1 SHORT COMMUNICATION

2	
3	Rediscovery of Macroplea japana (Coleoptera: Chrysomelidae: Donaciinae), an
4	aquatic leaf beetle once thought to be extinct in Japan
5	
6	Makoto KATO ¹ and Teiji SOTA ²
7	
8	¹ Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto,
9	Japan, ² Department of Zoology, Graduate School of Science, Kyoto University, Sakyo,
10	Kyoto 606-8502, Japan
11	
12	
13	
14	
15	Correspondence: Teiji Sota, Department of Zoology, Graduate School of Science, Kyoto
16	University, Kitashirakawa-oiwake, Sakyo, Kyoto, 606-8502, Japan.
17	Email: sota.teiji.4e@kyoto-u.ac.jp

19 Abstract

Macroplea japana (Jacoby, 1885) has not been collected in Japan since the 1960s and 20 21 was thought to be locally extinct. Recently, we collected this species from submerged 22 aquatic plants growing in the nearshore zone of Lake Biwa, Shiga Prefecture, where it 23 had previously been recorded from the stomach contents of pochards in the 1950s. We conducted a molecular phylogenetic analysis to identify the phylogenetic position of the 24 Japanese *M. japana* within the tribe Haemonini of the Holarctic region, which consists of 25 26 Macroplea in Eurasia and Neohaemonia in North America. We found that M. japana specimens from Japan and China were genetically close to each other and distantly 27 related to all other known Macroplea species from Asia and Europe, indicating the 28 29 species identity of the Japanese and Chinese populations and the distinct species status of 30 M. japana.

31

32 Key words: endangered species, molecular phylogeny, Haemonini, Hydrilla verticillate

33 Macroplea japana (Jacoby, 1885) is an aquatic leaf beetle of the subfamily Donaciinae 34 (Coleoptera: Chrysomelidae) that has been recorded in clear freshwater habitats in Japan, China, and Russian Primorsky (Hayashi & Shiyake 2001; Lou et al. 2011). This species 35 lives underwater during its entire juvenile stage and most of its adult stage (Zhang et al. 36 2010). Only a dozen specimens have been recorded in Japan, from Chiba, Kanagawa, 37 38 Shiga (Lake Biwa), Hyogo, Fukuoka, and Okinawa (Hayashi 2006), and no specimens have been collected since the 1960s. Therefore, M. japana was designated as extinct by 39 40 the Ministry of the Environment, Government of Japan.

41 The first author (MK) recently collected *M. japana* during fieldwork at Lake Biwa, Shiga Prefecture (Fig. 1A, B). The first beetle (Fig. 1C-a) was found in February 2022 in 42 43 a plastic bag containing samples of the submerged aquatic plant Hydrilla verticillate, 44 which were collected on October 30, 2021, and brought to the laboratory to rear chironomids associated with aquatic plants. The beetle was thought to be attached to the 45 46 H. verticillate plant. The habitat was the nearshore zone of Lake Biwa, where submerged aquatic plants including H. verticillata (Hydrocharitaceae), Potamogeton maackianus, P. 47 perfoliatus, and P. anguillanus (Potamogetonaceae) grow on the gravelly bottom (Fig. 48 1A). The second and third beetles (Fig. 1C-b, c) were collected from the remains of P. 49 maakianus collected at the same site on February 27, 2022 (Fig. 1B). These beetles were 50 51 thought to have been attached to the aquatic plants. The presence of *M. japana* in these 52 samples was not noticed upon their initial collection in the field. Due to conservation concerns, we refrain from describing the detailed locality of *M. japana* in this report. 53

The specimens collected from Lake Biwa (body length: male, 4.0–4.1 mm; female, 4.2 mm) were smaller than *M. japana* collected from Guizhou, China (male, 4.2 mm; female, 5.1–5.3 mm), although the sample sizes are insufficient for comparison (Fig. 1C).

