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Abstract
Recently, the study of topological phases has made remarkable progress on highly-controlled

non-equilibrium systems: Floquet and non-Hermitian systems. Floquet systems are dynamical
systems governed by time-periodic Hamiltonians. Non-Hermitian systems are non-equilibrium
and open systems, where effective Hamiltonians become non-Hermitian. Floquet and non-
Hermitian systems provide desirable platforms for realizing the topological phenomena pro-
posed in equilibrium. Furthermore, it has become clear that Floquet and non-Hermitian systems
can realize novel topological phenomena that cannot occur in equilibrium. One such unique
physics is the breakdown of the Nielsen-Ninomiya theorem [1, 2]. Nielsen-Ninomiya theorem
was initially proposed as a no-go theorem for the lattice realization of the Standard Model in
particle physics, which assures the pair-wise existence of gapless fermions. However, in Flo-
quet systems, two schemes to realize a single Weyl fermion were proposed [3, 4]. Moreover, in
non-Hermitian systems, a general procedure to obtain an anomalous single gapless mode was
proposed [5].

In this paper, we establish an extended version of the Nielsen-Ninomiya theorem for Floquet
and non-Hermitian systems that is valid even in the presence of anomalous single gapless modes
above. The extended Nielsen-Ninomiya theorem relates the anomalous gapless modes with bulk
topological invariants intrinsic to dynamical systems. we also see applications of this theorem
for both Floquet systems and non-Hermitian systems.
1. Extended Nielsen-Ninomiya theorem [6]

In this chapter, we find and prove formulae that relate anomalous gapless modes and topo-
logical invariants in Floquet and non-Hermitian systems in a unified manner. First, for non-
Hermitian systems, we refine an observation given by Lee, et al. [5] into formulae of extended
Nielsen-Ninomiya theorem for non-Hermitian systems. Then, for Floquet systems, we establish
a topological duality between Floquet and non-Hermitian systems for energy gaps, symmetries,
and topological charges of gapless modes. Then, we apply the duality to the formula in non-
Hermitian systems to obtain the extended Nielsen-Ninomiya theorem for Floquet systems.
2. Non-Hermitian chiral magnetic effect [6]

Applying the extended Nielsen-Ninomiya theorem for non-Hermitian systems, we propose
a non-Hermitian version of the chiral magnetic effect. Chiral magnetic effect is an occurrence of
electric current proportional to an applied magnetic field in the presence of chemical potential
unbalance in Weyl fermions [7]. The effectively single Weyl fermion in non-Hermitian systems
can be a platform to realize the chiral magnetic effect. We also find a formula, which assures the
number of right-going modes is proportional to an applied magnetic field.
3. Extrinsic topology in Floquet anomalous edge states in quantum walks [8]

Applying the extended Nielsen-Ninomiya theorem for Floquet systems, we propose extrinsic
topological nature in quantum walks. Quantum walk is a quantum version of random walks,
and a time-periodic series of unitary operators describe its dynamics. We give a topological
classification of boundary states in quantum walks. We show that the boundary states depend not
only on bulk topology through bulk-boundary correspondence but also on boundary topology.



iii

Contents

Abstract ii

List of Publications vi

1 Introduction 1
1.1 Overview of recent studies on Floquet topological phases . . . . . . . . . . . . 1

1.1.1 Classification of Floquet topological insulators . . . . . . . . . . . . . 2
1.1.2 Examples of Floquet topological insulators . . . . . . . . . . . . . . . 5
1.1.3 Classification of Floquet gapless phases . . . . . . . . . . . . . . . . . 12
1.1.4 Examples of Floquet gapless phases . . . . . . . . . . . . . . . . . . . 13

1.2 Overview of non-Hermitian topological phases . . . . . . . . . . . . . . . . . 20
1.2.1 Classification of non-Hermitian gapped topological phases . . . . . . . 21
1.2.2 Examples of line-gapped topological phases . . . . . . . . . . . . . . . 26
1.2.3 Examples of point-gapped topological phases . . . . . . . . . . . . . . 28
1.2.4 Examples of point-gapless topological states . . . . . . . . . . . . . . 33
1.2.5 Experimental realization of non-Hermitian Hamiltonians . . . . . . . . 39

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Method: Dirac Hamiltonians 43
2.1 Simplest topological insulator models . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Clifford algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3 Classification of topological insulators and superconductors . . . . . . . . . . . 45
2.4 Bulk-boundary correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 2D Chern insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Topological classification of Floquet systems . . . . . . . . . . . . . . . . . . 51
2.6 Topological classification of non-Hermitian systems . . . . . . . . . . . . . . . 52

3 Extended Nielsen-Ninomiya theorem for Floquet and non-Hermitian systems 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 1D chiral fermions in dynamical systems . . . . . . . . . . . . . . . . 55
3.2.2 Non-Hermitian Weyl semimetals . . . . . . . . . . . . . . . . . . . . . 57

3.3 General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Extended Nielsen-Ninomiya theorem . . . . . . . . . . . . . . . . . . 59

3.4 Gapless structures in non-Hermitian systems . . . . . . . . . . . . . . . . . . . 60
3.5 Proof of extended Nielsen-Ninomiya theorem . . . . . . . . . . . . . . . . . . 61

3.5.1 Case (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Class A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



iv

Class AI† . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Class AII† . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Case (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Extended Nielsen-Ninomiya theorem in Floquet systems . . . . . . . . . . . . 69
3.7 Nielsen-Ninomiya theorem in 3D . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 2D class AIII Floquet system . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Non-Hermitian chiral magnetic effect 73
4.1 Chiral magnetic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Non-Hermitian Weyl semimetal . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Extended Nielsen-Ninomiya theorem . . . . . . . . . . . . . . . . . . 74
4.2.2 Weyl point under a magnetic field . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Chiral magnetic skin effect . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Extrinsic topology in quantum walks 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Classification of extrinsic topology in quantum walks . . . . . . . . . . . . . . 83
5.3 Extrinsic boundary states of quantum walks in 1D . . . . . . . . . . . . . . . . 87

5.3.1 class AIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 class BDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3 class D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.4 class DIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.5 class CII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Classification of Floquet systems v.s. quantum walks . . . . . . . . . . . . . . 94
5.5 Bulk-boundary correspondence in 1D chiral-symmetric quantum walks . . . . 96
5.6 Physical implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.1 2D disordered systems with extrinsic edge modes . . . . . . . . . . . . 98
5.6.2 Class AIII 1D: the split-step quantum walk and the cancellation of its

boundary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6.3 Class A in 2D: cancellation of the chiral edge mode . . . . . . . . . . . 108

6 Summary and outlook 112

A Construction of non-Hermitian Weyl semimetal 114

B Extended Nielsen-Ninomiya theorem in other than AZ† symmetry classes 115
B.1 Symmetry forgetting functor . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2 Relation between point-gapped structures and line-gapless structures . . . . . . 118
B.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.3.1 AZ† class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.3.2 class A +SLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.4 Proof of statements 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C Extended Nielsen-Ninomiya theorem for Floquet systems: another proof 121



v

D Details for non-Hermitian chiral magnetic effect 125
D.1 Lattice realization of magnetic field . . . . . . . . . . . . . . . . . . . . . . . 125
D.2 Exact quantization of total flux . . . . . . . . . . . . . . . . . . . . . . . . . . 127
D.3 w3 with and without magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 128
D.4 Finite magnetic field case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

E Details in extrinsic quantum walks 131
E.1 The winding numbers w1[a], w1[b], w1[c], and w1[d] in class CII 1D . . . . . . . 131
E.2 Proof of Eq. (5.129) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.3 Proof of Eq. (5.132) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
E.4 Robustness of extrinsic chiral edge modes against random phase . . . . . . . . 136
E.5 Diffusive behavior of the time-dependent Anderson model . . . . . . . . . . . 136

Bibliography 139

Acknowledgements 150



vi

List of Publications
Papers related to the thesis

1. Takumi Bessho and Masatoshi Sato,
Nielsen-Ninomiya Theorem with Bulk Topology: Duality in Floquet and Non-Hermitian
Systems,
Physical Review Letters 127, 196404 (2021).
© 2021 American Physical Society

2. Takumi Bessho, Ken Mochizuki, Hideaki Obuse and Masatoshi Sato,
Extrinsic Topology of Floquet Anomalous Edge States in Quantum Walks,
arXiv:2112.03167.

Published papers not included in the thesis
1. Kohei Kawabata, Takumi Bessho, and Masatoshi Sato,

Classification of Exceptional Points and Non-Hermitian Topological Semimetals,
Physical Review Letters 123, 066405 (2019).
© 2019 American Physical Society

2. Takumi Bessho, Kohei Kawabata, and Masatoshi Sato,
Topological Classificaton of Non-Hermitian Gapless Phases: Exceptional Points and Bulk
Fermi Arcs,
JPS Conference Proceeding 30, 011098 (2020).
© 2019 The Physical Society of Japan

3. Ken Mochizuki, Takumi Bessho, Masatoshi Sato, and Hideaki Obuse,
Topological quantum walk with discrete time-glide symmetry,
Physical Review B 102, 035418 (2020).
© 2020 American Physical Society



vii

List of Abbreviations

BZ Brillouin Zone
PBC Periodic Boundary Conditions
OBC Open Boundary Conditions
AZ Altland-Zirnbauer
TRS Time Reversal Symmetry
PHS Particle Hole Symmetry
CS Chiral Symmetry
CME Chiral Magnetic Effect
SLS Sub-Lattice Symmetry
pH pseudo-Hermiticity
SSH Su-Schrieffer-Heefer
DOS Density Of States





1

Chapter 1

Introduction

In the last two decades, the study of topological phases has encountered great progress in con-
densed matter physics. The quantization of Hall conductance was firstly observed in 1980 [9].
This integer quantum Hall effect is now used for SI units. Later, it was found that the quantized
Hall conductance is rewritten as the Chern number, a topological invariant in two dimensions
[10, 11]. After these works, there has been little progress in the study of topological insulators
for a long time. In 2005, however, the prediction of quantum spin Hall effect paved a new way
[12]. Through this study, it was found that symmetries enrich topological phases, and many
researchers started to study in this direction: the topological condensed matter physics. The
studies of symmetry-enriched topological phases have been summarized in a periodic table of
topological insulators and superconductors [13–18], which shows the presence or absence of
Z,Z2 topological invariants in each symmetry class and dimensions. 1

Recently, the topological phases have also been widely investigated in non-equilibrium sys-
tems. We discuss two uprising fields of non-equilibrium systems: Floquet systems and non-
Hermitian systems. In Sec. 1.1, we review the topological classifications and some examples
in Floquet systems. In Sec. 1.2, we review the topological classification and some examples in
non-Hermitian systems. Finally, we explain the organization of this thesis in Sec. 1.3.

1.1 Overview of recent studies on Floquet topological phases
In this section, we review the recent studies of Floquet topological phases from the perspective
of classifications. Floquet systems are periodically driven systems governed by a time-periodic
Hamiltonian H(t) = H(t + T ), where T is the one-cycle time period of the system. The
stroboscopic dynamics of such systems can be understood by a time-averaged Hamiltonian as
effectively time-independent dynamics. Its key ingredient is the Floquet theorem with time
translation symmetry, which leads to energy periodicity [19, 20], an analog of Bloch theorem
with translation symmetry leading to momentum periodicity. In experiments, for example, by
using appropriate lasers that induce a time-periodic part of the original Hamiltonian, we can
obtain the targeted Hamiltonian which is difficult to realize in equilibrium; such a scheme is
called Floquet engineering.

Then, Floquet systems can be a desirable platform of topological insulators and superconduc-
tors [21–24], where the effective Hamiltonian can be approximately evaluated by high-frequency
expansion [25]. Beyond the high-frequency approximation, it was found that Floquet systems
can realize novel edge states that have no counterpart in equilibrium, called Floquet anomalous

1This classification table explains the topological phases without interactions. In this thesis, we focus on topo-
logical phases without interactions. Even in the presence of strong interactions, many of these topological phases
are known to survive.
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edge states [26–31]: Remarkably, we can realize robust chiral edge modes without the Chern
number in Floquet systems.

We can also realize novel bulk topology in Floquet systems. Thouless pumping [32], the
time-periodic Hamiltonian of which pumps one particle in one cycle, is actually a typical exam-
ple. The quasi-energy spectrum of the effective time-independent Hamiltonian evaluated from
the Thouless pumping model indicates the existence of unpaired chiral modes. The net num-
ber of the chiral modes in the effective Hamiltonian indicates the number of pumped particles
in one cycle. A three-dimensional counterpart with unpaired Weyl fermions enables the chiral
magnetic effect [7], an occurrence of current by an applied magnetic field, in Floquet systems
[3, 4].

Recently, various studies on Floquet topological phases have been summarized as topolog-
ical classifications [3, 33]. These classifications have clarified the presence or absence of non-
trivial topological phases in each symmetry class and dimensions.

In Sec. 1.1.1, we review the classification of Floquet topological insulators and supercon-
ductors [33]. In Sec. 1.1.2, we review the concrete topological invariants and models of Floquet
topological insulators and superconductors for class A d = 2 [27], class AIII d = 1 [30], and
class D d = 1 [28]. In Sec. 1.1.3, we review the topological classification of Floquet gapless
phases [3]. In Sec. 1.1.4, we review the concrete topological invariants and models of Floquet
gapless phases for class A d = 1 [32, 34] and d = 3 [3, 4, 26]

1.1.1 Classification of Floquet topological insulators
In this subsection, we review the classification theory on Floquet topological insulators. The
stroboscopic dynamics in Floquet systems can be described by the one-cycle time evolution
operator, sometimes called the Floquet operator,

UF (k) = T exp[−i
∫ T

0

dtH(k, t)]. (1.1)

The effective time-independent Hamiltonian, called the Floquet Hamiltonian, is defined by
UF (k) = e−iHF (k)T or equivalently,

HF (k) =
i

T
logUF (k). (1.2)

Quasi-energy spectrum of HF (k) has 2π/T periodicity which comes from the uncertainty of
logarithm for a complex phase.

We next introduce symmetries. In equilibrium, we have ten-fold Altland-Zirnbauer (AZ)
symmetry classes as local symmetry classes [15, 35]. Hamiltonians H possible satisfies time-
reversal symmetry (TRS), particle-hole symmetry (PHS) and/or chiral symmetry (CS):

THT−1 = H, (1.3)
CHC−1 = −H, (1.4)
ΓHΓ−1 = −H. (1.5)
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Here, T andC are anti-unitary operators with T 2 = ±1 andC2 = ±1, and Γ is a unitary operator
with Γ2 = 1. If the Hamiltonian has translational symmetry, Bloch (BdG) Hamiltonians obey

TH(k)T−1 = H(−k), (1.6)
CH(k)C−1 = −H(−k), (1.7)
ΓH(k)Γ−1 = −H(k). (1.8)

Similarly, in Floquet systems, TRS, PHS, and CS are given as

TH(k, t)T−1 = H(−k,−t), (1.9)
CH(k, t)C−1 = −H(−k, t), (1.10)
ΓH(k, t)Γ−1 = −H(k,−t). (1.11)

These symmetries reproduce the original TRS, PHS, and CS for the effective Hamiltonian
HF (k):

THF (k)T
−1 = HF (−k), (1.12)

CHF (k)C
−1 = −HF (−k), (1.13)

ΓHF (k)Γ
−1 = −HF (k). (1.14)

If there are PHS and/or CS, there is a symmetry constraint ϵn = −ϵm (mod 2π) for some energy
bands n,m. Then, we obtain high-symmetric Fermi energy levels ϵ = 0, π.

We first review the classification of Floquet topological insulators and superconductors given
by Roy and Harper [33]. We assume two energy gaps both at high-symmetric energies ϵ = 0
and ϵ = π/T are open. A Floquet system is given by a microscopic Hamiltonian H(k, t), but
we consider the topological classification of time evolution operators U(k, t) because it has the
same information as the original microscopic Hamiltonians. We rewrite the TRS, PHS, and CS
as those for time evolution operator U(k, t):

TU(k, t)T−1 = U(−k,−t), (1.15)
CU(k, t)C−1 = U(−k, t), (1.16)
ΓU(k, t)Γ−1 = U(k,−t). (1.17)

We next decompose the time evolution operator U(k, t) into two parts:

C(k, t) := e−iHF (k)t, L(k, t) := U(k, t)C(k, t)−1. (1.18)

We call C(k, t) constant time evolution and L(k, t) loop unitary. Here, we implicitly supposed
that HF (k) is gapped at ϵ = 0, π/T and the branch cut is taken at ϵ = π/T . We note that this
decomposition is unique up to homotopy equivalence [33]. Thus, the topological classification
problem of the time evolution operator U(k, t) becomes the topological classification problem
of constant time evolution C(k, t) and loop unitary L(k, t).

The topological classification of C(k, t) is equivalent to that of HF (k), which can be seen
as ordinary Hamiltonian with a gap at ϵ = 0. Thus, the periodic table of C(k, t) is equivalent to
that of ordinary topological insulators and superconductors in equilibrium.
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The topological classification of L(k, t) also becomes the same as that of ordinary topologi-
cal insulators and superconductors, but for different reasons. We introduce a doubled Hamilto-
nian HL(k, t) as

HL(k, t) :=

(
0 L(k, t)

L†(k, t) 0

)
. (1.19)

We note that HL(k, t) is Hermitian, has eigenvalues ±1 due to HL(k, t)
2 = 1̂, periodic both in

kj and t, and obeys proper chiral symmetry:

ΣzHL(k, t)Σz = −HL(k, t), Σz :=

(
1̂ 0

0 −1̂

)
. (1.20)

Therefore, HL(k, t) can be regarded as a Hamiltonian of topological insulators and supercon-
ductors with "momentum" (k, t) on the Brillouin zone Td+1 = [−π/a, π/a]d × [−T/2, T/2].
Here a is lattice constant. L(k, t) obey the same symmetries as U(k, t) in Eqs. (1.15)-(1.17),
and thus HL(k, t) obeys

T̃HL(k, t)T̃
−1 = HL(−k,−t), T̃ :=

(
T 0
0 T

)
, (1.21)

C̃HL(k, t)C̃
−1 = HL(−k, t), C̃ :=

(
C 0
0 C

)
, (1.22)

Γ̃HL(k, t)Γ̃
−1 = HL(k,−t), Γ̃ :=

(
Γ 0
0 Γ

)
. (1.23)

These symmetries have the form of two-fold crystalline symmetries [17, 18, 36, 37], and thus
we can calculate the topological classification by the methods developed in equilibrium. One
systematic classification method depends on K-theory firstly established by Kitaev [14]. Another
systematic method depends on the extension problem of Clifford algebra, which is also firstly
proposed by Kitaev and later developed by Morimoto, Furusaki, Chiu, Schnyder, and Shinsei,
et al., [15, 17, 36, 37]. We explain the classification method of Clifford algebra in Chap. 2.
Then, we can find that the topological classification of L(k, t) coincides with the topological
classification of ordinary insulators and superconductors in equilibrium.

As a result, the periodic table of Floquet topological insulators and superconductors is the
same as that of ordinary topological insulators and superconductors except for the doubling of
topological numbers [Table 1.1].

