modes A and C
decreases when R decreases [see also Eq. (13)], while the change
in the radiation constant αA (and αC) becomes steeper when R
decreases (see the right panels). Moreover, the change in αA and
δAC becomes more sensitive to a change of Δk in the vicinity of
the Γ point especially for the smaller non-Hermitian coupling
coefficient μ (Fig. 4c). Although the most sensitive change can be
obtained at R= 0 cm−1, where both the frequencies and the
radiation constants of modes A and C degenerate at
Δk ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ2 � I2Þ

p
, forming an exceptional point20,21, this

point should be avoided for stable single-mode oscillation as
shown later.

The radiation constant αA of mode A in the vicinity of the Γ

point and under the condition of ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þ ðΔk= ffiffiffi

2
p Þ2

q
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ μ2

p
Þ,

Eq. (16) can be approximated as follows;

αA;Δk �
μ

μ2 þ R2 ½I2 þ ðΔk=
ffiffiffi
2

p
Þ2�: ð17Þ

The first term of the right side of Eq. (17) denotes the radiation
constant equal to Eq. (14) that corresponds to that of the infinite
size PCSEL, while the second term denotes the increase of the
radiation constant owing to the deviation from the Γ point due to
the finite-size effect. Using Eq. (17), the radiation constant
difference between the fundamental mode and the 1st higher-
order mode (shown in Fig. 4a) can be expressed with the

following simple formula:

Δαv ¼ αA;Δk¼2π=L � αA;Δk¼π=L �
μ

μ2 þ R2

3π2

2L2
: ð18Þ

Although Eq. (18) is derived for the higher-order mode in the
Γ-M direction, it can be approximately applied to the higher-
order mode in its orthogonal direction (Γ-M′) because the band
structures in the Γ-M direction and Γ-M’ direction are almost
equal in the vicinity of the Γ point (see Supplementary Section 2).
It should be also noted that the threshold margin between the
fundamental mode and the higher-order modes depends not only
on Δαv in Eq. (18) but also on the difference of their in-plane
losses (Δα==). However, the contribution of the former is
dominant in the case of large-area PCSELs (L ≥ 3 mm) because
the portion of the electric field penetrating outside the active
region becomes small (see Supplementary Section 6). We should
note that the threshold margin might be better expressed by the
exponential of the product of Δαv in Eq. (18) and the device
diameter L:

eΔαv �L � exp

�
μ

μ2 þ R2

3π2

2L

�
ð19Þ

This is because eΔαv �L directly express the ratio between the
light amplification rate of the fundamental mode and the 1st

higher-order mode when the light propagates from one edge to
the other edge of the device.

The calculated threshold margins [Δαv in Eq. (18) and eΔαv �L in
Eq. (19)] are shown in Fig. 4d for PCSELs with L= 3 mm for
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various R and μ. It is seen that Δαv (and eΔαv �L) increase as R
decreases, which can be ascribed to the destructive interference of
not only 180° but also 90° diffractions and weakened in-plane
optical feedback inside the photonic crystal. In addition, Δαv (and
eΔαv �L) are maximized when the absolute value of non-Hermitian
coupling coefficient (μ) balances with the real part of the phase-
invariant effective Hermitian coupling coefficient (R) for a
constant R. It should be noted that the value of μ should have
a certain value to ensure a sufficient radiation constant difference
among the four band-edge modes (A~D) in Eq. (11). Therefore,
for the realization of single-mode lasing operation in an ultra-
large-area PCSEL while keeping the large threshold margin, it is
important to manipulate not only the phase-invariant effective
Hermitian optical couplings (R and I) but also the non-Hermitian
optical couplings (iμ) by controlling both the lattice-point design
and the complex reflectivity of the backside reflector (shown in
Fig. 1).

Although Eqs. (18) and (19) provide a general guideline for
increasing the threshold margin between the fundamental mode
and the 1st higher-order mode inside PCSELs, its derivation
does not consider the carrier-photon interactions and the
spatial non-uniformity of the carrier distribution inside the
device, which is inevitably caused by the spatial hole burning
effect at high current injection levels. Therefore, in the next
section, we design a concrete photonic crystal structure
appropriate for ultra-large-area (L= 3–10 mm) PCSELs with

various Hermitian and non-Hermitian optical coefficients, and
we discuss the lasing stability of the designed PCSELs through a
comprehensive analysis of lasing characteristics considering the
carrier-photon interactions.

Concrete design of single-mode ultra-large-area PCSELs. Fig-
ures 5a, b show the cross section and the top view of the designed
PCSEL for single-mode ultra-large-area operation. In Fig. 5a, a
GaAs photonic crystal layer is placed near the active layer
(InGaAs/AlGaAs quantum wells) and is sandwiched by p-clad
and n-clad layers. The light emitted downward from the photonic
crystal layer is reflected at the p-type distributed Bragg reflector
(DBR) below the p-clad layer and then interferes with the upward
emission. Figure 5b shows a double-lattice structure composed of
an elliptic and circular hole, where the tuning parameters are a
lattice separation of d and hole-size balance 2x.

