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Abstract. Let A; B � M be inclusions of � -finite von Neumann algebras such that A and B are
images of faithful normal conditional expectations. In this article, we investigate Popa’s intertwin-
ing condition A �M B using modular actions on A, B , and M . In the main theorem, we prove
that if A �M B , then an intertwining element for A �M B also intertwines some modular flows
of A and B . As a result, we deduce a new characterization of A �M B in terms of the continuous
cores of A, B , and M . Using this new characterization, we prove the first W�-superrigidity type
result for group actions on amenable factors. As another application, we characterize stable strong
solidity for free product factors in terms of their free product components.
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1. Introduction

In [35], Sorin Popa obtained the first uniqueness result for certain Cartan subalgebras in
non-amenable type II1 factors up to unitary conjugacy. He used this result to compute
some invariants of von Neumann algebras and succeeded in giving the first examples
of type II1 factors which have trivial fundamental groups, solving a long-standing open
problem in von Neumann algebra theory. This breakthrough work led to great progress
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in the classification of non-amenable von Neumann algebras over the last years, which is
now called Popa’s deformation/rigidity theory (see the surveys [26, 40, 50]).

An important technical ingredient in his theory is the intertwining-by-bimodules tech-
nique [35, 37]. Let M be a finite von Neumann algebra and A; B � M von Neumann
subalgebras. The intertwining condition, which will be written asA�M B , is defined as a
weaker version of unitary conjugacy from A into B (see Definition 2.4). Popa proved that
this condition is equivalent to an analytic condition: non-existence of a net of unitaries
in A with a certain convergence condition. This equivalence provides a very powerful
tool to obtain unitary conjugacy between certain subalgebras, and it is now regarded as
a fundamental tool to study relations between general subalgebras in a von Neumann
algebra.

The proof of this analytic characterization relies on the bimodule structure via GNS
representations of traces. The finiteness assumption ofM is hence crucial in this context.
However, since there are many natural questions for non-tracial von Neumann algebras
(more specifically, for type III factors) which should be studied in deformation/rigidity
theory, there have been many attempts to generalize the intertwining machinery to type III
von Neumann algebras. In a joint work with C. Houdayer [15], we succeeded in proving
the aforementioned analytic characterization in the case when A is finite (and B �M can
be general), but the general case is still open. See also [2, 7, 18, 22, 28, 48, 49] for other
partial generalizations of this technique.

In the present article, we focus on this problem. We will investigate Popa’s inter-
twining condition A �M B for general inclusions of von Neumann algebras. Before
proceeding, we prepare some terminology. For a (possibly non-unital) inclusion of von
Neumann algebras A � M , we say that A � M is with expectation if there is a faithful
normal conditional expectation EAW1AM1A! A, where 1A is the unit of A. For any such
expectation EA, we say that a faithful normal positive functional ' 2 M� is preserved
by EA if it satisfies ' D '.1A � 1A/ C '.1

?
A � 1

?
A / and ' ı EA D ' on 1AM1A, where

1?A WD 1M � 1A.
Now we introduce the main theorem in this article. The theorem shows that the inter-

twining conditionA�M B is equivalent to the same condition but together with additional
conditions on Tomita–Takesaki’s modular actions. More precisely, an intertwining ele-
ment, which implements a weak unitary conjugacy for A �M B , also intertwines some
modular flows for A and B . As a result, the condition A �M B is equivalent to a condi-
tion on the continuous cores of A, B , and M (see item (3) below). This provides a new
perspective on the intertwining machinery in type III von Neumann algebra theory. In the
theorem below, �' is the modular action and C'.M/ is the continuous core of M (with
respect to ' 2MC� ); see Section 2. Recall that a factorN is a type III1 factor if its contin-
uous core is a factor. See Definitions 3.4 and 3.7 for intertwining conditions with modular
actions and with conditional expectations.

Theorem A. Let M be a � -finite von Neumann algebra and A; B � M .possibly non-
unital/ von Neumann subalgebras with expectations. Fix any faithful normal conditional
expectation EB W 1BM1B ! B and any faithful state ' 2 M� which is preserved by EB .
Then the following two conditions are equivalent:
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� A �M B .

� .A;� /�M .B;�'/ for some faithful state  2M� such that � t .A/DA for all t 2R
.or equivalently such that  is preserved by some conditional expectation onto A/.

Moreover, for any fixed faithful normal conditional expectation EAW 1AM1A ! A, any
faithful state  2 M� which is preserved by EA, and any � -finite type III1 factor N
equipped with a faithful state ! 2 N�, the following conditions are equivalent:

.1/ .A; � / �M .B; �'/.

.2/ .A;EA/ �M .B;EB/.

.3/ ….C ˝!.A ˝ N// �C'˝!.M˝N/ C'˝!.B ˝ N/, where …W C ˝!.M ˝ N/ !
C'˝!.M ˝N/ is the canonical �-isomorphism given by the Connes cocycle.

The following immediate corollary gives a new characterization of A �M B in terms
of the continuous cores of A, B , and M . Since all continuous cores are semifinite, up
to cutting down by a finite projection, one can use the analytic characterization of the
intertwining condition at the level of continuous cores.

Corollary B. Keep the setting of Theorem A and fix a type III1 factor N and a faithful
state ! 2 N�. Then A �M B if and only if item .3/ in Theorem A holds for some EA
and  .

We emphasize that this corollary fails if we do not take tensor products with a type III1
factor. In fact, there is an inclusion B �M D A such thatM 6�M B but C'.M/ �C'.M/

C'.B/ (see [16, Theorem 4.9]). Hence the type III1 factor N is necessary.
Here we explain the idea behind Theorem A. In [38, 39], Popa proved his celebrated

cocycle superrigidity theorem. He developed a way of using his intertwining machinery to
study cocycles of actions. If two discrete group actions � Õ˛ M and � Õˇ M on a finite
von Neumann algebra M are cocycle conjugate (so that M Ìˇ � D M Ì˛ �), then the
intertwining condition C1M Ìˇ � �MÌ˛� C1M Ì˛ � is equivalent to a weak conjugacy
condition for ˛ and ˇ (see Definition 3.1). In [19], by assuming the subalgebra A is trivial
(but B � M can be general), Houdayer, Shlyakhtenko, and Vaes applied this idea to the
case of modular actions. They combined it with Connes cocycles and deduced a new
characterization of intertwining conditions, in terms of the states of A, B , and M . This
new characterization enabled them to identify specific states on von Neumann algebras,
and they applied it to the classification of free Araki–Woods factors.

Our Theorem A is strongly motivated by these works. In fact, when the subalgebra A
is finite, Theorem A can be proved (without tensoring by a type III1 factor) by developing
ideas in these works. Hence the main interest of Theorem A is the case that A is of
type III. It is technically more challenging, since the proofs of [38, 39] and [19] can no
longer be adapted. We will use another characterization of A �M B which holds without
the finiteness assumption (see Theorem 2.5(2)). By taking tensor products with a type
III1 factor N and by analyzing operator valued weights on basic constructions, we will
connect this condition onM to the one of C'.M ˝N/. See Lemmas 2.3 and 3.12 for the
use of type III1 factors.
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Application: W �-superrigidity for actions on amenable factors

Our first application of Theorem A is to W �-superrigidity of group actions on amenable
factors. For a group action � Õˇ B on a von Neumann algebra B , W�-superrigidity of ˇ
means that the isomorphism class of the action ˇ can be recovered from the one of the von
Neumann algebra (or the W�-algebra) B Ìˇ � . More precisely, for any actionƒÕ˛ A, if
B Ìˇ � 'AÌ˛ ƒ as von Neumann algebras, then ˇ' ˛ as actions. Here for the action ˛,
we only assume natural conditions in the framework (e.g. free and ergodic action) and
do not impose any technical assumptions. W�-superrigidity is one of the highlights of
deformation/rigidity theory.

The first example of W�-superrigid actions was discovered by Popa and Vaes [42].
They proved that for a large class of amalgamated free groups, any free ergodic proba-
bility measure preserving action is W�-superrigid. After this breakthrough work, many
examples have been obtained [1,8,17,24,25,34,43,44,51]. All these works are on actions
on probability spaces, namely, actions on commutative von Neumann algebras.

In the present article, we investigate actions on amenable factors. Recall that a von
Neumann algebraM (with separable predual) is amenable if it is generated by an increas-
ing union of (countably many) finite-dimensional von Neumann algebras. The amenable
von Neumann algebras are the easiest class of von Neumann algebras, which contains
all commutative von Neumann algebras. Hence it is natural to ask if a W�-superrigidity
phenomenon occurs for actions on non-commutative amenable von Neumann algebras.
However, because of the technical difficulties coming from non-commutativity, none of
W�-superrigidity type results for such actions is known so far (even for type II1 factors).

We prepare some terminology. We say that a countable discrete group � is in the class
C [52] if it is non-amenable and for any trace preserving cocycle action � Õ B on a finite
von Neumann algebra B , the following condition holds:
� for any projection p 2 B Ì � DW M and any amenable von Neumann subalgebra
A � pMp, if A0 \ pMp � A and if NpMp.A/

00 � pMp has essentially finite index,
then A �M B .

Here an inclusion P � N of finite von Neumann algebras has essentially finite index if
there is a projection p 2 P 0 \ N which is arbitrary close to 1 such that Pp � pNp has
finite Jones index. The class C contains all weakly amenable groups � with ˛.2/1 .�/ > 0

[43], all non-amenable hyperbolic groups [44] and all non-amenable free products
[25, 51]. As explained in [52], groups in this class do not contain any infinite amenable
subgroups. Recall that a faithful normal state ' on a von Neumann algebra M is weakly
mixing if the fixed point algebra of the modular action of ' is trivial. In this case M must
be a type III1 factor, and the unique amenable type III1 factor admits such a state.

The following theorem is the main application of Theorem A. This is the first
W�-superrigidity type result for actions on amenable factors. As we will explain below,
the proof of this theorem uses modular theory in a crucial way, and hence cannot be
adapted to type II1 factors.

Theorem C. Let � be an ICC countable discrete group in the class C , B0 a type III1
amenable factor with separable predual, and '0 a faithful normal state on B0 which
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is weakly mixing. Then the Bernoulli shift action � Õˇ
N
�.B0; '0/ .DW .B; '// is

W�-superrigid in the following sense.
Let ƒ Õ˛ .A;  / be any state preserving outer action of a discrete group ƒ on an

amenable factor A with a faithful normal state  . If B Ìˇ � ' A Ì˛ ƒ, then there exist

� a finite normal subgroup ƒ0 � ƒ and a cocycle action ƒ=ƒ0 Õ˛ƒ=ƒ0 .A Ì˛ ƒ0;  0/
by a fixed section sWƒ=ƒ0!ƒ, where  0 is the canonical extension of  onAÌ˛ ƒ0;

� a state preserving cocycle action .Ad.ug//g2� of � on a type I factor .B; !/ equipped
with a faithful normal state,

such that the actions ƒ=ƒ0 Õ˛ƒ=ƒ0 .A Ì˛ ƒ0;  0/ and � Õˇ˝Ad.u/ .B ˝ B; ' ˝ !/
are conjugate via a state preserving isomorphism.

The Bernoulli action in this theorem was intensively studied in [52, 53] where sim-
ilar conclusions were obtained if the action ƒ Õ˛ .A;  / is also a Bernoulli action of
a group in the class C . Now thanks to our Theorem C, we can take arbitrary actions as
ƒ Õ˛ .A; /.

The conclusion of Theorem C is optimal. Indeed, subgroups and type I factors in the
theorem can appear always, since the amenable type III1 factor B has decompositions
such as B D A Ìƒ0 and B D B ˝ B. Note also that the cocycle action ƒ=ƒ0 Õ˛ƒ=ƒ0

.A Ì˛ ƒ0;  0/ above depends on the choice of the section s, but this dependence affects
the cocycle action Ad.u/ on a type I factor only.

The proof of Theorem C splits into two steps. Firstly, we prove a unique crossed
product decomposition theorem: we identify the base algebra B from the von Neumann
algebra B Ìˇ � , so that the associated groups are isomorphic and the two actions are
cocycle conjugate. Secondly, we prove a cocycle superrigidity type theorem: the corre-
sponding cocycle is cohomologous to a coboundary, so that the two actions are conjugate.

The next theorem treats the first step. Such a unique crossed product decomposition
theorem has been intensively studied during the last decade for actions on finite von
Neumann algebras [10, 22, 33, 44] (and see aforementioned works for W�-superrigidity).
Thanks to our Theorem A, we can take type III factors as base algebras B .

Theorem D. Let � be an ICC countable discrete group in the class C , B a � -finite,
amenable, diffuse factor, and � Õˇ B an outer action.

Assume thatB Ìˇ � 'AÌ˛ ƒ for some outer actionƒÕ˛ A of a countable discrete
group ƒ on a � -finite, amenable, diffuse factor A. Then there is an amenable normal
subgroupƒ0�ƒ such that the induced cocycle actionƒ=ƒ0 Õ˛ƒ=ƒ0 AÌ˛ ƒ0 is cocycle
conjugate to ˇ. In particular if ƒ has no amenable normal subgroups, then ˇ and ˛ are
cocycle conjugate.

If ƒ is an ICC group in the class C , then it has no amenable subgroups, hence we get
the following corollary, which generalizes [43, Theorem 1.10].

Corollary E. Let � Õˇ B and ƒ Õ˛ A be outer actions of countable discrete ICC
groups on � -finite, amenable, diffuse factors such that B Ìˇ � ' A Ì˛ ƒ. If � and ƒ
are in the class C , then ˇ and ˛ are cocycle conjugate.



Y. Isono 1684

We next need a cocycle superrigidity type theorem for the second step. Appropriate
adaptations of techniques in [36, 39] (see also [32, 52]) to our setting easily provide the
following proposition. This proposition is however not useful in our study. As we explain
shortly, we will use Popa’s argument in the proof of this proposition.

Proposition F. Let � be a non-amenable countable discrete group, .B0;'0/ an amenable
factor with separable predual and with a faithful normal state, and � Õˇ

N
�.B0; '0/DW

.B; '/ the Bernoulli shift action. Assume that either � is a direct product of two infinite
groups or it has a normal subgroup with relative property (T).

Assume that ˇ is cocycle conjugate to some state preserving outer actionƒÕ˛ .A; /

of a countable discrete group ƒ on an amenable factor A with a faithful normal state  .
Then there exists an inner action .Ad.ug//g2� of � on a type I factor B such that the
actions ˛ and ˇ ˝ Ad.u/ are conjugate.

Idea of the proof of Theorem C

The proof uses modular theory in a crucial way. Consider two actions ˇ and ˛ as in
Theorem C.

Since the group � is in the class C , we can first apply Theorem D. Then an induced
cocycle action ˛ƒ=ƒ0 is cocycle conjugate to ˇ. If this cocycle action is a genuine action,
by assuming that � is a direct product or has property (T), one can apply Proposition F
and obtain a conjugacy result. However, it is not clear when the cocycle action, which
comes from a section sW� ' ƒ=ƒ0 ! ƒ, is a genuine action. In other words, we do not
know when the exact sequence 1!ƒ0!ƒ! �! 1 splits, whereƒ0 is amenable and
� is in the class C satisfying the assumption of Proposition F. This is the main technical
issue in proving the W�-superrigidity theorem in our setting, and this is why such a result
is not known even for type II1 factors.

In the present article, to avoid this problem, we use modular actions. Since we have
assumed that ˇ and ˛ are state preserving, there is an isomorphism

B Ìˇ��' .� �R/ ' A Ì˛�� .ƒ �R/

such that the corresponding (possibly cocycle) actions are cocycle conjugate. By assum-
ing that '0 is weakly mixing (which means �' is weakly mixing), and combining with
some rigidity property of Bernoulli actions, one can apply an argument similar to the proof
of Proposition F to the direct product group � � R. Here we emphasize that R-actions
are always genuine actions, so we can avoid the above problem in this context. Thus the
cocycle is cohomologous to a coboundary as R-actions. Since R � � �R is normal and
�' is weakly mixing, the same conclusion actually holds for � � R-actions and we can
finish the proof. This is the main idea of the proof of Theorem C.

