
Progress in Nuclear Energy 145 (2022) 104130

Available online 25 January 2022
0149-1970/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Deterministic and stochastic methods for sensitivity analysis of 
neutron noise 

Toshihiro Yamamoto a,*, Hiroki Sakamoto b 

a Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan 
b Radiation Dose Analysis and Evaluation Network, 4-13-14, Kokubunji-shi, Tokyo, 185-0001, Japan   

A R T I C L E  I N F O   

Keywords: 
Neutron noise 
Sensitivity coefficient 
Diffusion equation 
Monte Carlo 

A B S T R A C T   

Neutron noise calculated from the neutron noise equation in the frequency domain is governed by the cross 
section and kinetic parameters. Deterministic and stochastic methods to obtain the sensitivity coefficient of 
neutron noise with respect to the abovementioned parameters are proposed. As a deterministic method, a 
diffusion equation for the first derivative of neutron noise with respect to a cross section or kinetic parameter is 
derived by differentiating the neutron noise diffusion equation. As a stochastic method, the differential operator 
sampling method, which is a well-established Monte Carlo technique, is applied to calculate the sensitivity co
efficient. Neither method requires adjoint mode calculations and can be expanded to higher-order derivatives. 
Based on verifications performed in this study, it is discovered that these techniques yield accurate sensitivity 
coefficients. The methods developed in this study eliminates a large number of calculations that need to be 
performed in the random sampling method.   

1. Introduction 

Neutron noise in an operating power reactor core, i.e., inherent 
fluctuations in neutron flux detected by in-core or ex-core instrumen
tation, provides useful information for the early detection of anomalies, 
such as abnormal vibrations of core internals and flow blockage (Seidl 
et al., 2015; Torres et al., 2019; Chionis et al., 2020). Numerous studies 
and developments regarding core monitoring techniques using neutron 
noise have been pursued for many decades. From 2017 to 2021, the 
CORTEX project, a research and innovation action aiming to develop an 
innovative core monitoring technique using the fluctuations in neutron 
flux, was performed by a multinational consortium under the auspices of 
the European Commission in the Euratom 2016–2017 work program 
(Demazière et al., 2018). The calculation methods employed in the 
project for neutron noise propagation analyses in reactor cores were 
classified primarily into two categories: the time-domain method 
(Vidal-Ferràndis et al., 2020) and frequency-domain method (Pázsit and 
Demazière, 2010; Demazière, 2011; Mylonakis et al., 2021; Zoia et al., 
2021). In the time-domain method, a time-varying neutron flux is 
explicitly calculated by solving the time-dependent neutron diffusion 
equation, where the cross sections change with time owing to the 
anomaly in a reactor. The frequency-domain method directly calculates 

the neutron noise by solving the frequency-domain diffusion or trans
port equation for neutron noise. The frequency-domain method is 
typically limited to diffusion approximation. A Monte Carlo method was 
developed to solve the neutron noise transport equation in the frequency 
domain (Yamamoto, 2013, 2018b; Rouchon et al., 2017; Zoia et al., 
2021). Recently, Yi et al. (2021) developed a deterministic neutron noise 
transport solver that uses the discrete ordinates method (Sn method). 

In addition to obtaining an accurate solution of the neutron noise 
equation, the uncertainty of the neutron noise calculated by these 
calculation methods must be quantified. The uncertainties of the 
calculated neutron noise originate from the uncertainties of the con
stants used in the diffusion or transport equation (e.g., nuclear data, 
group constants, and kinetic parameters), as well as the theoretical and 
numerical approximations for the neutron noise. If variables that affect 
the neutron noise are identified using the sensitivity and uncertainty 
analysis (SUA) method, then the accuracy of the calculation results can 
be improved by reducing the uncertainty of the variables. The SUA 
method comprises two primary approaches (Rochman et al., 2011; 
Chiba et al., 2015; Endo et al., 2018). In the conventional SUA method, 
the sensitivity coefficients and covariance of the input variables are 
combined to obtain the uncertainty of the output variables. Another 
approach is random-sampling-based uncertainty quantification, where a 
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large number of calculations are performed using input parameters that 
are randomly sampled from the probability distribution of the parame
ters. Although the random sampling method is a robust technique that 
does not require sensitivity coefficients, it is computationally inefficient. 
The random-sampling-based approach was adopted in the CORTEX 
project to estimate the uncertainty of neutron noise (Yum et al., 2019). 