The magnitude of the non-Hermitian coupling coefficient μ
can be continuously changed by adjusting the phase difference
between the upward and downward emission with the thickness
of the p-clad layer (Fig. 5a). On the other hand, the real and
imaginary parts of the Hermitian coupling coefficient κ1D þ κ2D�
can be manipulated by tuning a lattice separation of d and hole-
size balance 2x in the double-lattice structure (Fig. 5b). The most
dominant Fourier component that determines κ1D þ κ2D� is ξ2;0
(see Supplementary Section 7), which induces the direct coupling
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between Rx and Sx (Ry and Sy). ξ2;0 of a double-lattice photonic
crystal with d= 0.25a+ Δd can be approximated as follows (see
also Supplementary Section 7);

ξ2;0 � ðn2GaAs � n2airÞ
�
ðFFtotalÞ

2π
a
Δd þ iðΔFFÞ

	
; ð20Þ

where n2GaAs � n2air is the permittivity difference between GaAs
and air, and FFtotal and ΔFF denote the sum and the difference of
the filling factors of the two holes, respectively. As is apparent
from Eq. (20), the double-lattice photonic crystal enables the
independent control of the real and imaginary parts of ξ2;0, and
thus κ1D þ κ2D�, by changing Δd and ΔFF separately. More
concretely, by changing d and 2x in Fig. 5b, which induces the
change in Δd and ΔFF, κ1D þ κ2D� (or R and I) can be controlled
in the entire complex plane.

We numerically calculate the magnitude of non-Hermitian
coupling coefficient μ and the Hermitian coupling coefficient
κ1D þ κ2D� (or R and I) by changing the thickness of the p-clad
layer tpclad and the structural parameters of the double-lattice
photonic crystal (d, 2x), respectively. The results are shown in
Fig. 5c, d. The details of the simulation model and the parameters
are given in Supplementary Section 8. As shown in these
numerical simulations, the double-lattice photonic crystal reso-
nators with backside reflectors allow the arbitrary control of the
Hermitian and non-Hermitian coupling coefficients. It is worth
emphasizing that the arbitrary control of I, which is enabled by
the double-lattice structure, leads to the on-demand control of the
radiation constant as shown in Fig. 3a.

Lasing stability analysis considering carrier-photon interac-
tions. Finally, we analyze the lasing characteristics of the designed
ultra-large-area PCSELs with the time-dependent 3D-CWT22,
which considers not only the mutual coupling of light but also the
carrier-photon interactions and the spatial non-uniformity of the
gain and refractive index distributions. The details of the simu-
lation method are explained in Supplementary Section 8. We first
consider 3-mm-diameter double-lattice PCSELs with a fixed
p-clad thickness (which gives μ= 87 cm−1) and fixed hole sizes
(which gives Imðκ1D þ κ2D�Þ ~ −25 cm−1), and calculate the
output power and lasing spectra by varying a lattice separation d
or the real part of the phase-invariant effective Hermitian cou-
pling coefficient R. The above parameters are chosen so that a
moderate radiation constant (~20 cm−1) is obtained for mode A
while much higher radiation constants (>40 cm−1) are obtained
for the other band-edge modes.

Figure 6a, b show the calculated current-light-output (I-L)
characteristics and lasing spectra of the four devices with different
R, where the far-field beam pattern at each current is shown in the
inset. In Fig. 6a, the threshold current and slope efficiency are
almost the same for the designed devices, except for the one with a
near-zero frequency gap between modes A and C (R=−5 cm−1),
which exhibits unstable lasing as explained later. The lasing
spectra and the far-field beam patterns shown in Fig. 6b are
completely different in the four devices. When R= 86 cm−1,
which almost equals μ, single-mode lasing with a nearly
diffraction-limited divergence angle (θ1/e2 ~ 0.03°) is obtained at
an injection current of 140 A, demonstrating the possibility of
100-W-class single-mode lasing in a PCSEL with a diameter as
large as 3 mm. When R= 178 cm−1, which is much larger than μ,
the lasing spectra broaden and the beam divergence angles
increase, clearly showing the evidence of multimode lasing. This
result agrees with the theoretical result shown in Fig. 4d, where the

threshold margin between the fundamental mode and the higher-
order mode decreases as R increases.

Interestingly enough, the broadening of the lasing spectra with
the increase in the beam divergence also arises when R= 25 cm−1,
which is smaller than one third of μ, and the spectra broaden even
further for the device with a near-zero bandgap (R=− 5 cm−1).
Such unstable lasing is caused by the carrier-induced refractive
index change and the resultant frequency change inside the device.
According to Eq. (16), the carrier-induced frequency change of
mode A ðΔδA=ΔNÞ and the carrier-induced radiation constant
change ΔαA=ΔN are related as follows (see Supplementary
Section 9);