The bulk-boundary correspondence in Floquet systems is summarized as 2
∑
ϵα=0

ν0α = nC + nL,∑
ϵα=π/T

νπα = (−1)dnL,
(1.24)

2We note that this formula is sometimes meaningless because some convenient Floquet topological invariants are
defined from the combinations of nC and nL. One nontrivial result from this form is that the Floquet anomalous
topological phases — the topological phases that have nontrivial gapless states but has trivial bulk topological
invariants nC = 0 of the Floquet Hamiltonian HF (k) — have net nL gapless states at ϵ = 0 and net (−1)dnL
gapless states at ϵ = π/T .
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TABLE 1.1: Periodic table of Floquet topological insulators and superconductors in Altland-Zirnbauer
(AZ) symmetry classes with two gaps ϵ = 0 and ϵ = π/T .

AZ class T C Γ d = 1 2 3
A 0 0 0 0 Z⊕ Z 0

AIII 0 0 1 Z⊕ Z 0 Z⊕ Z
AI +1 0 0 0 0 0

BDI +1 +1 1 Z⊕ Z 0 0
D 0 +1 0 Z2 ⊕ Z2 Z⊕ Z 0

DIII −1 +1 1 Z2 ⊕ Z2 Z2 ⊕ Z2 Z⊕ Z
AII −1 0 0 0 Z2 ⊕ Z2 Z2 ⊕ Z2

CII −1 −1 1 2Z⊕ 2Z 0 Z2 ⊕ Z2

C 0 −1 0 0 2Z⊕ 2Z 0
CI +1 −1 1 0 0 2Z⊕ 2Z

where nC is the topological invariant of C(k, t) or equivalentlyHF (k), and nL is the topological
invariant of L(k). ν0,πα is the topological charge of gapless states of α-th Fermi surface at ϵ = 0
or π/T . We note that the explicit form of ν0,πα is defined to become one for the gapless Dirac
Hamiltonian HDirac(k) =

∑
j kjΓj + ϵF 1̂ of the symmetry class and the dimensions, where

ϵF = 0, π/T and we introduced the gamma matricies {Γi,Γj} = 2δij . 3 The (−1)d sign factor
does not exist in the previous works [33], but this sign is naturally appears to be compatible with
the topological charge defined from the primitive Dirac Hamiltonian HDirac(k) =

∑
j kjΓj . we

found this (−1)d factor by studying Floquet anomalous gapless states [8].
For class A, AI, and AII, we can take energy gaps different from ϵ = 0, π/T because there is

no symmetry constraint of the form ϵn = −ϵm. If there are l energy gaps ϵ = µi (i = 1, . . . , l),
the topological classification [Table 1.1] change as Z⊕Z→ ⊕lZ, Z2⊕Z2 → ⊕lZ2, 2Z⊕2Z→
⊕l2Z.

In the following sections, we review previous studies based on the classification table.

1.1.2 Examples of Floquet topological insulators
We review examples of Floquet topological insulators appearing in Table 1.1.

Class A d = 2: Floquet anomalous Chern insulator

Class A 2D systems have Z⊕Z topological invariants according to Table 1.1, which indicates
the existence of two integer-valued topological invariants. One Z topological invariant is the
Chern number Ch calculated from the effective Hamiltonian HF (k).

Here, for completeness, we explain the definition of the Chern number in detail. For a
Bloch wave function satisfyingH(k) |u(k)⟩ = E(k) |u(k)⟩, We define Berry connection (gauge

3This is because the gapless Dirac Hamiltonian is a primitive nontrivial gapless model from the perspective
of topological classifications. For example, for the Weyl Hamiltonian H(k) = kxσx + kyσy + kzσz has unit
topological charge ν = 1, where the explicit form of ν is given by the Chern number on S2 surrounding k = 0.
Another example is the 2D chiral-symmetric Dirac Hamiltonian H(k) = kxσx + kyσy satisfying σxHσx = −H ,
which has unit topological charge ν = 1 given by a winding number ν =

∫
S1

idk
2π · tr[H

−1∇H] on S1 surrounding
k = 0.
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potential) and Berry curvature (field strength) as

A(k) := −i ⟨u(k)| ∂
∂k
|u(k)⟩ , Fkxky := ∂kxAy − ∂kyAx. (1.25)

Then, the Chern number is defined as the integration of Berry curvature on the whole Brillouin
zone (BZ)

Ch :=

∫
BZ

d2k

2π
Fkxky . (1.26)

Remarkably, the Chern number is invariant under gauge transformation. We can arbitrarily
change the complex phase factor of Bloch wave function (gauge transformation) as

|u(k)⟩ → eiθ(k) |u(k)⟩ . (1.27)

Under the gauge transformation, Berry connection changes but Berry curvature does not change
4

A(k)→ A(k) + ∂kθ(k), Fkxky → Fkxky + ∂kx∂kyθ(k)− ∂ky∂kxθ(k) = Fkxky . (1.28)

Thus the Chern number is a gauge independent quantity 5. Moreover, the Chern number Ch
takes only integer values. We suppose the Brillouin zone is split into two patches S1 and S2. On
each patch, we take different gauges such that Fkxky is well-defined (do not have singularity).
The gauge transformation on the boundary ∂S1 = −∂S2 is given by some gauge transformation
A2(k) = A1(k) + ∂kθ(k). Then, from Green’s theorem, Ch reduces into

Ch =

∫
∂S1

A1(k) · dk
2π

+

∫
∂S2

A2(k) · dk
2π

=

∫
∂S2

[−A1(k) +A2(k)] · dk
2π

=

∫
∂S2

∂kθ(k) ·
dk

2π
.

(1.29)

The phase θ(k) can change only 2π×integer after one cycle along ∂S2. Thus, Ch takes integer
values. If there are multiple energy bands below Fermi energy, we take the summation of them
as a gap-protected topological invariant

Ch =
∑

En<EF

Chn. (1.30)

Another Z topological invariant is the three-dimensional winding number [27]:

Wπ[L(k, t = kz)] :=

∫ 2π

0

dkx

∫ 2π

0

dky

∫ T

0

dkz

εαβγtr
[
(L−1∂kαL)(L

−1∂kβL)(L
−1∂kγL)

]
, (1.31)

where L(k, t) is the loop unitary in Eq. (1.18).
In class A d = 2, Eq. (1.24) holds for nC = Ch and nL = W [L].

4If the gauge transformation has singularity, the Berry curvature may change. One example is θ = tan(ky/kx),
which changes Berry curvature by delta function δ(kx, ky).

5When calculating the Chern number, we consider multiple patches covering the manifold BZ ≈ T2. Berry
curvature (field strength) should be well-defined (do not have singularity) on each patch of them.
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One nontrivial example is given by Rudner, et al., [27]:

H(t) = Hj, t ∈ [(j − 1)T/5, jT/5], (1.32){
Hj = Jeibj ·kσ+ + Je−ibj ·kσ− + δABσz for j = 1, 2, 3, 4

H5 = δABσz.
(1.33)

Here, the hopping directions are given by b1 = −b3 = (a, 0) and b2 = −b4 = (0, a).
The energy spectrum and the phase diagram are shown in Fig. 1.1. This model has chiral

edge modes not only at ϵ = 0 but also at ϵ = π/T . The existence of chiral edge modes can be
easily understood by considering simple parameters. When JT/5 = π/2 and δAB = 0, each
time-evolution operator becomes:{

e−iHjT/5 = −i(eibj ·kσ+ + e−ibj ·kσ−)

e−iH5T/5 = 1.
(1.34)

Then, the bulk Floquet operator becomes trivial: UF = 1̂, while the boundary hosts nontrivial
chiral modes [Fig. 1.2]. The spin up edge mode at y = 1 move in the +x-direction with the
eigenvalue λ = −e−2iky , i.e., ϵ = 2(ky + π/2)/T . The spin down edge mode at y = Ly move in
the −x-direction with the eigenvalue λ = −e2iky , i.e., ϵ = −2(ky + π/2)/T . These edge modes
exist even if we modify the parameters δAB and J as long as the energy gaps at ϵ = 0, π/T are
open.

FIGURE 1.1: Energy spectra and the phase diagram of the model Eq. (1.32). Energy spectra for (a)
(JT, δABT ) = (0.5π, 0.5π), (b) (JT, δABT ) = (1.5π, 0.5π), and (c) (JT, δABT ) = (2.5π, 0.5π). (d)
C represents the Chern number and Wπ represents the winding number W [L]. W0 is obtained by taking
the branch cut of HF at ϵ = 0 for W [L]. The three topological invariants are unnecessary to characterize
the topological phases and obey the relation Wπ −W0 = C.
Reproduced from Fig. 3 of Ref. [27]. © 2013 by the American Physical Society.

Class AIII d = 1: chiral symmetric quantum walk

Class AIII 1D systems have Z ⊕ Z topological invariants according to Table 1.1, which
indicates the existence of two integer-valued topological invariants. The convenient form of the
topological invariants is constructed by Asboth and Obuse [30] in the context of the quantum
walk, a quantum version of the random walk. Quantum walk has been studied as a Floquet
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1

2

3

4

1 3

13

𝑥

𝑦

FIGURE 1.2: One cycle dynamics of the model Eq. (1.32) at JT/5 = π/2 and δAB = 0. This model has
bipartite lattice structure with spin up (red) and spin down (blue). After one-cycle time evolution, bulk
states come back to the same states, while spin up edge states along y = 1 go in the +x-direction and
spin down edge states along y = Ly go in the −x-direction.

system with the time period T = 1. We first consider the time evolution operators in the high-
symmetric time domains:

U1(k) := T exp

[
−i
∫ T/2

0

dtH(k, t)

]
, U2(k) := T exp

[
−i
∫ T

T/2

dtH(k, t)

]
. (1.35)

For simplicity, we take the basis

Γ =

(
1p×p 0
0 −1p×p

)
, U1 =

(
a b
c d

)
. (1.36)

We introduce a topological winding number w1 defined for unitary operators U(k) in 1D,

w1[U(k)] :=

∫ 2π

0

idk

2π
tr[U †∂kU ]. (1.37)

If the band gap at ϵ = 0 (ϵ = π) is open, topological invariants w1[b] and w1[c] (w1[a] and w1[d])
are well-defined [38]. Then, the bulk-boundary correspondence is given as

∑
ϵα=0

ν0α =
w1[a]− w1[d]

2
= w0,∑

ϵα=π

νπα =
w1[c]− w1[b]

2
= wπ,

(1.38)

Here, ν0,πα is the topological charge of gapless boundary states at ϵ = 0, π/T . Let us consider
the eigenstate of UF with the eigenvalue ϵn as

HF |un⟩ = ϵn |un⟩ ⇔ UF |un⟩ = λn |un⟩ , λn = e−iϵn . (1.39)

Then, CS implies

HF [Γ |un⟩] = −ΓHF |un⟩
= −ϵn[Γ |un⟩]. (1.40)
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Thus, when the eigenstates localized at the boundary are gapless, i.e., ϵn = 0 or ϵn = π, Γ |un⟩
and |un⟩ have the same eigenvalue. In this case, they satisfy 6

Γ |un⟩ = ± |un⟩ . (1.41)

The chirality ν0,π of the gapless states is given by

ν0,π = ⟨un|Γ |un⟩ . (1.42)

One simple nontrivial example is the split step quantum walk model [39–41]:

UF = U2U1,

U1 = R
1/2
2 S−R

1/2
1 , U2 = R

1/2
1 S+R

1/2
2 . (1.43)

Here, S+, S− are shift operators and Rj := R(θj) is a spin rotation operator defined as

S+(k) :=

(
e−ik 0
0 1

)
, S−(k) :=

(
1 0
0 eik

)
, (1.44)

R(θ) := e−iθσ2 =

(
cos θ − sin θ
sin θ cos θ

)
. (1.45)

Strictly speaking, this model cannot be realized as a time evolution of any time-dependent
Hamiltonian as discussed in Chapter 5, but it is known that the bulk-boundary correspondence
still holds. We note the chiral symmetry Eq. (1.11) leads to

ΓU1Γ
−1 = U †

2 . (1.46)

Split step quantum walk obeys this decomposed chiral symmetry with Γ = σx.
If we apply a unitary transformation such that the chiral symmetry operator becomes Γ = σz

to take the basis Eq. (1.36) 7, we can use the bulk-boundary correspondence for chiral-symmetric
1D quantum walks in Eq. (1.38). Therefore, the split step quantum walk in Eq. (1.43) obeys the
phase diagram [Fig. 1.3 (a)].

In the following, we especially consider a systems where a left chain (θL1 , θ
L
2 ) = (0, π/4)

with length N and a right chain (θR1 , θ
R
2 ) = (0,−π/4) with the same length N are joined at two

edges [Fig. 1.3 (b)]. The eigenenergy spectrum, dynamics, and boundary states are shown in
Fig. 1.4. The eigenvalue spectrum of UQW |ψ⟩ = λ |ψ⟩ [Fig. 1.4 (a)] has two ϵ = 0 and ϵ = π
modes. The two modes with ϵ = π (|ψϵ=π

x≈1⟩ and |ψϵ=π
x≈N+1⟩) [Fig. 1.4 (c),(d)] and the two modes

with ϵ = 0 (|ψϵ=0
x≈1⟩ and |ψϵ=0

x≈N+1⟩) [Fig. 1.4 (e),(f)] are localized at one of two boundaries x ≈ 1
or x ≈ N + 1 with nontrivial chiralities defined in Eq. (1.42). We can see that the chiralities of
the boundary states are compatible with the bulk-boundary correspondence,{

νR0 − νL0 = ⟨ψϵ=0
x≈N+1|Γ |ψϵ=0

x≈N+1⟩ = −1,
νRπ − νLπ = ⟨ψϵ=π

x≈N+1|Γ |ψϵ=π
x≈N+1⟩ = 1,

(1.47)

6If there are more than two gapless states at ϵ = 0 or ϵ = π, we need to choose an appropriate basis to obtain
this form in general.

7It is explicitly given by U†σxU = σz with the unitary operator U := e−iπ
4 σy .
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FIGURE 1.3: (a) Phase diagram of split step quantum walk. (w0, wπ) represents the bulk topological
invariant given as Eq.(1.38). Red triangle and star represent the parameters of the left chain (θL1 , θ

L
2 ) =

(0, π/4) and right chain (θR1 , θ
R
2 ) = (0,−π/4). (b) Setup of a quantum walk system to study the bulk-

boundary correspondence. Left quantum walk and right quantum walk are joined at two edges.

where the topological invariants for the right and left chain are (w0
R, w

π
R) = (0, 1) and (w0

L, w
π
L) =

(1, 0) from Fig. 1.3 (a). Due to the existence of boundary localized states |ψϵ=0
x≈N+1⟩ and |ψϵ=π

x≈N+1⟩,
the wave packet initially localized at x = N+1 stays localized after time evolutions [Fig. 1.4 (b)].

Class D d = 1: Floquet Majorana states

Class D 1D systems have Z2 ⊕ Z2 topological invariants according to Table 1.1, which
indicates the existence of two binary topological invariants. It is constructed by Jiang, et al.,
[28]. We remember the PHS for Floquet systems in Eq. (1.10),

CH∗(k, t)C−1 = −H(−k, t), (1.48)

where we redefined as C = CK with K representing complex conjugation and CC∗ = 1. Then,
the bulk boundary correspondence is given as{

(−1)ν0+νπ = Pf[HF (0)C] · Pf[HF (π/a)C],
(−1)ν0 = Pf[Hh

F (0)C] · Pf[Hh
F (0)C].

(1.49)

Here, the Z2 topological charges ν0, νπ (mod 2) are the numbers of gapless boundary modes. a
is lattice constant and

HF (k) :=
i

T
lnU(k, T ), Hh

F (k) :=
i

T
ln
√
U(k, T ). (1.50)

We note that HF (k) is a usual Floquet Hamiltonian while the half Hamiltonian Hh
F (k) is deter-

mined by the analytic continuation from the history of U(k, T ).
For 2 × 2 microscopic Hamiltonian H(k, t), the topological invariants become simple. Let

us consider a general 2× 2 Hamiltonian:

H(k, t) = R0(k, t)12×2 +Rx(k, t)σx +Ry(k, t)σy +Rz(k, t)σz, Rµ ∈ R. (1.51)
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FIGURE 1.4: (a) Energy spectrum, (b) dynamics, and (c-f) eigenstates of the split step walk. Total
system size is 2N = 20. The left half chain are (θL1 , θ

L
2 ) = (0, π/4), while the right half chain are

(θR1 , θ
R
2 ) = (0,−π/4). The initial state is |x = 11, ↓⟩. The chirality of the ϵ = 0 edge mode is minus the

chirality of the ϵ = π edge mode.

We take C = σx for the PHS in Eq. (1.48), then, we obtain

R0(−k) = −R0(k), Rx(−k) = −Rx(k), Ry(−k) = −Ry(k), Rz(−k) = Rz(k). (1.52)

At the time reversal invariant momenta kinv = 0, π/a, the Hamiltonian becomes

H(kinv, t) = Rz(kinv)σz, (1.53)

and thus the time evolution operator becomes

U(kinv, t) =

(
e−i

∫ t
0 dtRz(kinv) 0

0 ei
∫ t
0 dtRz(kinv)

)
. (1.54)

Therefore we have

HF (kinv) =

∫ T

0

dtRz(kinv)σz, Hh
F (kinv) =

1

2

∫ T

0

dtRz(kinv)σz, (1.55)
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where we need to take the branch
∫ T

0
dtRz(kinv) ∈ [−π/T, π/T ] and 1

2

∫ T

0
dtRz(kinv) ∈ [−π/T, π/T ]

for each. Then, we obtain

Pf[HF (kinv)C] = sgn

[∫ T

0

dtRz(kinv)

]
, Pf[Hh

F (kinv)C] = sgn

[
1

2

∫ T

0

dtRz(kinv)

]
. (1.56)

Let us consider a simple model

H(k, t) = [J cos k − µ(t)]σz +∆sin kσx, µ(t) = µ0[1− cos(2πt)], (1.57)

where J is the hopping amplitude, µ(t) is the time-dependent chemical potential, and ∆ is
the order parameter of a superconductor. The quasi-energy spectrum for T = 1, J = 0.8π
and ∆ = 0.8π and µ0 ∈ [0, 4π] is Fig. 1.5. This model has zero-energy modes for µ0 ∈
[1.2π, 2.8π] (mod 2π) and π-energy modes for µ0 ∈ [0.2π, 1.8π] (mod 2π). We can see that this
is compatible with the bulk boundary correspondence in Eq. (1.49), where Pfaffians are given
by Eq. (1.56) and∫ T

0

dtRz(0) = (J − µ0)T,

∫ T

0

dtRz(π/a) = (−J − µ0)T. (1.58)

𝜖 0

−𝜋/𝑇

𝜋/𝑇

0 𝜋 2𝜋 3𝜋 4𝜋

𝜇0

FIGURE 1.5: Quasi-energy spectrum of Eq. (1.57). We take the time period T = 1. The hopping
amplitude is J = 0.8π, the order parameter is ∆ = 0.8π, and µ0 ∈ [0, 4π]. This model has zero-energy
modes for µ0 ∈ [1.2π, 2.8π] (mod 2π) and π-energy modes for µ0 ∈ [0.2π, 1.8π] (mod 2π).