In this study, the first approach was selected to quantify the sensi

tivity coefficients of neutron noise with respect to the group constants 
and kinetic parameters. In deterministic methods, the sensitivity coef
ficient is typically obtained by combining the solutions of forward and 
adjoint equations. A new deterministic method was developed in this 
study to calculate sensitivity coefficients without solving the adjoint 
equation. This new method is an extension of the “perturbation source 
method,” which was developed for the Monte Carlo perturbation 
method (Sakamoto and Yamamoto, 2017; Yamamoto and Sakamoto, 
2020a, 2021). In addition to the deterministic method for sensitivity 
analysis, a Monte Carlo method is introduced herein to perform the 
sensitivity analysis of neutron noise. In this regard, the differential 
operator sampling method (Rief, 1984; Nagaya and Mori, 2011; Yama
moto, 2018a; Yamamoto and Sakamoto, 2019, 2020b) can be applied 
straightforwardly. This paper addresses the first attempt to calculate the 
sensitivity coefficients of neutron noise using the frequency-domain 
diffusion or transport equation. 

The remainder of this paper is organized as follows: In Section 2, a 
formula for the sensitivity coefficient of neutron noise, which is directly 
calculated from the neutron noise diffusion equation, is derived, and its 
verification is presented. In Section 3, the differential operator sampling 
method applied to the neutron noise transport equation in the frequency 
domain is discussed. The sensitivity coefficients obtained from the 
Monte Carlo method are compared with those obtained using the 
diffusion method. Finally, Section 4 presents the conclusions of the 
study. 

2. Sensitivity coefficient of neutron noise based on diffusion 
theory 

2.1. Formulation of sensitivity coefficient 

First, the “neutron noise” addressed in this study is defined. The 
neutron noise in the time domain is expressed by the difference between 
the time-dependent neutron flux and its mean value, as follows: 

δφg(r, t)≡φg(r, t) − φ0g(r), (1)  

where φg(r, t) is the neutron flux of the gth energy group at position r and 
time t, and φ0g(r) is the mean value of the neutron flux. A Fourier 
transformation of the neutron noise in the time domain yields the 
neutron noise in the frequency domain, as follows: 

δφg(r,ω) ≡

∫ +∞

− ∞
δφg(r, t)e− iωtdt, (2)  

where ω is the angular frequency, and i =
̅̅̅̅̅̅̅
− 1

√
. Because the derivation 

of the multigroup diffusion equation for the neutron noise in the 

frequency domain has been presented in many studies (e.g., Pázsit and 
Demazière, 2010), the typically used formulas are first presented in this 
section, as follows: 

Aδφg(r,ω)= Sg(r,ω). (3) 

The left-hand side of Eq. (3) is defined as follows:  

where λ is the time decay constant of the delayed neutron precursors, vg 

is the neutron velocity, S is the noise source induced by the fluctuation of 
the cross sections, and the other notations are standard in nuclear en
gineering. The delayed neutrons are represented by one group, and the 
energy spectra of the delayed neutrons are assumed to be identical to 
those of the prompt neutrons. 