We studied the phylogenetic position of *M. japana* within the tribe Haemonini, which 57 58 consists of two genera (Macroplea and Neohaemonia) in the Holarctic. We obtained partial sequence data of mitochondrial cytochrome c oxidase subunit I (COI) and nuclear 59 28S rRNA (28S) genes from two M. japana specimens from Shiga and three Macroplea 60 species from China (Table S1). Total genomic DNA was extracted from thoracic muscles 61 62 using the QIAamp DNA Micro Kit (Qiagen, Hilden, Germany). Partial sequences of COI and 28S genes were amplified through polymerase chain reaction (PCR) using the 63 64 primers C1-J-2195 and TL2-N-3014 (Simon et al. 1994) for COI and 28S-01 and 28S-R01 (Kim et al. 2000) for 28S. The purified PCR products were sequenced following 65 dye terminator cycle-sequencing reactions using the BigDye Terminator v3.1 Cycle 66 67 Sequencing Kit (Thermo Fisher, Waltham, MA, USA). Sequence data were deposited in the DNA Data Bank of Japan (DDBJ)/GenBank (accession nos. LC705464–LC705473). 68 In the phylogenetic analysis, we included sequence data for seven species of Haemonini 69 70 and nine species of other Donaciinae genera (*Plateumaris*, *Donacia*, and *Sominella*) retrieved from GenBank (data from Kölsch et al. 2006; Sota et al. 2008; Hayashi & Sota 71 72 2014; Table S1). We performed a maximum-likelihood phylogenetic analysis for the partitioned COI and 28S data using the IQ-TREE v2.1.3 software (Minh et al. 2020), with 73 74 optimal data partitioning and using the substitution model selection (option: -m 75 MFP+MERGE).

A published short *COI* sequence of *M. japana* from Heilongjiang, China (209 bp; Kölsch *et al.* 2006) was close to the *COI* sequences of Japanese specimens (identity, 96%). In the maximum-likelihood tree (Fig. 1D), the *M. japana* sequences showed a distinct position among Eurasian *Macroplea*, which was sister to North American *Neohaemonia* species. These results confirmed the unique species status of *M. japana*

from Japan and China among Macroplea species that was previously observed 81 morphologically (Hayashi & Shiyake 2001). Two other Haemonini species have been 82 described from Eurasia, Macroplea skomorokhovi Medvedev, 2006 from Primorsky and 83 Neohaemonia voronovae Medvedev, 1977 from Mongolia. Of these, M. skomorokhvi 84 should be a junior synonym of *M. japana* (Lou et al. 2011). Neohaemonia voronovae is 85 86 morphologically similar to M. ranina Lou and Yu, 2011 and may be a member of Macroplea (Lou et al. 2011); because M. ranina is distantly related to M. japana 87 88 according to the molecular phylogeny, it is unlikely that N. voronovae is closely related 89 to *M. japana*.

The ecology of *M. japana* was studied in China in 2006–2008, as this species was a 90 91 potential biological control agent against the invasive aquatic plant H. verticillata in 92 North America (Zhang et al. 2010). In China, larvae and/or adults of M. japana utilized nine plant species including H. verticillate; M. japana had one generation per year and 93 94 overwintered as pupae or adults attaching to the base of plants (Zhang et al. 2010). Our collection of *M. japana* in Lake Biwa was made possible by this overwintering ecology. 95 In Lake Biwa, an *M. japana* adult was discovered in the stomach contents of the pochard 96 Aythya ferina, a winter visitor in Japan, collected from November to February in 1950s 97 98 (Ikeda 1956). Other stomach contents of the examined pochards included the submerged 99 aquatic plant Ceratophyllum demersum and thecorbiculid clam Corbicula leana (Ikeda 100 1956), indicating that the *M. japana* adult was consumed by a pochard along with aquatic 101 plants and that the habitat of *M. japana* in the 1950s was also the nearshore zone, where 102 soft bottoms harbored both submerged aquatic plants and corbiculid clams.

The rediscovery of *M. japana* in Lake Biwa invokes conservation concerns, as *M. japana* has an entirely aquatic life cycle, except for temporary out-of-water activity

during its adult stage, and they are vulnerable to water pollution. The reduction of 105 106 suitable habitats for the host plants such as *H. verticillate* is also a major threat to the persistence of the *M. japana* population. Predation by invasive fish such as bluegill 107 Lepomis macrochirus may be another critical factor, although predation pressure on M. 108 japana is unknown, except that its remains have been found in the stomach contents of a 109 110 frog and the abovementioned water birds (Hayashi 2006). Therefore, it is urgent that the 111 range and size of the extant *M. japana* population in Lake Biwa be clarified to elucidate 112 the urgent threats to this population.

113

114 ACKNOWLEDGMENTS

We thank Hongbin Liang at the Institute of Zoology, Chinese Academy of Science for allowing us to use *Macroplea* specimens from China and Mongolia for DNA study, and for helpful comments on the present study. We also thank Jialiang Zhang and Ye Liu for information on and specimens of *Macroplea* from Guizhou, China. This study was partly supported by grants-in-aid from the Japan Society for the Promotion of Science (nos. 20H03321 to MK and 17405007 to TS).