Application: stable strong solidity of free product factors

The next application is to the structure of amalgamated free product von Neumann al-
gebras. We will generalize Ioana’s work [25] to the type III setting.
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Recall that for any (possibly non-unital) inclusions A;B �M with expectations and
with 1B D 1M , we say thatA is injective relative toB inM [29,33] if there is a conditional
expectation EW1AhM;Bi1A! A which is faithful and normal on 1AM1A. Recall that for
any von Neumann algebraM with a decompositionM DMa ˚Md , whereMa is atomic
andMd is diffuse, we say thatM is strongly solid (resp. stably strongly solid) [3,33] if for
any diffuse amenable von Neumann algebra A � Md with expectation, NMd .A/

00 (resp.
sNMd .A/

00) remains amenable. Here sNMd .A/ is the set of all elements x 2 Md such
that xAx� � A and x�Ax � A, and such elements are called stable normalizers. Then
NMd .A/ is given by sNMd .A/ \U.Md / and its elements are called normalizers. Note
that these two notions of strong solidity coincide if M is properly infinite. By definition,
a strongly solid non-amenable factor M does not admit any crossed product decomposi-
tion M D A Ì � (for amenable A), so strong solidity should be understood as a strong
indecomposability of M .

The following theorem is a generalization of Ioana’s theorem [25, Theorem 1.6] (see
also [3, 21, 51]). As a corollary, we characterize stable strong solidity of free product
factors; see [25, Theorem 1.8] for the same characterization for type II1 factors.

Theorem G. Let B � Mi be inclusions of � -finite von Neumann algebras with expec-
tations Ei for i D 1; 2. Let M WD .M1; E1/ �B .M2; E2/ be the amalgamated free
product von Neumann algebra, p 2 M a projection, and A � pMp a von Neumann
subalgebra with expectation. Assume that A is injective relative to B in M and assume
that A0 \ pMp � A. Then at least one of the following conditions holds true:

.i/ A �M B;

.ii/ sNpMp.A/00 �M Mi for some i 2 ¹1; 2º;

.iii/ sNpMp.A/00 is injective relative to B .

Corollary H. Let I be a set and .Mi ;'i /i2I a family of nontrivial von Neumann algebras
with faithful normal states. Put M WD �i2I .Mi ; 'i /. Then M is stably strongly solid if
and only if so are all Mi ’s.

Factoriality of free product von Neumann algebras was studied in [47]. Examples of
stably strongly solid factors have been obtained in several articles [3, 4, 6, 20]. Also all
amenable von Neumann algebras are stably strongly solid. Using these algebras, Corol-
lary H provides plenty of new examples of stably strongly solid factors.

2. Preliminaries

Tomita–Takesaki theory

Let M be a von Neumann algebra and ' a faithful normal semifinite weight on M .
Throughout the paper, for objects in Tomita–Takesaki’s modular theory, we will use the
following notation. The modular operator, conjugation, and action are denoted by �' ,
J' , and �' respectively. The continuous core, which is the crossed product von Neumann
algebra M Ì�' R, is denoted by C'.M/, and Tr' and L'R mean the canonical trace on
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C'.M/ and the canonical copy of LR in C'.M/ respectively. The centralizer algebra
M' is the fixed point algebra of the modular action. The norm k � k1 is the operator norm
of M , while k � k2;' (or k � k') is the L2-norm determined by '. See [45] for definitions
of all these objects.

For any continuous action G Õ˛ M of a locally compact group G, in this article we
will use the following canonical embeddings for crossed products: �˛WM !M Ì˛ G by
.�˛.x/�/.g/ D ˛g�1.x/�.g/ for all � 2 L2.G; L2.M// and g 2 G; and G ! M Ì˛ G
by g 7! 1M ˝ �g for all g 2 G. Via these embeddings, we often regard M and LG as
subalgebras of M Ì˛ G.

Connes cocycle

LetG be a locally compact group,M a von Neumann algebra andG Õ˛ M a continuous
action (see [45, Definition X.1.1] for continuity). Let p 2M be a non-zero projection. We
say that a � -strongly continuous map uWG ! pM is a generalized cocycle for ˛ .with
support projection p/ if
� ugh D ug˛g.uh/ for all g; h 2 G;
� ugu

�
g D p and u�gug D ˛g.p/ for all g 2 G.

In this case, by putting ˛ug.pxp/ WD ug˛g.pxp/u
�
g for all x 2 M and g 2 G, one has a

continuous G-action on pMp. We have p.M Ì˛ G/p ' pMp Ì˛u G. When p D 1, we
simply say that u is a cocycle.

Let N be another von Neumann algebra and consider continuous actions G Õ˛ M

and G Õˇ N . We say that ˛ is cocycle conjugate to ˇ via a generalized cocycle if there
exist a projection p 2 M , a �-isomorphism � W pMp ! N and a generalized cocycle
uWG ! pM for ˛ with support projection p such that

��1 ı ˇg ı �.a/ D ug˛g.a/u
�
g for all a 2 pMp; g 2 G:

In this case, by identifying pMp D N by means of � , we can define a partial isometry
U WL2.G;L2.M//!L2.G;L2.M// by .U�/.g/D ug�1�.g/D pug�1˛g�1.p/�.g/ for
g 2 G. Note that U �U D �˛.p/ and UU � D p ˝ 1L2.G/. One has a �-isomorphism

…ˇ;˛ WD Ad.U /Wp.M Ì˛ G/p ! pMp Ìˇ G

satisfying …ˇ;˛.x/ D x for x 2 pMp and …ˇ;˛.p�
˛
gp/ D pug�

ˇ
gp D ug�

ˇ
g for g 2 G.

If one can choose p D 1, so that u is a cocycle, then we simply say that ˛ and ˇ are
cocycle conjugate.

LetM be a von Neumann algebra and '; normal semifinite weights onM . Assume
that ' is faithful and let s. / be the support projection of . Consider the modular actions
�' on M and � on s. /Ms. /. The Connes cocycle .ŒD ;D'�t /t2R [11] is a gener-
alized cocycle for �' with support projection s. / such that �' is cocycle conjugate to
� via .ŒD ;D'�t /t2R. In particular, there is a canonical �-isomorphism

… ;' WpC'.M/p D p.M Ì�' G/p ! pMp Ì� G D C .pMp/:

See [45, V.III.3.19-20] for this non-faithful version of the Connes cocycle. In this article,
we need the following important theorem.
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Theorem 2.1 ([11, Théorème 1.2.4]). Let M be a von Neumann algebra and ' a faithful
normal semifinite weight on M . Let p 2 M be a projection and .ut /t2R a generalized
cocycle for .�'t /t with support projection p. Then there is a unique normal semifinite
weight  on M such that s. / D p and ut D ŒD ;D'�t for all t 2 R.

Below, we record an elementary lemma. We use the notation x'y D '.y � x/.

Lemma 2.2. Let M be a von Neumann algebra and ';  2 M� faithful positive func-
tionals.

.1/ For any projection e 2M , we have

ŒDe e;D �t D e and eŒD ;D'�t D ŒDe e;D'�t :

In particular we have a chain rule:

ŒDe e;D �t ŒD ;D'�t D ŒDe e;D'�t :

.2/ Let v 2 M be a partial isometry such that e WD vv� 2 M and f WD v�v 2 M' .
Assume that v'v� D e e on M .equivalently f 'f D v� v/. Then

v�
'
t .v
�xv/v� D �

 
t .exe/; v�ŒD ;D'�t D �

'
t .v
�/; x 2M; t 2 R:

Cocycle actions

A more general version of a group action is a cocycle action. We say that a locally compact
group G acts on a von Neumann algebra M as a cocycle action if there exist continuous
maps ˛WG ! Aut.M/ and vWG �G ! U.M/ such that

˛e D id; ˛g ı ˛h D Ad.v.g; h// ı ˛gh; v.g; h/v.gh; k/ D ˛g.v.h; k//v.g; hk/

for all g; h; k 2 G, where e is the neutral element. The map v is called a 2-cocycle. Two
cocycle actions G Õ.˛;v/ M and G Õ.ˇ;w/ N are said to be cocycle conjugate if there
exist a �-isomorphism � WM ! N and a continuous map uWG ! U.M/ such that, for
all g; h 2 G,

��1 ı ˇg ı � D Ad.ug/ ı ˛g ; ��1.w.g; h// D ug˛g.uh/v.g; h/u
�
gh:

In this article, cocycle actions appear in the following two contexts.
Let � Õ˛ B be an action of a discrete group on a von Neumann algebra B . Let

p 2 B be a projection and assume that ˛g.p/ � p in B for all g 2 G. Take any par-
tial isometries wg 2 B such that wgw�g D p and w�gwg D ˛g.p/ for all g 2 � . Define
˛
p
g .x/ WD wg˛g.x/w

�
g and vp.g; h/ WD wg˛g.wh/w�gh for all x 2 pBp, g; h 2 � . Then

.˛p; vp/ is a cocycle action on pBp satisfying p.B Ì˛ �/p ' pBp Ì.˛p ;vp/ � .
Let � Õ˛ B be the same group action. Let ƒ � � be a normal subgroup and fix a

section sW�=ƒ! � such that s.ƒ/ is the unit of � . Inside B Ì˛ � , for all g; h 2 �=ƒ,
we define

˛�=ƒg WD Ad.��s.g// 2 Aut.B Ì˛ ƒ/ and v.g; h/ WD ��
s.g/s.h/s.gh/�1

2 Lƒ:

It is easy to verify that ˛�=ƒ and v define a cocycle action of �=ƒ on B Ì˛ ƒ satisfying
B Ì˛ � ' .B Ì˛ ƒ/ Ì.˛�=ƒ;v/ �=ƒ.
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Basic constructions and operator valued weights

For operator valued weights, we refer the reader to [13, 14]. We will say that a unital
inclusion B �M of von Neumann algebras is with operator valued weight if there is an
operator valued weight EB WM ! B , which is always assumed to be normal, faithful and
semifinite.

Let B � M be a unital inclusion of � -finite von Neumann algebras with expecta-
tion EB . Fix a faithful normal state ' on M such that ' D ' ı EB . Put L2.M/ WD

L2.M; '/ and J WD J' , and consider B � M � B.L2.M//. The von Neumann al-
gebra hM;Bi WD .JBJ /0 is called the basic construction, and is generated by MeBM ,
where eB is the Jones projection for EB . Using the inclusion JBJ � JMJ with expecta-
tion JEBJ WD Ad.J / ı EB ı Ad.J /, one can define a canonical operator valued weight
.JEBJ /

�1W .JBJ /0 ! .JMJ /0 D M . We will write as yEB WD .JEBJ /
�1. It satisfies

yEB.b
�eBa/ D b

�a for all a; b 2M . See [30, 31] for the general theory of yEB .
Below we collect well known facts for basic constructions and operator valued

weights, which we will need in this article.

� For any faithful  2 MC� , one can define a faithful normal semifinite weight y WD
 ı yEB on hM;Bi. We have

�
y 
t jM D �

 
t and ŒD y ;D y'�t D ŒD ;D'�t for all t 2 R:

� Let EC'.B/W C'.M/ ! C'.B/ be the canonical conditional expectation such that

EC'.B/jM D EB and EC'.B/jL'R D id. Using �'t ı yEB D yEB ı �
y'
t for all t 2 R,

one can define an operator valued weight from hM; Bi Ì� y' R to M Ì�' R whose
restriction on hM;BiC coincides with yEB . We will denote it by yEB Ì R.
� We canonically have

hC'.M/; C'.B/i D Cy'.hM;Bi/:

The left hand side has a canonical operator valued weight yEC'.B/ onto C'.M/, and the
right hand side has yEB Ì R. Since the constructions are canonical, these two operator
valued weights coincide.

Here we prove a lemma for type III1 factors.

Lemma 2.3. LetA�M be a unital inclusion of von Neumann algebras with an operator
valued weight EA. Fix a faithful  A 2 AC� , and put  WD  A ı EA. Let N be a type III1
factor with a faithful normal semifinite weight !. Then

C ˝!.A˝N/
0
\ C ˝!.M ˝N/ D .A

0
\M /˝C1N ˝C1L2.R/:

Proof. The inclusion � is clear, so we prove the converse.
Since N is a type III1 factor, there is a faithful normal semifinite weight !0 such

that .N!0/0 \ N D C (see [45, Theorem XII.1.7]). Thanks to the Connes cocycle, there
is a canonical isomorphism from C ˝!0.M ˝ N/ to C ˝!.M ˝ N/ which sends
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C ˝!0.A ˝ N/ onto C ˝!.A ˝ N/ and which is the identity on M ˝ N . Hence to
prove this lemma, by exchanging !0 with !, we may assume that N 0! \N D C.

For simplicity we write L ˝!R D LR. Observe that (e.g. [18, Proposition 2.4])

C ˝!.C1A ˝C1N /
0
\ C ˝!.M ˝N/ � .M ˝N/ ˝! ˝ LR:

Since .C1A ˝N!/0 \ .M ˝N/ ˝! DM ˝C1N , we have

C ˝!.C1A ˝N!/
0
\ C ˝!.M ˝N/ �M ˝C1N ˝ LR:

Since C!.N / is a factor (because N is of type III1), we have �!.N /0 \ .C1N ˝ L!R/
D C1N ˝ C1L2.R/, where �!.N / is the canonical image of N in C!.N /. This implies
that

C ˝!.C1A ˝N/
0
\ C ˝!.M ˝N/ �M ˝ Œ�!.N /

0
\ .C1N ˝ LR/�

DM ˝C1N ˝C1L2.R/:

Using the canonical embedding � ˝! , the last term coincides with � ˝!.M ˝C1N /,
hence

C ˝!.A˝N/
0
\ C ˝!.M ˝N/ D � ˝!.A˝C1N /

0
\ � ˝!.M ˝C1N /

D � ˝!..A
0
\M /˝C1N /

D .A0 \M /˝C1N ˝C1L2.R/:

This is the conclusion.

Popa’s intertwining theory

As explained in Section 1, we refer the reader to [35, 37] for the origin of intertwining
theory. Here we give a definition introduced in [15].

Definition 2.4. Let M be a � -finite von Neumann algebra and A;B �M (possibly non-
unital) von Neumann subalgebras with expectation. We will say that a corner ofA embeds
with expectation into B inside M and write A �M B if there exist projections e 2 A,
f 2B , a partial isometry v 2 eMf and a unital normal �-homomorphism � WeAe! fBf

such that
� �.eAe/ � fBf is with expectation;
� v�.a/ D av for all a 2 eAe.
In this case, we will say that .e; f; �; v/ witnesses A �M B .

We recall known characterizations of the intertwining condition A �M B . For this,
we borrow notation from [15, Section 4]. The same notation will be used in Section 3.

