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Abstract Morphogenesis of tissues in organ develop-

ment is accompanied by large three-dimensional (3D)

deformations, in which mechanical interactions among

multiple cells are spatiotemporally regulated. To reveal

the deformation mechanisms, in this study, we devel-

oped the reversible network reconnection (RNR) model.

The model is developed on the basis of 3D vertex model,

which expresses a multicellular aggregate as a network

composed of vertices. 3D vertex models have success-

fully simulated morphogenetic dynamics by expressing

cellular rearrangements as network reconnections. How-

ever, the network reconnections in 3D vertex models

can cause geometrical irreversibility, energetic inconsis-

tency, and topological irreversibility, therefore inducing

unphysical results and failures in simulating large de-

formations. To resolve these problems, we introduced

1) a new definition of the shapes of polygonal faces be-

tween cellular polyhedrons, 2) an improved condition

for network reconnections, 3) a new condition for po-

tential energy functions, and 4) a new constraint con-

dition for the shapes of polygonal faces that represent

cell–cell boundaries. Mathematical and computational

analyses demonstrated that geometrical irreversibility,

energetic inconsistency, and topological irreversibility

were resolved by suppressing the geometrical gaps in

the network and avoiding the generation of irreversible
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network patterns in reconnections. Lastly, to demon-

strate the applicability of the RNR model, we simulated

tissue deformation of growing cell sheets and showed

that our model can simulate large tissue deformations,

in which large changes occur in the local curvatures

and layer formations of tissues. Thus, the RNR model

enables in silico recapitulation of complex tissue mor-

phogenesis.

Keywords Tissue morphogenesis · Large defor-

mation · Multicellular dynamics · Vertex model ·
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1 Introduction

Morphogenesis of multicellular organisms in organ de-
velopment is accompanied by drastic tissue deforma-

tions in three-dimensional (3D) space, such as exten-

sions [1,2], torsions [3], foldings [4], invaginations [4,

5], and envaginations [6]. In such deforming tissues,

cellular configurations are rearranged with deforming

cell–cell boundaries where neighboring cells adhere to
one another [7,8]. These dynamics at the multicellular

scale are caused by cellular activities and interactions

among neighboring cells such as apical constrictions [9],

intercellular adhesions [10,11], and cell divisions [12,

13]. These cellular activities and interactions generate

internal and external mechanical forces at the subcellu-

lar scale, which are transferred through cell–cell bound-

aries to local cell populations. Effects of these forces on

local cell populations accumulate during morphogene-

sis to form organs. Hence, the effects of biomechani-

cal forces are important as well as biochemical factors,

such as morphogen distributions and spatiotemporally

regulated expression of genes [14–16]. However, little

is known about how cellular forces are orchestrated in
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deformations of local cell populations. To reveal these

deformation mechanisms, it is necessary to analyze 3D
tissue morphogenesis based on mechanical interactions

among multiple cells.

Multicellular dynamics in aggregates are similar to

those of multi-objects in soap froths and metal grains.

Soap froths and metal grains have boundaries among

their multi-objects as well as cells packed in aggre-

gates. These boundaries are continuously connected to

each other, and they compose a single net-like structure

that can be regarded as a network composed of vertices

and edges. Based on this characteristic structure, the

dynamics of soap froths, metal grains, and cells have

been theoretically and numerically analyzed using two-

dimensional (2D) [3,4,7,12,17–28] and 3D [23,29–32]

vertex models. Because configurations of multi-objects

in aggregates can be rearranged, a rule of changing

topological patterns in a network (hereafter referred to

as “network reconnections”) is necessary to express the
rearrangements of multi-objects in 2D [19] and 3D [23]

vertex models.

In general, network reconnections should satisfy the

following conditions. First, the network patterns be-

fore and after reconnections should be topologically re-

versible. For computational simulations, if patterns can-

not be topologically reversed to the original pattern,

the computational algorithm may fail, or a part of the

network may be locked. The latter causes unphysical

frictions in the network, which reduce the viscosity in

local regions of tissue. Second, the network patterns be-

fore and after reconnections should be geometrically re-

versible. If reconnections are geometrically irreversible,

the difference between geometrical gaps could induce

some unintentional drifts in vertex dynamics. For com-

putational simulations, because drifts generated artifi-

cially by network reconnections cannot be distinguished

from those generated by other physical factors such as

potential energy gradients, the factors leading to mor-

phogenetic dynamics become unclear. Third, energetic

gaps should be self-consistent between their bidirec-

tional reconnection processes. If reconnections are ener-

getically inconsistent, the difference between these en-

ergetic gaps also could induce some unintentional drifts

in vertex dynamics. Thus, when employing vertex mod-

els with network reconnections for physical analysis, the

above three important conditions must be satisfied.

Vertex models have already been applied to simu-

late tissue dynamics during morphogenesis. For exam-

ple, the dynamics of cellular rearrangements and tissue

deformations have been analyzed in terms of the me-

chanical behaviors of cells [3,4,7,12,24–28,30–32]. In

particular, Honda’s 3D vertex model [30] successfully

determined how cells of early embryos are polarized [31]

and how cellular intercalations drive tissue extensions

in 3D space [32]. To express cellular rearrangements,
Honda’s model borrows a rule of network reconnections

from 3D vertex models of soap froths [23,29,30]. To our

knowledge, there is no alternative method to express

cellular rearrangements in 3D vertex models. However,

topological reversibility, geometrical reversibility, and

energetic consistency described above have not yet been

considered in a 3D vertex model. If these conditions

are violated, 3D vertex models can possibly suffer from

several problems. For example, because of topological

irreversibility, a 3D vertex model cannot be directly ap-

plied to simulate large deformations under compression.

In addition, because of geometrical irreversibility and

energetic inconsistency, a 3D vertex model will numer-

ically induce unintentional drifts in vertex dynamics.

Therefore, to simulate large deformations during dy-

namic tissue morphogenesis under compression, a 3D

vertex model should satisfy these important conditions.

In this study, to simulate large deformations of cell

aggregates during tissue morphogenesis in 3D space on

the basis of mechanical forces at the subcellular scale,

we propose an improved 3D vertex model. To satisfy

both geometrical reversibility and energetic consistency,

the following three conditions are introduced: 1) a new

definition of shapes of polygonal faces, 2) an improved

condition for network reconnections, and 3) a new con-

dition for potential energy functions. To satisfy topo-

logical reversibility, a fourth condition is introduced:

4) a new constraint condition for networks. To distin-

guish our proposed model from other vertex models, we

refer to our model as the reversible network reconnec-

tion (RNR) model. In Sect. 2, we propose the RNR

model that involves conditions 1–4 are proposed. In

Sect. 3, we theoretically and computationally analyze

how geometrical irreversibility, energetic inconsistency,

and topological irreversibility are resolved in the RNR

model. In Sect. 3.5, to demonstrate the applicability

of the RNR model, we simulate the morphogenetic dy-

namics of a growing cell sheet under compression. In

Sect. 4, we discuss the applicability and limitations of

the RNR model, and we state future perspectives. In

Sect. 5, we summarize the paper and provide conclud-

ing remarks.

2 Reversible network reconnection model

2.1 Shape and dynamics of a multicellular aggregate

The RNR model expresses the shape of a single cell

as a single polyhedron (Fig. 1). Polyhedrons are com-

posed of vertices and edges that are shared by neighbor-

ing polyhedrons. vertices and edges compose a network
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that represents the whole shape of the aggregate. In

the network, each vertex is connected to exactly four
edges. In addition, polygonal faces compartmentalize

neighboring polyhedrons.

To express the dynamics of a multicellular aggregate

during morphogenesis, an equation that describes the

motion of the i-th vertex is introduced as

η
dri
dt

= −∂U

∂ri
. (1)

The lefthand side of Eq. (1) indicates a frictional force

exerted on the i-th vertex, where η indicates a friction

coefficient, and ri indicates the position vector of the

i-th vertex. The righthand side of Eq. (1) indicates a

conservative force, where U indicates a potential energy

expressing cellular mechanical behaviors that can be

generally expressed by

U = U cell + U cell–cell + U cell–ext. (2)

Here potential energy U cell indicates mechanical behav-

iors of individual cells such as volume elasticity, surface

elasticity, apical constriction, and other effects of in-

tracellular structures and activities. Potential energy

U cell–cell indicates interactions between cells such as

cell–cell adhesions at intercellular junctions. Potential

energy U cell–ext indicates interactions between cells and

extracellular structures such as extracellular matrixes,

basement membranes, and solvent liquids. In addition,

U cell, U cell–cell, and U cell–ext express changes in cellu-

lar mechanical behaviors induced by morphogens gener-

ated inside the cell, morphogens transported from sur-

rounding cells, and morphogens transported from ex-

tracellular structures, respectively.