121

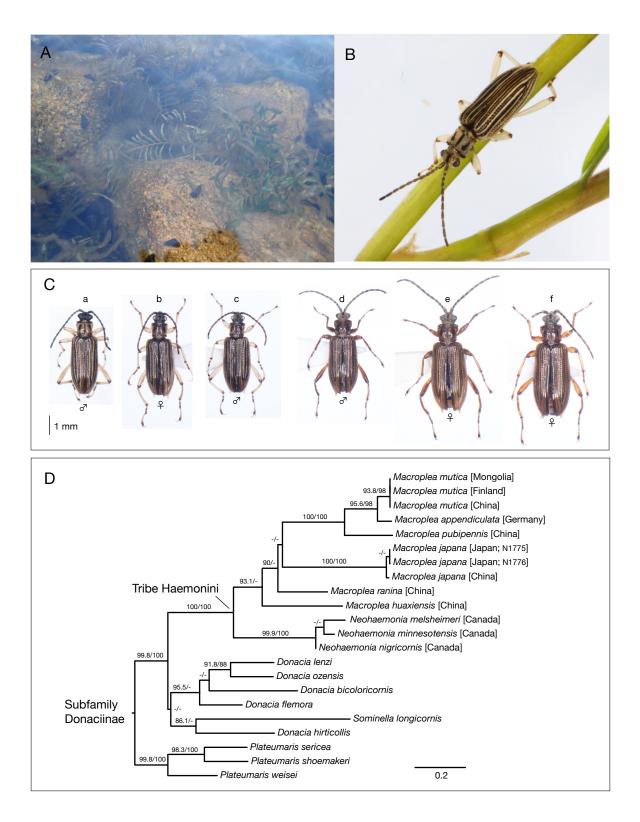
122 **REFERENCES**

```
123 Hayashi M (2006) Distribution records of Donaciinae (Coleoptera, Chrysomelidae) in
```

- Japan. Part 2. Genera *Donacia* Fabricius and *Macroplea* Samouelle. *Bulletin of the Hoshizaki Green Foundation* 9, 151–192.
- Hayashi M, Shiyake S (2001) The identity and distribution of Macroplea japana (Jacoby)
 (Coleoptera, Chrysomelidae, Donaciinae). *Bulletin of the Osaka Museum Natural History* 55,15–22.

129	Hayashi M, Sota T (2014) Quaternary donaciine beetles (Coleoptera, Chrysomelidae) in
130	Japan: Colonization and divergence patterns inferred from fossil and molecular data.
131	Quaternary International 341, 255–266.
132	Ikeda S (1956) [Food Habit of Japanese Birds]. Chojuchosahokoku 15, 1–95. (In
133	Japanese.)
134	Kim CG, Zhou HZ, Imura Y, Tominaga O, Su ZH, Osawa S (2000) Patterns of
135	morphological diversification in the Leptocarabus ground beetles (Coleoptera:
136	Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA
137	sequences. Molecular Biology and Evolution 17, 137-145.
138	Kölsch G, Biström O, Pedersen BV (2006) Species delimitation in the leaf beetle genus
139	Macroplea (Coleoptera, Chrysomelidae) based on mitochondrial DNA, and
140	phylogeographic considerations. Insect Systematics & Evolution 37, 467–479.
141	Kölsch G, Pedersen BV (2008) Molecular phylogeny of reed beetles (Col.,
142	Chrysomelidae, Donaciinae): The signature of ecological specialization and
143	geographical isolation. Molecular Phylogenetics and Evolution 48, 936–952.
144	Lou Q, Yu P, Liang H (2011) Two new species of Macroplea Samouelle (Coleoptera:
145	Chrysomelidae: Donaciinae) from China, with a key to all known species. Zootaxa
146	3003 , 1–21.
147	Minh BQ, Schmidt HA, Chernomor O, et al (2020) IQ-TREE 2: New models and
148	efficient methods for phylogenetic inference in the genomic era. Molecular Biology
149	and Evolution 37 , 1530–1534.
150	Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting,
151	and phylogenetic utility of mitochondrial gene sequences and a compilation of
152	conserved polymerase chain reaction primers. Annals of the Entomological Society

of America **87**, 651–701.