Let M be a � -finite von Neumann algebra and A;B � M (possibly non-unital) von
Neumann subalgebras with expectations. Fix a faithful normal conditional expectationEB
for B � 1BM1B . Put zB WD B ˚ C.1M � 1B/ and let E zB WM ! zB be a faithful normal
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conditional expectation which extends EB . Let B D B1 ˚ B2 be the unique decomposi-
tion such that B1 is finite and B2 is properly infinite. Fix a faithful normal trace �B1 on B1
and choose a faithful normal state ' 2 M� such that ' is preserved by EB and E zB , and
'jB1 D �B1 (up to scalar multiples). Fix a standard representation L2.M/ WD L2.M; '/

and its modular conjugation J WD J' . We write e zB and eB for the corresponding Jones
projections (note that e zB1B D e zBJ1BJ D eB ), and yE zB for the canonical operator valued
weight from hM; zBi to M given by yE zB.xe zBx

�/ D xx� for all x 2M . Denote by Tr the
unique trace on hM; zBiJ1B1J satisfying Tr..x�e zBx/J1B1J / D �B1.EB.1B1xx

�1B1//

for all x 2 M . Since Z.hM; zBiJ1B1J / D JZ.B1/J , there is a unique operator valued
weight ctrW hM; zBiJ1B1J ! JZ.B1/J such that Tr D �B1.J � J / ı ctr. Since Tr is a
trace, ctr is an extended center valued trace. Let ctrB1 be the center valued trace for B1
and recall that �B1 ı ctrB1 D �B1 . We have

ctr..x�e zBx/J1B1J / D J ctrB1 ıEB.1B1xx
�1B1/J for all x 2M:

We mention that the decomposition B D B1 ˚ B2 here is slightly different from the one
in [15], and that ctr was not used in [15]. However the proof of [15, Theorem 4.3] works
without any change if we use ctr and our decomposition for B . Our items introduced here
are more appropriate in the context of intertwining conditions with actions, which will be
discussed in the next section.

Now we introduce Popa’s intertwining theorem. We refer the reader to [15, Theorem
4.3] and [2, Theorem 2] for the proof of this version.

Theorem 2.5. The following conditions are equivalent:

.1/ A �M B .

.2/ There exists a non-zero positive element d 2 A0 \ 1AhM; zBi1A such that

d D dJ1BJ and yE zB.d/ 2M:

If A is finite, then for any � -strongly dense subgroup G � U.A/, conditions .1/ and .2/
are also equivalent to

.3/ There is no net .ui /i in G such that EB.b�uia/! 0 � -strongly for all a; b 2M1B .

Using the next lemma, we can replace the map � for the condition A �M B with a
unital �-homomorphism on A.

Lemma 2.6.
.1/ A �M B if and only if there exist a separable Hilbert space H , a projection

f 2 B ˝ B.H/, a partial isometry w 2 .1A ˝ e1;1/.M ˝ B.H//f , where e1;1 is a
minimal projection, and a unital normal �-homomorphism � WA! f .B ˝ B.H//f
such that

– �.A/ � f .B ˝ B.H//f is with expectation;
– w�.a/ D .a˝ e1;1/w for all a 2 A.

In this case .to distinguish it from A �M B/ we will say that .H; f; �; w/ witnesses
A �uni

M B .
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.2/ Assume that either

– A does not have any direct summand which is semifinite and properly infinite, or

– B is properly infinite.

If A �M B , then the Hilbert space H in item .1/ can be taken finite-dimensional.

Proof. Since we will prove a very similar but more complicated statement in Lemma 3.6,
we omit the proof. Indeed, to prove this lemma, one can follow the proof of Lemma 3.6
by regarding actions as trivial (and by using [15, Theorem 4.3 and Lemma 4.10]).

3. Intertwining theory with modular actions

In this section, we introduce several variants of Popa’s intertwining condition. We inves-
tigate these conditions as well as relations between them. At the end of this section, we
prove Theorem A. Throughout this section, we always fix (possibly non-unital) inclusions
A;B �M of � -finite von Neumann algebras with expectations EA; EB respectively.

Intertwining theory with group actions

We first consider the intertwining condition A �M B when a locally compact group acts
on them. This idea was first used in [38, 39] to study cocycle superrigidity for discrete
group actions. Although our main interest is the case of modular actions, we first study
this condition by assuming that a general locally compact group acts on A;B �M .

We fix the following setting (which will be used in Definition 3.1 and Theorem 3.2).
We use notation introduced before Theorems 2.5, so we use A � 1AM1A, B � 1BM1B ,
B D B1˚B2, zB , EB , E zB , L2.M/, ', J , eB , e zB , �B1 , Tr, yE zB , and ctr. LetG be a locally
compact second countable group, and consider continuous actions ˛ and ˇ of G on M
such that
� ˛g.A/ D A and ˇg.B/ D B for all g 2 G;
� ˛g ıEA D EA ı ˛g on 1AM1A and ˇg ıEB D EB ı ˇg on 1BM1B for all g 2 G;
� ˛ and ˇ are cocycle conjugate: there exists a ˇ-cocycle !WG ! M such that ˛g D

Ad.!g/ ı ˇg.DW ˇ!g / for all g 2 G.
In this setting, based on the viewpoint of Lemma 2.6(1), we define intertwining conditions
with group actions as follows.

Definition 3.1. Keep the above setting. We say that .A; ˛/ embeds with expectation into
.B; ˇ/ inside M and write .A; ˛/ �uni

M .B; ˇ/ if there exists .H; f; �;w/ which witnesses
A �uni

M B (in the sense of Lemma 2.6(1)) and a generalized cocycle .ug/g2G for ˇ˝ idH
with values in B ˝ B.H/ and with support projection f such that
� wug D .!g ˝ 1H /.ˇg ˝ idH /.w/ for all g 2 G;
� ug.ˇg ˝ idH /.�.a//u�g D �.˛g.a// for all g 2 G and a 2 A.

In this case, we will say that .H; f; �;w/ and .ug/g2G witness .A; ˛/ �uni
M .B; ˇ/.
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Before proceeding, we record the following observations.
� In the definition, we may drop the assumption that w is a partial isometry by consider-

ing its polar decomposition (e.g. [15, Remark 4.2(1)]).
� We can define a �-isomorphism …!

ˇ;˛
WM Ì˛ G ! M Ìˇ G such that …!

ˇ;˛
.a/ D a

for a 2M and …!
ˇ;˛
.�˛g/ D !g�

ˇ
g for g 2 G. There exist unital inclusions A Ì˛ G �

1A.M Ì˛ G/1A and B Ìˇ G � 1B.M Ìˇ G/1B .
� Using compression maps by eB ˝ 1 and eA ˝ 1, faithful normal conditional expecta-

tions EBÌˇG W1B.M Ìˇ G/1B ! B Ìˇ G and EAÌ˛G W1A.M Ì˛ G/1A! AÌ˛ G are
defined.
� For each g 2 G, let uˇg 2 U.L2.M// be the canonical implementing unitary for ˇg .

Then putting y̌g WD Ad.uˇg /, one can extend the action ˇ on hM; zBi.

� Putting y̨g WD Ad.!gu
ˇ
g / D Ad.!g/ ı y̌g for g 2 G, we can also extend ˛ on hM; zBi.

Note that y̨g.1A/ D 1A and y̨g.J1BJ / D J1BJ for all g 2 G.

� For each g 2 G, since ˇg commutes with EB , we have yE zB ı y̌g D ˇg ı yE zB on
.hM; zBiJ1BJ /

C. This implies that yE zB ı y̨g D ˛g ı yE zB on .hM; zBiJ1BJ /C.
Our first goal in this section is to prove the following theorem, which gives fundamen-

tal characterizations of the condition .A; ˛/ �M .B; ˇ/. We mention that the origins of
these conditions can be found in [38, 39] (see also [19]).

Theorem 3.2. Consider the following conditions:

.1/ .A; ˛/ �uni
M .B; ˇ/.

.2/ …!
ˇ;˛
.A Ì˛ G/ �MÌˇG B Ìˇ G.

.3/ There exist no nets .ui /i of unitaries in U.A/ and .gi /i in G such that

EB.ˇgi .b
�/!�giuia/! 0 � -strongly for all a; b 2M1B .

.4/ There exists a non-zero positive element d 2 A0 \ 1AhM; zBiy̨1A such that

d D dJ1BJ and yE zB.d/ 2M:

Then we have (4),(1))(2). Moreover the following assertion holds true:

� Assume further that A Ì˛ G is finite. Then (2),(3))(4), hence all conditions are
equivalent. In this case, we can choose a Hilbert space H in item .1/ to be finite-
dimensional.

Remark 3.3. In the case A D C, combined with Theorem 3.9 below, this theorem gen-
eralizes [19, Theorem 3.1]. When A is not finite, the implication (2))(1) does not hold
since there is a counterexample [16, Theorem 4.9]. We will nevertheless use this theorem
for general A by taking tensor products with a type III1 factor (see Lemma 3.12).

Proof of Theorem 3.9. Throughout the proof, we will write a tensor product with B.H/
and associated maps to the tensor product by adding the symbol H as a superscript, such
as MH WDM ˝ B.H/, ˛Hg WD ˛g ˝ idH , !Hg WD !g ˝ 1H etc.
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(1))(2). Fix .H; f; �; w/ and .ug/g2G . The generalized cocycle .ug/g2G gives a
�-isomorphism

…u
ˇH ;.ˇH /u

Wf .MH Ì.ˇH /u G/f ! f .MH ÌˇH G/f

satisfying …u
ˇH ;.ˇH /u

.faf / D faf for a 2 MH and …u
ˇH ;.ˇH /u

.f �
.ˇH /u

g f / D

f ug�
ˇH

g f D ug�
ˇH

g for g 2 G. Note that this restricts to a �-isomorphism between
f .BH Ì.ˇH /u G/f and f .BH ÌˇH G/f . The equivariance property .ˇH /ug.�.a// D
ugˇ

H
g .�.a//u

�
g D�.˛g.a// for a 2A and g 2G implies that there is a �-homomorphism

A Ì˛ G ! �.A/ Ì.ˇH /u G � f .BH Ì.ˇH /u G/f:

Composing this map with …u
ˇH ;.ˇH /u

, we get a �-homomorphism

z� WA Ì˛ G ! f .BH ÌˇH G/f

such that z�.a/ D �.a/ for a 2 A and z�.�˛g/ D ug�
ˇH

g for g 2 G. The partial isometry
w then satisfies, inside MH ÌˇH G, for all a 2 A and g 2 G,

…!H

ˇH ;˛H
.a˝ e1;1/w D wz�.a/;

…!H

ˇH ;˛H
.�˛

H

g /w D !Hg ˇ
H
g .w/�

ˇH

g D wug�
ˇH

g D wz�.�˛g/:

Hence using the isomorphism MH ÌˇH G D .M Ìˇ G/ ˝ B.H/ and the fact that
…!H

ˇH ;˛H
D …!

ˇ;˛
˝ idH , we see that .H; z�; f; w/ witnesses …!

ˇ;˛
.A Ì˛ G/ �uni

MÌˇG

B Ìˇ G. This is equivalent to item (2) by Lemma 2.6.
(1))(4). Take .H; �; f; w/ and .ug/g2G witnessing item (1). Write w DP
j wj ˝ e1;j , where .ei;j /i;j is a matrix unit of B.H/, and putW WD

P
j wj e zB ˝ e1;j D

weH
zB

(where eH
zB
WD e zB ˝ 1H ). Then for any a 2 A,

.a˝ e1;1/W W
�
D .a˝ e1;1/we

H
zB
w� D w�.a/eH

zB
w� D WW �.a˝ e1;1/;

so WW � 2 .A ˝ Ce1;1/0 \ .1A ˝ e1;1/hMH ; zBH i.1A ˝ e1;1/ D .A0 \ 1AhM; zBi1A/

˝Ce1;1. Moreover, for any g 2 G, by the intertwining condition of w,

y̨
H
g .W W

�/ D !Hg
y̌H
g .we

H
zB
w�/.!Hg /

�
D !Hg ˇ

H
g .w/e

H
zB
ˇHg .w

�/.!Hg /
�

D wuge
H
zB
u�gw

�
D weH

zB
f w� D WW �;

soWW � 2 .1AhM; zBi1A/y̨ ˝Ce1;1. Using the equality yE zB˝B.H/ D
yE zB ˝ idH , we find

that

. yE zB ˝ idH /.W W �/ D yE zB˝B.H/.W W
�/ D ww� 2M ˝Ce1;1 <1:

Thus by using the element d such that d ˝ e1;1 D WW �, we get (4).



Y. Isono 1694

(4))(1). Take a non-zero spectral projection p of d such that p��d for some �>0.
Then p satisfies exactly the same assumption as d . Fix a countably-infinite-dimensional
Hilbert space H (with a matrix unit .ei;j /i;j in B.H/), and consider the inclusion

A˝Ce1;1 � hM; zBi ˝ B.H/ D hMH ; zBH i:

Then the projection p ˝ e1;1 satisfies

yE zBH .p ˝ e1;1/ D
yE zB.p/˝ e1;1 <1:

Since the projection eH
zB
.1B ˝ 1H / D .e zB1B/ ˝ 1H is properly infinite, we can follow

[15, Theorem 4.3, proof of (6))(2-b)] (we do not need the finiteness of A). We can
find a partial isometry W 2 hMH ; zBH i (of the form weH

zB
D W ), a projection f 2 BH ,

a �-homomorphism � WA! fBHf such that �.a/eH
zB
DW �.a˝ e1;1/W and w�.a/D

.a˝ e1;1/w for all a 2 A, and WW � D p ˝ e1;1 2 .1AhM; zBi1A/y̨ ˝ B.H/. Note that

.H; f; �;w/ witnesses A �uni
M B (up to taking the polar decomposition of w).

We next construct a generalized cocycle. For any g 2 G, since W �!Hg y̌
H
g .W / 2

1Be
H
zB
hM; zBiH1Be

H
zB
D BH eH

zB
, there is a unique ug 2 B

H such that ugeHzB D

W �!Hg
y̌H
g .W /. Since g 7! !Hg and g 7! y̌Hg .W / are �-strongly continuous, so is the

map G 3 g 7! ug . Observe that

eH
zB
ugu

�
g D W

�!Hg
y̌H
g .W W

�/.!Hg /
�W D W � y̨Hg .W W

�/W D feH
zB

and similarly eH
zB
u�gug D ˇ

H
g .f /e

H
zB

for all g 2 G. For g; h 2 G, we compute that

ugˇ
H
g .uh/e

H
zB
D W �!Hg

y̌H
g .W /

y̌H
g .W

�!Hh
y̌H
h .W //

D W � y̨Hg .W W
�/!Hg

y̌H
g .!

H
h /
y̌H
gh.W /

D W �!Hgh
y̌H
gh.W / D ughe

H
zB
:

Since ug is defined via BH eH
zB
' BH , we can remove eH

zB
from the conclusions of the

above computations. Thus .ug/g2G is a generalized cocycle for ˇH with support pro-
jection f . Using the equation .!Hg /

�Wug D y̌
H
g .W /, we find that for any a 2 A and

g 2 G,

ˇHg .�.a//e
H
zB
D y̌

H
g .W

�.a˝ e1;1/W / D u
�
gW
�˛Hg .a˝ e1;1/W ug

D u�g�.˛g.a//uge
H
zB
:

We get the equivariance property ugˇHg .�.a//u
�
g D �.y̨g.a// for all a 2A. Finally, since

W D weH
zB

, the equation .!Hg /
�Wug D y̌

H
g .W / for g 2 G implies .!Hg /

�wuge
H
zB
D

ˇHg .w/e
H
zB

. We get wug D !Hg ˇ
H
g .w/ for all g 2 G, and thus .ug/g2G is the desired

cocycle. We get item (1).
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From now on, we assume that A Ì˛ G is finite.
(2),(3). Suppose first that (3) does not hold, hence there exist nets .ui /i of unitaries

in U.A/ and .gi /i in G such that

EB.ˇgi .b
�/!�giuia/! 0 � -strongly for all a; b 2M1B .

Then for any a; b 2M1B and s; s0 2 G, we have

EBÌˇG.�
ˇ
s b
�…!

ˇ;˛.�
˛

g�1
i

/uia�
ˇ
s0/ D �

ˇ
s EBÌˇG.b

��
ˇ

g�1
i

!�giuia/�
ˇ
s0

D �
ˇ

sg�1
i

EB.ˇgi .b
�/!�giuia/�

ˇ
s0 :

The last term converges to 0 in the � -strong topology for all a; b 2 M1B and s; s0 2 G.
By Theorem 2.5(3) (see also [15, Theorem 4.3(5)]), this means …!

ˇ;˛
.A Ì˛ G/ 6�MÌˇG

B Ìˇ G.
Conversely, suppose that …!