In the case that a face involving more than three

vertices deviates from a flat plane, shapes of the faces

cannot be determined only from their vertex positions.

It is necessary to show how to divide a non-flat face

into several triangles. To establish cellular shapes, we

define shapes of the polygonal faces as follows:

Condition 1 The shape of a polygonal face that has

four or more edges is defined as radially arranged tri-

angles composed of each edge and the center point of

the polygonal face (Fig. 2). The position vector of the

center point of the i-th polygonal face, rpfi , is defined

as

rpfi =

∑side
j(i) l

e
j(i)r

e
j(i)∑side

j(i) l
e
j(i)

, (3)

where
∑side

j(i) indicates the summation of side edges of

the i-th polygonal face. The length lej(i) and position

vector rej(i) indicate the length and midpoint of the j-

th edge in the i-th polygonal face, respectively.

Network Polyhedron

Vertex

Edge

Polygonal face

Aggregate Cell

a b

c d

Cell－cell boundaries

Fig. 1 Model shapes of a multicellular aggregate. a) An ag-
gregate composed of cells. b) A single cell. c) A network that
represents a cell aggregate. The network is composed of ver-
tices and edges (solid lines). The position vector of the i-th
vertex is denoted by ri. Polygonal faces (like the gray area)
compartmentalize the network. d) A polyhedron that repre-
sents a single cell

r
i
pf

r
j(i)

Vertex

The i-th polygonal face

The j-th edge

 polygonal face

Network

a b

Midpoint of

Center of the i-th 

l j(i) the j-th edge

e

e

Fig. 2 Definition of polygonal face shapes in the RNRmodel.
a) A network representing a cell aggregate. b) The i-th polyg-
onal face corresponding to the gray area in (a). Solid thick
lines indicate edges composing a polygonal face, and solid
thin lines indicate edges composing triangles in the polygonal
face. A single circle indicates the center of the i-th polygo-
nal face, whose position is denoted by rpfi . Two concentric
circles indicate the midpoint of the j-th edge composing the
i-th polygonal face, whose position is denoted by rej(i). The

length of the j-th edge composing the i-th polygonal face is
denoted by lej(i)

2.2 Cellular rearrangements in an aggregate

To express cellular rearrangements, we introduce a rule

of network reconnections [23,29,30]. According to the

reconnection rule, the network is reconnected between

[H] and [I] as shown in Fig. 3, and reconnection events

are generated when the network satisfies the geomet-

rical condition. However, reconnections using the geo-

metrical condition used in Honda’s model occasionally

induce unintentional drifts because of geometrical gaps
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and the energetic inconsistency between bidirectional

reconnection processes (shown in Sects. 3.1).

To resolve the geometrical irreversibility and ener-

getic inconsistency, we improve the geometrical condi-

tion as follows:

Condition 2 If the maximum length of edges relat-

ing to reconnections (l7-8, l8-9, l9-7, and l10-11) becomes

shorter than the threshold value ∆lth, a network is re-

connected.

In addition, we introduce a condition for the potential

energy function as follows:

Condition 3 The function of potential energy U in Eq.

(2) should satisfy the following relationship:

∆UI→H +∆UH→I = O(∆lth), (4)

where ∆UI→H and ∆UH→I indicate energetic gaps in

two processes of reconnection between patterns [H] and

[I].

Note that the definitions of position vectors of vertices

after reconnection are slightly different from those em-

ployed in Honda’s model (see Sect.6.1 in the Appendix).

In addition to the above geometrical irreversibility

and energetic inconsistency, 3D vertex models can pos-

sibly suffer from topological irreversibility, in that the

reconnection rule generates network patterns to which

this rule cannot be applied (shown in Sect. 3.3). To re-
solve this topological irreversibility, we introduce the

following constraint condition:

Condition 4 The network topology satisfies the fol-

lowing conditions:

i) Two edges never share two vertices simultaneously.

ii) Two polygonal faces never share two or more edges

simultaneously.

This condition constrains the network’s topology but

not its geometry; therefore, shapes of polygonal faces

can deform out of plane. This is consistent with the ob-

served undulating shapes of cell–cell boundaries. Note

that condition 4 is not the same as that employed in

Honda’s model. This is because the network patterns

generated under condition 2 are not similar to those

under the condition employed in Honda’s model.
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Fig. 3 Network reconnection rule employed in the RNR
model. The numbers indicate serial vertices, and solid lines
indicate edges between vertices. a) Reconnected patterns [23,
29,30]. The trigonal face composed of the vertices labeled 7, 8,
and 9 in [H] is replaced by the edge composed of the vertices
labeled 10 and 11 in [I] in bidirections when their geometries
satisfy condition 2 in the RNR model. The point labeled 0 in
[O] indicates the center of the reconnection. b) Pattern [H]
reconnected from [I], in which a length of the edge composed
of the vertices labeled 10 and 11, l10-11, satisfies condition 2.
c) Pattern [I] reconnected from [H], in which lengths of the
edges composed of the vertices labeled 7, 8, and 9, denoted
by l7-8, l8-9, and l9-7, respectively, satisfy condition 2

3 Physical and mathematical insights into

improvements of the model

3.1 Geometrical gaps in network reconnections

Because the reconnection rule is related to five lengths

from point 0 to the vertices 7, 8, 9, 10, and 11 in Fig.

3a, the geometrical reversibility of network reconnec-

tion can be formulated as

∆rvtH↔I = 0, (5)

∆rpfH↔I = 0, (6)

where∆rvtH↔I indicates the maximum of the five lengths

from point 0, and ∆rpfH↔I indicates the displacements of

center points of polygonal faces in bidirectional recon-

nection between [H] and [I]. If both Eqs. (5) and (6)

are satisfied, the network geometries before and after

reconnection are exactly equal. To clarify whether the

RNR model satisfies geometrical reversibility, we theo-
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Fig. 4 Geometrical gaps of vertex positions induced by re-
connections from [H] to [O] in Fig. 3. a) A positional relation-
ship of vertices in [H] generating large gaps under condition
H. The thin dotted line indicates a circle of radius ∆lth and
centered at point 0. The thick dotted line indicates a circle
of radius of ∆lmax and centered at point 0. Here ∆lmax can
be much longer than ∆lth. b) A positional relationship of
vertices in [I] under both conditions H and 2. c) A positional
relationship of vertices in [H] under condition 2 employed in
the RNR model. The lengths from 0 to 7, 8, and 9 must be
smaller than ∆lth under our proposed condition

retically estimate the geometrical gaps in bidirectional

reconnection processes between patterns [H] and [I] in

each case employing condition 1 or 2.

3.1.1 Geometrical gaps of vertices

Geometrical gaps of vertices under condition 2 To re-

duce geometrical gaps generated by reconnections, con-

dition 2 is introduced in the RNR model. To confirm

the effectiveness of condition 2, these displacements are

estimated with and without conditions 2 by measuring

the maximum value of the five lengths from point 0 to

the vertices 7, 8, 9, 10, and 11.

In the RNR model, because condition 2 is intro-

duced, the maximum length ∆rvt
H

O↔I
satisfies the follow-

ing relationship:

∆rvt
H

O↔I
≤ ∆lth, (7)

as shown in Fig. 4c (derived in Sect. 6.2 in the Ap-

pendix). Here Eq. (7) leads to Eq. (5) in the zero limit
of ∆lth. Thus, under condition 2, we can suppress the

gaps of vertex positions in reconnections by choosing

an appropriate value of ∆lth.