1.1.3 Classification of Floquet gapless phases
Until now, we have discussed the Floquet topological insulators, i.e., Floquet gapped phases. In
the following two sections, we review the Floquet "gapless" phases. Here, we review the clas-
sification of Floquet unitary operators [3], or equivalently the Floquet gapless phases [42]. Re-
markably, Floquet unitary operators can have nontrivial topology without imposing band gaps,
which leads to unique gapless structures that are impossible in equilibrium.
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We rewrite the TRS, PHS, and CS as those for one-cycle time evolution operators,

TUF (k)T
−1 = UF (−k)†, (1.59)

CUF (k)C
−1 = UF (−k), (1.60)

ΓUF (k)Γ
−1 = UF (k)

†. (1.61)

We introduce a doubled Hamiltonian HU(k) as

HU(k) :=

(
0 UF (k)

U †
F (k) 0

)
. (1.62)

We note that HU(k) is Hermitian, has eigenvalues ±1 because of HU(k)
2 = 1̂, and obeys the

proper chiral symmetry

ΣzHU(k)Σz = −HU(k), Σz :=

(
1̂ 0

0 −1̂

)
. (1.63)

Therefore, HU(k) can be regarded as an ordinary topological insulators and superconductors
with an additional chiral symmetry in Eq. (1.63). TRS, PHS, and CS for UF (k) in Eqs. (1.59)-
(1.61) lead to the following constraints for HU(k) as

T̃HU(k)T̃
−1 = HU(−k), T̃ :=

(
0 T
T 0

)
, (1.64)

C̃HU(k)C̃
−1 = HU(−k), C̃ :=

(
C 0
0 C

)
, (1.65)

Γ̃HU(k)Γ̃
−1 = HU(k), Γ̃ :=

(
0 Γ
Γ 0

)
. (1.66)

Both Eqs. (1.64) and (1.65) take the form of ordinary TRS and Eq. (1.66) is a commutation
relation. Thus we can use the classification methods developed in equilibrium. We explain the
classification method by Clifford algebra in Chap. 2. Then, we find that the topological classi-
fication of U(k) in (d − 1)-dimension coincides with the topological classification of ordinary
insulators and superconductors in d-dimension [Table 1.2]. In other words, the topological clas-
sification of U(k) coincides with the topological classification of gapless boundary states of
topological insulators and superconductors. Therefore, we can expect the topology of Floquet
unitary operators U(k) is closely related to bulk gapless structures.

In the next section, we see the nontrivial topology of U(k) is actually related to the novel
bulk gapless structures that is impossible in equilibrium.

1.1.4 Examples of Floquet gapless phases
In this section, we review examples of the Floquet gapless phases in Table 1.2.

Class A d = 1: Thouless pump

Class A 1D systems have a Z topological invariant according to Table 1.2, which indicates
the existence of an integer-valued topological invariant. The topological invariant is the energy



14 Chapter 1. Introduction

TABLE 1.2: Periodic table of Floquet gapless phases in Altland-Zirnbauer symmetry classes. This table
shows the presence or absence of Z or Z2 topological invariant defined for unitary operators U(k).

AZ class T C Γ d = 0 1 2 3
A 0 0 0 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0
AI +1 0 0 0 0 0 2Z

BDI +1 +1 1 Z 0 0 0
D 0 +1 0 Z2 Z 0 0

DIII −1 +1 1 Z2 Z2 Z 0
AII −1 0 0 0 Z2 Z2 Z
CII −1 −1 1 2Z 0 Z2 Z2

C 0 −1 0 0 2Z 0 Z2

CI +1 −1 1 0 0 2Z 0

winding number,

w1[UF (k)] :=

∫ 2π

0

idk

2π
tr[U †

F∂kUF ]. (1.67)

Strictly speaking, the winding number always becomes zerow1[UF (k)] = 0 for ordinary Floquet
systems. This is because the time-evolution operator U(k, t) continuously deforms U(k, T ) =
UF (k) into U(k, 0) = 1̂, and the topological invariant does not change during this deformation:
w1[UF (k)] = w1[1̂] . Instead of UF itself, we consider a decomposed Floquet unitary

UF =

(
U1 0
0 U2

)
, (1.68)

then w1[U1(k)] can takes nonzero values. There are several schemes to realize such a decom-
posed Floquet unitary operators [42]. One is to consider an adiabatic process of insulators.
According to the adiabatic theorem, if there is a large energy gap between the conduction band
(the upper band) and the valence band (the lower band) of H(t) for all t ∈ [0, T ], the many-body
ground state occupying all the lower bands of H(t = 0) becomes the many-body ground state
occupying all the lower bands of H(t = T ) = H(0) after one-cycle time evolution in the adia-
batic limit. This implies that the time-evolution operator in the adiabatic limit takes the form of
Eq. (1.68), where U2 indicates the upper bands and U1 indicates the lower bands. Another way to
realize the block diagonal Floquet unitary operator is to fine-tune the microscopic Hamiltonian.

The most famous example in class A 1D is Thouless pumping, an adiabatic transport of
particles under a time-periodic Hamiltonian [32]. Let us suppose the system is described by a
1D time-periodic Hamiltonian H(k, t) and the Chern number for the occupied bands of H(k =
kx, t = ky) is nontrivial. Then, the system shows a quantized transport after one cycle time
evolution, and the number of transported charges equals the Chern number.

We see that the Chern number is equivalent to the winding number w1[UF (k)] in the follow-
ing. We can also show that the winding number w1[UF (k)] equals the displacement in one cycle
as shown in Chapter 5 (for example, Eq. (5.116)). From these two results, the nontrivial Chern
number of H(k = kx, t = ky) equals to the number of transported particles in one cycle.

For simplicity, we especially consider the case that all the lower bands are separated from



1.1. Overview of recent studies on Floquet topological phases 15

each other. We first prepare the occupied eigenstate of H(k, t = 0) as |un(k, t = 0)⟩ for occu-
pied bands n = 1, · · · , N1, and we consider the states after time evolutions as

|un(k, t)⟩ := U(k, t) |un(k, t = 0)⟩ . (1.69)

In the adiabatic limit, |un(k, t)⟩ is also the eigenstate of H(k, t) for each t. We suppose the
U1(k) block of Eq. (1.68) is composed from the basis n = 1, . . . , N1. When t = T ,

|un(k, T )⟩ = UF (k) |un(k, 0)⟩ = e−iϵn(k)T |un(k, 0)⟩ . (1.70)

We consider the Berry connection

An
k(k, t) = ⟨un(k, t)|i∂k|un(k, t)⟩ , (1.71)

especially at t = T , it becomes

An
k(k, T ) = ⟨un(k, T )|i∂k|un(k, T )⟩ (1.72)

= ⟨un(k, t = 0)|eiϵn(k)T i∂ke−iϵn(k)T |un(k, t = 0)⟩ (1.73)
= An

k(k, 0) + ∂kϵn(k)T. (1.74)

We consider integration in the whole Brillouin zone and summation of the lower bands,

N1∑
n=1

∫ 2π

0

dk

2π
[An

k(k, T )− An
k(k, 0)] =

N1∑
n=1

∫ 2π

0

dk

2π
∂kϵn(k)T. (1.75)

The left hand side becomes

l.h.s. =
N1∑
n=1

∫ 2π

0

dk

2π

∫ T

0

dt∂tA
n
k(k, t) (1.76)

=

N1∑
n=1

∫ 2π

0

dk

2π

∫ T

0

dt[∂tA
n
k(k, t)− ∂kAn

t (k, t)], (1.77)

where An
t (k, t) is defined as

An
t (k, t) := ⟨un(k, t)|i∂t|un(k, t)⟩ , (1.78)

and it satisfies ∫ 2π

0

dk

2π
∂kAt(k, t) = At(k = 2π, t)− At(k = 0, t) = 0. (1.79)

The right hand side of Eq. (1.75) becomes

r.h.s =
N1∑
n=1

∫ 2π

0

dk

2π
∂kϵn(k)T =

∫ 2π

0

idk

2π
∂k ln detU1(k) (1.80)

=

∫ 2π

0

dk

2π
tr
[
U †
1 i∂kU1(k)

]
. (1.81)
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Therefore, we obtain

N1∑
n=1

∫ 2π

0

dk

2π

∫ T

0

dt[∂tA
n
k(k, t)− ∂kAn

t (k, t)] = w1[U1(k)]. (1.82)

We can rewrite it as∫ 2π

0

dk

2π

∫ T

0

dttr[∂tAk(k, t)− ∂kAt(k, t)] = w1[U1(k)]. (1.83)

Here, we introduced the N1 ×N1 matrix of

Am,n
t (k, t) := ⟨um(k, t)|i∂t|un(k, t)⟩ , Am,n

k (k, t) := ⟨um(k, t)|i∂k|un(k, t)⟩ . (1.84)

We note that the both sides of Eq. (1.83) is well-defined even if the lower bands are touching
each other. For any general Hamiltonian H(k, t) that has gaps between conduction and valence
bands, the lower bands of H(k, t) can be continuously deformed into the ones separated from
each other. During the deformation, the topological invariants on the both sides of Eq. (1.83)
does not change. Therefore, Eq. (1.83) is valid for general gapped Hamiltonians H(k, t).

A famous model for Thouless pumping is the Rice-Mele model [43],

HRM(t) =
L∑

j=1

[J+(t)b
†
jaj + J−(t)a

†
j+1bj + h.c] + ∆(t)[a†jaj − b

†
jbj], (1.85)

or equivalently, the Bloch Hamiltonian of it is

HRM(k, t) =

(
∆(t) J+ + J−e

−ik

J+ + J−e
ik −∆(t)

)
. (1.86)

The parameters are takes as J± = J0± δ0 cosφ(t), ∆(t) = ∆0 sinφ(t) and φ = Ωt. We can see
the Chern number of this model takes unit integer. For a general two band model

H(kx, ky) = Rxσx +Ryσy +Rzσz, (1.87)

the Chern number is equivalent to the wrapping number around R = 0 on (kx, ky) ∈ [−π/a, π/a]2.
The proof can be found in many textbooks such as [44, 45], and was originally given in Ref. [46].
The wrapping number for HRM(k, t) is 1 because

Rx = J0 + δ0 cosΩt+ [J0 − δ0 cosΩt] cos k
Ry = [J0 − δ0 cosΩt] sin k
Rz = ∆0 sinΩt

(1.88)

wraps around R = 0 [Fig. 1.6] once. The energy winding number for HRM(k, t) is numerically
obtained in Fig. 1.7. The thick energy spectrum has two right-going mode at ϵ = 0 and one
left-going mode at ϵ = π.

class A d = 3: Floquet chiral magnetic effect
Class A 3D systems have Z topological invariants according to Table 1.2, which indicates

the existence of an integer-valued topological invariant. The topological invariant is given by



1.1. Overview of recent studies on Floquet topological phases 17

𝑅𝑧

𝑅𝑦

𝑅𝑥

FIGURE 1.6: The manifold of R(k, t) on (k, t) ∈ [−π/a, π/a]× [0, T ]. The manifold wraps the R = 0
once. The parameters are takes as J0 = 1, ∆0 = 3 and δ0 = 1.

FIGURE 1.7: Quasi-energy spectrum of the Floquet Hamiltonian calculated from Eq. (1.86). The param-
eters are ∆0 = 3J0, δ0 = J0 and Ω = 2π/T = 0.2J0. We can see the thick curve (the lower band) has
energy winding number 1, but has a small energy gap because of incomplete adiabaticity.
Reproduced from Fig. 1 of Ref. [34]. © 2018 by the American Physical Society.
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the 3D winding number [3, 4, 26],

w3[U(k)] = −
1

24π2

∫
BZ

tr[U †dU ]3, (1.89)

Strictly speaking, the 3D winding number always becomes zerow3[UF (k)] = w3[U(k, t = 0)] =
0 for ordinary Floquet systems. Thus, we need to consider a decomposed Floquet operator in
Eq. (1.68).

One way of making a nontrivial model is to consider the adiabatic limit of the 4D Chern
insulator model [4]. Another way is to utilize the sub-lattice structure [3]. In this work, they
consider the sublattice structure as

LC :=
{(
m1,m2,

m3

2

)
| m1,m2,m3 ∈ Z

}
. (1.90)

They introduced spin-selective pumps,

U±
j :=

∑
xα,β

[(
P±
j

)αβ
c†x±ej ,αcx,β +

(
P∓
j

)αβ
c†x,αcx,β

]
, (1.91)

and the half version of it is

U±
h,3 :=

∑
x,α,β

[(
P±
j

)αβ
c†x±(e3/2),α

cx,β +
(
P∓
j

)αβ
c†x,αcx,β

]
. (1.92)

Then the sequence of these pumps are

Uwh
F := U−

1 U−
h,3U

−
2 U+

h,3U
+
1 U−

h,3U
+
2 U+

h,3 (1.93)

gives nontrivial model with w3[Uwh
F ] = 1 for k ∈ [−π/a, π/a]3. This model has a Weyl fermion

at k = 0 with energy ϵ = 0,

HF (k) = k · σ +O(k2). (1.94)

Under magnetic field Bz = −2πϕ, the Weyl fermion becomes the chiral mode of ϵ = kz, and
the Floquet operator has charge pump proportional to magnetic field ∆Q = ϕ/2 in one cycle.
The energy spectrum is Fig. 1.8.
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FIGURE 1.8: Quasi-energy spectrum of the model in Eq. (1.93) (a) without and (b) with the magnetic
field Bz = −2πϕ. We can see the Weyl fermion at k = 0 changes into a chiral mode under the magnetic
field.
Reproduced from Fig. 2 of Ref. [3]. © 2019 by the American Physical Society.
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1.2 Overview of non-Hermitian topological phases
In this section, we review the recent studies of non-Hermitian systems. Non-Hermitian sys-
tems are the systems that are effectively described by non-Hermitian Hamiltonians H† ̸= H .
Such non-Hermitian Hamiltonians are realized in open quantum and classical systems, where
dissipation or enhancement leads to non-Hermiticity. For example, photonic systems [47, 48],
cold atomic systems [Takasu20, 49], strongly correlated electron systems [50–54], and electric
circuits [55, 56] are known to realize non-Hermitian systems.

Historically, non-Hermitian systems were studied in the context of radiative decay of nucleus
in scattering process [57–60]. Later, C. M. Bender proposed PT-symmetric quantum mechanics
as a natural extension of Hermitian quantum mechanics [61], where PT symmetry is a combi-
nation of inversion symmetry (P) and time-reversal symmetry (T). Non-Hermitian Hamiltonians
generally have complex eigenenergies, but PT symmetry keeps the eigenenergies real unless
PT symmetry is broken. Thus, PT-symmetric quantum systems can be regarded as ordinary
quantum systems where the quantum states conserve norms during dynamics.

Recently, non-Hermitian systems have been studied from the perspective of topological
phases. In non-Hermitian systems, the bulk-boundary correspondence does not hold in the nor-
mal sense [62, 63]. The bulk topological invariant calculated in periodic boundary conditions
(PBC) does not always coincide with the number of boundary gapless states in open bound-
ary conditions (OBC). This is because the energy spectrum in PBC and that in OBC are very
different for non-Hermitian Hamiltonians. All the eigenstates in OBC may be localized at one
boundary while the eigenstates in PBC are distributed throughout the system due to translational
symmetry, so-called the skin effect. Later, it was found that the bulk-boundary correspondence
holds for bulk topological invariants calculated in OBC [64–66]. In OBC, Bloch momentum
k is ill-defined, but we can consider a natural extension of momentum as β = re−ik, where
r indicates exponential localization factor to one boundary. On the other hand, the skin effect
itself was found to be related to topological invariants unique to non-Hermitian systems [67].
Typical skin effect occurs for non-symmetric hoppings, which may conflict with the Anderson
localization, i.e., the localization of all eigenstates [68].

Another important topic in non-Hermitian systems is the exceptional point. The exceptional
point is an energy degeneracy where eigenstates also coalesce. Exceptional points occur with
various novel physics unique to non-Hermitian systems: unidirectional invisibility [69–72], en-
hanced sensitivity [73–76], etc. The PT symmetry breaking point is also a typical exceptional
point.

General theories for such non-Hermitian topological phenomena are summarized as topolog-
ical classifications [68, 77, 78]. In non-Hermitian systems, eigenvalues are complex: En ∈ C,
and thus we can consider two types of energy gaps: point gap and line gap. Point gap is a con-
straint that the energy bands do not cross a base energy point EB, while line gap is a constraint
that the energy bands do not cross a base energy line. Real line gap ReEn(k) ̸= 0 especially
can be regarded as a natural generalization of the Hermitian energy gap En(k) ̸= 0. Topological
classification of non-Hermitian Hamiltonians are given for these two gaps [68, 77, 78]. From
the perspective of gap structures, the gapped topology about the real line gap is related to bulk-
boundary correspondence, while the gapped topology about the point gap is related to skin effect
and localization-delocaliation transition of the Anderson Hamiltonian [Fig. 1.9]. The extended
Nielsen-Ninomiya theorem we propose in this thesis gives the relations between point-gapped
structures and line-gapless structures.
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Relation to Previous works

 In Hermitian systems, 𝐸 ∈ ℝ
Gapped /          gapless 

 In non-Hermitian systems, 𝐸 ∈ ℂ
Real line-gapped / real line-gapless

Point-gapped / point-gapless

• Both Point-gapped and real line-gapless

Topological insulators and 
superconductors
Bulk-edge correspondence

Weyl, Dirac semimetal

Bulk-edge correspondence Natural extension of 
Weyl, Dirac semimetal

Localization, Skin effect Exceptional point

Extended Nielsen-Ninomiya(NN) Theorem

FIGURE 1.9: Relations between energy gaps and topological phenomena.

In Sec. 1.2.1, we review the classification of non-Hermitian gapped topological phases for
point gap and line gap [33]. We also review the abundant symmetries in non-Hermitian systems.
We also mention PT symmetry. In Sec. 1.2.2, we review a phenomenon related to line-gapped
topological phases: bulk-boundary correspondence. We especially explain the non-Hermitian
SSH chain in detail. In Sec. 1.2.3, we review a phenomenon related to point-gapped topologi-
cal phases: skin effect and localization-delocalization transition of the Anderson Hamiltonian.
We especially explain the Hatano-Nelson model which was first proposed to describe the depin-
ning of flux lines in type-II superconductors [79–81]. In Sec. 1.2.4, we review a phenomenon
related to point-gapless topological states: exceptional points. We also give classifications of
exceptional points. In Sec. 1.2.5, we review experimental realizations of non-Hermitian Hamil-
tonians. We especially explain (i) cold atoms where Lindblad equation with post-selection leads
to effective non-Hermitian Hamiltonian, and (ii) strongly correlated or disordered electron sys-
tems where Green’s functions lead to effective non-Hermitian Hamiltonian, etc.

1.2.1 Classification of non-Hermitian gapped topological phases
In this subsection, we review the non-Hermitian topological classification theory [68, 77, 78].
We first review energy gap structure [Fig. 1.10]. For Hermitian Hamiltonians, the energy spec-
trum is real: E ∈ R, and we thus take an energy gap at some Fermi energy EF ∈ R. Under
symmetry constraints particle-hole symmetry (PHS) and/or chiral symmetry (CS), we have en-
ergy constraints En = −Em, and thus we need to take a high-symmetric energy gap at EF = 0.
For non-Hermitian Hamiltonians, however, the energy spectrum is complex: E ∈ C, and thus
we can consider two types of energy gaps: point gap and line gap. As for point gaps, energy
bands do not cross an energy point EP ∈ C. Under some symmetry constraints, we need to take
the point gap at EP = 0. As for line gaps, energy bands do not cross a line in a complex energy
plane. Under some symmetry constraints, we need to choose the line as ReE = 0 (real line gap)
or ImE = 0 (imaginary line gap).
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(a) Hermitian (b) non-Hermitian (point gap)

𝐸

𝐸 = 0 gap

𝐸 = 0
point gap

Re𝐸

Im𝐸

Re𝐸

Im𝐸

Re𝐸

Im𝐸

Re𝐸 = 0
real line gap

Im𝐸 = 0
imaginary line gap

(c) non-Hermitian (line gap)

FIGURE 1.10: Energy gaps for (a) Hermitian and (b,c) non-Hermitian Hamiltonians.