ˇ;˛
.A Ì˛ G/ 6�MÌˇG B Ìˇ G. Then by Theorem 2.5(3),

there exist nets .ui /i of unitaries in U.A/ and .gi /i in G such that

EBÌˇG.y
�…!

ˇ;˛.�
˛

g�1
i

/uix/! 0 � -strongly for all x; y 2 .M Ìˇ G/1B .

Using the same computation as above, we conclude that (3) does not hold.
(3))(4). Let  be a faithful normal state on M Ì˛ G which is preserved by EAÌ˛G

such that  jAÌ˛G is a trace. Observe that  j1AM1A is ˛-preserving, since 1A�˛g 2
.1AM1A/ for all g 2 G. It then follows that y ı y̨g D y on .1AhM; zBi1AJ1BJ /C

for all g 2 G.
By assumption, there exist ı > 0 and a finite subset F � 1AM1B such thatX

a;b2F

kEB.ˇg.b
�/w�gua/k

2
2;' > ı for all u 2 U.A/; g 2 G:

Put d0 WD
P
y2F ye zBy

� 2 .1AhM; zBi1A/
C and observe that d0 D d0J1BJ , yE zB.d0/ DP

y2F yy� 2 1AM1A and ctr.d0 J1B1J / D
P
y2F J ctrB1.EB.1B1y

�y1B1//J < 1.
Define

K WD coweak ®u� y̨g.d0/u j u 2 U.A/; g 2 G
¯
� 1AhM; zBi1A:

Following the proof of (5))(6) of [15, Theorem 4.3], there exists a unique element d 2K

of minimum k � k
2; y 

-norm. Since y is preserved by y̨ and since A is contained in the

centralizer of y , we deduce that d 2 A0 \ .1AhM; zBi1A/y̨ . Note that d D dJ1BJ , since
d0 D d0J1BJ .

We prove that d ¤ 0. For all u 2 U.A/ and g 2 G, we haveX
a2F

hu� y̨g.d0/uƒ'.a/;ƒ'.a/i' D
X
a;b2F

hu� y̨g.be zBb
�/uƒ'.a/;ƒ'.a/i'

D

X
a;b2F

hu�wgˇg.b/eBˇg.b
�/w�guƒ'.a/;ƒ'.a/i'

D

X
a;b2F

kEB.ˇg.b
�/w�gua/k

2
2;'B

> ı:
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By taking convex combinations and a � -weak limit, we obtain
P
a2F hdƒ'.a/;ƒ'.a/i'

� ı. This implies d ¤ 0.
We prove yE zB.d/ 2M . Observe that for any g 2 G,

yE zB.u
�
y̨g.d0/u/ D

X
y2F

yE zB.u
�˛g.y/!ge zB!

�
g˛g.y

�/u/

D

X
y2F

u�˛g.y/˛g.y
�/u D u�˛g

�X
y2F

yy�
�
u:

Combining this with the normality of yE zB , we conclude that k yE zB.x/k1 �
k
P
y2F yy�k1 for all x 2K , hence yE zB.d/ 2M . We get item (4).
Finally, we prove that the Hilbert spaceH in item (1) can be taken finite-dimensional.

For this, we continue to use d0; d;K and claim ctr.dJ1B1J / <1. Using the formula for
ctr given in Section 2 and using ctrB1 ı ˇg D ˇg ı ctrB1 on B1 for all g 2 G, we compute
that for any g 2 G and u 2 U.A/,

ctr.u� y̨g.d0/uJ1B1J / D
X
y2F

ctr.Œu�!gˇg.y/�e zB Œˇg.y
�/!�gu� J1B1J /

D

X
y2F

J ctrB1 ıEB.1B1 Œˇg.y
�/!�gu�Œˇg.y

�/!�gu�
�1B1/J

D

X
y2F

J ctrB1 ıEB.1B1ˇg.y
�y/1B1/J

D Jˇg ı ctrB1 ıEB
�X
y2F

1B1y
�y1B1

�
J:

Combined with the normality of ctr, this yields

kctr.xJ1B1J /k1 �
ctrB1

�
EB

�X
y2F

1B1y
�y1B1

��
1

for all x 2K . Thus we get ctr.dJ1B1J / <1.
We next follow the proof of (4))(1) above. Take a non-zero spectral projection p

of d such that p � �d for some � > 0, so that ctr.pJ1B1J / <1 and yE zB.p/ 2M . We
have either p J1B1J ¤ 0 or p J1B2J ¤ 0.

Assume that p J1B2J ¤ 0. We may assume p J1B2J D p. Then since B2 is properly
infinite, we can follow the proof above (with H D C and B D B2), so we get item (1)
with H D C.

Assume that pJ1B1J ¤ 0 and we may assume pJ1B1J Dp. Then using yE zB.p/<1
and ctr.p/ <1, we find that there is a family ¹wiºniD1 �M1B1 such thatWi WDwie zB are
partial isometries for all i , p D

Pn
iD1wie zBw

�
i D

Pn
iD1WiW

�
i , andEB.w�i wj /D ıi;jpj

for all i; j , where pj 2 B1 are projections. This fact is well known to experts, but we
include a short proof for the reader’s convenience (but for the case B1 D B D zB). First,
by a maximality argument, there exists a pair .Q; q/ of projections with Q 2 hM;Bi and



Unitary conjugacy for type III subfactors and W�-superrigidity 1697

q 2 B , which is maximal for the condition p �Q � qeB � eB . It follows that zB.r/ � q
for any other pair .R; r/ such that p � Q � R � reB � eB . Then we can construct
inductively a family .Qi ; qi /miD1, where m 2 N [ ¹1º, of pairs of projections such that
QiQj D 0 for all i ¤ j , p � Qi � qieB for all i , and .Qi ; qi / is maximal with respect
to the condition p �

Pi�1
jD1Qj �Qi � qieB � eB for all i . Then the maximality implies

zB.qiC1/ � qi for all i , hence m <1 (because ctr.p/ <1) and p D
Pm
iD1Qi . Take

partial isometries Wi 2 hM;Bi such that Qi D WiW �i and qi D W �i Wi for all i . Since
yEB.p/ <1, by the push down lemma (e.g. [15, Lemma 2.5]), one can writeWi D wieB

for some wi 2M , as desired.
Consider the �-homomorphism � WphM; zBip ! B1 ˝Mn given by

pxp D

nX
i;jD1

Wi .W
�
i xWj /W

�
j 7!

nX
i;jD1

EB.w
�
i xwj /˝ ei;j ; x 2 hM; zBi:

Then using the identification phM; zBip ' phM; zBip ˝ Ce1;1 and the partial isometry
W WD

P
j Wj ˝ e1;j , we see that � satisfies �.x/.e zB ˝ 1n/ D W

�.x ˝ e1;1/W for all
x 2 phM; zBip. Define f WD �.1A/ 2 B1 ˝Mn and w WD

P
j wj ˝ e1;j 2M ˝Mn, so

that W �W D f .e zB ˝ 1n/ and W D w.e zB ˝ 1n/. By restricting � to Ap and composing
with the mapA!Ap, we have a unital normal �-homomorphism � WA! f .B1˝Mn/f

such that .a˝ e1;1/W D W�.a/ for all a 2 A. Thus we are exactly in the same situation
as in the proof of (4))(1) but with H D Cn and B D B1. Following the same proof, we
get item (1) with H D Cn as desired.

Intertwining theory with modular actions

We next focus on the case of modular actions. We continue to use A; B � M and fix
faithful normal conditional expectations EA; EB for A;B respectively. Let  ; ' 2M� be
faithful normal positive functionals which are preserved by EA; EB respectively. Then
since � t .A/ D A, �'t .B/ D B for all t 2 R, and � and �' are cocycle conjugate by
.ŒD ;D'�t /t2R, the condition .A; � / �uni

M .B; �'/ can be defined. In this setting, the
extended actions of � and �' on hM; zBi are exactly the modular actions of y WD ı yE zB
and y' WD ' ı yE zB respectively.

As in the usual intertwining condition, we introduce intertwining conditions with
modular actions at the level of corners.

Definition 3.4. In the above setting, we will say that a corner of .A; � / embeds with
expectation into .B;�'/ insideM and write .A;� /�M .B;�'/ if there exists .e;f;�;v/
which witnesses A �M B with e 2 A , and a generalized cocycle .ut /t2R for �' with
values in B and with support projection f such that, with !t WD ŒD ;D'�t ,
� vut D !t�

'
t .v/ for all t 2 R;

� ut�
'
t .�.a//u

�
t D �.�

 
t .a// for all a 2 eAe and t 2 R.

In this case, we will say that .e; f; �; u/ and .ug/g2G witness .A; � / �M .B; �'/.
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Below we collect elementary lemmas. We omit proofs since they are straightforward.

Lemma 3.5. Assume .A; � / �M .B; �'/ and fix .e; f; �; v/ and .ut /t2R which witness
.A; � / �M .B; �'/ in the sense of Definition 3.4.

.1/ For any projection e0 2 eA e with e0v D v�.e0/ ¤ 0, .e0; �.e0/; � je0Ae0 ; e0v/ and
.�.e0/ut /t2R witness .A; � / �M .B; �'/ .up to the polar decomposition of e0v/.

.2/ For any projection z 2 B \ �.eAe/0 \ ¹ut j t 2 Rº0 .e.g. z 2 Z.B// with vz ¤ 0,
.e;f z; �. � /z; vz/ and .utz/t2R witness .A;� /�M .B;�'/ .up to the polar decom-
position of vz/.

.3/ Let u 2 A and w 2 B be partial isometries such that e D u�u and f D

ww�. Then .uu�; w�w; Ad.w�/ ı � ı Ad.u�/; uvw/ and the generalized cocycle
.w�ut�

'
t .w//t2R witness .A; � 

0

/ �M .B; �'/, where  0 2MC� is any faithful ele-
ment which is preserved by EA such that uu� 0uu� D u u� and uu� 2 A 0 .

.4/ Let  0 and '0 be any faithful normal positive functionals on M which are preserved
by EA and EB respectively and have the property that e 2 A 0 . Then .e; f; �; v/ and
.�.eŒD 0;D �te/ut ŒD';D'

0�t /t witness .A; � 
0

/ �M .B; �'
0

/.

Moreover all these statements hold if we consider .H; f; �; w/ and .ut /t2R which wit-
ness .A; � / �uni

M .B; �'/ in the sense of Definition 3.1. .In this case, we use Z.A/ and
B ˝ B.H/ instead of A and B in items .1/–.3/, and item .4/ holds without the assump-
tion e 2 A 0/.

The next lemma clarifies the relation between � and �uni for modular actions. It
should be compared to Lemma 2.6.

Lemma 3.6.
.1/ .A; � / �M .B; �'/ if and only if .A; � / �uni

M .B; �'/. In particular, these notions
do not depend on the choice of  and ' .as long as they are preserved by EA and EB
respectively/.

.2/ Assume either

– A does not have any direct summand which is semifinite and properly infinite, or

– B is properly infinite.

If .A; � / �uni
M .B; �'/, then the Hilbert space H in Definition 3.1 can be taken

finite-dimensional.

Proof. We decompose A D A1 ˚ A2 ˚ A3 and B D B1 ˚ B2 ˚ B3, where A1; B1 are
finite, A2; B2 are semifinite and properly infinite, and A3; B3 are of type III. Then by
Lemma 3.5(1, 2) and [15, Remark 4.2(2)], we know that .A; � / �M .B; �'/ if and only
if .Ai ; � / �M .Bj ; �

'/ for some i; j . Hence we can always assume that A D Ai and
B D Bj for some i; j . The same is true for .A; � / �uni

M .B; �'/.
(1) By Lemma 3.5(4), the condition .A; � / �uni

M .B; �'/ does not depend on the
choice of  ; '. Hence if this statement is proven, then .A; � / �M .B; �'/ does not
depend on  ; ' either.
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Assume that .Ai ; � / �uni
M .Bj ; �

'/ for some i; j and take .H; f; �; w/ and .ut /t as
in the definition. Let z 2 Z.A/ be a non-zero projection such that Az 3 a 7! �.a/w�w is
injective. Since z 2A , up to replacingAz byA, we may assume thatA 3 a 7! �.a/w�w

is injective. In particular w�.e/ ¤ 0 for any non-zero projection e 2 A.
Assume that B D B2 or B D B3. Then since 1B ˝ e1;1 is properly infinite, one has

f � 1B ˝ e1;1. Up to equivalence of projections, using Lemma 3.5(3), we may assume
that f is contained inB ˝Ce1;1. So usingM DM ˝Ce1;1, we get .A;� /�M .B;�'/.

Assume that B D B1. Then A D A1 or A2. If A D A2, then by using eAe for any
fixed finite projection e 2 A (note that A contains many finite projections, e.g. by the
first part of the proof of [21, Lemma 2.1]) and using Lemma 3.5(1), we may assume that
A is finite. By the last statement of Theorem 3.2, we may assume that A is finite and H
is finite-dimensional. We can still assume that A 3 a 7! �.a/w�w is injective.

Write H D Cn for some n 2 N. As in the proof of [5, Proposition F.10] or [48,
Proposition 3.1(ii))(iii)], there is a projection e 2 A such that �.e/ is equivalent to a
projection f0˝ e1;1 for some f0 2 B . By [21, Lemma 2.1], e is equivalent to a projection
in A , so we may assume e 2 A . Observe that, regarding � as a map from A˝ Ce1;1,
.1A˝ e1;1;f;�;w/ and .ut /t witness .A˝Ce1;1;� /�M˝Mn

.B ˝Mn;�
'˝trn/. Since

�.e/w�w ¤ 0, by Lemma 3.5(1), .e ˝ e1;1; �.e/; �jeAe˝e1;1 ; .e ˝ e1;1/w/ witnesses
.A˝ Ce1;1; � / �M˝Mn

.B ˝Mn; �
'˝trn/ as well. We then apply Lemma 3.5(3) for

�.e/� f0˝ e1;1, and find that .e˝ e1;1; f0˝ e1;1;� 0;w0/ and some generalized cocycle
witness .A˝ Ce1;1; � / �M˝Mn

.B ˝Mn; �
'˝trn/ for some � 0 and w0. Finally, since

f0 ˝ e1;1 and w0 are contained in M ˝ Ce1;1, by identifying M ˝ Ce1;1 D M , we get
.A; � / �M .B; �'/.

We next show the ‘only if’ direction. Assume that .A; � / �M .B; �'/ and take
.e; f; �; v/ and .ut /t as in the definition. As in the proof above, we can assume eAe 3 a
7! v�v�.a/ is injective and hence v�.e0/ ¤ 0 for any non-zero projection e0 2 eAe.

Let z be the central support projection of e in A, and take partial isometries .wi /i2I in
A such that w0 D e, ei WD w�i wi � e for all i 2 I , and

P
i2I wiw

�
i D z. Note that I is a

countable set, so we regard I �N. We put vn WDwnv for all n2 I and d D
P
n2I vne zBv

�
n ,

and then it is easy to see that d D dJ1BJ and yE zB.d/ 2 M: We note that d ¤ 0, since
each vn is non-zero by w�nvn D w

�
nwnv D v�.w

�
nwn/ ¤ 0. Then for any a 2 A, we have

ad D zad D
X
i2I

wiw
�
i a
X
j2I

vj e zBv
�
j D

X
i;j2I

wi .w
�
i awj /ve zBv

�w�j

D

X
i;j2I

wiv�.w
�
i awj /e zBv

�w�j D
X
i;j2I

wive zBv
�.w�i awj /w

�
j D daz D da:

It follows that d 2 A0 \ 1AhM; zBi1A. Define a faithful normal positive functional  0

on M by

 0 WD
X
n2I

1

2n
wn w

�
n C .1 � z/ .1 � z/:

Note that  0 is preserved by EA. By Lemma 2.2, the equality en 0en D 2�nwn w
�
n

implies � t .wn/ D 2
�itnŒD 0; D ��twn for all t 2 R and n 2 I . An easy computation
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shows that

�
y 
t .d/ D ŒD ;D'�t�

y'
t .d/ŒD ;D'�

�
t D ŒD 

0;D ��t d ŒD 
0;D �t for all t 2 R:

We see that �
y 0

t .d/ D d for all t 2 R and hence d 2 A0 \ .1AhM; zBi1A/ y 0 . By The-
orem 3.2, this means .A; � 

0

/ �uni
M .B; �'/. By Lemma 3.5(4), this is equivalent to

.A; � / �uni
M .B; �'/.