154	Sota T, Bocak L, Hayashi M (2008) Molecular phylogeny and historical biogeography of
155	the Holarctic wetland leaf beetle of the genus Plateumaris. Molecular Phylogenetics
156	<i>and Evolution</i> 46 , 183–192.
157	Zhang J, Wheeler GS, Purcell M, Ding J (2010) Biology, distribution, and field host
158	plants of Macroplea japana in China: An unsuitable candidate for biological control
159	of Hydrilla verticillata. Florida Entomologist 93, 116–119.
160	
161	
162	SUPPORTING INFORMATION
162 163	SUPPORTING INFORMATION
	SUPPORTING INFORMATION Additional Supporting Information may be found online in the Supporting Information
163	
163 164	Additional Supporting Information may be found online in the Supporting Information
163 164 165	Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

170 Figure legends

171

172	Figure 1 (A) Underwater habitat of <i>Macroplea japana</i> in Lake Biwa. Photograph by M.
173	Kato. (B) Macroplea japana walking on a Potamogeton maackianus shoot. Photograph
174	by T. Sota. (C) Macroplea japana specimens from Lake Biwa collected in this study (a-c)
175	and Guizhou, China collected by J. Zhang in 2007 (d-f). Photographs by T. Sota. (D)
176	Maximum-likelihood tree of tribe Haemonini species based on partitioned analysis of
177	mitochondrial COI and nuclear 28S gene sequences. Plateumaris is shown to be sister to
178	all other groups according to Kölsch and Pedersen (2008). Node support values indicated
179	on branches are the Shimodaira-Hasegawa-like approximate likelihood ratio test
180	(SH-aLRT) and ultrafast bootstrap (UF-boot) values (%). Only SH-aLRT values >80%
181	and UF-boot values > 95% are shown. Detailed descriptions of the samples are provided

in Table S1.

	Sample		DDBJ/GenBank accession no
Species	ID	Locality [year, collector*]	COI/28S [ref.]
Tribe Haemonini			
Macroplea japana	jap01	Heilongjiang, China	DQ887744/NA [1]
Macroplea japana	N1775	Shiga, Japan [2022, M. Kato]	LC705467/LC705472 [0]
Macroplea japana	N1776	Shiga, Japan [2022, M. Kato]	LC705468/LC705473 [0]
Macroplea mutica	mut15	Finland	DQ887730/NA [1]
Macroplea mutica	N1769	Hebei, China	AB820481/AB820524 [2]
Macroplea mutica	N1773	Bulgan, Mongolia [2010, H.B.	LC705466/LC705471 [0]
Macroplea ranina	N1596	Liang & C.M. Shi] Sichuan, China [T. Sota & H.B.	LC705464/LC705469 [0]
Macroplea huaxiensis	N1637	Liang, 2007] Guizhou, China [Y. Liu, 2007]	LC705465/LC705470 [0]
Macroplea appendiculata	app05	Schleswig-Holstein, Germany	DQ887736/NA [1]
Macroplea pubipennis	pub05	Heilongjiang, China	DQ887742/NA [1]
Neohaemonia melsheimeri	N1401	Ontario, Canada	AB820470/AB820525 [2]
Neohaemonia minnesotensis	N1403	Ontario, Canada	EF532502/EF532412 [2]
Neohaemonia nigricornis	N1405	Manitoba, Canada	EF532503/EF532413 [2]
Outgroup			
Plateumaris sericea	N1028	Hokkaido, Japan	EF532541/EF532451 [3]
Plateumaris shoemakeri	N1471	Manitoba, Canada	EF532444/EF532489 [3]
Plateumaris weisei	N0667	Hokkaido, Japan	EF532527/EF532437 [3]
Sominella longicornis	N1576	Sichuan, China	AB820482/AB820526 [2]
Donacia hirticollis	N1393	Manitoba, Canada	AB820465/AB820495 [2]
Donacia flemora	N0769	Tottori, Japan	AB820378/AB820493 [2]
Donacia bicoloricornis	N0059	Ibaraki, Japan	AY232497/AB820487 [2]
Donacia ozensis	N0103	Niigata, Japan	AY232525 /AB820506 [2]
Donacia lenzi	N0831	Kagawa, Japan	AB820390 /AB820501 [2]

Table S1. List of sequence data for Haemonini Species.

* For specimens newly reported in this study.

References

[0] This study.

[1] Kölsch G, Biström O, Pedersen BV (2006) Species delimitation in the leaf beetle genus *Macroplea* (Coleoptera, Chrysomelidae) based on mitochondrial DNA, and phylogeographic considerations. *Insect Systematics & Evolution* **37**, 467–479

[2] Hayashi M, Sota T (2014) Quaternary donaciine beetles (Coleoptera, Chrysomelidae) in Japan:
Colonization and divergence patterns inferred from fossil and molecular data. *Quaternary International* 341, 255–266.

[3] Sota T, Bocak L, Hayashi M (2008) Molecular phylogeny and historical biogeography of the Holarctic wetland leaf beetle of the genus *Plateumaris*. *Molecular Phylogenetics and Evolution* **46**, 183–192.