We next review symmetries for non-Hermitian Hamiltonians. In Ref. [77], non-Hermitian
TRS, PHS, and CS are defined as

TH(k)T−1 = H(−k), (1.95)

CH†(k)C−1 = −H(−k), (1.96)

ΓH†(k)Γ−1 = −H(k). (1.97)

Non-Hermiticity H ̸= H† differentiate the above symmetries from TRS†, PHS† and sub-lattice
symmetry (SLS),

T ′H†(k)T ′−1 = H(−k), (1.98)
C ′H(k)C ′−1 = −H(−k), (1.99)

SH(k)S = −H(k). (1.100)

In non-Hermitian systems, the pseudo-Hermiticity is also regarded as a symmetry,

ηH(k)η† = H(k). (1.101)

The above seven symmetries constitute 38-fold symmetry classes [77].
We review the classification of non-Hermitian gapped topological phases. We first explain

the case of point-gapped topological phases. For simplicity, we take the gap at EP = 0. If a
Hamiltonian is point-gapped En(k) ̸= 0, the determinant becomes nonzero det[H(k)] ̸= 0. We
introduce a doubled Hamiltonian

H̄(k) :=

(
0 H(k)

H†(k) 0

)
. (1.102)

Then, H̄(k) is Hermitian, gapped due to det[H̄(k)] = − det[H(k)H(k)†] ̸= 0, and obeys the
proper chiral symmetry

ΣzH̄(k)(k)Σz = −H̄(k), Σz :=

(
1̂ 0

0 −1̂

)
. (1.103)

Therefore, H̄(k) can be regarded as a Hamiltonian of topological insulators and superconductors
with an additional chiral symmetry. The seven symmetries Eqs. (1.95)-(1.101) for the doubled
Hamiltonian H̄(k) have the form of 2-fold crystalline symmetries, and thus we can calculate the
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topological classification by the methods developed in equilibrium. We explain the classification
method by Clifford algebra in Chapter. 2. Then, some of the periodic tables are given as follows
[Tables 1.3-1.5].

We next explain the case of line-gapped topological phases. When a non-Hermitian Hamil-
tonian is gapped about the real line gap ReE(k) ̸= 0, we can continuously deform the non-
Hermitian Hamiltonian into a Hermitian Hamiltonian with gap E(k) ̸= 0. Thus, the classifica-
tion table becomes the same as that in equilibrium. When a non-Hermitian Hamiltonian H(k)
is gapped about imaginary line gap ImE(k) ̸= 0, multiplying imaginary unit H(k) → iH(k)
changes the imaginary line gap into real line gap ReE(k) ̸= 0, and the classification problem
becomes the same as the case of real line gap. If there are no symmetry constraints that differ-
entiate real line gap and imaginary line gap, the topological classification with real line gap and
that with imaginary line gap becomes the same.

As a result, some of the periodic tables of gapped topological phases with point gap or line
gap become Table 1.3-1.5. As for other symmetry classes, see Ref. [77].
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TABLE 1.3: Periodic table of non-Hermitian gapped topological phases in AZ symmetry classes. ±1, 1
and 0 in the T , C, and Γ columns show the presence or absence of T 2 = ±1, C2 = ±1, and Γ2 = 1.
P represents point gap and L represents line gap. Under some symmetry classes, real line gap Lr and
imaginary line gap Li give different topological phases.

AZ class T C Γ Gap d = 0 d = 1 d = 2 d = 3

A 0 0 0
P 0 Z 0 Z
L Z 0 Z 0

AIII 0 0 1
P Z 0 Z 0
Lr 0 Z 0 Z
Li Z⊕ Z 0 Z⊕ Z 0

AI +1 0 0
P Z2 Z 0 0
Lr Z 0 0 0
Li Z2 Z2 Z 0

BDI +1 +1 1
P Z2 Z2 Z 0
Lr Z2 Z 0 0
Li Z2 ⊕ Z2 Z2 ⊕ Z2 Z⊕ Z 0

D 0 +1 0
P 0 Z2 Z2 Z
L Z2 Z2 Z 0

DIII −1 +1 1
P 2Z 0 Z2 Z2

Lr 0 Z2 Z2 Z
Li Z 0 Z 0

AII −1 0 0
P 0 2Z 0 Z2

Lr 2Z 0 Z2 Z2

Li 0 0 2Z 0

CII −1 −1 1
P 0 0 2Z 0
Lr 0 2Z 0 Z2

Li 0 0 2Z⊕ 2Z 0

C 0 −1 0
P 0 0 0 2Z
L 0 0 2Z 0

CI +1 −1 1
P Z 0 0 0
Lr 0 0 0 2Z
Li Z 0 Z 0
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TABLE 1.4: Periodic table of non-Hermitian gapped topological phases in AZ† symmetry classes. ±1, 1
and 0 in the T , C, and Γ columns shows the presence or absence of T ′2 = ±1, C ′2 = ±1, and Γ2 = 1.
P represents point gap and L represents line gap. Under some symmetry classes, real line gap Lr and
imaginary line gap Li give different topological phases.

AZ† class T ′ C ′ Γ Gap d = 0 d = 1 d = 2 d = 3

AI† +1 0 0
P 0 0 0 2Z
L Z 0 0 0

BDI† +1 +1 1
P Z 0 0 0
Lr Z2 Z 0 0
Li Z⊕ Z 0 0 0

D† 0 +1 0
P Z2 Z 0 0
Lr Z2 Z2 Z 0
Li Z 0 0 0

DIII† −1 +1 1
P Z2 Z2 Z 0
Lr 0 Z2 Z2 Z
Li Z 0 Z 0

AII† −1 0 0
P 0 Z2 Z2 Z
L 2Z 0 Z2 Z2

CII† −1 −1 1
P 2Z 0 Z2 Z2

Lr 0 2Z 0 Z2

Li 2Z⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2

C† 0 −1 0
P 0 2Z 0 Z2

Lrr 0 0 2Z 0
Li 2Z 0 Z2 Z2

CI† +1 −1 1
P 0 0 2Z 0
Lr 0 0 0 2Z
Li Z 0 Z 0

TABLE 1.5: Periodic table of non-Hermitian gapped topological phases under sub-lattice symmetry
(SLS) and chiral symmetry. The subscript of S± represents the commutation (+) or anticommutation
(-) relation with chiral symmetry ΓS± = ±S±Γ. These unitary symmetry operators obey Γ2 = 1 and
S2 = 1. P represents point gap and L represents line gap. Under some symmetry classes, real line gap
Lr and imaginary line gap Li give different topological phases.

SLS AZ class Gap d = 0 d = 1 d = 2 d = 3

SLS+ AIII
P 0 Z 0 Z
Lr 0 Z⊕ Z 0 Z⊕ Z
Li 0 Z⊕ Z 0 Z⊕ Z

SLS A
P 0 Z⊕ Z 0 Z⊕ Z
L 0 Z 0 Z

SLS− AIII
P Z⊕ Z 0 Z⊕ Z 0
Lr Z 0 Z 0
Li Z 0 Z 0

In the following, we review previous studies based on the above classification tables.
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1.2.2 Examples of line-gapped topological phases
In this section, we review a phenomenon related to line-gapped topological phases: bulk-boundary
correspondence. We especially explain the non-Hermitian SSH chain in detail [Fig. 1.11(a)],

H(k) = dxσx + (dy + iγ/2)σy, (1.104)

where dx = t1+ t2 cos k and dy = t2 sin k. This model obeys sub-lattice symmetry σzH(k)σz =
−H(k).

The energy spectrum in open boundary conditions becomes Fig. 1.11(b). We note that the
energy spectrum in PBC is very different from that in OBC. The topological transition point
in PBC and that in OBC are also different. The bulk topological invariant changes during the
topological transition point at t1 = ±t2 ± γ/2 in PBC, but the topological transition point
in OBC is t1 = ±

√
t22 + (γ/2)2. As for PBC energy spectrum, the eigenvalues are given as

E± = ±
√
d2x + (dt + iγ/2)2.

𝑡1 − 𝛾/2

𝑡1 + 𝛾/2

𝑡2

(a)

(b) (c)

FIGURE 1.11: (a) Sketch of the non-Hermitian SSH model, (b) Energy spectrum, and (c) all the wave-
functions of Eq. (1.104). Parameters are t2 = 1, γ = 4/3, and the system size is (a) L = 40 and (b)
L = 20. (b) Two-fold degenerate zero-energy modes are shown in red. (c) All the eigenstates are local-
ized at one boundary.
Fig. (b) is reproduced from Fig. 2 of Ref. [64]. © 2018 by the American Physical Society.

We review how to obtain the wave functions in OBC, firstly proposed in Rev. [64]. In
Hermitian systems, it is known that the eigenvalues and the properties of eigenfunctions do
not change a lot between PBC and OBC. But, in non-Hermitian systems, the eigenvalues and
eigenfunctions dramatically change [Fig. 1.11(c)]. In non-Hermitian systems, all the eigenstates
are exponentially localized at one boundary. Therefore, we can expect the wave function of the
form ψ ∝ c1e

−ikx + c2e
ikxin equilibrium changes into ψ ∝ c1(re

−ik)x + c2(re
ik)x, where r ∈ R

is the exponential localization factor 8. We note that both the right-going wave and the left-going
wave are needed to construct a standing wave. From this observation, we consider the following
form of the eigenfunction,

|ψ⟩ =
∑
n

ψn,Ac
†
n,A |0⟩+ ψn,Bc

†
n,B |0⟩ , ψn,A = βnϕA, ψn,B = βnϕB, (1.105)

8r depends on k in general
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where we expect β = re−ik. Then, the Schrodinger equation H |ψ⟩ = E |ψ⟩ is rewritten as[(
t1 +

γ

2

)
+ t2β

−1
]
ϕB = EϕA,

[(
t1 −

γ

2

)
+ t2β

]
ϕA = EϕB, (1.106)

and thus we have [(
t1 +

γ

2

)
+ t2β

−1
] [(

t1 −
γ

2

)
+ t2β

]
= E2. (1.107)

We have two unknown numbers β,E ∈ C for one equation, and we cannot solve this equation.
Thus, we need to use the standing wave condition. Firstly, equation (1.107) can be seen as a
quadratic equation for β and we can introduce two roots β1, β2 depending on E. If the solution
of Eq. (1.107) has the form ψ ∝ c1(re

−ik)x + c2(re
ik)x = c1β

x + c2(β
∗)x, we can expect the

relation |β1| = |β2|. Strictly speaking, |β1| = |β2| is naturally expected from the boundary
condition |β1|L ≈ |β2|L from Eq. (1.107) 9. The product of the roots becomes β1β2 = t1−γ/2

t1+γ/2
,

and thus we obtain

|βj| = r =

√∣∣∣∣t1 − γ/2t1 + γ/2

∣∣∣∣. (1.108)

Then, we can use the expression β = re−ik rigorously, and Eq. (1.107) becomes

E2 = t21 + t22 −
γ2

4
+ t2

√
|t21 − γ2/4|[sgn(t1 + γ/2)eik + sgn(t1 − γ/2)e−ik]. (1.109)

This solution actually works well. This solution explains the topological transition point t1 =
±
√
t22 + (γ/2)2 in OBC.

We next explain the topological invariants in OBC. In Hermitian systems, the topological
invariants for the SSH chain is given as

w1 :=

∫ 2π

0

idk

2π
tr[q−1∂kq], Q(k) =

(
0 q
q† 0

)
, (1.110)

where Q matrix is a flattened Hamiltonian

Q(k) :=
∑
α

|uα(k)⟩ ⟨uα(k)| − |uᾱ(k)⟩ ⟨uᾱ(k)| , (1.111)

for eigenstates H(k) |uα(k)⟩ = Eα(k) |uα(k)⟩ with positive eigenenergy Eα(k) > 0 and its
chiral-symmetric counterpart |uᾱ⟩ = σz |uα⟩ with negative eigenenergy E ¯α(k) = −Eα(k) < 0.
We note that the Q matrix has eigenvalues ±1 because Q(k)2 = 1̂. Because of the chiral
symmetry for the Q matrix: σzQσz = −Q, the Q matrix has the form in Eq. (1.110).

In non-Hermitian systems, the topological invariant for the non-Hermitian SSH chain is
given as

wnH
1 :=

∫
Cβ

tr[q−1dq], Q(β) =

(
0 q
q† 0

)
, (1.112)

9Here ≈ means that |β1|L = c|β2|L with a factor c that does not scale in the system size L.
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where Q matrix is a flattened Hamiltonian

Q(β) :=
∑
α

|uRα (β)⟩ ⟨uLα(β)| − |uRᾱ (β)⟩ ⟨uLᾱ(β)| , (1.113)

for right-(left-)eigenstates H(β) |uRα (β)⟩ = Eα(β) |uRα (β)⟩ (H†(β) |uLα(β)⟩ = Eα(β) |uLα(β)⟩)
with positive real energy ReEα(k) > 0 and its chiral-symmetric counterpart H(β) |uRᾱ (β)⟩ =
Eᾱ(β) |uRᾱ (β)⟩ (H†(β) |uLᾱ(β)⟩ = Eᾱ(β) |uLᾱ(β)⟩) with negative imaginary energy ReEᾱ(k) =
−Eα(k) < 0. We note that the eigenstates are taken in the biorthogonal condition ⟨uLα|uRα′⟩ =
δα,α′ . Here, H(β) is given by the replacement e−ik → β in Eq. (1.104). We note that the Q
matrix has eigenvalues ±1 because Q(k)2 = 1̂. Because of the sub-lattice symmetry for the Q
matrix: σzQσz = −Q, the Q matrix has the form in Eq. (1.112). Cβ is the trajectory of β in the
complex plane. In this case, we have the form β = re−ik, and thus the trajectory of β is a circle
of radius r.

In general, Cβ takes a non-circle structure. Fig. 1.12 is the energy spectrum, wnH
1 , and Cβ of

the modified non-Hermitian SSH

H(k) = dxσx + (dy + iγ/2)σy, (1.114)

but with dx = t1 + (t2 + t3) cos k and dy = (t2 − t3) sin k.

FIGURE 1.12: (a) Energy spectrum, topological invariant wnH
1 , (b) and Cβ trajectory of Eq. (1.104).

Parameters are t2 = 1, γ = 4/3, t3 = 1/5, and the system size is L = 100. (a) Two-fold degenerate
zero-energy modes are shown in red. (b) t1 = 1.1 is chosen.
Reproduced from Fig. 5 of Ref. [64]. © 2018 by the American Physical Society.

1.2.3 Examples of point-gapped topological phases
In this section, we review two phenomena related to point-gapped topological phases: skin effect
and Anderson localization-delocalization transition.

class A d = 1: Anderson localization-delocalization transition

Here, we review the Anderson localization-delocalization transition of the Hatano-Nelson
model in 1D [68]. Hatano-Nelson model, which was originally proposed in studying the pinning-
depinning transition of vortex lines in superconductors [79–81].
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Hatano-Nelson model is a 1D Anderson localization Hamiltonian but with nonsymmetric
hopping amplitudes, 10

H =
N∑
j=1

JRc
†
j+1cj + JLc

†
jcj+1 + Vjc

†
jcj, (1.115)

where Vj is the random potential, uniformly distributed in the range [−W,W ]. We take the PBC:
cj+N = cj . The matrix expression is given by

H =


V1 JR JL
JL V2 JR

JL V3
. . .

. . . . . . JR
JR JL VN

 . (1.116)

In the Hermitian case (JL = JR), the Hatano-Nelson model becomes the ordinary 1D Anderson
Hamiltonian and shows localization for any W > 0. In non-Hermitian systems (JL < JR),
however, for small W , some eigenstates show delocalization [Fig. 1.13,1.14].

FIGURE 1.13: Energy spectrum of Hatano-Nelson model in Eq. (1.115). The system size is N = 102.
The parameters are JR = 2, JL = 1, and W = 1, 2, 3, 4, 5. For small W ≲ 4.3 some part of the energy
spectrum becomes complex. We can show w1[H(Φ)] = 1 for W ≲ 4.3.

This localization-delocalization transition is characterized by a magnetic winding number
[68], as shown in the following. In the case of the well-known quantum Hall effect, the robust-
ness of Hall current and the existence of edge modes against impurity scatterings are explained
by the Chern numbers under twisted boundary conditions [82]. In the modern view, the twisted
boundary conditions can be seen as a kind of flux insertion into the cylinder 11. There are two
well-known methods of flux insertion: (i) to introduce the uniform vector potential Ax = Φ/L
and (ii) to introduce the local vector potential Ax = Φδ(x), where δ(x) is the delta function.
The twisted boundary conditions are realized by the Peierls phase of (ii) the local gauge. But,
we use (i) the uniform gauge in the following argument. Any choice of the vector potentials that
are equivalent up to gauge transformations produces the same result.

10In the original paper [79], the nonsymmetric hoppings are realized by an imaginary vector potential.
11The lattice structure with OBC in the x-direction and PBC in the y-direction can be seen as a cylinder.
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(a-1) (a-2) (b)

FIGURE 1.14: Energy spectrum and eigenstates of the Hatano-Nelson model in Eq. (1.115. The system
size is L = 102, and the parameters are JR = 2, JL = 1 and (a-1,2) W = 1 or (b) W = 5. For W = 1,
We split the eigenstates into two: (a-1) eigenstates with small ImE = 0 and (a-2) eigenstates with large
ImE = 0. (a-1) the eigenstates with small ImE = 0 are strongly localized, while (a-2) the eigenstates
with large ImE = 0 are delocalized. (b) All the eigenstates are strongly localized.

If we introduce the (i) uniform vector potential Ax = Φ/L, the hopping terms changes as
c†j+qcj → e−i(Φ/L)qc†j+qcj . The Hatano-Nelson model becomes

H(Φ) =
N∑
j=1

JRe
−iΦ/Lc†j+1cj + JLe

iΦ/Lc†jcj+1 + Vjc
†
jcj. (1.117)

Then, H(Φ) is periodic in Φ with the period 2π up to the large gauge transformation ÛG =

e−
2πi
L

x̂: H(Φ + 2π) = ÛGH(Φ)Û †
G. Then, we can introduce its winding number as

w1[H(Φ)] :=

∫ 2π

0

dΦ

2π
tr[H−1(Φ)i∂ΦH(Φ)] =

∫
dΦ

2πi
∂Φ log detH(Φ). (1.118)

Here, we have shown two expressions for convenience. As detH =
∏

j Ej is a product of all the
eigenenergies, w1[H(Φ)] has the meaning of energy-winding number. Then, we can see that the
delocalization occurs when w1[H(Φ)] takes nonzero values [Fig.1.13 and 1.14]. Thus, for the
Hatano-Nelson model, the localization-delocalization transition is characterized by the winding
number w1[H(Φ)], which is the point-gap topological invariant in class A 1D systems.

Class A d = 1: Skin effect

Here, we review the skin effect in non-Hermitian systems. Let us consider the Hatano-
Nelson model again but without the random disorder in OBC,

H =
N−1∑
j=1

JRc
†
j+1cj + JLc

†
jcj+1, (1.119)
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The matrix expression is

H =


0 JR 0
JL 0 JR

JL 0
. . .