The sensitivity coefficient of the neutron noise is obtained from the 
first derivative of the neutron noise with respect to a variable, such as 
the group constant or kinetic parameter. The source term Sg(r,ω) in the 
neutron noise equation is typically composed of δΣα(r, ω)φ0(r), where 
δΣα(r,ω) is the Fourier transform of the perturbed term of the cross 
section for reaction α and φ0(r) is the steady state neutron flux (Pázsit 
and Demazière, 2010). Thus, the source term actually depends on the 
variable such as the group constant. However, this study does not 
envisage any kind of anomaly that causes the noise source. Hence, 
throughout this study, we assume that the source term is invariant with 
respect to the variables. The first derivative of the neutron noise is 
derived by differentiating Eq. (3) with variable α as follows: 

Aδφ
′

g,α(r,ω)+A
′

αδφg(r,ω)= 0. (5) 

The first derivative δφ′

g(r,ω) is defined as follows: 

δφ′

g,α(r,ω) ≡
∂δφg(r,ω)

∂α , (6)  

where α is a variable in Eq. (4), such as the cross-section Σag or 
parameter ω. The second term on the left-hand side of Eq. (5) represents 
the source term of the equation. This term is presented by excluding the 
terms with δφ′

g,α(r,ω) from the first derivative of Eq. (4) with respect to 
α. Specifically, this term is presented for each variable in Eq. (4) as 
follows: 

A′

αδφg(r,ω)≡ − ∇D
′

g,α⋅∇δφg(r,ω)+ δφg(r,ω), for α=Σcg or Σg→g′

s , (7)  

A′

αδφg(r,ω)≡ − ∇D
′

g,α⋅∇δφg(r,ω)

−
χg

keff
ν
(

1 −
iωβ

iω + λ

)

δφg(r,ω), for α=Σfg,
(8)  

A′

αδφg(r,ω)≡ i
vg

δφg(r,ω)+
χg

keff

iβλ
(iω + λ)2

∑G

g′ =1

νΣfg′ (r)δφg′ (r,ω), for α=ω,

(9)  

A′

αδφg(r,ω)≡
χg

keff

iω
iω + λ

∑G

g′ =1

νΣfg′ (r)δφg′ (r,ω), for α= β, (10)  

Aδφg(r,ω)≡ − ∇Dg⋅∇δφg(r,ω)+Σag(r)δφg(r,ω)+
∑G

g′ =1

g∕=g′

Σg→g′

s (r)δφg(r,ω) −
χg

keff

(

1 −
iωβ

iω + λ

)
∑G

g′ =1

νΣfg′ (r)δφg′ (r,ω) −
∑G

g′ =1

g∕=g′

Σg′ →g
s (r)δφg′ (r,ω)

+
iω
vg

δφg(r,ω), (4)   
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A′

αδφg(r,ω)≡ −
χg

keff

iωβ
(iω + λ)2

∑G

g′ =1

νΣfg′ (r)δφg′ (r,ω), for α= λ, (11)  

where Σcg is the capture cross-section. We assume that the diffusion 
coefficient Dg is expressed as 1/(3Σtg) and that it changes accordingly 

with Σcg, Σg→g′
s and Σfg. D

′

g,α in Eqs. (7) and (8) are expressed as follows: 

D′

g,α ≡
∂Dg

∂α =
∂

∂α

(
1

3Σtg

)

= −
1

3Σ2
tg

∂Σtg

∂α = −
1

3Σ2
tg
, (12)  

where ∂Σtg/∂α = 1. As indicated in Eq. (5), δφg(r,ω) is necessitated to 
solve Eq. (5) such that the first derivative δφ′

g,α(r,ω) can be obtained. 
Hence, the first derivative is calculated in two steps. In the first step, the 
neutron noise is calculated using Eq. (3). Subsequently, the first deriv
ative is calculated. 