(2) Assume that .Ai ; � / �uni
M .Bj ; �

'/ for some i; j . If B D B2 or B3, then the first
half of the proof of item (1) shows that one can assumeH DC. So we get the conclusion.
If A D A3, then we must have B D B3, which we proved. Finally, if A D A1, then the
last part of Theorem 3.2 gives the conclusion.

Intertwining theory with conditional expectations

In [19], a notion of intertwining conditions for states was introduced. Inspired by this,
we introduce a notion of intertwining conditions for conditional expectations. We still fix
A;B �M with expectations EA; EB .

Definition 3.7. We say that a corner of .A; EA/ embeds with expectation into .B; EB/
inside M and write .A; EA/ �M .B; EB/ if there exists .e; f; �; v/ which witnesses
A �M B and faithful normal positive functionals  ; ' 2 M� which are preserved by
EA; EB respectively such that

vv� 2 .1AM1A/ ; v�v 2 .1BM1B/' ; and vv� vv� D v'v�:

In this case, we say that .e; f; �; v/ and  ; ' witness .A;EA/ �M .B;EB/.

The next lemma clarifies relations between A �M B and .A;EA/ �M .B;EB/. Note
that, as in the statement of Theorem A, one can actually take q D 1A in the next lemma
(this will be proved later).

Lemma 3.8. The condition A �M B holds if and only if there is a non-zero projection
q 2 A0 \ 1AM1A and a faithful normal conditional expectation EAq W qMq ! Aq such
that .Aq;EAq/ �M .B;EB/.

Proof. The ‘if’ direction is trivial, so we prove the ‘only if’ direction. Take .e; f; �; v/
which witnesses A �M B . By [15, Remark 4.2(2, 3)], we may assume that A is finite or
of type III, and that eAe 3 a 7! �.a/v�v is injective. Up to replacing e with a smaller
projection if necessary, we may assume that there exist finitely many orthogonal and
equivalent projections .ei /niD1 in A such that

Pn
iD1 ei DW zA.e/ 2 Z.A/. Fix a faithful

normal conditional expectation E� for the inclusion �.eAe/ � fBf , and take a faithful
normal state 'B onB such that 'B ıE� D 'B on fBf . Put ' WD 'B ıEB on 1BM1B and
observe that the modular action of ' globally preserves �.eAe/ and fBf . In particular
it also preserves �.eAe/0 \ fMf , so by [21, Lemma 2.1], there is a partial isometry
w 2 �.eAe/0 \ fMf such that w�w D v�v and ww� 2 .�.eAe/0 \ fMf /�

'
. Up to

replacing vw� by v, we may assume that v�v is in .fMf /�
'

.
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We put e0 WD vv� 2 .eAe/0 \ eMe and f0 WD v�v 2 .�.eAe/0 \ fMf /�
'

. Since
�.eAe/f0 � f0Mf0 is globally preserved by �' , it is with expectation, say EWf0Mf0!
�.eAe/f0, which satisfies ' ı E D ' on f0Mf0. Observe that Ad.v/ gives a spatial iso-
morphism from �.eAe/f0 onto .eAe/e0. Hence we can define a conditional expectation
by

E 0A WD Ad.v/ ıE ı Ad.v�/W e0Me0 ! .eAe/e0:

Define a positive functional  0A WD v'v
� on .eAe/e0 and put  0 WD  0A ıE

0
A on e0Me0.

We have v�v D f0 2 .1BM1B/' and vv� D e0 2 .e0Me0/ 0 . By using  0A D v'v
� on

.eAe/e0 and ' ıE D ' on f0Mf0, we compute that, for any x 2M ,

vv� 0.x/vv� D  0A ıE
0
A.vv

�xvv�/ D .v'v�/.vE.v�vv�xvv�v/v�/

D '.f0E.v
�xv/f0/ D ' ıE.v

�xv/ D '.v�xv/:

We get vv� 0vv� D v'v�. Since they satisfy ' D ' ıEB on 1BM1B and  0 D  0 ıE 0A
on e0Me0, we can extend ' and  0 to normal states onM which are preserved byEB and
E 0A respectively. In this case, we still have f0 2M' , e0 2M 0 , and vv� 0vv� D v'v�.

We claim ..eAe/e0; E
0
A/ �M .B;EB/. Let z 2 Z.eAe/ be the central support projec-

tion of e0 in .eAe/0 and observe that .eAe/e0' eAez. Since we have assumed eAe 3 a 7!
v�v�.a/D v�av is injective, the map eAe 3 a 7!Ad.v/.v�v�.a//D ae0 is also injective.
In particular we get z D e and .eAe/e0 ' eAe. Consider �0W .eAe/e0 ' eAe !� fBf

given by �0.ae0/ WD �.a/ for a 2 eAe. Then .ee0; f; �0; v/ witnesses .eAe/e0 �M B .
Together with ' and  0, this witnesses ..eAe/e0; E 0A/ �M .B;EB/.

Since e0 2 .eAe/0 \ .eMe/D .A0 \ 1AM1A/e, there is a projection q 2 A0 \ 1AM1A
such that qe D e0 and q D zA.e/q. Using projections .ei /niD1 which we fixed in the
first paragraph of the proof, we have an identification qMq ' e0Me0 ˝Mn which
restricts Aq ' eAeq ˝Mn. In particular, there is a faithful normal conditional expec-
tation EAq W qMq! Aq such that EAqje0Me0 D E

0
A. Since we chose  0 as any extension

of  0je0Me0 which is preserved by E 0A, we can in particular choose  0 as the one which
is preserved by E 0A and EAq . Then it is easy to see that the same .ee0; f; �0; v/ as above
and  0; ' witness .Aq;EAq/ �M .B;EB/.

The next theorem clarifies the relation between .A;EA/�M .B;EB/ and .A;� /�M
.B; �'/. The proof uses Connes cocycles to construct a positive functional. Note that the
case A D C was proved in [19, proof of Theorem 3.1].

Theorem 3.9. .A; EA/ �M .B; EB/ if and only if there exist faithful normal states  ; '
2M� which are preserved by EA; EB respectively such that .A; � / �M .B; �'/.

Remark 3.10. Combined with Lemma 3.6(1), characterizations given in Theorem 3.2
can be adapted to .A;EA/ �M .B;EB/ and .A; � / �M .B; �'/. Moreover  and ' for
.A; � / �M .B; �'/ can be taken arbitrary as long as they are preserved by EA and EB
respectively.

Proof of Theorem 3.9. Suppose .A; EA/ �M .B; EB/ and take .e; f; �; v/ and  ; '.
We put d WD ve zBv

� and observe that d 2 .eAe/0 \ .ehM; zBie/, d D dJ1BJ , and
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yE zB.d/ <1. By Lemma 2.2, the equation vv� vv� D v'v� implies ŒD ;D'�t�
'
t .v/

D v for all t 2 R. Then �
y 
t .d/ D d for any t 2 R, hence d 2 A0 \ .1AhM; zBi1A/ y .

We get .eAe; � / �uni
M .B; �'/ by Theorem 3.2. This implies .eAe; � / �M .B; �'/ by

Lemma 3.6, and hence .A; � / �M .B; �'/.
Suppose .A; � / �M .B; �'/ and take .e; f; �; v/ and .ut /t2R. Since .ut /t2R is a

generalized cocycle for �' with support projection f , by Theorem 2.1 there is a unique
faithful normal semifinite weight �B on fBf such that ŒD�B ;D'B �t D ut for all t 2 R.
Put � WD �B ı EB on fMf and observe ŒD�;D'�t D ut for all t 2 R. For any t 2 R
and a 2 eAe, using the equation vut D !t�

'
t .v/ where !t D ŒD ;D'�t , it is easy to

compute that

�
 
t .vv

�/ D vv�; �
�
t .v
�v/ D v�v; and �

�
t .�.a// D �.�

 
t .a//:

We find that vv� 2 eM e and v�v 2 .fMf /�. We extend � by f�f C .1� f /'.1� f /
and still denote it by �. It satisfies � D � ı EB on 1BM1B and 1B ; f 2 M�. We put
e0 WD vv

� 2 eM e and f0 WD v�v 2 fM�f . For any t 2 R, using Lemma 2.2, we have

ŒD.v�v�/;D'�t D ŒD.v�v
�/;D��t ŒD�;D'�t D v�

�
t .v
�/ŒD�;D'�t

D vŒD�;D'�t�
'
t .v
�/ D vut�

'
t .v
�/ D !t�

'
t .vv

�/

D �
 
t .vv

�/!t D vv
�!t D ŒD.e0 e0/;D'�t :

We get e0 e0 D v�v�. Hence .e; f; �; v/ and  ;� witness .A;EA/ �M .B;EB/, but �
is not necessarily bounded. So we have to replace � by a bounded one.

Since e0 e0 D v�v�, it follows that �B.EB.f0// D �.v�v/ D  .e0/ <1. Since
�
�B
t .EB.f0// D EB.�

�
t .f0// D EB.f0/ for all t 2 R, and since f0 D v�v 2 �.eAe/0,

EB.f0/ is contained in .fBf /�B \ �.eAe/
0. Combined with the fact that v�vEB.f0/¤ 0

(because EB.v�vEB.f0// D EB.f0/2 ¤ 0), this shows that there is a non-zero spectral
projection f 0 2 .fBf /�B \ �.eAe/

0 of EB.f0/ such that vf 0 ¤ 0 and �B.f 0/ <1. Put
v0 WD vf 0, � 0.a/ WD �.a/f 0 for a 2 eAe and u0t WD f

0ut for t 2 R. We claim that, up to
the polar decomposition of v0, .e; f 0; � 0; v0/ and .u0t /t2R witness .A; � / �M .B; �'/.

It is easy to see that v0� 0.a/ D av0 for all a 2 eAe, hence .e; f 0; � 0; v0/ witnesses
A �M B . For any t 2 R, since f 0 D ��t .f

0/, one has

.u0t /
�u0t D u

�
t f
0ut D u

�
t �
�
t .f

0/ut D �
'
t .f

0/:

This means u0t D f
0ut D ut�

'
t .f

0/ for all t 2 R. Using this, it is easy to compute that
for any a 2 eAe and t; s 2 R,

u0tCs D u
0
t�
'
t .u
0
s/; v0u0t D !t�

'
t .v
0/; and u0t�

'
t .�
0.a//.u0t /

�
D � 0.�

 
t .a//:

Thus .e; f 0; � 0; v0/ and .u0t /t2R witness .A; � / �M .B; �'/.
We replace v0 with its polar part. Then by using .e; f 0; � 0; v0/ and .u0t /t2R, and by

following the same construction as we did for �, we again construct a faithful normal
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semifinite weight �0 on M such that u0t D ŒDf
0�0f 0; D'�t for all t 2 R, and e00 e

0
0 D

v0�0 v0�, where e00 WD v
0v0�. Since

ŒDf 0�0f 0;D'�t D u
0
t D f

0ut D f
0ŒDf�f;D'�t D ŒDf

0�f 0;D'�t

for all t 2 R, it follows that f 0�0f 0 D f 0�f 0. In particular, since �.f 0/ <1, f 0�0f 0 is
bounded. By construction, �0 is bounded onM and hence .e; f 0; � 0; v0/ and  ;�0 witness
.A;EA/ �M .B;EB/.

We record the following permanence property.

Lemma 3.11. Let D � A be a unital von Neumann subalgebra with expectation ED .

.1/ If .A; � / �M .B; �'/, then .D; � 
0

/ �M .B; �'/ for any faithful  0 2MC� which
is preserved by ED ıEA.

.2/ If .A;EA/ �M .B;EB/, then .D;ED ıEA/ �M .B;EB/.

Proof. These are immediate by Lemma 3.6(1) and Theorem 3.9.

Proof of Theorem A

Now we prove Theorem A. We continue to use A;B �M with expectations, and we only
fix EB . We also fix a type III1 factor .N; !/ as in the statement of Theorem A.

The next lemma is the key observation to prove Theorem A.

Lemma 3.12. Let EAW 1AM1A! A be a faithful normal conditional expectation, and let
 ; ' 2 M� be faithful states which are preserved by EA; EB respectively. The following
conditions are equivalent:

.1/ .A;EA/ �M .B;EB/.

.2/ .A˝N;EA ˝ idN / �M˝N .B ˝N;EB ˝ idN /.

.3/ …'˝!; ˝!.C ˝!.A˝N// �C'˝!.M˝N/ C'˝!.B ˝N/.

Proof. (1))(2). This is trivial (one only needs to take tensor products with 1N or idN ).
(2))(3). By Theorem 3.9 and Lemma 3.6(1), item (2) is equivalent to

.A˝N; � ˝!/ �uni
M˝N

.B ˝N; �'˝!/. By Theorem 3.2, we get item (3).
(3))(1). We first recall the following general facts (some of which were men-

tioned in Section 2). Since hC'.M/; C'. zB/i is generated by hM; zBi and L'R, and
since � y't D Ad.�it' /, where y' D ' ı yE zB , hC'.M/; C'. zB/i is canonically identified
as Cy'.hM; zBi/. Put y WD  ı yE zB . Since ŒD y ; D y'�t D ŒD ; D'�t for all t 2 R, the
map …

y'; y 
W C y .hM;

zBi/ ! Cy'.hM; zBi/ restricts to …'; W C .M/ ! C'.M/. Since
1B D ��' .1B/ is the unit of C'.B/, the modular conjugation JC'.M/ on L2.C'.M// D

L2.M/˝ L2.R/ (with respect to the dual weight of ') satisfies

JC'.M/1C'.B/JC'.M/ D JC'.M/1BJC'.M/ D J1BJ ˝ 1L2.R/:
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We note that the unitization of C'.B/ is contained in C'. zB/, but they are different in
general. We will use these observations for A˝N;B ˝N �M ˝N .

Now we start the proof. We put B WD C'˝!.B ˝ N/, B1 WD C'˝!. zB ˝ N/,
M WD C'˝!.M ˝N/, A WD C ˝!.A˝N/, and… WD…b'˝!;b ˝! , so that our assump-
tion is written as ….A/ �M B. Note that the unitization of B is contained in B1. Take
.e; f; �; v/ which witnesses ….A/ �M B. Let wi 2 A be partial isometries such that
w�i wi � e and

P
i wiw

�
i D zA.e/, where zA.e/ is the central support of e in A. Put

d WD
P
i ….wi /veB1v

�….w�i / and observe that

d 2 ….A/0 \ 1….A/hM;B1i1….A/; d D dJ1BJ; and yEB1.d/ <1;

where J is the modular conjugation forL2.M/. Note that J1BJD J1BJ ˝ 1N ˝ 1L2.R/
as we have explained.

Claim. The element d is contained in

ŒA0 \ 1AhM; zBiJ1BJ1A� y ˝C1N ˝C1L2.R/:

Proof. Observe that

…�1.d/ 2 A0 \ 1A…
�1.hM;B1iJ1BJ/1A;

and …�1.hM;B1i/ D Cb ˝!.hM ˝ N; zB ˝ N i/ and 2 ˝ ! D . ˝ !/ ı yE zB˝N D

y ˝ !. Then using y D  ıEA ı yE zB on 1AhM; zBi1A, we can apply Lemma 2.3 (to the
inclusion A � 1AhM; zBi1A with the operator valued weight EA ı yE zB ) to get

A0 \ 1A…
�1.hM;B1i/1A D ŒA

0
\ 1AhM; zBi1A� y ˝C1N ˝C1L2.R/:

Since … is the identity on hM ˝ N; zB ˝ N i, d is also contained in this set. Finally, by
multiplying by J1BJ D J1BJ ˝ 1N ˝ 1L2.R/, we get the conclusion of the claim.