. . . . . . JR
0 JL 0

 . (1.120)

We can analytically obtain the eigenvalues and eigenvectors. The eigenvalues and eigenvectors
are

Ek = 2
√
JLJR cos k, vk(x) =

(
JL
JR

)x/2

sin(kx), k =
sπ

L+ 1
, s = 1, 2, · · · , L. (1.121)

This can be understood by introducing imaginary gauge transformation

S =


1

r
r2

. . .
rN

 , (1.122)

where S is not unitary due to r = eg ≶ 1 for g ≶ 0. The imaginary gauge transformation by S
becomes

H̄ = S−1HS =


0 JRr 0

JLr
−1 0 JRr

JLr
−1 0

. . .
. . . . . . JRr

0 JLr
−1 0

 , (1.123)

which becomes a Hermitian matrix if we choose r =
√
JL/JR as

H̄ = S−1HS =


0

√
JLJR 0√

JLJR 0
√
JLJR

√
JLJR 0

. . .
. . . . . .

√
JLJR

0
√
JLJR 0

 . (1.124)

In Hermitian systems, we know the rule of thumb that the energy spectrum does not change
between PBC and OBC 12. The PBC Hamiltonian of H̄ is rewritten as

H̄ = 2
√
JLJR cos k, E(k) = 2

√
JLJR cos k. (1.125)

This energy spectrum is compatible with the exact solution in Eq. (1.121). We note that the
imaginary gauge transformation does not change the energy spectrum.

12except for edge states of topological insulators
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In this simplest model, we can see the skin effect. The eigenstates in Eq. (1.121) are ex-
ponentially localized at x = 0 (x = N ) for JR > JL (JL > JR). This localization can be
understood by the imaginary gauge transformation in Eq. (1.122), which naturally introduces
localization factor r =

√
JL/JR.

This skin effect was firstly studied in the context of difficulty in bulk-boundary correspon-
dence [Sec.1.2.2]. The non-Hermitian SSH model in Eq. (1.104) also shows the skin effect
[Fig. 1.15].

FIGURE 1.15: Energy spectra of the non-Hermitian SSH model in Eq. (1.104). The parameters are
t1 ∈ [−3, 3], t2 = 1, and γ = 3. The system size is N = 46. The gray lines indicate the PBC spectrum
while the blue lines (bulk) and red lines (edge) indicate the OBC spectrum. We can see that the PBC
spectrum and the OBC spectrum are different.
Reproduced from Fig. 1 of Ref. [63]. © 2018 by the American Physical Society.

The non-Hermitian skin effect is related to the point-gap topological invariants. For class A
1D systems, the point-gap topological invariant is given by the energy winding number,

w1[H(k)] :=

∫ 2π

0

dk

2π
tr[H−1(k)i∂kH(k)] =

∫
dk

2πi
∂k log detH(k). (1.126)

If the energy winding number is nontrivial, the eigenspectrum has a loop structure in PBC,
but the corresponding OBC spectrum cannot have a loop structure, and thus the skin effect
(the drastic change of energy spectrum) inevitably occurs [Fig. 1.16(a)]. The OBC spectrum is
always inside the PBC loop spectrum [83].

Okuma, et al. in Ref. [83] have shown that the skin effect also occurs in class AII† 1D
systems:

THT (k)T−1 = H(−k), T 2 = −1. (1.127)

The topological invariant of class AII† in 1D is

(−1)ν := sgn

{
Pf[H(π)T ]

Pf[H(0)T ]
× exp

[
−1

2

∫ k=π

k=0

d log det{H(k)T}
]}

. (1.128)
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They studied a stack of Hatano-Nelson model

H(k) =

(
H(HN)(k) 2∆ sin k
2∆ sin k [H(HN)]T (−k)

)
= 2t cos k + 2∆ sin kσx + 2ig sin kσz, (1.129)

where H(HN) is the Hatano-Nelson model without disorder in the form H(HN) = (t+ g)e−ik +
(t− g)eik. The eigenenergy takes the form of an ellipse,

E±(k) = 2t cos k ± 2i
√
g2 −∆2. (1.130)

The PBC spectrum, the OBC spectrum and the OBC spectrum with symmetry breaking pertur-
bation δhσz is shown in Fig. 1.16.

Re𝐸

Im𝐸(a) (b) (c)

FIGURE 1.16: (a) A picture of typical PBC spectrum and the corresponding OBC spectrum. (b) The
energy spectrum and (c) eigenstates of the model Eq. (1.129) with parameters t = 1, g = 0.3, ∆ = 0.2,
δ = 10−3 and the system size is N = 100. (b) The red line indicates the OBC spectrum and the blue
dotted curve indicates the PBC spectrum. The black line indicates the OBC spectrum with symmetry-
breaking perturbation. (c) The Kramers doublet eigenstates with E = 1.948 in OBC shows localization
at opposite edges.
Fig. (b,c) are reproduced from Fig. 2 of Ref. [67]. © 2018 by the American Physical Society.

From the Fig. 1.16(b) and (c), We can see that the skin effect of Kramers doublet occurs in
OBC. But, if we add symmetry breaking perturbation δhσz, the skin effect disappears. We note
that the energy winding number of this model in Eq. (1.129) is zero, and thus the skin effect of
class A 1D does not occur.

1.2.4 Examples of point-gapless topological states
In this section, we review a phenomenon related to point-gapless topological states: exceptional
points. We also give classifications of exceptional points [84]. Examples are the 2D exceptional
point and the PT symmetry breaking point [85].

Exceptional point 13 is a degenerate point, at which not only eigenvalues but also eigenstates
coalesce.

Let us consider an example in 2D given as

H(k) =

(
0 kx + iky
1 0

)
, E(k) = ±

√
kx + iky. (1.131)

13Exceptional point is mathematically called defective point.
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At the origin k = 0, this model becomes

H(0) =

(
0 0
1 0

)
, (1.132)

and has only one eigenvector |ψR(k = 0)⟩ = (0, 1)T with E(0) = 0, i.e., both eigenstates and
eigenvalues degenerate at k = 0.

The exceptional point can be seen as a kind of the point-gapless point. Actually, this gapless
point k = (0, 0), where the point gap E = 0 is closed, is characterized by the energy winding
number on S1 surrounding the origin,

w1 :=

∮
S1

dk

2π
· tr[H−1(k)i∇kH(k)] =

∫
dk

2πi
· ∇k log detH(k). (1.133)

w1 = 1 can be pictorially understood from the Fig. 1.17.

(a) (b)
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FIGURE 1.17: (a) ReE spectrum and (b) ImE spectrum of E(kx, ky) = ±
√
kx + iky in Eq. (1.131).

They have branch cut structure around k = 0: Two eigenenergies swap after one-cycle movement around
k = 0.

Another famous exceptional point is the PT symmetry breaking point. Let us consider the
following model,

H(PT)(k) =

(
iγ k
k −iγ

)
, E(k) = ±

√
k2 − γ2, (1.134)

which obeys the PT symmetry

(PT )H(k)(PT )−1 = H(k), PT = σxK. (1.135)

This model has the PT symmetry breaking points at k = ±γ with only one eigenstate |ψR(k = ±γ)⟩ =
(1,∓i)T and the corresponding eigenenergy E(k = ±γ) = 0. We note that the eigenstates of
this Hamiltonian are PT-symmetric for |k| > γ: PT |ψR

j ⟩ ∝ |ψR
j ⟩, while the eigenstates consti-

tute a PT-symmetric pair for |k| < γ: PT |ψR
1 ⟩ ∝ |ψR

2 ⟩. In general, the PT symmetry breaking
point at k = k0 is characterized by the Z2 point-gap topological invariant 14

(−1)ν = sgn det[H(k0 + δ)] · sgn det[H(k0 − δ)], (1.136)

14Gapless points are often characterized by gapped topological invariants on Sd−1 surrounding the gapless point.
In this case, S0 indicates two points k = k0 ± δ sandwiching the gapless point k = k0.
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where δ > 0 is an infinitesimal real number. As PT symmetry breaking point is Z2 gapless point,
we can trivialize the PT symmetry breaking point by doubling this model as [Fig. 1.18],

H(k) =

(
H(PT) imσz
imσz H(PT)

)
+ λ

(
0 iσz
iσz 0

)
, (1.137)

where the second term is a perturbation preserving the PT symmetry. We can check the point-
gapless topological invariant in Eq. (1.136) becomes trivial: ν = 0 for this doubled model.

Exceptional point 
disappears

Exceptional point
(PT symmetry 
breaking point)

ℤ2# = 1 ℤ2# = 1 + 1 = 0 (mod 2)(a) (b)

FIGURE 1.18: Complex energy spectrum of (a) a PT-symmetric model Eq. (1.134) and (b) a doubled one
Eq. (1.137). (a) The model in Eq. (1.134) has two PT symmetry breaking points characterized by the Z2

topological invariant in Eq. (1.136), but (b) the PT symmetry breaking points disappear for the doubled
one in Eq. (1.137) because the Z2 topological invariant becomes trivial.

We next explain the topological classification of exceptional points. As shown in the previ-
ous two examples, exceptional points are characterized by the topology of point-gapless points.
Topological classification of point-gapless points can be obtained from the classification of
point-gapped topological phases. Let us remember the classification of gapless states in Hermi-
tian systems. In Hermitian systems, A Weyl point in 3D can be seen as a topological transition
point of 2D topological insulators H(kx, ky) by regarding kz as a parameter [Fig. 1.19(a)]. The
Chern number Ch of the 2D topological insulator H(kx, ky) changes before and after the Weyl
point. In non-Hermitian systems, An exceptional point in 2D (the one in Fig. 1.17) can be seen
as a topological transition point of 1D point-gapped topological chain H(ky) by regarding kx as
a parameter [Fig. 1.19(b)]. Energy winding number w1 in Eq. (1.126) changes before and after
the exceptional point.

In general, we have the following relation

"classification of gapless points in d-dim."⇔ "classification of gapped phases in (d− 1)-dim.".
(1.138)

We note that this relation is valid in both Hermitian and non-Hermitian systems for both point
gap and line gap under k-invariant symmetries. Non-Hermitian systems have seven k-invariant
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(a)

𝑘𝑥

𝑘𝑦

EP

𝑤1 = 1𝑤1 = 0

(b)

FIGURE 1.19: A gapless point in d-dimensions can be regarded as a topological transition point of
(d − 1)-dimensional gapped topological phases if we regard one momentum as a parameter. (a) A Weyl
point in 3D can be seen as a topological transition point of a 2D topological insulator. (b) An exceptional
point in 2D can be seen as a topological transition point of a 1D point-gapped topological chain.

symmetries. PT, CP 15 and CS are given as

(PT )H(k)(PT )−1 = H(k), (PT )2 = ±1, (1.139)

(CP )H†(k)(CP )−1 = −H(k), (CP )2 = ±1, (1.140)

ΓH†(k)Γ−1 = −H(k), Γ2 = 1. (1.141)

Here, (PT ) and (CP ) are anti-unitary operators while Γ is a unitary operator. The Hermitian
conjugates of these symmetries: PT†, CP†, and sub-lattice symmetries (SLS) are

(PT ′)H†(k)(PT ′)−1 = H(k), (PT ′)2 = ±1, (1.142)
(CP ′)H(k)(CP ′)−1 = −H(k), (CP ′)2 = ±1, (1.143)

SH(k)S−1 = −H(k), S2 = 1. (1.144)

Here, (PT ′) and (CP ′) are anti-unitary operators while S is a unitary operator. The Hermiticity
condition is generalized into a symmetry, called pseudo-Hermiticity

ηH(k)†η = H(k), η2 = 1, (1.145)

where η is a unitary operator.
The classification of point-gapped topological phases are shown in Sec. 1.2.1. We remark

that some of the symmetries we consider in this section (k-invariant symmetries) are different
from the ones in Sec. 1.2.1, and thus we have different classification results. The seven sym-
metries Eqs. (1.139)-(1.145) for the doubled Hamiltonian H̄(k) in Eq. (1.102) also have the
forms of crystalline symmetries, and thus we can calculate the topological classifications by the
methods developed in equilibrium. We explain the classification method by Clifford algebra in
Chap. 2.

The following tables 1.6-1.8 are the periodic tables of both point-gapless points and line-
gapless points. The point-gapless topological numbers in these periodic tables characterize the
exceptional points. The line-gapless states (especially real line-gapless states of ReE = 0) can
be seen as a natural extension of Hermitian gapless states (E = 0), and it is related to the

15CP symmetry is a combination of charge-conjugation symmetry (C), or equivalently particle-hole symmetry,
and inversion symmetry.
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extended Nielsen-Ninomiya theorem.

TABLE 1.6: Periodic table of non-Hermitian gapless points in PAZ symmetry classes. ±1, 1 and 0 in the
PT , CP , and Γ columns show the presence or absence of (PT )2 = ±1, (CP )2 = ±1, and Γ2 = 1. P
represents the point gap and L represents the line gap. Under some symmetry classes, real line gap Lr

and imaginary line gap Li give different topological phases.

AZ class PT CP Γ Gap d = 1 d = 2 d = 3

A 0 0 0
P 0 Z 0
L Z 0 Z

AIII 0 0 1
P Z 0 Z
Lr 0 Z 0
Li Z⊕ Z 0 Z⊕ Z

PAI +1 0 0
P Z2 Z2 0
Lr Z Z2 Z2

Li Z2 0 2Z

PBDI +1 +1 1
P Z2 0 2Z
Lr Z2 Z2 0
Li Z2 ⊕ Z2 0 2Z⊕ 2Z

PD 0 +1 0
P 0 2Z 0
L Z2 0 2Z

PDIII −1 +1 1
P 2Z 0 0
Lr 0 2Z 0
Li Z 0 Z

PAII −1 0 0
P 0 0 0
Lr 2Z 0 0
Li 0 0 Z

PCII −1 −1 1
P 0 0 Z
Lr 0 0 0
Li 0 0 Z⊕ Z

PC 0 −1 0
P 0 Z Z2

L 0 0 Z

PCI +1 −1 1
P Z Z2 Z2

Lr 0 Z Z2

Li Z 0 Z
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TABLE 1.7: Periodic table of non-Hermitian gapless points in PAZ† symmetry classes. ±1, 1 and 0 in the
PT ′, CP ′, and Γ columns show the presence or absence of (PT ′)2 = ±1, (CP ′)2 = ±1, and Γ2 = 1.
P represents the point gap and L represents the line gap. Under some symmetry classes, real line gap Lr

and imaginary line gap Li give different topological phases.

PAZ† class PT ′ CP ′ Γ Gap d = 1 d = 2 d = 3

PAI† +1 0 0
P 0 Z Z2

L Z Z2 Z2

PBDI† +1 +1 1
P Z Z2 Z2

Lr Z2 Z2 0
Li Z⊕ Z Z2 ⊕ Z2 Z2 ⊕ Z2

PD† 0 +1 0
P Z2 Z2 0
Lr Z2 0 2Z
Li Z Z2 Z2

PDIII† −1 +1 1
P Z2 0 2Z
Lr 0 2Z 0
Li Z 0 Z

PAII† −1 0 0
P 0 2Z 0
L 2Z 0 0

PCII† −1 −1 1
P 2Z 0 0
Lr 0 0 0
Li 2Z⊕ 2Z 0 0

PC† 0 −1 0
P 0 0 0

Lrr 0 0 Z
Li 2Z 0 0

PCI† +1 −1 1
P 0 0 Z
Lr 0 Z Z2

Li Z 0 Z

TABLE 1.8: Periodic table of non-Hermitian gapless points under sub-lattice symmetry (SLS) and chiral
symmetry. These unitary symmetry operators obey Γ2 = 1 and S2 = 1. P represents the point gap and
L represents the line gap. Under some symmetry classes, real line gap Lr and imaginary line gap Li give
different topological phases. The subscript of S± represents the commutation (+) or anticommutation (-)
relation with chiral symmetry ΓS± = ±S±Γ.

SLS AZ class Gap d = 1 d = 2 d = 3

SLS+ AIII
P 0 Z 0
Lr 0 Z⊕ Z 0
Li 0 Z⊕ Z 0

SLS A
P 0 Z⊕ Z 0
L 0 Z 0

SLS− AIII
P Z⊕ Z 0 Z⊕ Z
Lr Z 0 Z
Li Z 0 Z
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1.2.5 Experimental realization of non-Hermitian Hamiltonians
In this section, we review experimental realizations of non-Hermitian Hamiltonians. We es-
pecially explain cold atoms, where the Lindblad equations with post-selection lead to effec-
tive non-Hermitian Hamiltonians, and strongly correlated or disordered electron systems where
Green’s functions lead to effective non-Hermitian Hamiltonians, etc.

Quantum optical method: cold atom systems

We first explain the cold atom case. If a "system" is weakly coupled to an "environment",
we can describe the dynamics of the "systems" by a Lindblad equation

dρ

dt
= − i

ℏ
(Hρ− ρH) +

∑
m

γm
2ℏ
(
2LmρL

†
m − L†

mLmρ− ρL†
mLm

)
, (1.146)

where Lm’s are Lindblad (jump) operators that describe the coupling of the "systems" with the
"environment". We rewrite the equation as

dρ

dt
= − i

ℏ

(
Heffρ− ρH†

eff

)
+
∑
m

γm
ℏ
LmρL

†
m, Heff = H − i

2

∑
m

L†
mLm. (1.147)

where we introduced a non-Hermitian effective Hamiltonian Heff. The Lindblad operator is
typically given as an annihilation operator Lm = am, which describes a loss of particles from
the "system" into the "environment". We suppose the Lindblad operators are only annihilation
operators in the following.

If we perform a projection measurement of the particle number of the "system", we obtain
the measurement results Nmeasured = N,N −1, N −2, · · · where we supposed the initial particle
number of the "system" is N . We perform the projection measurement every short time step 16

and we concentrate on the no loss case: Nmeasured = N . Then, as a rough discussion, we can
forget the loss terms of Eq. (1.147), we have

dρ

dt
= − i

ℏ

(
Heffρ− ρH†

eff

)
. (1.148)

If the initial state is a pure state ρ = |ψ⟩ ⟨ψ|, we obtain the following Schrodinger equation

∂

∂t
|ψ⟩ = Heff |ψ⟩ , (1.149)

but with normalization. For completeness, we write the exact form,

|ψ(t)⟩ = 1√
⟨ψ0| eiH

†
effte−iHefft |ψ0⟩

e−iHefft |ψ0⟩ , Heff = H − i

2

∑
m

L†
mLm. (1.150)

This is the non-Hermitian Hamiltonian description of cold atoms with post-selection. The rig-
orous argument is formulated as the quantum trajectory method. See, for example, the Review
article [86].