2.2. Numerical examples of sensitivity coefficient 

Numerical tests for the formulation of the first derivatives in Section 
2.1 were performed for a cylinder of infinite height. The cylinder was 
composed of an inner fuel region with a radius of 36 cm; it was sur
rounded by an annular light-water reflector with an outer radius of 72 
cm. The inner fuel region comprised a homogenized UO2 fuel rod array. 
The group constants were prepared using the standard thermal reactor 
analysis code SRAC (Okumura et al., 2007). Table 1 lists the two-group 
constants used in the numerical tests. The diffusion equations were 
solved using the finite-difference scheme. A vacuum boundary condition 
( − Dgφ̇g/φg = 0.4692) was imposed on the outer surface of the 
light-water reflector. The value of keff used in Eqs. (4) and (5) was 
1.001453. The noise source of the second energy group was placed at the 
center of the cylinder. The frequency and intensity of the noise source 
were 1 Hz and 1 − i, respectively. The neutron noise distributions were 
calculated by solving Eq. (3) and are shown in Fig. 1, where the Monte 
Carlo results, which will be presented later in Section 3, are shown as 
well. The diffusion results were primarily consistent with the Monte 
Carlo results, except near the noise source, where the diffusion 
approximation was not necessarily appropriate. 

The approximate reference values of the first derivatives were ob
tained from the difference in the neutron noise caused by an infinitesi
mally small perturbation of parameter α in the fuel region. The real parts 
of the first derivatives of the fast energy group at r = 18.09 cm were 
compared with the reference values listed in Table 2. The first derivative 
with respect to the neutron velocity vg is omitted because it is negligibly 
small. The approximate reference values were obtained as follows: 

Re
[
δφ1,α+Δα

]
− Re

[
δφ1,α

]

Δα , (13)  

where δφ1,α is the unperturbed neutron noise, δφ1,α+Δα the neutron noise 
that is slightly perturbed by Δα, and Re[ ] the real part. Table 2 lists the 
relative first derivatives calculated using Eq. (5), and they precisely 
reproduced the reference values. Although the results of the thermal 
energy group are not presented, the same thing went for the thermal 
energy group. 

The sensitivity coefficient of the amplitude of the neutron noise is 
defined as follows: 

S
( ⃒
⃒δφg

⃒
⃒;α

)
≡

α
⃒
⃒δφg

⃒
⃒

∂
⃒
⃒δφg

⃒
⃒

∂α , (14)  

where 
⃒
⃒δφg

⃒
⃒ is the neutron-noise amplitude. The partial derivative of Eq. 

(14) is expressed as follows: 

∂
⃒
⃒δφg

⃒
⃒

∂α =
Re

[
δφg

]
Re

[
δφ′

g,α

]
+ Im

[
δφg

]
Im

[
δφ′

g,α

]

⃒
⃒δφg

⃒
⃒

, (15)  

where Im[ ] denotes the imaginary part. The sensitivity coefficient of the 
neutron noise phase is defined as follows: 

S(θ;α) ≡ α
θ

∂θ
∂α , (16)  

where θ is the neutron-noise phase. The partial derivative of Eq. (16) is 
expressed as follows: 

Table 1 
Group constants of fuel region and water reflector.   

Fuel region Water reflector 

D1 (cm)  1.45293 0.905414 
D2 (cm)  0.197177 0.125647 
Σt1(cm− 1)  0.229420 0.368156 
Σt2(cm− 1)  1.69053 2.65294 
νΣf1(cm− 1)  0.00643278 – 

νΣf2(cm− 1)  0.155089 – 
Σc1(cm− 1)  0.00696154 0.000460058 
Σc2 (cm− 1)  0.0527943 0.0188813 

Σ1→1
s (cm− 1)  0.1972572 0.3092749 

Σ1→2
s (cm− 1)  0.0225208 0.0584208 

β  0.007 – 
λ (s− 1)  0.08 – 
v1(cm/s)  2.8 × 107 2.8 × 107 

v2(cm/s)  3 × 105 3 × 105  

Fig. 1. Neutron noise radial distribution obtained using Monte Carlo and 
diffusion methods. 