By the claim, we can regard that d is in ŒA0 \ 1AhM; zBiJ1BJ1A� y . As mentioned

in Section 2, yEB1 coincides with yE zB˝N Ì R (the natural crossed product extension of
yE zB˝N ), hence the restriction of yEB1 on hM ˝N; zB ˝N i coincides with yE zB˝N . It then

follows that

1 > yEB1.d/ D
yE zB˝N .d/ D .

yE zB ˝ idN /.d/ D yE zB.d/:

Thus d satisfies the condition in Theorem 3.2(4) and we get .A; � / �uni
M .B; �'/. By

Lemma 3.6(1) and Theorem 3.9, this is equivalent to item (1).

Proof of Theorem A. We first prove the equivalence of the first two conditions. Assume
that A�M B . By Lemma 3.8, there is a projection q 2 A0 \ 1AM1A and a faithful normal
conditional expectation EAq W qMq ! Aq such that .Aq; EAq/ �M .B; EB/. Put Aq WD
W �¹A; qº D Aq ˚ Aq?, where q? WD 1A � q. Observe that Aq? � q?Mq? is with
expectation, say EAq? . Then by definition, the condition .Aq;EAq/ �M .B;EB/ implies
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.Aq; EAq ˚ EAq?/ �M .B; EB/. Since A � 1AM1A is with expectation, so is A � Aq .
By Lemma 3.11, we have .A; EA/ �M .B; EB/ for some faithful normal conditional
expectation EAW 1AM1A ! A. By Theorem 3.9, .A; � / �M .B; �'/ for any faithful
 2MC� which is preserved byEA. This finishes the proof of the first part of the theorem.

We next prove the equivalence of (1)–(3). The equivalence of items (1) and (2) is
proved in Theorem 3.9. By Lemma 3.12, item (3) is also equivalent.

4. Crossed products with groups in the class C

In this section we prove Theorem D. Throughout this section, we will fix an outer action
� Õˇ B of a discrete group � on a � -finite diffuse factor B . We put M WD B Ìˇ � .

General facts on outer actions

We first recall several well known facts on outer actions and associated crossed products.

Lemma 4.1. Let ' be a faithful normal state on M which is preserved by EB . Then one
can define a �-action ž on C'.B/ by setting, for all g 2 � , b 2 B , t 2 R,

ž
g.b/ D ˇg.b/ and ž

g.�
'
t / D ŒD.' ı ˇg�1/;D'�t�

'
t :

We have a canonical identification

.B Ìˇ �/ Ì�' R ' .B Ì�' R/ Ì ž �;

which is the identity on B , L� , and L'R.

Proof. This follows by direct computations using Ad.†/, where † is the flip map on
L2.B/˝ `2.�/˝ L2.R/ for the second and third components.

Recall that an inclusion of factors P � N is called irreducible if P 0 \N D C.

Lemma 4.2. Let p 2 B be a projection, B0 � pBp an irreducible subfactor, q; r 2 B0
projections, and � W qB0q ! rB0r a �-homomorphism such that �.qB0q/0 \ rBr D Cr .
Let x 2 rMq be any element with Fourier decomposition x D

P
g2� xg�g . Assume that

xy D �.y/x for all y 2 qB0q. Then

� xg�gy D �.y/xg�g and xgˇg.y/ D �.y/xg for all y 2 qB0q and g 2 �;

� xgx
�
g 2 Cr and x�gxg 2 Cˇg.q/;

� if x�x D q, xx� D r , and .qB0q/0 \ qMq D Cq, there is a unique g 2 � such that
x D xg�g .

Proof. For all y 2 qB0q, we haveX
g2�

xg�gy D xy D �.y/x D
X
g2�

�.y/xg�g :
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By comparing coefficients, one has xg�gy D �.y/xg�g and xgˇg.y/ D �.y/xg for all
y 2 qB0q and g 2 � . It follows that xgx�g D xg�g.xg�g/

� 2 �.qB0q/
0 \ rBr D Cr ,

and ˇg�1.x�gxg/D .xg�g/
�xg�g 2 .qB0q/

0 \ qBq D Cq for all g 2 � . Assume further
that x�x D q, xx� D r , and .qB0q/0 \ qMq D Cq. Fix g 2 � such that xg ¤ 0. Then

xg�gy D �.y/xg�g D �.y/xx
�xg�g D xyx

�xg�g for all y 2 qB0q;

hence x�xg�g 2 .qB0q/0 \ qMq D Cq. We conclude that x D xg�g .

Lemma 4.3. Let ƒ Õ˛ A be any outer action of a discrete group on a factor. Assume
thatM D A Ì˛ ƒ and A � B . Then there is a surjective homomorphism � Wƒ! � such
that

� for any h 2 ƒ there is a unique uh 2 U.B/ such that �ƒ
h
D uh�

�
�.h/

;

� B D A Ì˛ ker.�/.
In particular, ˛ induces a cocycle action ƒ=ker.�/ Õ A Ì˛ ker.�/, and it is cocycle
conjugate to ˇ via A Ì˛ ker.�/ D B and � Wƒ=ker.�/ ' � .

Proof. Since A0 \M D C, by Lemma 4.2, any �ƒ
h

for h 2 ƒ can be uniquely written as
�ƒ
h
D uh�

�
g for some g 2 � and some uh 2U.B/. By the uniqueness, if we put gD �.h/,

then � Wƒ! � defines a homomorphism. SinceA and �ƒ
h
.h 2ƒ/ generateM , it follows

that B and �.�/ generate M as well. This implies that �.ƒ/ D � and � is surjective.
Put ƒ0 WD ker.�/. By construction, �h D uh for all h 2 ƒ0 and hence

B0 WD A Ì˛ ƒ0 � B:

We have to show the opposite inclusion. LetEB WM !B andEB0 WM !B0 be canonical
conditional expectations. Observe that EB0 ı EB D EB0 . Fix any faithful normal state
' on B0 and extend it by ' ı EB0 . Then EB and EB0 extend to Jones projections eB
and eB0 on L2.M; '/. Let x D

P
h2ƒ xh�

ƒ
h
2 A Ì˛ ƒ be any element with its Fourier

decomposition. Then

eBƒ'.x/ D
X
h2ƒ

eBƒ'.xh�
ƒ
h / D

X
h2ƒ

eBƒ'.xhuh�
�
�.h// D

X
h2ƒ0

ƒ'.xhuh/

D

X
h2ƒ0

ƒ'.xh�
ƒ
h /:

Since the last element is in A Ì˛ ƒ0, we see that B � A Ì˛ ƒ0.
Put zƒ WDƒ=ƒ0 and zA WDAÌ˛ ƒ0, and fix any section sW zƒ!ƒ such that s.ƒ/D e.

For any g; h 2 zƒ, we define � zƒg WD �
ƒ
s.g/

, z̨g WD Ad.�ƒ
s.g/

/ 2 Aut. zA/, zug WD us.g/, and
c.g; h/ WD �ƒ

s.g/s.h/s.gh/�1
2 Lƒ0. Then it is easy to check that .z̨; c/ defines a cocycle

action of zƒ on zA, and that z̨g D Ad.zus.g// ı ˇ�.g/ and 1 D zu�g z̨g.zu
�
h
/c.g; h/zugh for

all g; h 2 zƒ. Thus using zA D B and � W zƒ ' � , we find that .zug/g2zƒ gives a cocycle

conjugacy between zƒ Õ.z̨;c/ zA and � Õˇ B .
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Actions of groups in the class C

We continue to use the outer action � Õˇ B on a � -finite diffuse factor andM D B Ì � .
Note that ifB is a II1 factor, then ˇ preserves the canonical trace, soM is also a II1 factor.
The next proposition is a generalization of [27, Lemma 8.4].

Proposition 4.4. Let p 2B be a projection andA�pMp be a subfactor with expectation
such that A0 \ pMp D Cp and sNpMp.A/00 D pMp.

.1/ If A �M B , then there exist .e; f; �; v/ witnessing A �M B and a finite normal
subgroup K � � such that

�.eAe/0 \ fBf D Cf; vv� D e; v�v 2 �.eAe/0 \ f .B ÌK/f:

Assume further that � has no finite normal subgroups, and that either B is of type
II1 or both A and B are properly infinite. Then we can choose e D f D p and
v 2 U.pMp/.

.2/ Assume that p D 1 and A has a decompositionM D A Ìƒ for some outer action of
a discrete group ƒ on A. Assume that � and ƒ are ICC. If A �M B and B �M A,
then A and B are unitarily conjugate in M .

Proof. (1) Since B is a factor, using [15, Remark 4.5] we may assume that A �M pBp.
We first show, using the assumption A0 \ pMp D Cp, that there is .e; f; �; v/ which
witnesses A �M pBp such that �.eAe/ � fBf is irreducible.

To see this, we fix any .e; f; �; v/ which witnesses A �M pBp and we will modify
it. Since vv� 2 .eAe/0 \ eMe D Ce, one has vv� D e and moreover v�v is a minimal
projection in �.eAe/0 \ fMf . Indeed, for any projection r � v�v in �.eAe/0 \ fMf ,
vrv� 2 .eAe/0 \ eMe D Ce is again e, hence r D vv�. We may assume that the sup-
port projection of EB.v�v/, which is contained in �.eAe/0 \ fBf , coincides with f . Let
z be the central support projection of v�v in �.eAe/0 \ fMf . Then since v�v is min-
imal, .�.eAe/0 \ fMf /z is a type I factor. Since �.eAe/ � fBf is with expectation,
so is the inclusion �.eAe/0 \ fBf � �.eAe/0 \ fMf . In particular, .�.eAe/0 \ fBf /z
is an atomic von Neumann algebra. Since z commutes with �.eAe/0 \ fBf , there is a
unique projection w 2 Z.�.eAe/0 \ fBf / such that .�.eAe/0 \ fBf /w 3 aw 7! az 2

.�.eAe/0 \ fBf /z is isomorphic. Thus there is a minimal projection q in �.eAe/0 \
fBf . Since q � f , q is smaller than the support of EB.v�v/, hence vq ¤ 0. Now
.e; q; �.�/q; vq/ witnesses A �M pBp (up to the polar decomposition of vq) and has
the property that �.eAe/q � qBq is an irreducible inclusion.

Thus we can start the proof by assuming �.eAe/0 \ fBf DCf . PutB0 WD �.eAe/�
fBf and note that B 00 \ fBf D Cf . Consider the Fourier decomposition z WD v�v DP
g2� xg�g 2 B Ì � . Since z 2 B 00 \ fMf , by Lemma 4.2 (for the case � D id) we

have xg�g 2 B 00 \ fMf , xgx�g D Cf , and x�gxg 2 Cˇg.f /. Define a subgroupK � �
and a subset �0 � � by

K WD ¹g 2 � j Ad.wg/ ı ˇg jB0 D idB0 for some wg 2 B
with wgw�g D f; w

�
gwg D ˇg.f /º;
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�0 WD ¹g 2 � j Ad.wg/ ı ˇg.rgB0rg/ D qgB0qg for some wg 2 B; qg ; rg 2 B0
with wgw�g D qg ; w

�
gwg D ˇg.rg/º:

By definition, z is in B Ì K. We will prove that jKj <1, �0 is a group, K is normal
in �0, and �0 D � . This will finish the proof of the first half of item (1).

We claim thatK is a finite group. Fix .wg/g2K which appeared in the definition ofK
such that we D 1. For all g; h 2 K, define

ˇwg WD Ad.wg/ ı ˇg and �g;h WD wgˇg.wh/w
�
gh 2 U.fBf /

and observe that .ˇw ; �/ gives a cocycle action of K on fBf , so that f .B Ìˇ K/f D
fBf Ì.ˇw ;�/ K. The condition ˇw jB0 D idB0 implies that �g;h 2 Cf for all g; h 2 K,
hence we can regard� as a scalar 2-cocycle. In particular fBf Ì.ˇw ;�/K contains a finite
von Neumann algebra .Cf /Ì.ˇw ;�/K. SinceB 00 \ fBf DCf and ˇw jB0 D idB0 , using
Fourier decompositions it is easy to see that

B 00 \ ŒfBf Ì.ˇw ;�/ K� D .Cf / Ì.ˇw ;�/ K:

The left hand side contains the minimal projection z, and hence so does the right hand
side. This implies that K is a finite group. (Indeed, if it is infinite, one has a sequence
of unitaries which converges weakly to 0, but this is impossible in a finite von Neumann
algebra with a minimal projection.)

We next claim that �0 is a group andK is normal in �0. For this, take g 2 �0 and pick
any .wg ; qg ; rg/ as in the definition of �0. Observe that if we replace qg by a projection
q0g 2 B0 which satisfies q0g � qg in B0, then q0g satisfies the same condition as qg (with
some appropriate wg ; rg ). The same holds for rg . Take another h 2 �0 and .wh; qh; rh/.
Then sinceB0 is a factor, up to replacing rg or qh with a smaller and equivalent projection
in B0, we may assume rg D qh. Then it is easy to see gh 2 �0. We also have g�1 2 �0,
because .wg�1; qg�1 ; rg�1/ WD .ˇ�1g .w�g/; rg ; qg/ works. Using this family for g�1, for
h WD gkg�1 for any fixed k 2 K, the family .wh; qh; rh/ can be taken so that qh D rh
and Ad.wh/ ı ˇh D id on qrB0qh. Since fB0f is a diffuse factor, we can apply the usual
patching method and obtain .wh; qh; rh/ such that qh D rh D f and Ad.wh/ ı ˇh D id
on B0. This means h 2 K, hence K is normal in �0.

We show � D �0. Observe that eAe is a diffuse factor and sNe.BÌ�/e.eAe/
00 D

e.B Ì �/e. Since Ad.v�/ is an isomorphism between eAe � e.B Ì �/e and B0z �
z.B Ì �/z, it follows that sNz.BÌ�/z.B0z/

00 D z.B Ì �/z. Fix any partial isome-
try u 2 sNz.BÌ�/z.B0z/ with u�u D qz, uu� D rz for q; r 2 B0, and consider the
Fourier decomposition u D

P
g2� xg�g 2 B Ì � . Since Ad.u/ is an isomorphism from

qB0qz to rB0rz, using B0z ' B0 we can define an isomorphism ˛uW qB0q ! rB0r by
˛u.y/z D uyu� for all y 2 qB0q. By Lemma 4.2, for all y 2 qB0q and g 2 � ,

xg�gy D ˛
u.y/xg�g ; xgx

�
g 2 Cr; and x�gxg 2 Cˇg.q/:

So each xg 2 rBˇg.q/ is a scalar multiple of a partial isometry. We can write xg D
ag!g for some ag 2 C, where !g is a partial isometry. Observe that if xg ¤ 0, then
Ad.!g�g/.y/D ˛u.y/r 2 rB0r for all y 2 qB0q, so g is contained in �0. It follows that
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u 2 z.B Ì�0/z. Now take any x 2 sNz.BÌ�/z.B0z/ and consider its polar decomposition
x D vjxj. Then since jxj 2 B0z and since v is a partial isometry in sNz.BÌ�/z.B0z/,
we find that x 2 z.B Ì �0/z. Since sNz.BÌ�/z.B0z/

00 D z.B Ì �/z, we conclude that
z.B Ì �/z D z.B Ì �0/z. Since z 2 B Ì �0 and B Ì �0 is a diffuse factor, we indeed
have B Ì � D B Ì �0. This means � D �0.