16The measurement time step τ needs to satisfy γτ ≪ 1 while γ2τ is finite. If we take τ → 0 without this
condition, the quantum Zeno effect occurs and it prohibits the change of the system and thus the dynamics of the
system become trivial.
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Green’s function method: strongly correlated and disordered systems

We next explain how strongly correlated electron systems induce the description of effective
non-Hermitian Hamiltonians. We introduce the retarded/advanced Green’s function,

iGR
αβ(x, t) := θ(t)⟨{ψ̂α(x, t), ψ̂

†
β(0)}⟩ (1.151)

:= θ(t)tr[eβ(Ω−Ĥ){ψ̂α(x, t), ψ̂
†
β(0)}], (1.152)

iGA
αβ(x, t) := −θ(−t)⟨{ψ̂α(x, t), ψ̂

†
β(0)}⟩ (1.153)

:= −θ(−t)tr[eβ(Ω−Ĥ){ψ̂α(x, t), ψ̂
†
β(0)}], (1.154)

Here we used the grand partition function

ZG = e−βΩ := tr[e−βĤ ], (1.155)

and time-dependent annihilation and creation operator

ψ̂α(x, t) := eiĤtψ̂α(x)e
−iĤt, ψ̂†

α(x, t) := eiĤtψ̂†
α(x)e

−iĤt. (1.156)

We next introduce the Fourier transformation of them as

GR(ω,k) :=

∫
d3x

∫
dte−ik·xeiωtGR(x, t), (1.157)

GA(ω,k) :=

∫
d3x

∫
dte−ik·xeiωtGA(x, t). (1.158)

We note that iGR(ω,k) = iG(ω + iδ,k) and iGA(ω,k) = iG(ω − iδ,k) with respect to the
same function iG(z,k) given as

Gαβ(z,k) :=V
∑
m,n

δ(k + Pn − Pm)e
β(Ω−Em) (1.159)

× 1 + e−β(En−Em)

z + En − Em

〈
m
∣∣∣ψ̂α(0)

∣∣∣n〉〈n ∣∣∣ψ̂†
β(0)

∣∣∣m〉 . (1.160)

We consider the effective non-Hermitian noninteracting Hamiltonian Heff(k) for quasi-particles
defined by the retarded Green’s function as

G−1(ω + iδ,k) = (ω + iδ)−H(k)− Σ(ω + iδ,k) (1.161)
= (ω + iδ)−Heff(ω,k). (1.162)

We usually study the ω = 0 case: Heff(k) := Heff(0,k) in order to understand the physics of the
Fermi surface.

We next explain how disordered electron systems induce the description of effective non-
Hermitian Hamiltonians. We introduce the impurity-averaged Green’s function as follows. We
first consider the following retarded/advanced Green’s functions

iGR
αβ(x,y; t) := θ(t)tr[eβ(Ω−Ĥ){ψ̂α(x, t), ψ̂

†
β(y)}] (1.163)

iGA
αβ(x,y; t) := −θ(−t)tr[eβ(Ω−Ĥ){ψ̂α(x, t), ψ̂

†
β(y)}] (1.164)
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Here Ĥ := Ĥ0+V̂imp and V̂imp is impurity potential. Then, the impurity-averaged retarded/advanced
Green’s function is

iG
R/A
imp,αβ(x,y; t) := ⟨iG

R/A
αβ (x,y; t)⟩imp (1.165)

Here the impurity average is defined as

⟨•⟩imp := Πi

∫
d3Ri

V
• (1.166)

The Feynman rule for impurity scattering is obtained from this definition. The Effective non-
Hermitian Hamiltonian from this impurity-averaged retarded Green’s function was studied in
the previous works [87, 88]. The typical impurity potential is

V̂imp =
∑
i,σ

∫
d3xVimp(x−Ri)ψ̂

†
σ(x)ψ̂σ(x) (1.167)

with Vimp(x−Ri) := δ(x−Ri) and σ is spin index. We here show the translational invariance
of impurity-averaged Green’s function. We introduce a translation operator T̂a as follows

T̂aψ̂(x)T̂ −1
a = ψ̂(x+ a), (1.168)

then, we have

tr[eβ(Ω−Ĥ)ψ̂α(x+ a, t)ψ̂†
β(y + a)] (1.169)

= tr[eβ(Ω−Ĥ)eiĤtψ̂α(x+ a)e−iĤtψ̂†
β(y + a)] (1.170)

= tr[eβ(Ω−Ĥ)eiĤt
(
T̂aψ̂α(x)T̂ −1

a

)
e−iĤt

(
T̂aψ̂†

β(y)T̂
−1
a

)
] (1.171)

= tr[eβ(Ω−T̂ −1
a ĤT̂a)eiT̂

−1
a ĤT̂aψ̂α(x)e

−iT̂a
−1

ĤT̂aψ̂†
β(y)]. (1.172)

Here, the translation of the Hamiltonian becomes

T̂ −1
a ĤT̂a = T̂ −1

a

(
Ĥ0 + V̂imp

)
T̂a (1.173)

= Ĥ0 +
∑
i,α

∫
d3xVimp,αβ(x−Ri)ψ̂

†
α(x− a)ψ̂β(x− a) (1.174)

= Ĥ0 +
∑
i,α

∫
d3xVimp,αβ(x−Ri + a)ψ̂†

α(x)ψ̂β(x). (1.175)
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This is not equal to Ĥ itself because we do not know the position of impurities, but we can take
Ri → Ri + a after impurity-averaging because Ri is integrated out. Thus we have

⟨tr[eβ(Ω−Ĥ)ψ̂α(x+ a, t)ψ̂†
β(y + a)]⟩imp (1.176)

= Πi

∫
d3Ri

V
tr[eβ(Ω−T̂ −1ĤT̂ )eiT̂

−1ĤT̂ tψ̂α(x)e
−iT̂ −1ĤT̂ tψ̂†

β(y)] (1.177)

= Πi

∫
d3Ri

V
tr[eβ(Ω−Ĥ)eiĤtψ̂α(x)e

−iĤtψ̂†
β(y)] (1.178)

= ⟨tr[eβ(Ω−Ĥ)ψ̂α(x, t)ψ̂
†
β(y)]⟩imp. (1.179)

Because of this translational invariance, the impurity-averaged Green’s function depends only
on x− y and thus we can Fourier transform it as:

G
R/A
imp (ω,k) :=

∫
d3(x− y)

∫
dte−ik·(x−y)eiωtG

R/A
imp (x,y; t). (1.180)

We note that iGR
imp(ω,k) = iGimp(ω+ iδ,k) and iGA

imp(ω,k) = iGimp(ω− iδ,k) with respect to
a same function iGimp(z,k). Thus, we can consider an effective non-Hermitian non-interacting
Bloch Hamiltonian Heff(k) for the quasi-particles defined by the impurity-averaged retarded
Green’, function:

G−1
imp(ω + iδ,k) = (ω + iδ)−H(k)− Σimp(ω + iδ,k) (1.181)

= (ω + iδ)−Heff(ω,k). (1.182)

1.3 Organization of the thesis
In this thesis, we construct an extended version of the Nielsen-Ninomiya theorem for Floquet
and non-Hermitian systems and provide applications of the theorem for both Floquet systems
and non-Hermitian systems. In Chapter 2, we review the properties of Dirac Hamiltonians as
theoretical methods. Dirac Hamiltonians give typical models of topological insulators, super-
conductors, and semimetals in equilibrium. Moreover, Dirac Hamiltonians are closely related to
the topological classifications as firstly shown by Kitaev [14].

In Chapter 3, we first see examples of the extended Nielsen-Ninomiya theorem both in Flo-
quet and non-Hermitian systems, which also implies a topological duality between Floquet and
non-Hermitian systems. Then, we give general theories. We formulate the topological dual-
ity between Floquet and non-Hermitian systems, and provide the extended Nielsen-Ninomiya
theorem that is valid in any symmetry classes and dimensions. The proof of the theorem is fol-
lowed. In Chapter 4, we propose the non-Hermitian chiral magnetic effect as an application of
the extended Nielsen-Ninomiya theorem for non-Hermitian systems. We construct a concrete
model, and see the wave packets go in the direction of an applied magnetic field. We also find
a formula describing the non-Hermitian chiral magnetic effect. In Chapter 5, we propose ex-
trinsic topology in quantum walks as an application of the extended Nielsen-Ninomiya theorem
for Floquet systems. According to ordinary bulk-boundary correspondence, the boundary gap-
less states are determined from the bulk topological invariants. In quantum walks, however, the
boundary states depend on both bulk topology and boundary topology.
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Chapter 2

Method: Dirac Hamiltonians

2.1 Simplest topological insulator models
In this section, We see that massive Dirac Hamiltonians can be regarded as a simplest topological
insulator (superconductor) models.

class A d = 2

Let us consider a 2D topological insulator model

H(kx, ky) = sin kxσx + sin kyσy + (u+ cos kx + cos ky)σz, (2.1)

E(kx, ky) = ±
√

sin2 kx + sin2 ky + (u+ cos kx + cos ky)2. (2.2)

In general, the topological phases of 2D insulators are characterized by the Chern number in
Eq. (1.26). For the present model, the Chern number becomes

• Ch = 0 for u < −2.

• Ch = −1 for −2 < u < 0.

• Ch = 1 for 0 < u < 2.

• Ch = 0 for u > 2.

Near the topological transition point u = −2 with k = (0, 0), the model becomes a simple
massive Dirac Hamiltonian,

H(kx, ky) = kxσx + kyσy +mσz +O(k2), H(kx, ky) =
√
k2x + k2y +m2 +O(k2). (2.3)

Here we replaced m = u + 2. The Chern number of this model in the Brillouin zone k ∈ R2

becomes Ch = 1
2
sgn[m] 1. From this result, we can say that m < 0 and m > 0 are different

topological phases.

class AIII d = 1

Next, we consider a 1D model with chiral symmetry given as

H(k) =

(
0 u+ veik

u+ ve−ik 0

)
, E(k) = ±

√
(u+ v cos k)2 + (v sin k)2, (2.4)

1The Chern number can take a non-integer value because the Brillouin zone is non-compact.
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where the chiral symmetry is given as σzH(k)σz = −H(k). The topological phases of 1D
chiral-symmetric insulators are characterized by the winding number defined as

w :=

∫ 2π

0

dk

2πi
tr[q−1∂kq], H(k) =

(
0 q
q† 0

)
, (2.5)

where we assumed the non-diagonal form of Hamiltonians obtained from the chiral symmetry
σzHσz = −H . For the present model, the winding number becomes

• w = 0 for u > v.

• w = 1 for u < v.

Near the topological transition point u = v with k = π, the model becomes a simple massive
Dirac Hamiltonian,

H(k) = vδkσy +mσx +O(δk2), E(k) = ±
√

(vδk)2 +m2. (2.6)

Here we replacedm = u−v and δk = k−π. The winding number of this model in the Brillouin
zone k ∈ R becomes w = 1

2
sgn[m] 2. From this result, we can say that m < 0 and m > 0 are

different topological phases.

2.2 Clifford algebra
We first review the Clifford algebra. The Clifford algebra is mathematically a ring, which defines
addition and multiplication. The complex Clifford algebra Cln has n generators {e1, . . . , en}
satisfying

{ei, ej} = δi,j, (2.7)

and the linear combinations of the products ep11 e
p2
2 · · · epnn form a 2n-dimensional complex vector

space. The real Clifford algebra Clp,q has p+q generators {e1, . . . , ep; ep+1, . . . , ep+q} satisfying

{ei, ej} = 0 for i ̸= j, (2.8)

e2i =

{
−1 for 1 ≤ i ≤ p,

1 for p+ 1 ≤ i ≤ p+ q,
(2.9)

and their products form a 2p+q-dimensional real vector space. For instance, generators of Cl2
are given by the Pauli matrices,

{e1, e2} = {σx, σy}, (2.10)

the products of which provide the basis of the 22-dimensional complex vector space as

c11̂ + c2σx + c3σy + c4iσz, c1, c2, c3, c4 ∈ C. (2.11)

The space coincides with that of 2 × 2 matrices C(2), and thus we obtain the isomorphism
Cl2 ≃ C(2).

2The winding number can take a non-integer value because the Brillouin zone is non-compact.
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TABLE 2.1: Classifying space Cn.

n mod 2 Classifying space Cn π0(Cn)
0 [U(k +m)/(U(k)× U(m))]× Z Z
1 U(k) 0

TABLE 2.2: Classifying space Rq.

q mod 2 Classifying space Rq π0(Rq)
0 [O(k +m)/(O(k)×O(m))]× Z Z
1 O(k) Z2

2 O(2k)/U(k) Z2

3 U(2k)/Sp(k) 0
4 [Sp(k +m)/(Sp(k)× Sp(m))]× Z Z
5 Sp(k) 0
6 Sp(k)/U(k) 0
7 U(k)/O(k) 0

If a representation of complex Clifford algebra Cln is given, we can obtain Cln+1 by adding
a generator e0 satisfying {e0, ej} = δ0,j . The problem to identify all the possible representations
of e0 is called the extension problem of Cln → Cln+1, and the space of the representations is
called the classifying space Cn. In Table 2.1, we summarize the classifying space Cn and the
number of connected parts of Cn, i.e., the zeroth homotopy π0(Cn). We note that Cn has the
Bott periodicity Cn+2 = Cn.

We also have a similar extension problem for the real Clifford algebras. If a representation of
Clp,q is given, we add a generator e0 that satisfies e20 = −1 (e20 = 1), and obtain the real Clifford
algebra Clp+1,q (Clp,q+1). The problem to identify the representation space of e0 is called the
extension problem Clp,q → Clp+1,q (Clp,q → Clp,q+1), which defines the classifying space
Rp+2−q (Rq−p). Table 2.2 summarizes the classifying space Rq and the number of connected
parts of Rq, i.e., the zeroth homotopy π0(Rq). We note that Rq has the Bott periodicity Rq+8 =
Rq.

2.3 Classification of topological insulators and superconduc-
tors

As shown in Sec. 2.1, near a topological transition point, the Hamiltonian of topological insula-
tors and superconductors takes the form of massive Dirac Hamiltonian, 3

H(k) =
d∑

j=1

kjγj + γ0, (2.12)

where γµ = γ0, γj are gamma matrices satisfying {γµγν} = δµν . The massive Dirac Hamiltonian
needs to satisfy the given symmetries we want to consider. Gamma matrices are mathematically

3More strictly, it is believed that we can always deform any model near a topological transition point into a
massive Dirac Hamiltonian up to addiction and subtraction of trivial bands.



46 Chapter 2. Method: Dirac Hamiltonians

generators of Clifford algebras introduced in the previous section. The number of connected
representations of γ0 gives the number of topological phases. Mathematically, if we write the
representation space of γ0 as M , then the number of connected parts of M , called the zeroth
homotopy group π0(M) gives the number of topological phases.

We see two ways of calculating π0(M) in class A 2D systems. One way is a naive calculation
based on its definition. The other way is a formal calculation based on the Clifford algebra
extension problem. We first explain a naive calculation. Near a topological transition point, the
Hamiltonians of topological insulators take the form of a massive Dirac Hamiltonian

H(k1, k1) = k1γ1 + k2γ2 + γ0 = k1σx ⊗ 1N×N + k2σy ⊗ 1N×N + γ0, (2.13)

where we fixed a representation of gamma matrices of γ1, γ2. N is taken to infinity because
solids have many trivial bands that does not affect the physics near Fermi surface 4. The possible
representations of γ0 is given by

γ0 = σz ⊗ A, A2 = 1N×N , (2.14)

where A is Hermitian. A is also rewritten as

A = UIn,mU
†, In,m =

(
1n×n

−1m×m

)
, (2.15)

where n,m is chosen to satisfy n +m = N . We note that A does not change under the gauge
transformation of U given as,

U → U

(
Un

Um

)
. (2.16)

U is defined up to this form of gauge transformation. Therefore, the representation space of γ0
becomes

M = [U(n+m)/(U(n)× U(m))]× Z (2.17)

in the limit N → ∞. We note that the space M exactly coincides with C0 in Table 2.1. The
number of connected parts of M is

π0(M) = π0(C0) = Z. (2.18)

This result indicates that class A 2D insulators have integer infinity of topological phases. This
is compatible with our knowledge that the Chern number is integer-valued.

We next explain a formal calculation based on the Clifford algebra extension problem. Near
a topological transition point, the Hamiltonians take the form of a massive Dirac Hamiltonian

H(k1, k2) = k1γ1 + k2γ2 + γ0. (2.19)

4For example, we have extremely high-energy trivial bands that electrons go outside of solids.



2.3. Classification of topological insulators and superconductors 47

We calculate the representation space of γ0. The gamma matrices constitute complex Clifford
algebra, where the generators are

{e0, e1, e2} = {γ0, γ1, γ2}. (2.20)

Then, the problem to obtain the representation space γ0 for a fixed representation of γ1 and γ2 is
given as

Cl2 → Cl3. (2.21)

It’s classifying space is C2 ≃ C0. Therefore, we obtain π0(γ0) = π0(C0) = Z.
The latter formal calculation is easier to systematically obtain the topological classifications.

In the following, we calculate the classifying spaces in all symmetry classes and dimensions.

Complex symmetry classes
We first consider class A. Near a topological transition point, Hamiltonians take the form of

a massive Dirac Hamiltonian

H(k) =
d∑

j=1

kjγj + γ0. (2.22)

The gamma matrices constitute a complex Clifford algebra as

{e0, e1, · · · , ed+1} = {γ0, γ1, γ2, · · · , γd}. (2.23)

Therefore, the problem to obtain the representation space γ0 is given by the extension problem
of

Cld → Cld+1. (2.24)

Therefore, the classifying space is given as Cd.
We next consider class AIII. Near a topological transition point, Hamiltonians take the form

of a massive Dirac Hamiltonian

H(k) =
d∑

j=1

kjγj + γ0, ΓH(k)Γ = −H(k). (2.25)

We note that the massive Dirac Hamiltonian obeys the chiral symmetry. The gamma matrices
and the chiral symmetry operator constitute a complex Clifford algebra as

{e0, e1, · · · , ed+2} = {γ0, γ1, γ2, · · · , γd,Γ}. (2.26)

Therefore, the problem to obtain the representation space γ0 is given by the extension problem
of

Cld+1 → Cld+2. (2.27)

Therefore, the classifying space is given as Cd+1.

Real symmetry classes
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In the presence of TRS and PHS,

TH(k)T−1 = H(−k), CH(k)C−1 = −H(−k), (2.28)

anti-unitary operators T and C make the problem difficult. We introduce an operator J that
represents the imaginary unit i 5 and anti-commute with T and C. Then, the gamma matrices,
symmetry operators, and J constitute a real Clifford algebra as follows.

We first consider classes AI and AII (T 2 = 1 and T 2 = −1). The generators of the real
Clifford algebras for classes AI and AII are

{Jγ0; T, JT, γ1, γ2, · · · , γd}, (2.29)
{Jγ0, T, JT ; γ1, γ2, · · · , γd}. (2.30)

Therefore, the representation spaces of γ0 in classes AI and AII are given by the extension
problems of

Cl0,d+2 → Cl1,d+2, Cl2,d+2 → Cl3,d+2. (2.31)

Their classifying spaces are R−d and R4−d for classes AI and AII.
We next consider classes D and C ( C2 = 1 and C2 = −1). The generators of the real

Clifford algebra for classes D and C are

{Jγ1, Jγ2, · · · , Jγd; C, JC, γ0}, (2.32)
{Jγ1, Jγ2, · · · , Jγd, C, JC; γ0}. (2.33)

Therefore, the representation space of γ0 for classes D and C are given by the extension problems
of

Cld,2 → Cld,3, Cld+2,0 → Cld+2,1. (2.34)

Their classifying spaces are R2−d and R6−d for classes D and C.
We finally consider classes BDI (T 2 = 1, C2 = 1), DIII (T 2 = −1, C2 = 1), CII (T 2 =

−1, C2 = −1), and CI (T 2 = 1, C2 = −1). The generators of the real Clifford algebra for
classes BDI, DIII, CII and CI are

{Jγ0, JΓ; T, JT, γ1, γ2, · · · , γd}, (2.35)
{Jγ0, T, JT ; JΓ, γ1, γ2, · · · , γd}, (2.36)
{Jγ0, T, JT, JΓ; γ1, γ2, · · · , γd}, (2.37)
{Jγ0; JΓ, T, JT, γ1, γ2, · · · , γd}. (2.38)

Therefore, the representation space of γ0 for classes BDI, DIII, CII and CI are given by the
extension problems of

Cl1,d+2 → Cl2,d+2, Cl2,d+1 → Cl3,d+1, Cl3,d → Cl4,d, Cl0,d+3 → Cl1,d+3. (2.39)

Their classifying spaces are R1−d, R3−d, R5−d, and R7−d for classes BDI, DIII, CII and CI.