Table 2 
Relative first derivative for f = 1 Hz and r = 18.09 cm  

α   Re[δφ′

1,α]

Re[δφ1]

Re[δφ1,α+Δα] − Re[δφ1,α]

Re[δφ1]Δα   
Δα   

Σc1  − 2620 − 2619 1 × 10− 7 (cm− 1) 
Σc2  − 685.9 − 685.6 1 × 10− 6 (cm− 1) 
Σf1  3682 3682 1 × 10− 7 (cm− 1) 
Σf2  571.6 571.6 1 × 10− 6 (cm− 1) 

Σ1
s  109.5 109.6 1 × 10− 5 (cm− 1) 

β  − 100.2 − 100.2 1 × 10− 6 

λ  − 0.1191 − 0.1191 1 × 10− 4 (s− 1) 
ω   − 0.001373 − 0.001378 0.02 (s− 1)  
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∂θ
∂α=

Re
[
δφg

]
Im

[
δφ′

g,α

]
− Im

[
δφg

]
Re

[
δφ′

g,α

]

⃒
⃒δφg

⃒
⃒2 . (17) 

The sensitivity coefficients defined in Eqs. (14) and (16) are shown as 
a function of frequency in Figs. 2–5. As shown in Fig. 4, whereas the 
uncertainty of λ was sensitive to the neutron noise at lower frequencies, 
it did not affect the accuracy of the neutron noise whose frequency 
exceeded 0.1 Hz. The effect of the uncertainty of ω was significant below 
0.1 Hz and above 10 Hz. Between 0.1 Hz and 10 Hz, it exerted only a 
slight effect on the accuracy of the neutron noise. 

The advantage of this proposed method is to avoid adjoint mode 
calculations. The adjoint calculation needs to be performed for each 
response that is sought to be evaluated. The number of the adjoint cal

culations to be performed increases with the number of responses. The 
proposed method needs to be performed only once for each parameter of 
interest. The alternative approximate method, as shown in Eq. (13), 
where the parameter of interest is slightly perturbed needs to adjust the 
quantity of perturbation in such a way that the perturbation is small 

enough for accurate estimation of sensitivity. The proposed method can 
omit this adjustment. 

3. Sensitivity coefficient of neutron noise obtained using Monte 
Carlo method 

3.1. Differential operator sampling method 

This section presents a Monte Carlo method for calculating the 
sensitivity coefficient of neutron noise. The multigroup transport 
equation of the neutron noise used in this study is as follows (Yamamoto, 
2018b):  

where isotropic scattering is assumed. The Monte Carlo algorithm for 
solving this transport equation has already been developed (Yamamoto, 
2013, 2018b; Rouchon et al., 2017). The differential operator sampling 
(DOS) method is a well-established technique that can yield the first 
derivative of the neutron flux with respect to a cross section (Rief, 1984; 

Fig. 2. Sensitivity coefficients of neutron noise amplitude with respect to group 
constant vs. frequency. 

Fig. 3. Sensitivity coefficients of neutron noise phase with respect to group 
constant vs. frequency. 

Fig. 4. Sensitivity coefficients of neutron noise amplitude with respect to ki
netic parameter vs. frequency. 

Ω⋅∇δφg(r,Ω,ω)+Σtg(r)δφg(r,Ω,ω)=
1

4π

∫

4π
dΩ′

∑G

g′ =1

Σg′ →g
s (r)δφg′ (r,Ω

′

,ω)+
χg

4πkeff

(

1 −
iωβ

iω + λ

)∫

4π
dΩ′

∑G

g′ =1

νΣfg′ (r,E
′

)δφg′ (r,Ω
′ ω) − iω

vg
δφg(r,Ω,ω)

+ Sg(r,Ω,ω), (18)   

Fig. 5. Sensitivity coefficients of neutron noise phase with respect to kinetic 
parameter vs. frequency. 
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McKinney and Iverson, 1996; Densmore et al., 1997; Nagaya and Mori 
2011; Yamamoto and Sakamoto, 2020b). The first-order DOS method 
was applied to the sensitivity coefficient of the keff eigenvalue (Yama
moto, 2018a). In this study, the DOS was implemented in the Monte 
Carlo algorithm to solve the neutron noise transport equation in the 
frequency domain. Because the detailed description of the DOS has been 
presented in previous publications, the minimum steps for calculating 
the sensitivity coefficient of neutron noise flux are presented here. 