ΔαA=ΔN
ΔδA=ΔN

¼ � 2μ
R
: ð21Þ

From this equation, one can understand that when R becomes
much smaller than μ, the change in the radiation constant
ΔαA=ΔN becomes more drastic than the change in the frequency
ΔδA=ΔN . For example, let us consider the case where the photon
density locally decreases from the steady-state value. In a normal
case, the photon density returns to the steady-state value
immediately. This is because the local decrease of photon density
induces the local increase of carrier density, which leads to the
increase of local optical gain that increases the photon density
again. However, for a device with a smaller R, the carrier-induced
local frequency change causes the drastic increase in the radiation
loss through Eq. (21), thereby leading to the further reduction of
the local photon density and to the unstable oscillation.
Therefore, for realizing stable single-mode lasing in the entire
device, it is important not only to increase the threshold margin
according to Eq. (18) [or Eq. (19)] but also to balance the real part
of the phase-invariant effective Hermitian coupling coefficient
and the magnitude of non-Hermitian coupling coefficient (R~μ).
This fact indicates that the ultimate case of R= 0 cm−1, which
forms the exceptional point discussed before, is not appropriate
for stable lasing oscillation.

Based on the above discussion of the lasing stability, we finally
investigate the feasibility of higher-power single-mode lasing in
an even larger-size PCSEL (L= 10 mm). Here, we consider two
different designs: (1) R= 86 cm−1, μ= 87 cm−1, I= 54 cm−1 and
(2) R= 45 cm−1, μ= 44 cm−1, I= 32 cm−1. The former structure
is the same as the one which enables single-mode lasing in a 3-
mm-diameter PCSEL in Fig. 6b, and the latter structure has a
larger threshold margin owing to the smaller R and μ. The
calculated lasing spectra and the far-field beam patterns for the
two structures are shown in Fig. 6c. While multimode lasing
occurs in the former structure, single-mode lasing with a
divergence angle θ1/e2 < 0.01° is obtained in the latter structure.
The calculated I-L characteristic for the latter device is shown in
Fig. 6d, demonstrating the feasibility of kW-class single-mode
lasing in a centimeter-size PCSEL. The potential challenges and
solutions for experimentally realizing the 100-W-to-1-kW
PCSELs are discussed in Supplementary Section 10.

Discussion
We have analytically provided general formulae for the complex
eigenfrequencies of the four photonic bands around the Γ point and
derived the general conditions for ultra-large-area single-mode
operation in PCSELs. We have proven that the threshold margin
between the fundamental mode and the higher-order modes can be
increased through the reasonable reduction of both the real part of
phase-invariant effective Hermitian coupling coefficient and the
magnitude of non-Hermitian coupling coefficients (R and μ), while

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30910-7

8 NATURE COMMUNICATIONS |         (2022) 13:3262 | https://doi.org/10.1038/s41467-022-30910-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the balance between the two coefficients should be maintained to
ensure stable lasing. In this context, it is shown that in the case of
R= 0 cm−1, where an exceptional point appears, the device per-
formance becomes unstable owing to the carrier-induced refractive
index change. Through the detailed numerical simulations, we have
demonstrated that PCSELs with double-lattice photonic crystals
and backside reflectors allow the arbitrary control of both Her-
mitian and non-Hermitian optical coupling coefficients, enabling
100-W-to-1-kW-class single-mode lasing with an ultra-large lasing
diameter (≥3∼10mm). Our results provide universal guidelines
towards the realization of one-chip kW-class next-generation
semiconductor lasers, which are expected to replace conventional
bulky high-power lasers, such as gas lasers, solid-state lasers and
fiber lasers. Such ultra-compact high-power semiconductor lasers
will bring innovation to a wide variety of industries using lasers,
such as material processing1,2, mobility4, medicine23, and even
aerospace24. Our theoretical analysis, which considers not only
Hermitian optical couplings but also non-Hermitian ones, also
enables the detailed analysis of photonic bands around frequency
gaps and exceptional points, which are attracting increasing

attention in non-Hermitian photonics25,26. We believe that the
theory established in this work will contribute to the development
of a wide variety of research fields from fundamental laser physics
and non-Hermitian wave physics in general to industrial
applications.
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Fig. 6 Numerical demonstration of single-mode lasing in ultra-large-area PCSELs with controlled coupling coefficients. a Calculated I-L characteristics
of 3-mm-diameter PCSELs with four different lattice separations d or the real part of phase-invariant effective Hermitian coupling coefficient R. The p-clad
thickness and hole sizes are fixed [μ= 87 cm−1]. The values of I for the four devices are 72 cm−1 (black), 54 cm−1 (blue), 34 cm−1 (red), and 34 cm−1

(green), respectively. b Calculated lasing spectra and far-field beam patterns for the four devices. The yellow bar in each figure indicates a divergence angle
of 0.05°. When R almost equals μ, single-mode lasing with a nearly diffraction-limited divergence angle is obtained. c Calculated lasing spectra and far-field
beam patterns for 10-mm-diameter PCSELs with two different designs: R= 86 cm−1, μ= 87 cm−1, I= 54 cm−1 and R= 45 cm−1, μ= 44 cm−1, I= 32 cm−1.
The yellow bar in each figure indicates a divergence angle of 0.05°. d Calculated I-L characteristic of the latter device (R= 45 cm−1, μ= 44 cm−1,
I= 32 cm-1), which demonstrates the possibility of kW-class single-mode lasing in a centimeter-size PCSEL.
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