Geometrical gaps of vertices under the condition em-

ployed in Honda’s model To evaluate the effectiveness

of condition 2, geometrical gaps in the RNR model

is compared with thoese of Honda’s model. Honda’s

model [30] employs the following network reconnection

condition: if the minimum length of edges relating to

the reconnections (l7-8, l8-9, l9-7, and l10-11) becomes

shorter than the threshold value ∆lth, a network is re-

connected (hereafter refered to as condition H). Un-

der condition H, the maximum of the five lengths from

point 0, ∆rvt
H

H↔I
, satisfies the following relationship:

∆rvt
H

H↔I
≤ ∆lmax, (8)

as shown in Fig. 4a (derived from Sect. 6.2 in the Ap-

pendix). Here ∆lmax indicates the maximum distance

from point 0 to vertices 7, 8, and 9. Because length

∆lmax is independent of ∆lth, the gaps can become

much larger than ∆lth.

Employing condition H, the geometrical gaps in re-

connections from [H] to [I] can be much larger than

∆lth, wherea those in reconnections from [I] to [H] must

be on the order of ∆lth (as shown in Fig. 4a and b).

Thus, occasionally the network geometry after recon-

nections from [I] to [H] cannot be reversed. On the

other hand, employing condition 2, the network geom-

etry is always reversible because the gaps in reconnec-

tions from [H] to [I] are on the order of ∆lth, as in Eq.
(7) (see Fig. 4b and c).

3.1.2 Geometrical gaps of polygonal centers

Geometrical gaps of polygonal centers under condition 1

The center points of polygonal faces can be displaced by

vertex displacements, additions, and eliminations dur-

ing reconnections (Fig. 5). To reduce these displace-

ments of polygonal centers, condition 1 is introduced in

the RNR model. To confirm the effectiveness of condi-

tion 1, the center displacements are measuered as fol-

lows.

Center displacements due to vertex displacements

shown in Fig. 5a are estimated as follows. When the s-th

vertex in the i-th polygonal face is displaced by ∆rs(i),

the center displacement of the i-th polygonal face∆drpfi
when employing condition 1 satisfies the following rela-

tionship derived in Sect. 6.3.1 in the Appendix.∣∣∣∆drpfs(i)

∣∣∣
H

O↔I
= O(

∣∣∆rs(i)
∣∣) (9)
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Fig. 5 Displacement of the center point of a polygonal face.
Solid thick lines indicate edges of polygonal faces. Solid thin
lines indicate edges composing triangles in a polygonal face.
An open circle indicates the center of a face. Thin arrows in-
dicate displacement vectors. The left and right side illustra-
tions indicate the shapes of polygonal faces before and after
changes, respectively. a) The center point of a polygonal face
is displaced by vertex displacements. The displacement of the
s-th vertex in the i-th polygonal face is denoted by ∆rs(i),
and the center displacement of the i-th polygonal face is de-
noted by ∆drpfi . b) The center point of a polygonal face
is displaced by generating a new (plus) vertex. The distance
from the generated vertex to the t-th vertex in the i-th polyg-
onal face is denoted by |∆rplus|, and the center displacement

of the i-th polygonal face is denoted by ∆prpfi . c) The center
point of a polygonal face is displaced by eliminating a vertex.
The distance from the u-th vertex to the (u − 1)-th vertex
is denoted by |∆rminus|, and the center displacement of the

i-th polygonal face is denoted by ∆mrpfi

Center displacements due to vertex additions shown

in Fig. 5b are estimated as follows. A single new vertex

is generated between the t-th and (t+ 1)-th vertices

in the i-th polygonal face. Assuming that the distance

from the generated vertex to the t-th vertex |∆rplus|
is much smaller than the length scale of the polygonal

face, i.e.,

|∆rplus| ≪
∣∣rt+1(i) − rt(i)

∣∣ , (10)

the center displacement of the i-th polygonal face∆prpfi
in case employing condition 1 satisfies the following re-

lationship derived in Sect. 6.3.2 in the Appendix.∣∣∣∆prpfi

∣∣∣
H

O↔I
= O(|∆rplus|) (11)

Center displacements due to vertex eliminations shown

in Fig. 5c are estimated as follows. The u-th vertex is

eliminated in the i-th polygonal face. Assuming that

the distance from the u-th vertex to the (u+1)-th ver-

tex |∆rminus| is smaller than the length scale of the

polygonal face, i.e.,

|∆rminus| ≪
∣∣ru+1(i) − ru−1(i)

∣∣ , (12)

the center displacement of the i-th polygonal face∆mrpfi
in case employing condition 1 satisfies the following re-

lationship derived in Sect. 6.3.3 in the Appendix.∣∣∣∆mrpfi

∣∣∣
H

O↔I
= O(|∆rminus|) (13)

From these results, under conditions 1 and 2, the

maximum length of |∆drpfi |, |∆prpfi |, and |∆mrpfi |, de-
noted by ∆rpf

H
O↔I
, satisfies the following relationship:

∆rpf
H

O↔I
= O(∆rvt

H
O↔I
). (14)

Substituting Eq. (7) into Eq. (14), ∆rpf
H

O↔I
is rewritten

as

∆rpf
H

O↔I
= O(∆lth), (15)

which satisfies Eq. (6) in the zero limit of ∆lth. Thus,

under conditions 1 and 2, we can suppress the center

displacements in reconnections by choosing an appro-

priate small value of ∆lth.

Geometrical gaps of polygonal centers with the simple

definition of a polygonal face To evaluate the effective-

ness of condition 1, the center displacements in the

RNR model are compared with those when employing

a simple definition of a polygonal center:

rpfi =
1

nv
i

vertex∑
j(i)

rj(i), (16)

where
∑vertex

j(i) indicates a summation over all cells. The

variable nv
i indicates the number of vertices in the i-th

polygonal face. When employing the simple definition,

the center displacements due to vertex displacements,

additions, and eliminations are estimated as(
∆drpfi

)
H

S↔I
=

1

nv
i

∆rs(i), (17)(
∆prpfi

)
H

S↔I
=

1

nv
i + 1

(
rplus − rpfi

)
, (18)(

∆mrpfi

)
H

S↔I
= − 1

nv
i − 1

(
ru(i) − rpfi

)
, (19)
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respectively. Here, rplus and ru(i) indicate position vec-

tors of added and eliminated vertices in Figs. 5b and
c, respectively. The values of the center displacements

shown in Eqs. (17), (18), and (19) can be much larger

than the order of ∆lth, even when employing condition

2 and Eqs. (10) and (12).

3.1.3 Area gaps of polygonal faces

If geometrical reversibility is satisfied, the gap in cellu-

lar geometrical properties during reconnections is zero.

For example, when the i-th polygonal center is dis-

placed from rpfi to rpfi +∆rpfi by reconnections, the area

gap of the j-th trigonal component of the i-th polygonal

face, denoted by ∆pfstcj(i), should be zero, i.e.,∣∣∣∆pfstcj(i)

∣∣∣ = 0. (20)

To clarify whether such gaps in cellular geometrical

properties are suppressed in the RNR model, we es-

timate the area gaps generated by the displacements of

polygonal centers as an example.

Area gaps generated by the displacements of polyg-

onal centers are estimated as follows:∣∣∣∆pfstcj(i)

∣∣∣ = ∣∣∣htc
j(i) ×∆rpfi

∣∣∣ , (21)

where

htc
j(i) =

rj(i) + rj+1(i)

2
− rpfi . (22)

Because htc
j(i) is a vector in a plane of the j-th trigonal

component, the extent of the area gap tends to depend

on the deviations of polygonal faces from a flat plane.

Area gaps of polygonal faces under condition 1 Assum-
ing conditions 1 and 2, we substitute Eq. (15) into Eq.

(21) and get the following equation:∣∣∣∆pfstcj(i)

∣∣∣
H

O↔I
= O(∆lth), (23)

which satisfies Eq. (20) in the zero limit of ∆lth. Thus,

under conditions 1 and 2, we can suppress the area gaps
of polygonal faces during reconnections by choosing an

appropriate small value of ∆lth.