During the random walk process of the Monte Carlo calculation to 
obtain the neutron noise, the following estimate for the first derivative 
of the neutron noise δφg,j within region j with respect to parameter α is 
scored from the birth of the mth noise source particle until its death 
(including all resulting progenies): 

∂δφg,j,m

∂α =
∑

i

1
Σtg,j

wiPi(α), (19)  

where the summation is performed at each collision within region j, and 
wi is the complex-valued particle weight of the ith collision within region 
j. Pi(α) is the score accumulated until the ith collision and is defined for 
each group constant as follows: 

Pi
(
Σcg

)
= −

∑

k
sk, (20)  

Pi
(
Σg

s

)
=

∑i− 1

l=1

1
Σg

s
−
∑

k
sk, (21)  

Pi
(
Σfg

)
= −

∑i− 1

l=1

1
Σtg

+
∑i− 1

n=1

1
Σfg

−
∑

k
sk, (22)  

where the summation for k is performed over all tracks until the ith 
collision, the summation for l in Eq. (21) is performed over all collisions 
until the (i − 1)th collision, and the summation for n in Eq. (22) is per
formed over all the fissions until the (i − 1)th collision. These summa
tions are performed within the region where the group constant α exists. 

The DOS method to obtain the sensitivity with respect to the kinetic 
parameters (ω, β, and λ) is devised in this study. When a particle prop
agates from position r to collision point r′ , the transport kernel for the 
neutron noise transport equation (Eq. (18)) is expressed as follows: 

T(r → r′

) =Σtg exp
(
− Σtgs

)
exp

(

−
iω
vg

s
)

, (23)  

where s = |r′

− r|. The weighting coefficient of this transport kernel with 
respect to the frequency ω is scored during the random walk process and 
is expressed as 

1
T(r→r′

)
⋅

∂
∂ω T(r → r′

) = −
is
vg
. (24) 

When a fission occurs, the following weight is assigned to each 
fission neutron: 

Wf =
1

keff

(

1 −
iωβ

iω + λ

)

. (25) 

Hence, the weighting coefficient of the nth fission reaction with 
respect to ω is expressed as 

Qωn =
1

Wf

∂Wf

∂ω = −
iβλ

(iω + λ)(λ + iω(1 − β))
. (26) 

Similarly, the weighting coefficient of the nth fission reaction with 
respect to β or λ is expressed as follows: 

Qβn =
1

Wf

∂Wf

∂β
= −

iω
λ + iω(1 − β)

, (27)  

Qλn =
1

Wf

∂Wf

∂λ
=

iωβ
(iω + λ)(λ + iω(1 − β))

. (28) 

The term Pi(α) in Eq. (19) for α = ω, β, and λ are expressed as 
follows: 

Pi(ω)=
∑i− 1

n=1
Qωn −

∑

k

isk

vg
, (29)  

Pi(β) =
∑i− 1

n=1
Qβn, (30)  

Pi(λ)=
∑i− 1

n=1
Qλn, (31)  

where the summation for k is performed throughout the entire region, 
and the summation for n is performed over all fissions until the (i − 1)th 
collision. After the source particle and all resulting progenies are killed, 
the next source particle is re-emitted. This process is repeated many 
times until the desired statistics are obtained. The mean value of the first 
derivative of the neutron noise δφg,j within region j with respect to 
parameter α is expressed as follows: 

∂δφg,j

∂α =
1
M

∑M

m=1

∂δφg,j,m

∂α , (32)  

where M is the total number of source particles. 
The advantages of the DOS method used in this study are as follows. 