We next assume that � has no finite normal subgroups. Then K must be trivial, so
v�v 2 B and we may assume f D v�v. There is a partial isometry v 2 pMp such that
vv� D e 2A, v�v D f 2 pBp, and v�Av � fBf . If B is of type II1 (so thatM;A are II1
factors) or if bothA andB are properly infinite, then (up to replacing e;f by smaller ones
if necessary) we can apply the patching method and obtain e D f D p and v 2U.pMp/.
This is the conclusion.

(2) Observe that B is a II1 factor (hence so is M ) if and only if A is. Hence using
item (1) of this proposition, we can find v;w 2 U.M/ with vAv� � B and wBw� � A.
Put u WD vw and observe that uBu� � B and .uBu�/0 \ B � .uBu�/0 \ M D

u.B 0 \ M/u� D C. By Lemma 4.2, we can write u D xg�g for some g 2 � and
xg 2 U.B/. In particular we have B D uBu� D vwBw�v� � vAv� � B . We conclude
that vAv� D B .

The next lemma explains how we use the properties of the class C for actions on type
III factors. This uses our Theorem A.

Lemma 4.5. Let p 2 M be a projection, and A � pMp be a subfactor with expecta-
tionEA. Assume that � is in the class C , A0 \ pMp DC, A is amenable, and NpMp.A/

00

has finite index in pMp. Then A �M B .

Proof. Put P WD NpMp.A/
00 and let N be the hyperfinite type III1 factor and ! a faithful

normal state such that N 0! \ N D C. Let EA; EP be any faithful normal conditional
expectations for A; P respectively. Observe that the condition A0 \ pMp � A implies
that normal expectations onto A and P are unique, henceEA ıEP DEA. Fix any faithful
states  ; ' 2 MC� which are preserved by EA; EB respectively. Then, by the uniqueness
of EA and by Theorem A, A �M B is equivalent to

…'˝!; ˝!.C ˝!.A˝N// �C'˝!.M˝N/ C'˝!.B ˝N/:

There is a canonical inclusion C ˝!.A ˝ N/ � C ˝!.P ˝ N/, which is regular
by [3, Lemma 4.1]. For notational simplicity, we omit …'˝!; ˝! and write M WD

C'˝!.M ˝N/, B WD C'˝!.B ˝N/, A WD C ˝!.A˝N/, and P WD C ˝!.P ˝N/.
Observe that A is amenable and P �M has finite index.

By Lemma 4.1, there is an identification M D B Ì ž � . Let r 2 L'˝!R be any
projection such that Tr'˝!.r/ < 1. Then since B is a type II1 factor and since
ž preserves the canonical trace on B, rMr is realized as a cocycle crossed product
rBr Ì

. žr ;u/
� for some 2-cocycle uW� � � ! rBr (because r � žg.r/ for all g 2 � ,

see Section 2). Since M is a II1 factor, and p is infinite while r is finite, there is
v 2 M such that vv� D r and p0 WD v�v 2 pAp. Put Av WD vAv�. Observe that
Av is amenable and .Av/0 \ rMr D Cr (use Lemma 2.3). Since A is a II1 factor,
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we have p0NpMp.A/
00p0 D Np0Mp0.p0Ap0/

00. In particular NrMr .A
v/00 in rMr has

finite index. Hence by the definition of the class C , we have Av �rMr rBr . This implies
A �M B and hence A �M B as we explained.

Proof of Theorem D. By Lemma 4.5, we have A �M B . Note that A is a type II1 factor
if and only if B is. Hence we can apply Proposition 4.4 and find a unitary u 2 U.M/

such that uAu� � B . Thus we may assume that A � B . We then apply Lemma 4.3 to
get the conclusion. Note that ker.�/ is amenable since A Ì ker.�/ is amenable and A is
a factor.

5. Rigidity of Bernoulli shift actions

In this section, we will study Bernoulli shift actions with type III base algebras. In partic-
ular we prove Theorem C and Proposition F.

Popa’s criterion for cocycle superrigidity

The next proposition is a variant of Popa’s theorem which was used to prove cocycle
superrigidity [36, 38, 39]. See also [52, Theorem 7.1].

Proposition 5.1. Let G be a locally compact second countable group, G1 � G a closed
normal subgroup, and .P; '/ a von Neumann algebra with a faithful normal state. Let
G Õˇ .P; '/ be a state preserving continuous action. Let !WG!U.P / be a � -strongly
continuous map such that ˛g WDAd.!g/ ı ˇg and v.g;h/ WD !gˇg.!h/!�gh for g;h 2G
define a cocycle action of G. Assume that

� v.g; h/ D 1 D v.h; g/ for all g 2 G1 and h 2 G .hence ˛jG1 is a genuine action/;

� there is a faithful state  2 P� which is preserved by ˛jG1 ;

� .Cp; ˛jG1/ �
uni
P .C1P ; ˇjG1/ for all projections p 2 P ˛;

� ˇjG1 is weakly mixing.

Then there exist a separable Hilbert space H , a projection f 2 B.H/, a � -strongly con-
tinuous map uWG ! U.f B.H/f /, and a partial isometry w 2 P ˝ B.H/ such that

w�wDf; ww�D1˝ e1;1; and wugD .wg ˝ 1H /.ˇg ˝ idH /.w/ for all g2G;

where e1;1 is a minimal projection in B.H/. In particular, .Ad.ug//g2G and
.uguhu

�
gh
/g;h2G define a cocycle action on f B.H/f , and ˛ is conjugate to the cocycle

action .ˇg ˝ Ad.ug//g2G by w:

˛g.wxw
�/ D ˇ!g .wxw

�/ D w.ˇg ˝ Ad.ug//.x/w� for all x 2 P ˝ f B.H/f:

Proof. Since most of the arguments are straightforward adaptations of [52, proof of The-
orem 7.1], we give only a sketch of the proof. Take .H; f; �; w/ and .ug/g2G1 which
witness .Cp; ˛jG1/ �P .C1P ; ˇjG1/ (and H can be finite-dimensional). Observe that
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w�w 2 .P ˝B.H//ˇ˝Ad.u/jG1 DC1P ˝B.H/ (because ˇjG1 is weakly mixing), hence
up to replacing f by w�w, we may assume that w�w D f .

Thus the condition .Cp; ˛jG1/ �P .C1P ; ˇjG1/ means that there exist a projec-
tion f 2Mn, a continuous homomorphism uWG1 ! U.fMnf /, and a partial isometry
w 2 .p ˝ e1;1/.P ˝Mn/f such that wug D .!g ˝ 1n/.ˇg ˝ idn/.w/ for all g 2 G1.

Claim. There exist a separable Hilbert spaceH , a projection f 2 B.H/, a partial isom-
etry w 2 P ˝ B.H/, and a continuous homomorphism uWG1!U.f B.H/f / such that

� wug D .!g ˝ 1H /.ˇg ˝ idH /.w/ for all g 2 G1;

� w�w D f and ww� 2 pP ˛p ˝Ce1;1, where e1;1 is a fixed minimal projection;

� there exist finite rank projections .Pk/k2N in B.H/ such that Pk! 1H as k!1 and
each Pk commutes with ug for all g 2 G1.

Proof. Let E denote the set of all non-zero projections e 2 P .D P ˝ Ce1;1/ such that
there exists .n; f; w; u/ which witnesses .Cp; ˛jG1/ �P .C1P ; ˇjG1/ with e D ww�.
Then it is straightforward to check that E is closed under the following operations: ˇh.e/2
E for all h 2 G and all e 2 E; e _ f 2 E for all e; f 2 E; and e0 2 E for all projections
e0 2 eP

˛jG1 e and e 2 E .
Fix any countable dense subset X � G. Observe that suph2X ˇh.e/ 2 pP

˛p is real-
ized as a (countably) infinite direct sum of projections in E , that is, there is a family
.ni ; fi ; wi ; u

i /i2I such that
P
i2I wiw

�
i D suph2X ˇh.e/, where I is a countable set. By

definingH WD
L
i2I Cni , f WD

L
i2I fi , w D Œwi �i2I 2 .p ˝ e1;1/.B ˝ B.H//f , and

u WD
L
i2I u

i , we get the conclusion.

Now we define F as the set of all non-zero projections e 2 P ˛ .D P ˛ ˝Ce1;1/ such
that there exists .H; f;w; u/ which witnesses the conclusion of the claim above with e D
ww�. Now using the assumption .Cp;˛jG1/�P .C1P ;ˇjG1/ for all p 2P ˛ and applying
a maximality argument, there is a family .Hi ; fi ; wi ; ui /i2I such that

P
i2I wiw

�
i D 1P

.D 1P ˝ e1;1/, where I is a countable set. Define .H; f; w; u/ as a direct sum of all

.Hi ; fi ; wi ; u
i /i2I (with w D Œwi �i2I 2 .1˝ e1;1/.B ˝ B.H//); then it satisfies all the

conditions in the claim above with ww� D 1 ˝ e1;1. Hence .H; f; w; u/ satisfies the
conclusion of this theorem but only for G1.

We have to extend the conditions onG1 to those onG, using the weak mixing of ˇjG1 .
Put !Hg WD !g ˝ 1H , ˇHg WD ˇg ˝ idH , ˛Hg WD ˛g ˝ idH , and vH .g;h/ WD v.g;h/˝ 1H
for all g; h 2 G. Extend the map u to one on G by

ug WD w
�!Hg ˇ

H
g .w/ for all g 2 G:

It is easy to compute that for any g; h 2 G,

ugu
�
g D f D u

�
gug and ugˇ

H
g .uh/ D w

�vH .g; h/wugh:

In particular, uWG!U.P ˝ f B.H/f / is a cocycle forˇH with a 2-cocyclew�vH .�; �/w.
To finish the proof, we have only to show that u is a map into f B.H/f , so that ˇHg .uh/
D uh and uguhu�gh D w

�vH .g; h/w 2 f B.H/f for all g; h 2 G.
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Fix g 2 G and k 2 N. Put Hk WD PkH and uk
h
WD PkuhPk for all h 2 G, where

.Pn/n2N is a family of finite rank projections as in the claim (and we regard Pk D
1P ˝ Pk). Then since Pk commutes with uh for all h 2 G1, putting ˇu

h
WD Ad.uh/ ı ˇh

we have

ˇuh.u
k
g/ D Pkˇ

u
h.ug/Pk D u

k
gu

k
g�1hg

.ukh/
�
2 ukgB.Hk/ for all h 2 G1:

Observe that ˇu
h

is of the form ˇh˝Ad.uh/ for all h2G1. Then combining the weak mix-
ing of ˇjG1 with .ˇh˝Ad.uk

h
//.ukg/2 u

k
gB.Hk/ for all h2G1, we find that ukg 2B.Hk/.

Since k is arbitrary, we conclude that ug 2 B.H/ as required.

Rigidity of Bernoulli shifts for cocycle actions

Let � be a countable discrete group,B0 an amenable von Neumann algebra with separable
predual, '0 a faithful normal state on B0, and � Õˇ

N
�.B0; '0/DW .B;'/ the Bernoulli

shift action. Put M WD B Ìˇ � . Here we recall the following fact.

Theorem 5.2. Let p 2 M be a projection and A � pMp a von Neumann subalgebra
with expectation EA. Fix a faithful  2 M� which is preserved by EA, and set P WD
A0 \ pM p. If C .A/ 6�C'.M/ C'.L�/, then P has an amenable direct summand.

Proof. This can be proved by applying arguments in [9, Theorem 4.1], which is based on
the arguments in [37, 38, 41] (together with the deformation given in [23]). Actually one
has to modify the spectral gap argument [41] as follows. Put zB WD

N
�.B0�LZ;'0��LZ/

and extend ' and ˇ on zB , so that there are canonical inclusions M � zB Ìˇ � DW zM and
C'.M/ � C'. zM/. Then we can prove the following weak containment:

ML
2.C'. zM//	 L2.C'.M//C'.M/ � ML

2.C'.M//˝ L2.C'.M//C'.M/

(e.g. see [32, proof of Theorem 5.2]). Then using the spectral gap argument given in
[32, Lemma 4.1], we can follow [9, proof of Theorem 4.1].

Proof of Theorem C. Put M WD B Ìˇ � and regard M D A Ì˛ ƒ via the given isomor-
phism. We have A �M B by Lemma 4.5, hence by Proposition 4.4, there is u 2 U.M/

such that uAu� � B . Then up to replacing the initial isomorphism by the one with
Ad.u/, we may assume A � B . Then by Lemma 4.3, there is a surjective homomorphism
� Wƒ! � such that A Ì˛ ƒ0 D B , where ƒ0 WD ker.�/, and for any h 2 ƒ, there is a
unique uh 2 U.B/ such that �ƒ

h
D uh�

�
�.h/

. Put zA WD A Ì˛ ƒ0 and zƒ WD ƒ=ƒ0. Using

a fixed section sW zƒ! ƒ such that s.ƒ0/ is the unit, we will use the following notation:
for all g;h 2 zƒ, z̨g WD Ad.�ƒ

s.g/
/ 2 Aut. zA/, c.g;h/ WD �ƒ

s.g/s.h/s.gh/�1
, � zƒg WD �

ƒ
s.g/

, and

ug WD us.g/. We have a cocycle action zƒ Õ.z̨;c/ zA with the relations

�
zƒ
h D ug�

�
�.h/; Ad.ug/ ı ˇ�.g/ D z̨g ; c.g; h/ D zugˇg.zuh/zu

�
gh for all g; h 2 zƒ:
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For simplicity we identify C .M/ D C'.M/. Then by Lemma 4.1, there is an inclusion

L R � C . zA Ìz̨ zƒ/ D C'.M/ D C'.B/ Ìˇ �:

Observe that, since z̨ is  -preserving, .L R/0 \ C'.M/ contains a copy of Lzƒ with
expectation, hence .L R/0 \ C'.M/ has no amenable direct summand (because Lzƒ has
no such summand).

Claim. We have .Cp; � / �B .C1B ; �'/ for all projections p 2 B z̨ .

Proof of Claim. Fix any projection p 2 B z̨ . Since Lzƒp has no amenable summand, by
applying Theorem 5.2 to L Rp we find that L Rp �C'.M/ C'.L�/. By Theorem 3.2,
to prove this claim, we have only to show that L Rp �C'.B/ L'R.

Suppose for contradiction that L Rp 6�C'.B/ L'R. Take a net .ui /i in U.L R/
such that

EL'R.b
�uipa/! 0 for all a; b 2 C'.B/:

Observe that for all h 2 zƒ and ui 2 L R, since ui commutes with � zƒ
h

,

���.h/uip.�
�
�.h//

�
D u�h�

zƒ
h uip.�

zƒ
h /
�uh D u

�
huipuh:

It follows that for all a; b 2 C'.B/ and g; h 2 zƒ,

EC'.L�/.b�
�
�.h/uipa�

�
�.g// D EC'.L�/.bŒ�

�
�.h/uip.�

�
�.h//

��ˇ�.h/.a/�
�
�.hg//

D EC'.L�/.bŒu
�
huipuh�ˇ�.h/.a/�

�
�.hg//

D EL'R.bu
�
huipuhˇ�.h/.a//�

�
�.hg/ ! 0:

By [15, Theorem 4.3(5)], we get L Rp 6�C'.M/ C'.L�/, a contradiction.

Define G WD � � R. Since ˇ and �' commute, we can define a continuous action
G Õˇ' .B; '/ by

ˇ
'

.g;t/
WD ˇg ı �

'
t D �

'
t ı ˇg for all .g; t/ 2 G:

The condition B' D C then means that ˇ' jR is weakly mixing. In the same way, we can
define a continuous cocycle action zƒ�R Õz̨ . zA; /with the 2-cocycle c ..g; t/; .h; s//
WD c.g; h/ for all .g; t/; .h; s/ 2 zƒ �R.