Area gaps of a polygonal faces in the simple definition

of a polygonal face As an example, assuming the simple

definition of a polygonal center, we substitute Eqs. (17),

(18), and (19) into Eq. (21) and get∣∣∣∆pfstcj(i)

∣∣∣d
H

S↔I
=

1

nv
i

∣∣∣htc
j(i) ×∆rs(i)

∣∣∣ , (24)∣∣∣∆pfstcj(i)

∣∣∣p
H

S↔I
=

1

nv
i + 1

∣∣∣htc
j(i) ×

(
rplus − rpfi

)∣∣∣ , (25)∣∣∣∆pfstcj(i)

∣∣∣m
H

S↔I
=

1

nv
i − 1

∣∣∣htc
j(i) ×

(
ru(i) − rpfi

)∣∣∣ , (26)

respectively. These values can be much larger than the

order of ∆lth when employing either condition 2 or H.

3.2 Energetic gaps in network reconnections

Energetic consistency for the reconnection rule can be

formulated as

∆UI→H +∆UH→I = 0. (27)

If a function of U satisfies condition 3, then energetic

consistency is satisfied in the zero limit of ∆lth. How-

ever, it is not trivial that functions of the potential en-

ergy generally used for simulating tissue morphogene-

sis satisfy condition 3. Therefore, to confirm that such

functions of the potential energy U satisfy condition 3,

we estimate the energetic gaps in bidirectional recon-

nections in the Honda’s and RNR models using func-
tions of U introduced here. The potential energy U is

commonly written as a function of lengths of edges (l),

areas of polygonal faces (s), and volumes of cells (v) [3,

12,24–28,30–32]:

U = U(l, s, v). (28)

Here the maximum and minimum exponents of l, s, and

v are denoted by m and n, respectively.

The gaps of l, s, and v in reconnections are denoted

by ∆l, ∆s, and ∆v, respectively. Using Eqs. (7) and

(15), the gaps under conditions 1 and 2,∆l
H

O↔I
,∆s

H
O↔I
,

and ∆v
H

O↔I
, are estimated as

∆l
H

O↔I
= O(∆lth), (29)

∆s
H

O↔I
= O(∆lth), (30)

∆v
H

O↔I
= O(∆lth). (31)

Then, using Eqs. (29)–(31), the gap of the potential

energy U under condition 2, ∆U
H

O↔I
, is estimated as

∆U
H

O↔I
= O ((∆lth)

n
) , (32)

which satisfies condition 3. Namely, U in Eq. (28) satis-

fies Eq. (27) in the zero limit of ∆lth. Thus, by choosing

an appropriate value of ∆lth, the RNR model can sat-

isfy energetic consistency in network reconnections.

In contrast, using Eq. (8), these gaps under condi-

tion H, ∆l
H

H↔I
, ∆s

H
H↔I
, and ∆v

H
H↔I

are estimated as

∆l
H

H↔I
= O(∆lmax), (33)

∆s
H

H↔I
= O(∆lmax), (34)

∆v
H

H↔I
= O(∆lmax). (35)
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Mutual edges

Double trigonal faces

Double edges

[α]

[β]

[γ]

Mutual edges

Fig. 6 Network patterns related to reconnection inconsisten-
cies and their remediation. Patterns [α] and [β] indicate net-
work patterns to which the reconnection rule in Fig. 3 cannot
be applied. Pattern [α], which has double edges sharing the
same two vertices, is avoided by condition 4(i). Pattern [γ],
which has two or more edges shared by two polygonal faces, is
avoided by condition 4(ii). Bottom two illustrations indicate
idential pattern [β]. Pattern [β], which has two neighboring
trigonal faces, is avoided by condition 4(ii). This is because
pattern [β], which also has two or more edges shared by two
polygonal faces, is a necessary condition for pattern [γ]

Then, using Eqs. (33)–(35), the gap of the potential

energy U under condition H, ∆U
H

H↔I
, is estimated as

∆U
H

H↔I
=

{
O ((∆lmax)

m
) : ∆lmax ≥ 1,

O ((∆lmax)
n
) : ∆lmax < 1,

(36)

which does not satisfy condition 3. Thus, here energetic

consistency is not satisfied under condition H.

3.3 Two irreversible network patterns in reconnections

There are at least two network patterns [α] and [β]

shown in Fig. 6 to which the reconnection rule can-

not be applied (see Sect.6.4 in the Appendix). Pattern

[α] is avoided by condition 4(i) because it has double

edges sharing two vertices simultaneously. Pattern [β]

has two trigonal faces neighboring each other. Pattern

[β] is avoided by condition 4(ii) because it must have

two faces that share two or more edges simultaneously.

Thus, [α] and [β] are avoided by condition 4. Condition

4(ii) avoids not only pattern [β] but also pattern [γ],

which has two faces sharing two or more edges simul-

taneously, as shown in Fig. 6.

3.4 Reconnection simulations of a network

Employing condition 4, patterns [α] and [β] are avoided

for candidates reconnected between [H] and [I] in Fig.
3. However, these two patterns may not represent all

irreversible patterns. Hence, to clarify the topological

reversibility of the reconnections with condition 4, we

performed reconnection simulations. In these simula-

tions, networks must randomly reconnect without con-

dition 2, and the positional coordinates of the vertices

are fixed by excluding vertex dynamics in Eq. (1). To

confirm the effectiveness of condition 4, we performed

simulations using reconnections both with and without

condition 4. Note that in terms of network topology, the

model with condition 4 corresponds to the RNR model,

while that without condition 4 does not correspond to

Honda’s model. In these simulations, reconnection tri-

als are conducted for every edge and every trigonal face

at every step. In addition, the bidirectional transition

probability of reconnections between [H] and [I] is set

to 0.01.

Figure 7a shows the initial conditions of the simula-

tion. The system box size is set to 6× 6× 6. In the sys-

tem, 250 isotropic dodecahedrons, each having a volume

set to 1, are homogeneously placed in a hexagonal close-

packed structure. Periodic boundaries are employed for

the x-, y-, and z-axes. To evaluate mean behaviors, five

random samples are obtained.

Figure 7b shows that simulations without condition

4 could not run beyond two steps on average. This is

because the abovementioned irreversible patterns were

generated. In contrast, simulations with condition 4

could run over the entire employed parameter space.

Furthermore, bidirectional reconnections between [H]

and [I] were conducted at every step, and the number

of vertices and frequencies of reconnections increased

with the number of steps, as shown in Fig. 7c.

3.5 Simulations of tissue growth

To demonstrate the applicability of the RNR model

for simulating compressive large deformations, we sim-

ulated the morphogenetic dynamics of a monolayered

growing cell sheet. The growing cell sheet involves grow-

ing cells whose volumes increase with time. In these

simulations, we evaluate the effectiveness of condition

4 on the applicability of the RNR model (which in-

cludes condition 4), and we also evaluate a model with-

out condition 4 (which is not Honda’s model in terms

of network topology). Because conditions 1, 2, and 3

must be employed to satisfy geometrical reversibility

and energetic consistency (as described later), and be-

cause they are independent of topological irreversibility
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Fig. 7 Reconnection simulations. a) Initial condition of the
network. The system box is 6× 6× 6, in which 250 isotropic
tetradodecahedrons are homogeneously placed in a hexagonal
close-packed structure. A periodic boundary condition is em-
ployed for expressing the x-y-z boundaries. Red lines indicate
edges of the network. b) The number of vertices, number of
reconnections from [I] to [H], and number of reconnections
from [H] to [I] as a function of time t, resulting from simu-
lations with condition 4 employed in the RNR model. Simu-
lations without condition 4 failed at an average step of 2.0.
Error bars indicate standard deviations of the data at indi-
vidual steps. c) Snapshot of the network at the 250-th step

that causes failures in simulations of compressive large

deformations, both models involve these three condi-
tions.

To evaluate the effectiveness of condition 4, in this

study, the mechanical behaviors of cells are simply ex-

pressed by the potential energy U as

U = Uv + U int, (37)

as employed in previous studies using Honda’s model

[30–32]. The potential energy Uv indicates the cellular

volume elasticity, and the potential energy U int indi-

cates the interface energy at cellular boundaries. The

potential energy Uv is expressed as

Uv =

cell∑
i

1

2
kcv

(
vi

vi eq
− 1

)2

, (38)

where
∑cell

i indicates a summation over all cells. The
constant kcv indicates the strength of the potential en-

ergy. Varuables vi and vi eq indicate the current and

equilibrium volume of the i-th cell, respectively. The

potential energy U int is expressed as

U int =

cell∑
i

cell∑
j(>i)

ϵccsccij +

cell∑
i

ϵcoscoi , (39)

where the constants ϵcc and ϵco indicate the interface

energy density between the i-th and j-th cells and that

between the i-th cell and extracellular substances, re-

spectively. Variables sccij and scoi indicate the boundary

area between the i-th and j-th cells and that between

the i-th cell and outside, respectively. Note that the U

introduced here satisfies condition 3 in the RNR model.