5The 2× 2 matrices
(
a −b
b a

)
is isomorphic to complex numbers a+ ib, where a, b ∈ R.
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Combining π0(Cn) and π0(Rq) in Table 2.1 and 2.2, we obtain the periodic table of topolog-
ical insulators and superconductors as shown in Table 2.3.

TABLE 2.3: Periodic table of topological insulators and superconductors.

AZ class T C Γ d = 0 1 2 3 4
A 0 0 0 Z 0 Z 0 Z

AIII 0 0 1 0 Z 0 Z 0
AI +1 0 0 Z 0 0 0 Z

BDI +1 +1 1 Z2 Z 0 0 0
D 0 +1 0 Z2 Z2 Z 0 0

DIII −1 +1 1 0 Z2 Z2 Z 0
AII −1 0 0 Z 0 Z2 Z2 Z
CII −1 −1 1 0 Z 0 Z2 Z2

C 0 −1 0 0 0 Z 0 Z2

CI +1 −1 1 0 0 0 Z 0

2.4 Bulk-boundary correspondence
Massive Dirac Hamiltonians also give us a clear-cut understanding of the bulk-boundary cor-
respondence. Furthermore, we can see that the effective surface Hamiltonian describing the
gapless boundary states takes the form of gapless Dirac Hamiltonians.

2.4.1 2D Chern insulator
Let us first consider the massive Dirac Hamiltonian for 2D Chern insulators again,

H(kx, ky) = kxσx + kyσy +mσz +O(k2), E(kx, ky) =
√
k2x + k2y +m2 +O(k2). (2.40)

The Chern number of this model is Ch = 1
2
sgn[m], which implies that m < 0 and m > 0 are

different topological phases.
We see the surface of two Chern insulators has chiral gapless modes. The surface of two

Chern insulators is represented as

H = kxσx + (−i∂y)σy +m(y)σz, (2.41)

where m(y) is given as

m(y) =

{
−1/2 for y > 0,

1/2 for y < 0.
(2.42)

Its solution is 6

ψ ∝ e
∫ y m(y′)dy′v0, v0 =

1√
2

(
1 1

)T
, (2.43)

6We note that the spatial factor ϕ(y) ∝ e
∫ y m(y′)dy′

is a square-integrable function
∫∞
−∞ |ϕ(y)|

2 <∞.
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with eigenenergy Esurface(kx) = kx, because this solution leads to

Hψ = [kxσx +m(y)(σz − iσy)]ψ (2.44)
= kxψ. (2.45)

If we take m(y) = 1/2 for y > 0 and m(y) = −1/2 for y < 0, the solution is given by
ψ ∝ e−

∫ y m(y′)dy′v′0 with eigenenergy Esurface(kx) = −kx, where v′0 = (1/
√
2)(1,−1)T.

From this result, we have the bulk-boundary correspondence 7:

Chy<0 − Chy>0 =
∑
kpαx

sgn vpαx , (2.46)

where kpαx is the α-th Fermi point defined by Ep(k
pα
x ) = 0 for some energy band p, and vpαx =

(∂Ep(kx)/∂kx)kx=kpαx is the group velocity at kpαx . This equation states that the total chirality
sgn vpαx at the surface y = 0 is determined from the difference of the Chern numbers in y < 0
region (Chy<0) and the Chern numbers in y > 0 region (Chy>0).

2.4.2 General case
In general [36], the topological insulators near topological transition point is given by a massive
Dirac Hamiltonian,

H(k) =
d∑

j=1

kjγj +mγ0, (2.47)

where γµ = γ0, γj are gamma matrices satisfying {γµγν} = δµν .
We consider the surface at xd = 0 as

H =
d−1∑
j=1

kjγj + (−i∂xd
)γd +m(xd)γ0. (2.48)

where m(xd) is the one given in Eq. (2.42). From the anti-commutation relations of gamma
matrices, we have the commutation relation [iγ0γd, γj] = 0. Then, we can simultaneously diag-
onalize iγ0γd and

∑d−1
j=1 kjγj . As we have (iγ0γd)

2 = 1̂, its eigenvalues are ±1. We especially
consider the eigenspace of (iγ0γd)v = +1v.

Its solution is given as

ψ ∝ e
∫ y m(y′)dy′v ⊗ u, (2.49)

7We have checked that only one nontrivial model satisfies this relation. In general, by stacking this generator
model and/or trivial model via a direct sum and performing a smooth deformation, any topological insulator model
can be produced. We note that the left-hand side and right-hand side of this relation are invariant during this
deformation. Therefore, this relation holds for any gapped model.
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which leads to

Hψ =

[
d−1∑
j=1

kjγj +m(xd)(γ0 − iγd)

]
ψ (2.50)

=
d−1∑
j=1

kjγjψ, (2.51)

where we have used γ0 − iγd = γ0(γ
2
0 − iγ0γd) = γ0(1− 1) = 0 for v.

If we simultaneously diagonalize
∑d−1

j=1 kjγj by choosing an appropriate u, we have

Hψ± = E±
surface(k)ψ±, E±

surface(k) = ±

√√√√d−1∑
j=1

k2j . (2.52)

From this result, we see that the boundary gapless states of d-dimensional topological insu-
lators obey the effective surface Hamiltonian of the form of the gapless Dirac Hamiltonian

Hsurface(k) =
d−1∑
j=1

kjγj. (2.53)

This result also implies that the classification of gapless states in (d−1)-dimensions is given
by the classification of topological insulators in d-dimensions. Therefore, the periodic table of
gapless states becomes Table. 2.4.

TABLE 2.4: Periodic table of topological gapless states.

AZ class T C Γ d = 0 1 2 3
A 0 0 0 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0
AI +1 0 0 0 0 0 Z

BDI +1 +1 1 Z 0 0 0
D 0 +1 0 Z2 Z 0 0

DIII −1 +1 1 Z2 Z2 Z 0
AII −1 0 0 0 Z2 Z2 Z
CII −1 −1 1 Z 0 Z2 Z2

C 0 −1 0 0 Z 0 Z2

CI +1 −1 1 0 0 Z 0

2.5 Topological classification of Floquet systems
In this section, we see how to obtain the topological classification of Floquet topological insula-
tors and Floquet gapless phases by the extension problem of Clifford algebra.

Floquet topological insulators
In Sec. 1.1.1, we discussed the classification of Floquet topological insulators. It is refor-

mulated into the topological classification problem of C(k, t) and L(k, t) in Eq. (1.18). The
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topological classification of C(k, t) is equivalent to the topological classification of ordinary
topological insulators discussed in Sec. 2.3. The topological classification of L(k, t) is equiv-
alent to that of HL(k, t) in Eq. (1.19), which obeys the symmetries in Eqs. (1.20)-(1.23). In
Table 2.5, we summarize the generators of Clifford algebra, the extension problem, and the
classifying space for the massive Dirac Hamiltonian

HL(k, t) =
d∑

j=1

kjγj + tγt + γ0, (2.54)

for each symmetry class and dimensions. Combining this Table 2.5 with Tables 2.1 and 2.2,
we can specify the number of connected components of the classifying space, which gives the
topological numbers in Table 1.2.

TABLE 2.5: Clifford algebra extensions and classifying spaces forHL(k, t).

AZ class T C Γ Generator Extension Cn or Rq

A 0 0 0 {γ1, . . . , γd, γt, γ0,Σz} Cld+2 → Cld+3 Cd

AIII 0 0 1 {γ1, . . . , γd, γt, γ0,Σz, JγtΓ̃} Cld+3 → Cld+4 Cd+1

AI +1 0 0 {Jγ0, JΣz; γ1, . . . , γd, γt, T̃ , JT̃} Cl1,d+3 → Cl2,d+3 R−d

BDI +1 +1 1 {Jγ0, JΣz, γtΓ̃; γ1, . . . , γd, γt, T̃ , JT̃} Cl2,d+3 → Cl3,d+3 R1−d

D 0 +1 0 {Jγ0, Jγt, JΣz; γ1, . . . , γd, C̃, JC̃} Cl2,d+2 → Cl3,d+2 R2−d

DIII −1 +1 1 {Jγ0, JΣz, T̃ , JT̃ ; γ1, . . . , γd, γt, γtΓ̃} Cl2,d+2 → Cl3,d+2 R2−d

AII −1 0 0 {Jγ0, JΣz, T̃ , JT̃ ; γ1, . . . , γd, γt} Cl3,d+1 → Cl4,d+1 R4−d

CII −1 −1 1 {Jγ0, JΣz, γtΓ̃, T̃ , JT̃ ; γ1, . . . , γd, γt} Cl4,d+1 → Cl5,d+1 R5−d

C 0 −1 0 {Jγ0, Jγt, JΣz, C̃, JC̃; γ1, . . . , γd} Cl4,d → Cl5,d R6−d

CI +1 −1 1 {Jγ0, JΣz; γ1, . . . , γd, γt, γtΓ̃, T̃ , JT̃} Cl1,d+4 → Cl2,d+4 R7−d

Floquet gapless phases

In Sec. 1.1.3, we discussed the classification of Floquet gapless phases. It is reformulated
into the topological classification problem ofHU(k) in Eq. (1.62). We supposeHU(k) takes the
form of Dirac Hamiltonian

HU(k) =
d−1∑
j=1

kjγj + γ0. (2.55)

Then, the gamma matrices γµ, symmetry operations for HU(k) in Eqs. (1.63)-(1.66), and the
operator J representing the imaginary unit form the Clifford algebra in Table 2.6. In this table,
we also summarized the extension problem and the classifying space Cn or Rq. Combining with
Tables 2.1 and 2.2, we can specify the number of connected components of the classifying space,
which gives the topological numbers in Table 1.2.

2.6 Topological classification of non-Hermitian systems
In this section, we briefly explain how to obtain the topological classification of non-Hermitian
gapped and gapless systems.
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TABLE 2.6: Clifford algebra extensions and classifying spaces forHU (k∥).

AZ class T C Γ Generator Extension Cn or Rq

A 0 0 0 {γ1, . . . , γd−1, γ0,Σz} Cld → Cld+1 Cd

AIII 0 0 1 {γ1, . . . , γd−1, γ0,Σz, JΣzΓ̃} Cld+1 → Cld+2 Cd+1

AI +1 0 0 {Jγ0; γ1, . . . , γd−1,Σz, T̃ , JT̃} Cl0,d+2 → Cl1,d+2 R−d

BDI +1 +1 1 {Jγ0, Γ̃Σz; γ1, . . . , γd−1,Σz, T̃ , JT̃} Cl1,d+2 → Cl2,d+1 R1−d

D 0 +1 0 {Jγ0, JΣz; γ1, . . . , γd−1, C̃, JC̃} Cl1,d+1 → Cl2,d+1 R2−d

DIII −1 +1 1 {Jγ0, T̃ , JT̃ ; γ1, . . . , γd−1,Σz, Γ̃Σz} Cl2,d+1 → Cl3,d+1 R3−d

AII −1 0 0 {Jγ0, T̃ , JT̃ ; γ1, . . . , γd−1,Σz} Cl2,d → Cl3,d R4−d

CII −1 −1 1 {Jγ0, T̃ , JT̃ , Γ̃Σz; γ1, . . . , γd−1,Σz} Cl3,d → Cl4,d R5−d

C 0 −1 0 {Jγ0, JΣz, C̃, JC̃; γ1, . . . , γd−1} Cl3,d−1 → Cl4,d−1 R6−d

CI +1 −1 1 {Jγ0; γ1, . . . , γd−1,Σz, T̃ , JT̃ , Γ̃Σz} Cl0,d+3 → Cl1,d+3 R7−d

In Sec. 1.2.1, we discussed the classification of non-Hermitian gapped phases for both
point gap and line gap. As for point-gapped topological phases, the doubled Hamiltonian in
Eq. (1.102) has the same structure as the doubled Hamiltonian in Eq. (1.62) for Floquet gapless
phases. Thus, its topological classification is obtained in the same manner as that of Floquet
gapless phases. As for line-gapped topological phases with respect to real line gap ReE = 0,
the non-Hermitian gapped Hamiltonian can be continuously deformed into a Hermitian gapped
Hamiltonian without closing the real line gap. Thus, its topological classification is obtained
in the same manner as that of ordinary topological insulators and superconductors. The clas-
sification of imaginary line-gapped phases is obtained from that of real line-gapped phases by
H → iH 8.

In Sec. 1.2.4, we discussed the classification of non-Hermitian gapless points including ex-
ceptional points under k-invariant symmetries. It is obtained from the classification of non-
Hermitian gapped phases. Topological classification of d-dimensional gapless phases is equiva-
lent to the topological classification of (d− 1)-dimensional gapped phases.

8We also need to change the symmetry classes by the map H → iH
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Chapter 3

Extended Nielsen-Ninomiya theorem for
Floquet and non-Hermitian systems

The Nielsen-Ninomiya theorem is a fundamental constraint on the realization of chiral fermions
in static lattice systems in high-energy and condensed matter physics. Here we see the extension
of the theorem in dynamical systems, which include the original Nielsen-Ninomiya theorem
in the static limit. In contrast to the original theorem, which is a no-go theorem for a single
chiral fermion, the new theorem permits it due to bulk topology intrinsic to dynamical systems.
The theorem is based on the duality enabling a unified treatment of periodically driven systems
(Floquet systems) and non-Hermitian ones. We also present the extended theorem for gapless
fermions protected by symmetries. Finally, as an application of our theorem and duality, we
propose a non-Hermitian version of the chiral magnetic effect, and also predict the skin effect
accompanying it.

3.1 Introduction
The Nielsen-Ninomiya theorem is an essential constraint in realizing chiral fermions on lattice
[1, 2, 89]. It initially was a no-go theorem for the lattice realization of the Standard Model in
particle physics, but it has been also applied to condensed matter physics. For instance, the
Nielsen-Ninomiya theorem demands that bulk Weyl points in Weyl semimetals always appear
in a pair so that the net chiral charge of Weyl points vanishes [90–92]. The Nielsen-Ninomiya
theorem strongly restricts possible bulk low energy modes in topological materials [37, 93–99].

However, recent studies have declared that the Nielsen-Ninomiya theorem does not hold
when considering topological states in dynamical systems [22, 27–31, 33, 40, 42, 51, 52, 63–65,
67, 79, 84, 85, 87, 88, 100–136]: Periodically driven systems (Floquet systems) may support
unpaired chiral fermions both in one-[34, 39, 137–139] and three-dimensions[3, 4]. Further-
more, non-Hermitian systems, which are effectively described by non-Hermitian Hamiltonians,
also retain unpaired chiral fermions after the long-time dynamics [5]. These examples suggest a
reformulation of the Nielsen-Ninomiya theorem in dynamical systems.

In this Letter, we see the extension of the Nielsen-Ninomiya theorem in dynamical systems,
which particularly includes the original one in the static limit. A key of our extension is a
duality between Floquet systems and non-Hermitian ones. A one-cycle time evolution operator
UF generally describes stroboscopic dynamics in Floquet systems. By identifying iUF as a non-
Hermitian Hamiltonian H , we can treat a Floquet system and a non-Hermitian one in a unified
manner. Another key concept is multiple gap structures intrinsic to non-Hermitian systems. The
complex energy spectrum of non-Hermitian systems may introduce two different gap structures:
point gaps and line gaps [68, 77]. A non-Hermitian Hamiltonian can be gapped in the sense
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of point gap even if it supports gapless fermions in the sense of the line gap. Because the
point gap enables a novel bulk topological invariant, we expect that bulk chiral (so gapless)
fermions in dynamical systems may coexist with nontrivial bulk topology; this is similar to
the bulk-boundary correspondence, where boundary gapless states coexist with nontrivial bulk
topology. This situation never happens in conventional static systems and leads us to reformulate
the Nielsen-Ninomiya theorem.

The extended Nielsen-Ninomiya theorem provides an exact relation between the total chiral
charge of gapless fermions and the bulk topological invariant. This theorem implies that if the
bulk topological invariant is nonzero, so is the net chiral charge, and thus the system realizes
unpaired chiral fermions. The extended theorem also applies to systems under symmetries.
Symmetry enriches gapless fermions, giving them a topological charge other than chirality. In
this case, the bulk topological invariant equals the net topological charge from our theorem.

As an application of our theorem, we propose a non-Hermitian version of the chiral magnetic
effect (CME). The CME is an electric current generation parallel to an applied magnetic field in
the existence of unpaired Weyl fermions in 3D [7]. While the chiral magnetic effect caNielsen-
Ninomiyaot occur in static systems because of the Nielsen-Ninomiya theorem [95], the extended
theorem allows it in dynamical systems. Floquet systems can exhibit the CME [3, 4], and thus
our duality relation suggests that so do non-Hermitian systems. We see that a wave packet in a
non-Hermitian Weyl semimetal moves in the direction of an applied magnetic field, manifesting
the CME. This is because the magnetic field changed the effectively single Weyl fermion into
1D right-going chiral mode, which is a kind of dimension reduction. Furthermore, the extended
theorem implies a nonzero energy winding number of the non-Hermitian Weyl semimetals under
the magnetic field. This result predicts a new type of CME—the chiral magnetic skin effect.

We assume without loss of generality that the Fermi energy EF , i.e. the reference energy
of a gap, is zero unless otherwise mentioned. we can recover EF by replacing the Hamiltonian
H(k) with H(k)− EF if necessary.

3.2 Examples

3.2.1 1D chiral fermions in dynamical systems
Let us start with a simple 1D non-Hermitian system hosting a chiral mode:

H(k) = sin k + i cos k, (3.1)

where k is the crystal momentum andH(k) is periodic in k [5]. The energyE(k) of the system is
H(k) itself, and the group velocity is v(k) = Re[∂E(k)/∂k]. At the Fermi energy ReE(k) = 0,
there are two gapless modes with k = 0, π: A right-going mode (v(k) > 0) with k = 0 and a
left-going mode (v(k) < 0) with k = π. While the right-going mode has a positive ImE(k), the
left-going mode has a negative one; thus, the left-going mode decays, and only the right-going
mode is amplified and survives after a long-time dynamics. Therefore, the system effectively
realizes a single chiral fermion, i.e. a right-going chiral mode.

We next consider a simple 1D Floquet model with a chiral mode described by a one-cycle
unitary operator [4],

UF (k) = e−ik. (3.2)
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FIGURE 3.1: Duality between a Floquet system and a non-Hermitian one. We illustrate the 1D case here.
w1 is the energy winding number in the complex energy plane in (b). Theorem 1’ is evident in the relation
between (a) and (b). The duality holds in any dimensions and symmetry classes.

The Floqet Hamiltonian HF (k) defined by e−iHF (k)τ = UF (k) with a driving period τ describes
the stroboscopic time-evolution of the system, |t+ τ⟩ = UF (t)|t⟩ = e−iHF (k)τ |t⟩ as an effective
Hamiltonian. The eigenvalue of HF (k), called the quasi-energy, is ϵF (k) = k/τ up to an integer
multiple of 2π/τ . Because the group velocity vF (k) = ∂ϵF (k)/∂k is positive, the system has a
right-going chiral mode.