Claim. Identify zƒ D � and zA D B . Define a � -strongly continuous map !WG !U.B/

by
!.g;t/ WD ŒD ;D'�t�

'
t .ug/ D �

 
t .ug/ŒD ;D'�t ; g 2 �; t 2 R:

Then ! gives a cocycle conjugacy between ˇ' and z̨ : for all .g; t/; .h; s/ 2 G,

Ad.!.g;t// ı ˇ
'

.g;t/
D z̨

 

.g;t/
and !.g;t/ˇ

'

.g;t/
.!.h;s// D c

 ..g; t/; .h; s//!.gh;tCs/:



Y. Isono 1714

Proof of Claim. Observe that for any .g; t/ 2 G, since �'t and �ˇg commute in C'.M/,

�ˇg�
'
t D u

�
g�
z̨
g ŒD';D �t�

 
t D u

�
g z̨g.ŒD';D �t /�

z̨
g�

 
t

D �
'
t �
ˇ
g D ŒD';D �t�

 
t u
�
g�
z̨
g D ŒD';D �t�

 
t .u

�
g/�

 
t �
z̨
g :

Since � t �
z̨
g D �

z̨
g�

 
t , using ŒD';D ��t D ŒD ;D'�t we get

!.g;t/ D �
 
t .ug/ŒD ;D'�t D z̨g.ŒD ;D'�t /ug D ugˇg.ŒD ;D'�t /:

Recall that we have the cocycle relations

c.g; h/ D ugˇg.uh/u
�
gh for all g; h 2 �I

ŒD ;D'�tCs D ŒD ;D'�t�
'
t .ŒD ;D'�s/ for all t; s 2 R:

We then compute that for any .g; t/; .h; s/ 2 G,

!.g;t/ˇ
'

.g;t/
.!.h;s// D ugˇg.ŒD ;D'�t /ˇg ı �

'
t .ŒD ;D'�s�

'
s .uh//

D ugˇg.ŒD ;D'�tCs�
'
tCs.uh// D ugˇg.w.h;tCs//

D ugˇg.uhˇh.ŒD ;D'�tCs// D c.g; h/ughˇgh.ŒD ;D'�tCs/

D c ..g; t/; .h; s//!.gh;tCs/;

and similarly Ad.!.g;t// ı ˇ
'

.g;t/
D z̨

 

.g;t/
.

Now we put G1 WD R � G. Then since we already have .Cp; � / �B .C; �'/ for all
projections p 2 B z̨ D B

z̨ , we can apply Proposition 5.1. Thus there exist a separable
Hilbert spaceH , a projection f 2 B.H/, a � -strongly continuous map vWG D � �R!
U.f B.H/f /, and a partial isometry w 2 B ˝ B.H/ such that
� wvg D .!g ˝ 1H /.ˇ

'
g ˝ idH /.w/ for all g 2 G;

� w�w D f and ww� D 1˝ e1;1, where e1;1 2 B.H/ is a minimal projection;
� .Ad.vg//g2G and .vgvhv�gh/g;h2G define a cocycle action on f B.H/f ;

� z̨
 
g .wxw

�/ D w.ˇ
'
g ˝ Ad.vg//.x/w� for all x 2 B ˝ f B.H/f:

As in the proof of Proposition 5.1, the first equation implies vtCs D vtvs for all t; s 2 R,
hence .vt /t2R is a continuous homomorphism. By Stone’s theorem, there is a unique
infinitesimal generator h on fH , so that ŒTrH .h �/; f TrHf �t D hit D vt for all t 2 R,
where TrH is a fixed semifinite trace on B.H/ (with TrH .e1;1/D 1). We then compute that
for all t 2 R, with 'H WD ' ˝ TrH ,  H WD  ˝ TrH and hD 1B ˝ h, using Lemma 2.2,

ŒDf 'H .h�/f;D H ı Ad.w/�tD ŒDf 'H .h�/f;Df 'Hf �t ŒDf 'Hf;D H ı Ad.w/�t

Dvt ŒDf '
Hf;Df  Hf �t ŒDf  

Hf;D H ı Ad.w/�t

Dvt .ŒD';D �t ˝ 1H /.�
 
t ˝ idH /.w�/w

Dvt .�
'
t ˝ idH /.w�/.ŒD';D �t ˝ 1H /w

Dw�.ŒD ;D'�t ˝ 1H /.ŒD';D �t ˝ 1H /wDf:
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We find that 'H .h�/ D  H ı Ad.w/. In particular, putting � WD TrH .h�/, we see that

Ad.w�/WB D B ˝Ce1;1 ! B ˝ f B.H/f

satisfies  D .' ˝ �/ ı Ad.w�/. Since Ad.w�/ gives a conjugacy between ˇ' ˝ Ad.u/
and z̨ , by restriction, it gives a state preserving conjugacy between ˇ ˝ Ad.u/ and z̨.

Finally, we show that ƒ0 is a finite group. Observe that TrH .h/ D  .1/ <1, so h is
a compact operator on fH . We have

A Ì˛ ƒ0 D .A Ì˛ ƒ0/ ' .B ˝ f B.H/f /'˝�:

Since h is a compact operator, there exist finite rank projections rn on fH

which commute with h such that rn ! f . Then since �' is weakly mixing,
one has rn.B ˝ f B.H/f /'˝�rn D C ˝ .rnB.H/rn/� for all n. In particular
.B ˝ f B.H/f /'˝� is an atomic von Neumann algebra, so that A Ì˛ ƒ0 is one as
well. This implies that ƒ0 is a finite group (and A is atomic).

Rigidity of Bernoulli shifts for genuine actions

We continue to use the Bernoulli shift action � Õˇ
N
�.B0; '0/ D .B; '/ and M D

B Ìˇ � , assuming that B0 is amenable. We recall the following fact.

Theorem 5.3 ([32, Theorem A]). Let p 2M be a projection, and A � pMp a finite von
Neumann subalgebra with expectation.

.1/ If A 6�M L� , then A0 \ pMp has an amenable direct summand.

.2/ If A has relative property (T) in pMp, then A �M L� .

Proof of Proposition F. By assumption, there are isomorphisms � ' ƒ and A ' B , and
there is a cocycle !W� ! U.B/ such that ˛ D ˇ! .

Assume that � has a normal subgroup �1 � � with relative property (T). Letƒ1 � ƒ
be the image of �1. For any projection q 2 Lƒ01 \B , we apply Theorem 5.3(2) to Lƒ1q
and find that Lƒ1q �M L� .

Assume that � is a direct product � D �1 ��2 with �2 non-amenable. We letƒi �ƒ
be the images of �i for i D 1; 2. For any projection q 2 Lƒ01 \ B , we apply Theorem
5.3(1) to Lƒ1q. We get Lƒ1q �M L� .

Thus in both cases, one has Lƒ1q �M L� for any projection q 2 Lƒ01 \B . Fix such
q 2 Lƒ01 \B; we claim that .Cq;˛jƒ1/ �B .C; ˇj�1/. Indeed, suppose for contradiction
that there is .gi /i2I in ƒ1 such that

'.ˇgi .b
�/!�gi qa/! 0 � -strongly for all a; b 2 B .

Then for any a; b 2 B and s; s0 2 � , we have

EL�.�
ˇ
s b
�…!

ˇ;˛.�
˛

g�1
i

/qa�
ˇ
s0/ D �

ˇ
s EL�.b

��
ˇ

g�1
i

!�gi qa/�
ˇ
s0

D �
ˇ

sg�1
i

'.ˇgi .b
�/!�gi qa/�

ˇ
s0 :

The last term converges to 0, hence Lƒ1q 6�M L� , a contradiction.
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Finally, since ƒ1 � ƒ is normal, we can apply Proposition 5.1 to get a cocycle action
.Ad.ug//g2� on a factor B. By construction, this cocycle action is a genuine action, which
finishes the proof.

6. Strong solidity of free product factors

For amalgamated free products von Neumann algebras and their modular theory, we refer
the reader to [46, 54]. Throughout this section we fix the following setting.

Let I be a set, .Mi /i2I a family of � -finite von Neumann algebras,B �Mi a common
unital von Neumann subalgebra, and Ei WMi ! B faithful normal conditional expecta-
tions for all i 2 I . Denote by M WD �B .Mi ; Ei /i2I the amalgamated free product von
Neumann algebra, and by EB WM ! B the canonical conditional expectation. For any
subset F � I , we denote MF WD �B .Mi ; Ei /i2F , and EF WM !MF is the canonical
conditional expectation.

To prove Theorem G, we first prove the following special case. This is a variant of
Ioana’s theorem [25, Theorem 1.6] (see also [21,51]), and the proof uses a theorem in [3].

Lemma 6.1. Let I D ¹1; 2º. Assume that there is a semifinite trace TrB on B such that
TrB ıEi are tracial for all i 2 I . Then the conclusion of Theorem G holds for any p 2M
and A � pMp as in the statement, provided that TrB ıEB.p/ <1.

Proof. Recall that for any semifinite von Neumann algebra, relative injectivity and rel-
ative semidiscreteness are the same condition (see [29, Theorem A.6]). To prove this
lemma, we follow the argument in the paragraph just before [21, Theorem A.4]. In this
argument, we can apply [3, Theorem 3.11] instead of [43, Theorem 1.6]. Then all other
proofs work if we replace the normalizer algebra with the stable normalizer algebra. Thus
the conclusion of [21, Theorem A.4] holds for the stable normalizer von Neumann algebra
and the lemma is proven.

Proof of Theorem G. Suppose that A 6�M B and sNpMp.A/00 6�M Mi for i D 1; 2. We
will prove that P WD sNpMp.A/00 is injective relative to B in M .

Let EA and EP be faithful normal conditional expectations for A and P respectively,
N the hyperfinite type III1 factor, and ! a faithful normal state such that N 0! \ N D C.
Observe that A0 \ pMp � A implies that EA and EP are unique normal expectations,
hence EA ı EP D EA. From this uniqueness and Theorem A, there exist  preserved by
EA; EP , and ' preserved by EB ; EMi for i D 1; 2, such that

…'˝!; ˝!.C ˝!.A˝N// 6�C'˝!.M˝N/ C'˝!.B ˝N/;

…'˝!; ˝!.C ˝!.P ˝N// 6�C'˝!.M˝N/ C'˝!.Mi ˝N/ for i D 1; 2:

Observe that since A˝N is properly infinite, by [12, Lemma 2.4] we have

A˝N � P ˝N � sNpMp˝N .A˝N/
00
D NpMp˝N .A˝N/

00:
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In particular the inclusion A˝N � P ˝N is regular, and hence by [3, Lemma 4.1] the
inclusion C ˝!.A˝N/ � C ˝!.P ˝N/ is regular as well. For notational simplicity,
we omit…'˝!; ˝! and write M WDC'˝!.M ˝N/, Mi WDC'˝!.Mi ˝N/ for i D 1;2,
B WD C'˝!.B ˝N/, and A WD C ˝!.A˝N/. Let Ei WMi ! B be the faithful normal
conditional expectation such that Ei jMi˝N D Ei ˝ idN and EjLR' D idLR' and note
that M has an amalgamated free product structure,

M D .M1;E1/ �B .M2;E2/:

In this setting, our assumptions are translated to A 6�M B, NpMp.A/
00 6�M Mi for

all i D 1; 2, and A is injective relative to B in M (use [29, Corollary 3.6 and The-
orem 3.2]). Fix any projection r 2 L ˝!R such that Tr ˝!.r/ < 1, and observe
that rAr 6�M B and rNpMp.A/

00r 6�M Mi for all i D 1; 2. Using the inclusion
rNpMp.A/

00r � sNprMpr .rAr/
00 (e.g. [12, Proposition 2.10]), by applying Lemma 6.1

to rAr � rpMrp, we find that rNpMp.A/
00r is injective relative to B. Since r is arbi-

trary, by [16, Lemma 3.3(v)] we conclude that NpMp.A/
00 is injective relative to B in M.

Since NpMp.A/
00 contains C ˝!.P ˝ N/ with expectation, by [29, Theorem 3.2] we

know that P ˝N is injective relative to B ˝N in M ˝N . Finally, it is easy to see that
P is injective relative to B in M . This is the conclusion.

Proof of Corollary H. IfM is stably strongly solid, then since allMi ’s are von Neumann
subalgebras with expectation, all Mi ’s are stably strongly solid. We have to show the
converse.

Let p 2 M be a projection and A � pMp a diffuse amenable von Neumann subal-
gebra with expectation. We have to show that P WD sNpMp.A/00 is amenable. Since pMp
is solid by [21, Theorem 6.1], A0 \ pMp is amenable. Then as in [3, proof of Main The-
orem], up to replacing A _ .A0 \ pMp/ by A, we may assume that A0 \ pMp � A.
Let z 2 P be the unique projection such that P.p � z/ is amenable and Pz has no
amenable direct summand. We will deduce a contradiction by assuming that z ¤ 0. In
this case, using Pz � sNzMz.Az/

00, up to replacing z by p we may assume that P has
no amenable direct summand. DefineM1 WDM ˝ B.`2/,M1i WDMi ˝ B.`2/, A1 WD
A˝ B.`2/, and E1i WD Ei ˝ idB.`2/, and observe thatM1 D �B.`2/ .M

1
i ;E

1
i /i2I and

sNpM1p.A
1/00 D NpM1p.A

1/00 (since A1 is properly infinite). Since A1 is diffuse,
we have A1 6�M1 B.`2/.

Suppose first that I D ¹1; 2º. We can apply Theorem G to A1 � pM1p, and find
(ii) NpM1p.A

1/00 �M1 M1i for some i 2 ¹1; 2º or (iii) NpM1p.A
1/00 is amenable. If

(iii) holds, then since P ˝B.`2/�NpM1p.A
1/00 is with expectation, we infer that P is

amenable, a contradiction. Hence condition (ii) holds. Fix i such that NpM1p.A
1/00

�M1 M1i , and take .H; f; �; w/ witnessing this condition. Observe that �.A1/ �
f .M1i ˝Mn/f is a diffuse amenable von Neumann subalgebra with expectation and
that �.P ˝ B.`2// �Nf .M1

i
˝Mn/f .�.A

1//00 is with expectation. SinceMi is assumed
to be stably strongly solid, M1i ˝Mn is strongly solid by [3, Corollary 5.2]. Thus
�.P ˝ B.`2// is amenable. Since � is a normal �-homomorphism, P has an amenable
direct summand, a contradiction. We have thus proved this theorem in the case I D ¹1; 2º.
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Now we prove the general case. Let I be a general set and we put MF WD

�i2F .Mi ; 'i / for any subset F � I . We fix any finite subset F � I and observe
that MF is stably strongly solid by the result in the last paragraph. We apply the
same argument as in the case I D ¹1; 2º to A � pMp using the decomposition M D
MF �MF c . Then since MF is stably strongly solid, the only possible condition is that
NpM1p.A

1/00 �M1 M1
F c . By assuming that this condition holds for all finite subsets

F � I , we will deduce a contradiction.
Since P ˝ B.`2/ � NpM1p.A

1/00, using [15, Lemma 4.8] we find that indeed
P ˝ B.`2/ �M1 M1

F c for all finite subsets F � I . Then as in the proof of Theorem G,
by applying Theorem A (and using N ' N ˝ B.`2/) one has P �M MF c for all finite
subsets F � I , where we have used similar notations to ones in the proof of Theorem G,
such as P WD C ˝!.P ˝N/, MF c WD C'˝!.MF c ˝N/ for appropriate EP ;  ; '.

Fix any projection r 2 L ˝!R such that Tr ˝!.r/ < 1. Fix any projection
z 2 P 0 \ pMp D .P 0 \ pMp/ D Z.P / (e.g. by Lemma 2.3). We will prove that
rP rz �M MF c for all finite subsets F � I . Then [21, Proposition 4.2] will imply the
amenability of rP r and hence the one of P , a contradiction. To prove this condition, fix
F , r and z. Observe that Pz � sNzMz.Az/

00. Then since Pz has no amenable direct
summand, we can apply the same argument to Az � Pz (as we applied to A � P ), and
get P z �M MF c . Since the central support of rz in P z is z, by [15, Remark 4.2(3)] we
get rP rz �M MF c . This is the desired condition.
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