Numerical integrals of Eq. (1) are performed using the

improved Euler’s method with a time step of∆t. Recon-

nection trials are conducted for every edge and trigonal

face at every time interval of ∆tr.

Figure 8a shows the initial condition of the simula-

tion, in which 400 hexagonal-cylinder-shaped cells are

homogeneously placed as in a monolayered cell sheet on

the curved surface:

z = Aic cos

(
2π

x

Lx

)
cos

(
2π

y

Ly

)
, (40)

where Lx and Ly indicate the lengths of the system box

in the x and y directions, respectively. The constant

Aic indicates the amplitude of the initial undulation of

the curved surface. Then, vertex positions are randomly

displaced with a variance of 0.001. Periodic boundaries

are employed for x- and y-axes. Each cell type is ran-

domly determined to either grow or non-grow according
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to the number density of growing cells in the system

ρgrowth. The equilibrium volumes of cells are defined as

vi eq (t) =

{
(1 + Vgrowtht) v0 : growing cell,

v0 : non-growing cell,
(41)

where the equilibrium volumes of growing cells increase

linearly with time at rate Vgrowth, as shown in Fig. 8.

The model parameters representing cellular behaviors

were set to values similar to those used in previous stud-

ies that used Honda’s model [30–32]. All model param-

eters are shown in Table 1.

Figure 8c shows the applicable area of parameters

where simulations could be performed. RNR simula-

tions could be performed over the entire employed pa-

rameter space, whereas simulations without condition

4 could be performed only for parameters left of the

solid blue line in Fig. 8c. In addition, simulations with-

out condition 4 tend to fail as either ρgrowth or vi eq

increases. The points d, e, and f in Fig. 8c indicate the

states with vi eq/v0 = 1.3, 3.0, and 5.0 at ρgrowth =

0.75, respectively. Figures 8d, e, and f show snapshots

of cellular configurations, slice views, and cellular vol-

ume ratios that resulted from simulations for states d,

e, and f, respectively. The cellular volume ratios vi/vi eq

reflect the magnitudes of forces exerted on cells by sur-

rounding cells. In state d, both simulations showed the

same tissue shape that was largely deformed with ho-

mogeneous curvatures, monolayered structures, and ho-

mogeneous distributions of cellular volume ratios (see

Fig. 8d). In states e and f, only the RNR simulations

could give results, and the tissue shapes had inhomo-

geneous curvatures, and the tissue structures changed

from monolayer to multilayer. Furthermore, the cellu-

lar volume ratios in states e and f inhomogeneously

decreased compared with those originally observed in

state e (see also Mov. 1 in the Supplemental data).

4 Discussion

4.1 Geometrical reversibility of network reconnections

In reconnections with either condition H or the sim-

ple definition of polygonal centers, because geometrical

gaps cannot be regulated by choosing the value of ∆lth
[as shown in Eq. (8)], the gaps occasionally become

much larger than ∆lth. In contrast, in reconnections

with conditions 1 and 2 employed in the RNR model,

because these gaps approach zero in the first order of

∆lth as ∆lth decreases [as shown in Eqs. (7) and (15)],

patterns [H] and [I] become geometrically equivalent in

the zero limit of ∆lth [as Eqs. (5) and (6)]. Thus, re-

connections with conditions 1 and 2 ensure geometrical

Table 1 Model parameters

Symbol Value Description

η 1.0 Friction coefficient of vertex
kcv 14 Constant of cellular volume

elasticity
ϵcc 1.0 Interface energy at cell–cell

boundary
ϵco 0.7 Interface energy at cell–outer

space boundary
v0 1.0 Characteristic volume of cell
Aic 0.5 Amplitude of curved tissue un-

der initial condition
Lx 13.2 Length of system box in x axis
Ly 15.2 Length of system box in y axis
Vgrowth 1.0× 10−4 Growth rate of cellular volume
ρgrowth 0.0− 1.0 Number density of growing cells

in system
∆t 1.0× 10−4 Integration time step
∆tr 1.0× 10−3 Time interval of network recon-

nection
∆lth 1.0× 10−3 Threshold length of network re-

connection

reversibility, but those with either condition H the sim-

ple definition of polygonal centers do not.

Because of geometrical reversibility, gaps of cellular

geometrical properties are also suppressed. For exam-

ple, in reconnections with the simple definition of polyg-

onal centers, the area gaps of trigonal component of

polygonal faces occasionally become much larger than

the order of ∆lth under either condition 2 or H. These

gaps become larger when a polygonal face deviates more

from a flat plane as in Eq. (21). These large deviations

are observed in simulations with several conditions de-

pending on the cellular mechanical behaviors, as shown

in Sect. 6.5 in the Appendix. In contrast, in reconnec-

tions with conditions 1 and 2 employed in the RNR

model, the area gaps of trigonal components are zero

in the zero limit of ∆lth [as Eq. (20)]. Therefore, area

gaps of polygonal faces are also zero in the zero limit

of ∆lth. Thus, condition 2 is useful for suppressing area

gaps of polygonal faces, in particular, in cases of polyg-

onal faces deviating significantly from a flat plane.

Because geometrically irreversible reconnections cause

differences in the transition probabilities between bidi-

rectional reconnections, geometrical irreversibility in-

duces unintentional drifts in vertex dynamics. Such un-

intentional drifts can be suppressed in the RNR model.

4.2 Energetic consistency of network reconnections

In reconnections in cases employing either condition H

or the simple definition of polygonal faces, because the

sum of bidirectional energetic gaps cannot be regulated

by choosing the value of ∆lth [as shown by Eq. (36)],
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the gaps occasionally become much larger than the first-

order of ∆lth. In contrast, in reconnections with condi-
tions 1 and 2 employed in the RNR model, because the

sum of bidirectional energetic gaps approaches zero in

the first order of ∆lth as ∆lth decreases [as shown in

Eq. (32)], each energetic gap of a reconnection transi-

tion becomes equivalent to that of the reverse transition

with the opposite sign in the zero limit of∆lth [as shown

in Eq. (27)]. Thus, reconnections with conditions 1 and

2 ensure energetic consistency but those with condition

H do not.

In addition, if the potential energies do not satisfy

condition 3 (even if conditions 1 and 2 are satisfied),

the sum of bidirectional energetic gaps becomes much

larger than the order of ∆lth. Thus, condition 3 is nec-

essary to ensure the energetic consistency.

If reconnections do not satisfy energetic consistency,

they can generate or dissipate energy to induce uninten-

tional drifts in vertex dynamics. Furthermore, from the

viewpoint of computational simulations, because ener-

getic inconsistency causes energetic jumps within a time

step, numerical calculations tend to fail. Unintentional

drifts induced by energetic inconsistency can be sup-

pressed in the RNR model.

4.3 Topological reversibility of network reconnections

Condition 4 employed in the RNR model avoids gener-

ating patterns [α] and [β], as shown in Sect. 3.3. In ad-

dition, as shown in Sect. 3.4, reconnection simulations

without vertex dynamics demonstrate that simulations

with condition 4 did not fail (at least for our employed

parameter values), whereas simulations without condi-

tion 4 failed after two steps on an average because of

topologically irreversible patterns. Thus, condition 4 re-

solves topological irreversibility in reconnections, and

the RNR model satisfies topological reversibility.

Network patterns prohibited by condition 4(i) can

correspond to the situation when four neighboring cells

make contact just at a line. Also, network patterns pro-

hibited by condition 4(ii) can correspond to the sit-

uation when cells are closely broken away by pushing

forces exerted on them by surrounding cells. In the RNR

model, condition 4 is introduced by assuming that these

patterns can be relaxed within a time scale that is much

less than that of tissue morphogenesis.