For Monte Carlo sensitivity analyses, the approximate method where the 
quantity of interest is slightly perturbed is almost impossible due to the 
statistical uncertainties involved in Monte Carlo calculations. Alterna
tive Monte Carlo sensitivity analysis methods other than the DOS are 
adjoint-based methods (Kiedrowski, 2017); however, the adjoint based 
methods such as the iterated fission probability method are more 
cumbersome than the DOS. 

3.2. Numerical examples of DOS 

The algorithm of the DOS presented in Section 3.1 was applied to the 
problem discussed in Section 2. Because the diffusion method to obtain 
the sensitivity coefficients has been verified, the Monte Carlo algorithm 
was verified through a comparison with results obtained using the 
diffusion method. The neutron noise distributions were obtained by 
solving Eq. (18) using an in-house Monte Carlo calculation code. The 
Monte Carlo results are shown along with the results obtained using the 
diffusion method presented in Fig. 1. The proposed DOS algorithm was 
implemented into the in-house code, and the sensitivity coefficients 
were obtained using the code. The sensitivity coefficients of the neutron 

Table 3 
Sensitivity coefficients of neutron noise amplitude in fast energy group at f = 1 
Hz, r = 18.09 cm  

α  S(|δφ1|; α)

Diffusion Monte Carlo 

Σc1  − 18.74 − 18.82 ± 0.06 
Σc2  − 37.21 − 37.33 ± 0.19 
Σf1  10.14 10.16 ± 0.03 
Σf2  37.93 38.03 ± 0.09 

Σ1
s  24.75 24.37 ± 0.05 

β  − 0.7108 − 0.7075 ± 0.0020 
λa  0.01471 0.01475 ± 0.00030 
ωa  − 0.1486 − 0.1476 ± 0.0025  

a These values are for 0.1 Hz instead of 1 Hz because they are approximately 
zero for 1 Hz. 
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noise amplitude in the fast energy group defined in Eq. (14) (as shown in 
Table 3) obtained using the DOS and diffusion methods were compared. 
The position for the sensitivity coefficient was r = 18.09 cm. This po
sition was sufficiently remote from the noise source and material 
boundary, where the diffusion approximation was relatively appro
priate. The frequency of the sensitivity coefficients was 1 Hz, except for 
α = ω and λ because the sensitivity coefficients of these two parameters 
were extremely small at 1 Hz. In fact, the sensitivity coefficients for ω 
and λ were 0.1 Hz. The DOS results of the sensitivity coefficients were 
consistent with the diffusion results for all the parameters. Although the 
results of the thermal energy group are not presented, the DOS results of 
the thermal energy group were also consistent with the diffusion results. 
The sensitivity analysis method for neutron noise using DOS was verified 
through a comparison with the diffusion method. 

4. Conclusions 

Both deterministic and stochastic neutron noise analysis methods 
have been developed hitherto. A new method for calculating the sensi
tivity coefficient of neutron noise with respect to the cross section and 
kinetic parameters was presented herein. A formula that yields the first 
derivative of neutron noise was derived by differentiating the neutron 
noise diffusion equation with respect to a parameter. This method was 
verified through a comparison with accurate direct perturbation results. 
As a stochastic method, the DOS method was applied to the neutron 
noise transport equation in the frequency domain. An algorithm for ki
netic parameters was newly proposed, whereas the DOS algorithm for a 
cross section was identical to the conventional method. The DOS method 
was verified through a comparison with the diffusion method. 

The technique developed in this study can be applied to existing 
codes without requiring significant modifications. Furthermore, the 
methods developed in this study do not require adjoint mode calcula
tions. The formula for the first derivative derived in this study can be 
expanded to higher-order, cross-term analyses. The newly developed 
method can expand the availability of neutron noise techniques for 
ensuring nuclear reactor safety. 

Throughout this study, the noise source term in the neutron noise 
equation was assumed to be invariant with respect to the parameters. 
Future work includes considering the dependence of the noise source 
term on the parameters. 
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