4.4 Applicability for simulating tissue morphogenesis

Figure 8c shows that the model without condition 4

failed in simulating inhomogeneous large deformations

beyond state d because of topological irreversibility. Be-

cause the tissue was largely deformed in state d, be-
yond which simulations using the model without con-

dition 4 failed, we expected that irreversible network

patterns tend to be generated during large deformation

processes. In contrast, the RNR model (involving con-

dition 4) was applicable for simulating inhomogeneous

large deformations beyond state d. Thus, condition 4

employed in the RNR model extended its applicability

for simulating large deformations induced by increases

in cell volume in 3D space. Beyond state d, inhomoge-

neous large deformations occur, cellular shapes are in-

homogeneously deformed, and configurations are rear-

ranged from monolayer to multilayer, as shown in states

e and f.

4.5 Limitations and future perspectives

Because condition 4 resolves the topological irreversibil-

ity, the RNR model can be applied to simulate large de-

formations induced by increases in cell volume. Resolv-

ing the topological irreversibility in condition 4 depends

on network topological structures but not on the type

of morphogenesis simulated. Therefore, the RNR model

can be generally applied to simulate various types of

morphogenesis involving inhomogeneous large deforma-

tions. For example, the RNR model can be used to

simulate optic-cup formations [6], in which the tissue

size drastically increases by proliferations, the tissue

shape changes from convex to concave, and part of the

tissue structure changes from monolayer to multilayer.

Because such complicated deformations are induced by

spatiotemporally regulated mechanics, it is necessary to
analyze force fields such as those reflected by the vol-

ume ratios shown in Figs. 8d, e, and f. Thus, the RNR

model enables simulations of complex tissue morpho-

genesis in 3D space; until now, such simulations have

not been attempted.

Tissue morphogenesis in development is often ac-
companied by cell proliferations that involve increases

in both cell volumes and cell divisions [2,13]. Because

cell divisions are directed by microtubule alignments,

they can generate anisotropic forces and transfers that

induce inhomogeneous large deformations. Although cell

divisions are important for tissue morphogenesis, 3D

vertex models have not been applied to systems that

involve them. This may be because topological irre-

versibility is caused by inhomogeneous large deforma-

tions of tissues. Therefore, the RNR model, which satis-

fies topological reversibility, can be applied to simulate

the compressive large deformations that accompany tis-

sue proliferations. Although cell divisions have not been

modeled yet with the RNR model, dividing polyhedrons
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in the network is a possible way to express cell divisions.

Condition 4 also be helpful for dividing polyhedrons in
a way that avoids generating topologically irreversible

patterns.

To investigate the effects of active cellular motions

(such as cell migrations and intercalations) during tis-

sue morphogenesis, we must distinguish cell motions

from cellular drifts artificially induced by geometrical

irreversibility and energetic inconsistency. The RNR

model can suppress artificial drifts by employing con-

ditions 1, 2, and 3. Thus, the RNR model is applicable

to rearrangements driven by active cellular motions.

The RNR model can be applied to simulate the mor-

phological dynamics of tissue composed of thousands of

cells on the basis of the mechanical interactions among

cells. In addition, anisotropic and inhomogeneous be-

haviors on the scale of intracellular structures, such as

apical constrictions and cell–cell adhesions, can be ex-

pressed on the scale of cell–cell boundaries by design-

ing functions of the potential energy. However, tissue

morphogenesis is also affected by the dynamics of more

detailed structures, such as actin fibers, microtubules,

and morphogen molecules. To investigate the effects of

these structures, we consider combining the RNR model

with more detailed models [36,37].

Morphogenesis is also likely afffected by fluctua-

tions, such as force oscillations of apical constrictions

driven by actomyosins on actin fibers [33–35]. When

simulating the dynamics of systems involving fluctu-

ations, it will become further important to suppress

unintentional drifts in vertex dynamics generated by

reconnections (see Sects. 4.1 and 4.2). This is because

networks are more frequently reconnected by fluctua-

tions, and unintentional drifts can accumulate to en-

hance the abnormal cell rearrangements. If fluctuation

strength is much greater than the energy gaps in recon-

nections, unintentional drifts will be small enough that

they can be ignored. In contrast, if fluctuation strength
is of an order similar to or less than the energy gaps in

reconnections, then unintentional drifts cannot be ig-

nored. Thus, conditions 1, 2, and 3 introduced in the

RNR model will be occasionally helpful when using 3D

vertex models to simulate the dynamics of systems in-

volving fluctuations.

Chemical factors, such as morphogen molecules, also

play an important role in tissue morphogenesis, and

these factors can interact with cellular mechanical be-

haviors [1,5,6,13]. Interactions between chemical and

mechanical factors may play a key role in self-organizing

tissues in development. Cellular mechanical behaviors

can be expressed by functions of the potential energy,

while chemical behaviors are yet to be modeled. Mod-

eling these mechano-chemical couplings is a challenging

opportunity to expand the RNR model in the future.

These expansions will enhance the reality and in-

crease the reliability of RNR simulations of tissue mor-

phogenesis. Thus, such an expanded RNR model will

enable qualitative and quantitative predictions in sil-

ico; we will learn how tissue formation proceeds under

arbitrary realistic and unrealistic conditions. Such in

silico recapitulations may reveal mechanisms that have

not been recognized by experimental studies; for exam-

ple, tissue morphogenesis may be surprisingly robust

against perturbations. The RNR model will contribute

to innovation in computational developmental biome-

chanics.

5 Conclusion

To simulate large deformations of multicellular aggre-

gates during tissue morphogenesis in 3D space, we de-

veloped the RNR model based on the concept of 3D ver-

tex formulations. The following were introduced in the

RNR model: 1) a new definition of the shapes of polyg-

onal faces between cellular polyhedrons, 2) an improved

condition for network reconnections, and 3) a new con-

dition for potential energy functions. We theoretically

confirmed that energetic consistency in reconnections

is satisfied when conditions 1, 2, and 3 are satisfied.

In addition, the following was introduced in the RNR

model: 4) a new constraint condition on network topol-

ogy. Simulations of network reconnections confirmed

that condition 4 resolves their topological irreversibil-

ity. To demonstrate the applicability of the RNR model,

we simulated tissue deformations of a growing cell sheet

under compression. We found that the RNR model is

applicable for simulating large deformations with in-

creasing cell volumes, whereas the model without con-

dition 4 is not. During these tissue deformations, the

curvatures of tissue shapes became inhomogeneous, and

tissue structures changed from monolayer to multilayer.

Therefore, our proposed RNR model can successfully

simulate inhomogeneous large deformations.

6 Appendix

6.1 Definitions of vertex positions after reconnections

In this section, we discuss the network reconnections

shown in Fig. 3.
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6.1.1 Vertex positions after the reconnection from [H]

to [I] in the RNR model

The position vectors of vertices 10 and 11, denoted by

r10 and r11, respectively, are defined as follows:

r10 = rH0 + 0.5∆lthu
H
T , (42)

r11 = rH0 − 0.5∆lthu
H
T , (43)

where r10 and r11 are placed on the line along uH
T pass-

ing through rH0 . Vector u
H
T indicates a unit vector nor-

mal to the trigonal face 7-8-9 as

uH
T =

(r8 − r7)× (r9 − r7)

|r8 − r7||r9 − r7|
. (44)

Vector rH0 in Eqs. (42) and (43) indicates the position

vector of the center of mass of the trigonal face 7-8-9 as

rH0 =
r7 + r8 + r9

3
. (45)

6.1.2 Vertex positions after the reconnection from [I]

to [H] in the RNR model

The position vectors of vertices 7, 8, and 9, denoted by

r7, r8, and r9, respectively, are defined as follows:

r7 = rI0 +
∆lth
lmax

v0-7, (46)

r8 = rI0 +
∆lth
lmax

v0-8, (47)

r9 = rI0 +
∆lth
lmax

v0-9, (48)

where r7, r8, and r9 are placed in a plane face normal

to uI
T passing through rI0. Vector uI

T indicates a unit

vector from vertex 10 to vertex 11 as

uI
T =

r10 − r11
|r10 − r11|

. (49)

Vector rI0 in Eqs. (46)–(48) indicates the position vector

of the midpoint of the line 10–11 as

rI0 =
r10 + r11

2
. (50)

Vectors v0-7, v0-8, and v0-9 in Eqs. (46)–(48) are defined

as follows:

v0-7 = w0-7 − (w0-7 · uI
T )u

I
T , (51)

v0-8 = w0-8 − (w0-8 · uI
T )u

I
T , (52)

v0-9 = w0-9 − (w0-9 · uI
T )u

I
T , (53)

where v0-7, v0-8, and v0-9 are vectors of w0-7, w0-8, and

w0-9, respectively, projected onto a plane face normal
to uI

T . The vectors w0-7, w0-8, and w0-9 are defined as

w0-7 =
1

2

(
r1 − rI0
|r1 − rI0|

+
r4 − rI0
|r4 − rI0|

)
, (54)

w0-8 =
1

2

(
r2 − rI0
|r2 − rI0|

+
r5 − rI0
|r5 − rI0|

)
, (55)

w0-9 =
1

2

(
r3 − rI0
|r3 − rI0|

+
r6 − rI0
|r6 − rI0|

)
. (56)

Variable lmax in Eqs. (46)–(48) indicates the maximum

length of |v0-8 − v0-7|, |v0-9 − v0-8|, and |v0-7 − v0-9|,
which indicate edges of a triangle composed of v0−7,

v0−8 and v0−9.

6.2 Geometrical gaps in the vertex positions generated

by network reconnections

To estimate the geometrical gaps in the vertex posi-

tions before and after the network reconnections shown

in Fig. 3, changes in the distance from point 0 to ver-

tices 7, 8, 9, 10, and 11 between patterns [H] and [I]

are measured before and after the reconnections using

conditions H and 2.

6.2.1 Processes between patterns [H] and [I] under

condition 2

In the RNR model, the network is reconnected accord-

ing to the rule shown in Fig. 3 under condition 2. The

maximum length from point 0 to vertices 7, 8, and 9,

denoted by ∆rvt
H

O↔O
, satisfies the following relationship:

∆rvt
H

O↔O
≤ ∆lth. (57)

Because point 0 in pattern [I] is located at the midpoint

of an edge composed of vertices 10 and 11 in reconnec-

tion processes between patterns [O] and [I], the maxi-

mum length from point 0 to vertices 10 and 11, denoted

by ∆rvt
O

O↔I
, satisfies the following relationship:

∆rvt
O

O↔I
≤ 1

2
∆lth. (58)

Thus, the maximum length from point 0 to the five

vertices 7, 8, 9, 10, and 11, denoted by ∆rvt
O

O↔I
, satisfies

multilayer relationship:

∆rvt
H

O↔I
≤ ∆lth, (59)

which means that the gaps in the vertex positions gen-

erated by reconnections are equal to or less than ∆lth
if condition 2 is employed (see Fig. 4).
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6.2.2 Processes between patterns [H] and [I] under

condition H

According to the rule shown in Fig. 3 under condition

H, because the edge related to reconnections from [I]

to [H] is only an edge between vertices 10 and 11, gaps

in the vertex positions in reconnections from [I] to [H]

are in the first order of ∆lth, as in the RNR model.

However, three edges are related to reconnections from

[H] to [I]. Hence, gaps in reconnection processes from

[H] to [I] can be different from those in the RNR model.

According to the rule shown in Fig. 3 under con-

dition 2, the maximum length from point 0 to vertices

7, 8, and 9, denoted by ∆rvt
H

H→O
, satisfies the following

relationship:

∆rvt
H

H→O
≤ ∆lmax, (60)

where ∆lmax indicates the maximum length from point
0 to vertices 7, 8, and 9. The maximum length from

point 0 to vertices 7, 8, 9, 10, and 11, denoted by

∆rvt
H

H→I
, satisfies the following relationship:

∆rvt
H

H→I
≤ ∆lmax. (61)

Thus, we have

∆rvt
H

H↔I
≤ ∆lmax, (62)

which means that the gaps in the vertex positions due

to reconnections are equal to or larger than the first

order of ∆lth, when ∆lmax is larger than ∆lth.

6.3 Displacements of the center positions of polygonal

faces

To analyze the center displacements generated by re-

connections, astd
i and bstdi are defined as the numerator

and denominator of Eq. (3), respectively:

astd
i =

vertex∑
j(i)

∣∣rj+1(i) − rj(i)
∣∣ rj+1(i) + rj(i)

2
, (63)

bstdi =

vertex∑
j(i)

∣∣rj+1(i) − rj(i)
∣∣ . (64)

6.3.1 Effects of vertex movements

When the s-th vertex in the i-th polygonal face is dis-

placed by ∆rs(i) (see Fig. 5a), the center displacement

of the i-th polygonal face ∆drpfi is

∆drpfi =
ad
s(i)

bds(i)
− astd

i

bstdi

, (65)

where

ad
s(i) = astd

i

−
∣∣rs(i) − rs−1(i)

∣∣ rs(i) + rs−1(i)

2

−
∣∣rs+1(i) − rs(i)

∣∣ rs+1(i) + rs(i)

2

+
∣∣(rj(i) +∆rs(i))− rj−1(i)

∣∣ (rj(i) +∆rs(i)) + rj−1(i)

2

+
∣∣rs+1(i) − (rs(i) +∆rs(i))

∣∣ rs+1(i) + (rs(i) +∆rs(i))

2
,

(66)

and

bds(i) = bstdi −
∣∣rs(i) − rs−1(i)

∣∣− ∣∣rs+1(i) − rs(i)
∣∣

+
∣∣(rs(i) +∆rs(i))− rs−1(i)

∣∣
+

∣∣rs+1(i) − (rs(i) +∆rs(i))
∣∣ . (67)

Then, ∆drpfi is rewritten as

∆drpfi =
1

bdbstd

{
( ∣∣(rs(i) +∆rs(i))− rs−1(i)

∣∣
−

∣∣rs(i) − rs−1(i)

∣∣ )(bstd rs(i) + rs−1

2
− astd

)
+

( ∣∣rs+1(i) − (rs(i) +∆rs(i))
∣∣

−
∣∣rs+1(i) − rs(i)

∣∣ )(bstd rs+1(i) + rs(i)

2
− astd

)}
.

(68)

We find∣∣∣∆drpfi

∣∣∣ = O(
∣∣∆rs(i)

∣∣), (69)

which implies that center displacements are in the first

order of the vertex displacement, supposing that the

vertex displacement is much smaller than the length

scale of the polygonal face.

6.3.2 Effects of vertex additions

When a single vertex is newly generated between the t-

th and (t+ 1)-th vertices in the i-th polygonal face (see

Fig. 5b), the center displacement of the i-th polygonal

face ∆prpfi is

∆prpfi =
ap

bp
− astd

bstd
, (70)
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where

ap = astd −
∣∣rj+1(i) − rt(i)

∣∣ rt+1(i) + rt(i)

2

+
∣∣rplus − rt(i)

∣∣ rplus + rt(i)

2

+
∣∣rt+1(i) − rplus

∣∣ rt+1(i) + rplus

2
, (71)

and

bp = bstd −
∣∣rt+1(i) − rt(i)

∣∣
+

∣∣rplus − rt(i)
∣∣+ ∣∣rt+1(i) − rplus

∣∣ . (72)

Then, ∆prpfi is rewritten as

∆prpfi =
1

bpbstd

{
∣∣rplus − rt(i)

∣∣ (rplus + rt(i)

2
bstd − astd

)
+

∣∣rt+1(i) − rplus
∣∣ (rt+1(i) + rplus

2
bstd − astd

)
−

∣∣rt+1(i) − rt(i)
∣∣ (rt+1(i) + rt(i)

2
bstd − astd

)}
,

(73)

where we define

rplus = rt(i) +∆rplus. (74)

Assuming Eq. (10), we find∣∣∣∆prpfi

∣∣∣ = O(|∆rplus|), (75)

which implies that center displacements are in the first

order of the distance between the new vertex and a

single neighboring vertex, supposing that the distance

is much smaller than the length scale of the polygonal

face.

6.3.3 Effects of vertex eliminations

When the u-th vertex in the i-th polygonal face is elim-

inated (see Fig. 5c), the center displacement of the i-th

polygonal face ∆mrpfi is

∆mrpfi =
am

bm
− astd

bstd
, (76)

where

am = astd

−
∣∣ru(i) − ru−1(i)

∣∣ ru(i) + ru−1(i)

2

−
∣∣ru+1(i) − ru(i)

∣∣ ru+1(i) + ru(i)

2

+
∣∣ru+1(i) − ru−1(i)

∣∣ ru+1(i) + ru−1(i)

2
, (77)

and

bm = bstd −
∣∣ru(i) − ru−1(i)

∣∣− ∣∣ru+1(i) − ru(i)
∣∣

+
∣∣ru+1(i) − ru−1(i)

∣∣ . (78)

Then, ∆mrpfi is rewritten as

∆mrpfi =
1

bmbstd

{

−
∣∣ru(i) − ru−1(i)

∣∣ (ru(i) + ru−1(i)

2
bstd − astd

)
−
∣∣ru+1(i) − ru(i)

∣∣ (ru+1(i) + ru(i)

2
bstd − astd

)
+
∣∣ru+1(i) − ru−1(i)

∣∣ (ru+1(i) + ru−1(i)

2
bstd − astd

)}
,

(79)

where we define

ru(i) = ru−1(i) +∆rminus. (80)

Assuming Eq. (12), we find∣∣∣∆mrpfi

∣∣∣ = O(|∆rminus|), (81)

which implies that center displacements are in the first

order of the distance between the eliminated vertex and

a single neighboring vertex, supposing that the distance

is much smaller than the length scale of the polygonal

face.

6.4 Two irreversible patterns generated by

reconnections

There are at least two topological patterns of a network

to which the reconnection rule cannot be applied: [α]

and [β] in Fig. 9. Pattern [α] is generated, for example,

when a reconnection from [I] to [H] is applied to one

of the edges composing the trigonal face in Fig. 9a.

The network including [α] cannot be reconnected, for

example, when a reconnection from [I] to [H] is applied

to one of the double edges in Fig. 9b. This is because the

topology of the network after reconnection cannot be

determined. Note that this process from a to b in Fig. 9

does not occur in Honda’s model. This is because edges

involved in trigonal faces are excluded as candidates for

pattern [I] in Honda’s model.

Pattern [β] is generated, for example, when a re-

connection from [H] to [I] is applied to a trigonal face

neighboring two quadrilateral faces in Fig. 9c. For ex-

ample, when a reconnection from [H] to [I] is applied

to the left of the double trigonal faces in Fig. 9d, the
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Trigonal face

Double trigonal faces

Double edges

Trigonal face

Edge

[I]

[α]

[β]

a b

c d

Edge

[H]

[I] [H]

Quadrilateral face

e

[H] [I]
at left of double triangles

Double edges

Left

Fig. 9 Examples of generation processes of topological pat-
terns to which the reconnection rule in Fig. 3 cannot be ap-
plied. a) An example of a pattern possibly reconnected to [α].
Note that there is a trigonal face. The reconnection from [I] to
[H] is applied to one of the edges composing the trigonal face.
b) Pattern [α] reconnected from the pattern in (a). Note that
there are double edges that connect to the same two vertices.
c) An example of a pattern possibly reconnected to [β]. Note
that a trigonal face and a quadrangular face reside next to
each other. The reconnection from [I] to [H] is applied to an
edge of the quadrangular face located opposite the trigonal
face. d) Pattern [β] reconnected from the pattern in (c). Note
that there are two neighboring trigonal faces. e) An example
of a pattern possibly reconnected from [β], which has double
edges. The reconnection from [H] to [I] was applied to the left
of the double trigonal faces in (d)

network including [β] creates double edges in Fig. 9e.

This is because the topology of the network after the

reconnection includes pattern [α]. There are some other

patterns reconnected to [α] or [β] in the reconnection

rule shown in Fig. 3.

6.5 Simulations for area gap estimations under the

simple definition of a polygonal center

Employing the simple definition of a polygonal center

given in Eq. (16), area gaps of polygonal faces are gen-

erated in reconnections as in Eqs. (24), (25), and (26).

By comparison, employing condition 1, these area gaps

can be suppressed as in Eq. (23). In particular, when a
polygonal face deviates significantly from a flat plane,

condition 1 will be more valuable for suppressing larger

area gaps as in Eq. (21). However, in simulations us-

ing 3D vertex models, it is not known to what extent

polygonal faces deviate from a flat plane. Then, to eval-

uate the approximate effectiveness of condition 1, we

estimate the approximate area gaps of polygonal faces

under the simple definition using the RNR simulation.

In this simulation, ρgrowth is set to 0.75, and ϵcc

and ϵco are set to ϵ0 and 0.7ϵ0, respectively, where ϵ0
indicates an interface energy strength modulus. To vary

the deviation of polygonal faces from a flat plane, the

strengths of the parameters ϵcc and ϵco are varied. The

other conditions used in this simulation are equivalent

to those in Sect. 3.5.

The area gaps are estimated from vertex coordinates

at the time when vi eq/v0 = 5.0. Assuming that a single

new vertex is added just at the position of an already

existing vertex composing a polygonal face, the area

gaps of the polygonal faces before and after the vertex

addition are measured (see Fig. 10a and b). Based on

this assumption, these processes correspond to vertex

addition or elimination in reconnections with ∆lth = 0.

Figure 10c shows estimated area gaps as a function

of ϵ0. The area gaps are normalized by areas of individ-

ual polygonal faces before vertex additions. Blue, red,

and green lines indicate the mean, standard deviation,

and the maximum values of the area gaps, respectively.

These values are averaged for all vertices of polygonal

faces during states within 3 ≤ vi eq/v0 ≤ 4. The stan-

dard deviation of the gaps became much larger than the

mean. This is because tissue shapes inhomogeneously

undulate by location. In addition, with decreasing val-

ues of ϵ0, area gaps increase. For example, while the

maximum value of the area gaps was about 0.02 in the

state with ϵ0 = 1.0, this value was about 0.5 in the

state with ϵ0 = 0.01. Thus, depending on the cellular

mechanical behaviors, area gaps of polygonal faces can

occasionally be too large to ignore. In contrast, when

employing condition 1, because the area gaps of polyg-

onal faces depend on ∆lth as in Eq. (21), the estimated

area gaps are zero independent of the cellular mechani-

cal behaviors. Thus, condition 1 is useful for supressing

the area gaps of polygonal faces.
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Fig. 10 Estimation of area gaps under the simple definition
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a single vertex already exists at the location of the j-th ver-
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tion, and the maximum values of the area gaps, respectively

Yasuhiro Inoue was supported by Grant-in-Aid for Scientific
Research on Innovative Areas from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

References

1. Heisenberg, C. P., M. Tada, et al. (2000). “Sil-
berblick/Wnt11 mediates convergent extension movements
during zebrafish gastrulation.” Nature 405(6782): 76-81.

2. Jamie A. Davies (2005). “Mechanisms of morphogenesis:
the creation of biological form.” Elsevier Academic Press,
Burlington, New York.

3. Taniguchi, K., R. Maeda, et al. (2011). “Chirality in pla-
nar cell shape contributes to left-right asymmetric epithelial
morphogenesis.” Science 333(6040): 339-41.

4. Odell, G. M., G. Oster, et al. (1981). “The mechanical
basis of morphogenesis. 1. Epithelial folding and invagina-
tion.” Dev Biol 85(2): 446-62.

5. Letizia, A., S. Sotillos, et al. (2011). “Regulated Crb ac-
cumulation controls apical constriction and invagination in
Drosophila tracheal cells.” J Cell Sci 124(2): 240-51.

6. Eiraku, M., N. Takata, et al. (2011). “Self-organizing optic-
cup morphogenesis in three-dimensional culture.” Nature
472(7341): 51-6.

7. Weliky, M. and G. Oster (1990). “The mechanical basis
of cell rearrangement. 1. Epithelial morphogenesis during
fundulus epiboly.” Development 109(2): 373-86.

8. Lecuit, T. and P. F. Lenne (2007). “Cell surface mechanics
and the control of cell shape, tissue patterns and morpho-
genesis.” Nat Rev Mol Cell Biol 8(8): 633-44.

9. Lecuit, T., M. Rauzi, et al. (2010). “Planar polarized acto-
myosin contractile flows control epithelial junction remod-
elling.” Nature 468(7327): 1110-4.

10. Friedlander, D. R., R. M. Mège, et al. (1989). “Cell
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