These chiral modes have a common topological origin. The equation

H(k) = iUF (k), (3.3)

relates the above models, then the 1D spectral winding number

w1 = −
∫ 2π

0

dk

2πi
tr[H−1(k)∂kH(k)]. (3.4)

gives w1 = 1 for both models. (The trace is trivial in these cases.) For the non-Hermitian model
in Eq. (3.1), the non-zero spectral winding number results in the so-called non-Hermitian skin
effect [64]: For w1 > 0, all bulk states localize to the right end [83, 140]. This effect can be
inferred from the unpaired right-going chiral mode because the unidirectional movement forces
all the bulk states to accumulate to the right boundary. For the Floquet model in Eq. (3.2), on
the other hand, the non-zero spectral winding number implies a non-zero average of the group
velocity,

w1 = −
∫ 2π

0

dk

2πi
∂k ln detH(k) =

∫ 2π

0

dk

2π
vF (k)τ, (3.5)

which also indicates a right-going chiral mode.
The above examples suggest a general relation between the spectral winding number and

the chirality sgn vF (k) of gapless modes. For 1D non-Hermitian systems, the exact link is
formulated as follows 1:

1See Sec.3.5, which includes Refs. [141–143].
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Theorem 1: Let H(k) be a 1D non-Hermitian Hamiltonian and Ep(k) be the complex
eigenenergy of a band p. Then, we have

w1 =
∑

ImEp(kpα)>0

sgn vpα = −
∑

ImEp(kpα)<0

sgn vpα, (3.6)

where kpα is the α-th Fermi point of band p defined by ReEp(kpα) = 0, and vpα = Re(∂Ep(k)/∂k)k=kpα

is the group velocity at kpα. The summation in Eq. (3.6) is over all p and α.
For a Hermitian Hamiltonian H(k), the above theorem reproduces the Nielsen-Ninomiya

theorem. The spectral winding number w1 is zero for any Hermitian Hamiltonian, and by adding
a small imaginary term iη to H(k), all the Fermi points can have a positive imaginary part of
the energy. Thus, from Eq. (3.6), we have

∑
kpα

sgn vpα = 0, which is the Nielsen-Ninomiya
theorem in 1D [1].

Using the relation in Eq. (3.3), we can also derive a counterpart theorem for 1D Floquet
systems: Equation (3.3) maps the quasi-energy ϵp(k) of UF (k) to the complex energy Ep(k) of
H(k), Ep(k) = sin[ϵp(k)τ ] + i cos[ϵp(k)τ ]. Thus, a Fermi point defined by ϵp(k) = 0 (π/τ)
gives a Fermi point ofEp(k) with a positive (negative) ImEp(k). Comparing the group velocities
at the Fermi points, we obtain the theorem:

Theorem 1’: LetHF (k) be a 1D Floquet Hamiltonian and ϵp(k) be the quasi-energy of band
p. Then, gapless modes of the quasi energy obey

w1 =
∑

ϵp(kpα)=µ

sgn vpα, (3.7)

where kpα is the Fermi point of band p defined by ϵ(kpα) = µ, and vpα = (∂ϵp(k)/∂k)k=kpα is
the group velocity at kpα 2.

Here we have shifted the origin of the quasi-energy by UF → eiµτUF and omitted the term
corresponding to the last term in Eq. (3.6) since it is just a particular case of Eq. (3.7).

3.2.2 Non-Hermitian Weyl semimetals
Weyl fermions are 3D massless (or gapless) fermions characterized by a chirality. They are
realized as band-crossing points (Weyl points) and behave like magnetic monopoles in the mo-
mentum space, of which the magnetic charge provides the chirality charge. In non-Hermitian
systems, they have finite lifetimes if the imaginary part of the energies is negative. For Weyl
fermions in non-Hermitian systems, we have the following theorem 3

Theorem 2: Let H(k) be a 3D non-Hermitian Hamiltonian and Ep(k) be the complex
eigenenergy of a band p. Then, gapless modes in the complex energy spectrum obey

w3 =
∑

ImEp(Spα)>0

Chpα = −
∑

ImEp(Spα)<0

Chpα. (3.8)

Here w3 is the 3D winding number,

w3 = −
1

24π2

∫
BZ

tr[H−1dH]3, (3.9)

2This result is known as the Brouwer degree in mathematics, and was shown in Ref.[4] in a different manner.
3See Sec.3.5.
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Spα is the α-th Fermi surface of band p defined by Spα = {k ∈ BZ|ReEp(k) = 0}, and Chpα is
the Chern number on the Fermi surface Spα,

Chpα =
1

2πi

∫
Spα

(∇×A(k)) · dS, (3.10)

where A(k) = ⟨⟨ψp(k)|∇ψp(k)⟩ with

H(k)|ψp(k)⟩ = Ep(k)|ψp(k)⟩, H†(k)|ψp(k)⟩⟩ = E∗
p(k)|ψp(k)⟩⟩, (3.11)

and the orientation of Spα is along the direction of the Fermi velocity Re(∂Ep(k)/∂k)k∈Spα . In
a sense, Chpα counts the total chirality of Weyl points inside Spα.

Theorem 2 reproduces the original Nielsen-Ninomiya theorem again when H(k) is Hermi-
tian: By adding a tiny positive imaginary term to H(k), we immediately have w3 = 0 and thus∑

pα Chpα = 0, which is one of the variants of the Nielsen-Ninomiya theorem in 3D 4. Indeed,
this equation prohibits a single Weyl point in Hermitian systems: If an unpaired Weyl point was
to exist, we would have a Fermi surface sphere surrounding it by choosing the Fermi energy
near the Weyl point. This configuration would give a nonzero

∑
pα Chpα, which contradicts the

variant of the original Nielsen-Ninomiya theorem
∑

pα Chpα = 0.

3.3 General theory

3.3.1 Duality
The relation in Eq. (3.3), which enables us a unified treatment of a Floquet system and a non-
Hermitian one, is not accidental. This duality relation holds in arbitrary dimensions and sym-
metry classes. Evidently, we can immediately identify any one-cycle time evolution operator
UF (k) with a non-Hermitian Hamiltonian H(k) by

H(k) = iUF (k). (3.12)

However, the opposite is also true for a class of non-Hermitian systems. Let us consider a non-
Hermitian Hamiltonian H(k) that has a point gap, i.e., detH(k) ̸= 0. Then, we can regard any
point-gapped non-Hermitian Hamiltonian as a one-cycle time evolution unitary operator because
we can smoothly deform a point-gapped H(k) into a unitary matrix without closing the point
gap [68, 77].

The duality relation in Eq. (3.12) exposes common properties of Floquet systems and non-
Hermitian ones: In terms of the Floquet Hamiltonian HF (k) = (i/τ) lnUF (k), the above rela-
tion reads

H(k) = sin[HF (k)τ ] + i cos[HF (k)τ ]. (3.13)

Thus, a gapless state of the form HF (k) ∼ k · Γ results in a gapless state in H(k) ∼ k · Γ + i
for O(k2), and vice versa. (Γ are typically Gamma matrices {Γi,Γj} = 2δi,j .) Furthermore, the
origin of topological invariants in these systems are the same. The topological invariant in these

4See Sec.3.7. This form of Nielsen-Ninomiya theorem is closely related to the bulk-boundary correspondence
of the 4D Chern insulator. The general form of the net topological charge of gapless boundary states is given in the
same form
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systems is given by that of the doubled "Hermitian" Hamiltonian [3, 68, 77],

H(k) =
(

0 H(k)
H†(k) 0

)
. (3.14)

From Eq. (3.12), H(k) satisfies H2(k) = 1 and thus has eigenvalues ±1. Therefore, H(k) de-
fines insulators, giving well-defined topological invariants established in the extensive previous
studies of topological insulators and superconductors.

Note that the above identification links a Floquet system and a non-Hermitian one in corre-
sponding symmetry classes. To see this, consider TRS, PHS, and CS for the Floquet Hamiltonian
HF (k), given by

THF (k)T
−1 = HF (−k), (3.15)

CHF (k)C
−1 = −HF (−k), (3.16)

ΓHF (k)Γ
−1 = −HF (k) (3.17)

Here T and C are anti-unitary operators with T 2 = ±1, C2 = ±1, and Γ is a unitary operator
with Γ2 = 1. The presence or absence of these symmetries define Altland-Zirnbauer (AZ) ten
symmetry classes [144] of Floquet systems. 5 The relation in Eq. (3.12) maps these symmetries
as follows:

TH†(k)T−1 = H(−k), (3.18)
CH(k)C−1 = −H(−k), (3.19)

ΓH†(k)Γ−1 = −H(k). (3.20)

The latter symmetries define another ten symmetry classes, called AZ† classes [77] of non-
Hermitain systems.

3.3.2 Extended Nielsen-Ninomiya theorem
Symmetry enriched gapless fermions characterized with topological charges other than chirali-
ties. We now see the extended Nielsen-Ninomiya theorem, including such symmetry-protected
Dirac fermions.

We first consider non-Hermitian systems. Depending on symmetry classes, two different
situations may happen: (i) gapless fermions in classes A, AI†, AII† appear as band crossing
points at general positions in the complex energy plane, and (ii) those in other AZ† classes
appear exactly on the ReE = 0 axis due to PHS and/or CS. To define the topological charge
of gapless fermions, we use the Fermi surface at ReE = 0 in the former case (i), and a small
sphere encircling a gapless fermion in the latter case (ii) Then, we have the following theorem:

Theorem 3: Let H(k) be a point-gapped non-Hermitian Hamiltonian in an AZ† symmetry
class. Then, bulk gapless fermions of H(k) obeys

n =
∑

ImEα>0

να = −
∑

ImEα<0

να, (3.21)

5The AZ symmetries for Floquet systems are originally given in the form of time-periodic HamitlonianH(k, t),
and the symmetries for H(k, t) lead to the symmetries for HF (k)



60 Chapter 3. Extended Nielsen-Ninomiya theorem for Floquet and non-Hermitian systems

As we mentioned above, the point gap topological invariant n originates from the conventional
topological invariant of the topological insulator described by the Hermitian Hamiltonian in
Eq. (3.14). The explicit form of n is summarized in Ref. [77]. In case (i) in the above, α labels
the Fermi surfaces at ReE = 0, να is the net topological charge of gapless fermions inside the
α-th Fermi surface, and Eα is the complex energy of the Fermi surface. In case (ii), α labels
gapless fermions, να is the topological charge of the α-th gapless fermion defined on the small
sphere, and Eα is the complex energy of the gapless fermion. We remark that we can classify all
the gapless states into the case of ImEα > 0 or the case of ImEα < 0 because we are considering
point-gapped Hamiltonians, i.e., Eα ̸= 0 for any α in the whole Brillouin zone.

Applying the duality relation in Eq. (3.12) for this non-Hermitian formula, we also have a
theorem for gapless fermions in Floquet systems. We find that (i’) gapless fermions in classes A,
AI, AII appear as band crossing points of arbitrary energies in the quasi-energy spectra, and (ii’)
those in other AZ classes appear with ϵ = 0 or π/τ because of PHS and CS. Then, the theorem
for Floquet systems is as follows. We provide the proof of Theorem 3 6.

Theorem 3’: For gapless fermions in a Floquet system in an AZ class, we have

n =
∑
ϵα=µ

νµα, in case (i’), (3.22)

n =
∑
ϵα=0

ν0α = −(−1)d
∑

ϵα=π/τ

νπα, in case (ii’). (3.23)

Here n is the topological invariant of iUF (k) originating fromH(k) in Eq. (3.14), and d indicates
the dimensions of the system. In case (i’), α labels the Fermi surfaces defined by ϵα = µ, and νµα
is the topological charge of gapless fermions inside the α-th Fermi surface. In case (ii), α labels
gapless fermions at ϵ = 0, π/τ , and ν0,πα is the topological charge of the gapless fermion of the
quasi-energy ϵα = 0, π 7 .

We note that Eq. (3.23) shows a dependence on the parity of the dimensions d: A gapless
fermion at π/τ , HF (k) = k ·Γ+π/τ , in a Floquet system corresponds toH(k) = −k ·Γ− i, in
a non-Hermitian system from Eq. (3.13). Since these Hamiltonians have an opposite topological
charge in odd dimensions, we have the additional sign (−1)d. 8 Equation (3.7) is the 1D case
of Eq. (3.22) in class A (no symmetry). We have also confirmed Eq. (3.23) using a 2D Floquet
model with chiral symmetry (class AIII) 9.

3.4 Gapless structures in non-Hermitian systems
A non-Hermitian Hamiltonian H(k) can exhibit an exotic gapless structure that was not seen in
Hermitian Hamiltonians. The general gapless structure is composed of two parts: an open region
where the real part of the energy gap vanishes, and its boundary where the full complex energy
gap vanishes and H(k) becomes defective. The open region and the boundary are called "bulk
Fermi arc" and "exceptional point" (or their higher dimensional generalization), respectively.
(See Fig.3.2.) When H(k) is deformed to be diagonalizable, the bulk Fermi arc shrinks, the

6See Secs. ?? and 3.5.
7See Sec.3.6.
8If we apply continuous two-dimensional rotations (−kj ,−kj+1)→ (kj , kj+1) repeatedly, we obtain the topo-

logical equivalence−k ·Γ ∼ k ·Γ for even dimensions. However, we cannot continuously rotate as−k ·Γ ∼ k ·Γ
for odd dimensions, indicating different topological charges between −k · Γ and k · Γ.

9See Sec.3.8.
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TABLE 3.1: Extended Nielsen-Ninomiya theorem for point gapped Hamiltonians in AZ† symmetry
classes for the spatial dimension d ≤ 3. In the first three AZ† classes, gapless regions are located at
an arbitrary position, and in the other seven ones, symmetry-protected gapless regions are located on the
ReE = 0 axis. The section numbers for the proof of Theorem are shown for each topological invariant.

AZ† class d = 1 d = 2 d = 3
A Z [Sec.3.5.1] 0 Z [Sec.3.5.1]

AI† 0 0 2Z [Sec.3.5.1]
AII† Z2 [3.5.1] Z2 [Sec.3.5.1] Z [Sec.3.5.1]
AIII 0 Z [Sec.3.5.2] 0
BDI† 0 0 0
D† Z [Sec.3.5.2] 0 0

DIII† Z2 [Sec.3.5.2] Z [Sec.3.5.2] 0
CII† 0 Z2 [Sec.3.5.2] Z2 [Sec.3.5.2]
C† 2Z [Sec.3.5.2] 0 Z2 [Sec.3.5.2]
CI† 0 2Z [Sec.3.5.2] 0

exceptional points are (pair-)annihilated, and the gapless structure reduces to a conventional
Dirac or Weyl point. Thus, the topological charge of the Dirac point guarantees the robustness
of the general gapless structure.

Re𝐸

𝑘!

𝑘"

Exceptional 
ring

Fermi disk

𝑆! enclosing
gapless region

Energy of 𝐻(𝒌)|"!

FIGURE 3.2: A general gapless structure in a 2D non-Hermitian system. The gapless structure hosts an
open Fermi disk and an exceptional ring, which are the two-dimensional generalizations of bulk Fermi
arc and exceptional point, respectively. The gap is open for the real part of the energy spectrum on S1

enclosing the gapless region.

3.5 Proof of extended Nielsen-Ninomiya theorem
In this section, we prove Theorem 3 in the main text.
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Theorem 3 LetH(k) be a Hamiltonian with a point gap (det(H−EF ) ̸= 0) in an AZ† symmetry
class. Then, gapless structures in H(k) obey the following relation,

n =
∑

ImEα>0

να = −
∑

ImEα<0

να, (3.24)

where n is the point-gapped topological invariant. In case (i), να is the topological charge on the
α-th Fermi surface, and Eα is the complex energy of the α-th Fermi surface. In case (ii), να is
the topological charge of the α-th gapless structure, and Eα is the complex energy of the α-th
gapless structures.

For class A in 1D and 3D, the above theorem gives Theorem 1 and Theorem 2 in the main
text, respectively.

3.5.1 Case (i)
In case (i) (classes A, AI† and AII†), we prove Theorem 3 by directly evaluating n.

Class A

First, we consider a class A non-Hermitian Hamiltonian H(k). The point gap topological in-
variant n in d = 2q + 1 dimensions (q = 0, 1, . . . ) is given by the winding number w2q+1,

n = w2q+1 =

(
i

2π

)q+1
q!

(2q + 1)!

∫
BZ

tr[H−1dH]2q+1. (3.25)

To prove Theorem 3 in class A, we use the technique developed in Refs. [141–143]. We first
deform the Hamiltonian H(k) into a unitary matrix [68, 77]. As H(k) remains point-gapped
during this deformation, this procedure does not change the point gap topological invariant n.
After this deformation, H(k) is diagonalizable and can be written in the form of

H(k) =
∑
p

Ep(k)|up(k⟩⟨up(k)|, |Ep(k)| = 1, (3.26)

where |up(k)⟩ is an eigenstate of the unitary H(k) with an corresponding eigenvalue Ep(k). We
furthermore deform H(k) as follows,

H(k) =
∑
p

eiθp(k)|up(k⟩⟨up(k)|, (3.27)

with

eiθp(k) =
ReEp(k) + λiImEp(k)

|ReEp(k) + λiImEp(k)|
(3.28)

where 0 < λ ≤ 1 is a deformation parameter. When λ = 1, H(k) returns to Eq. (3.26). We note
that this Hamiltonian is also invertible and has the same value of n as Eq. (3.26). Now take the
limit λ→ 0, where λ is infinitesimally tiny but nonzero. In this limit, the eigenvalue eiθp(k) takes
a constant value eiθp(k) = ±1 except for the Fermi surfaces Spα = {k ∈ Spα|ReEp(k) = 0}.
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The Fermi surface generally consists of a set of connected parts, and α labels each connected
part of the Fermi surface. Near the Fermi surfaces, θp(k) satisfies

∇kθp(k) = −πsgn[ImEp(k)]δ(ReEp(k))∇k[ReEp(k)], (3.29)

from which the branch of θp(k) is determined uniquely. ImEp(k) takes the same sign on each
connected component Spα since |Ep(k)| = 1, and thus sgn[ImEp(k))] in Eq. (3.29) is well-
defined. Substituting Eq. (3.27) with λ→ 0, we obtain Theorem 3 for each dimensions.

For instance, let us consider the d = 1 (q = 0) case, where n is especially called energy
winding number

w1 = −
1

2πi

∫ π

−π

dktr[H−1(k)∂kH(k)]

= − 1

2πi

∫ π

−π

dk∂k ln detH(k). (3.30)

Utilizing Eq. (3.27), we obtain

w1 = −
1

2π

∫ π

−π

dk
∑
p

∂kθp(k)

=
1

2

∑
pα

∫ π

−π

dk sgn[ImEp(kpα)]δ(k − kpα)sgn[∂k[ReEp(kpα)]]

=
1

2

∑
pα

sgn[ImEp(kpα)]sgn[∂k[ReEp(kpα)]], (3.31)

where kpα is the Fermi point defined by ReEp(kpα) = 0. Now we use the original Nielsen-
Ninomiya theorem since the real part of H(k)

ReH(k) =
∑
p

ReEp(k)|up(k)⟩⟨up(k)| (3.32)

can be seen as a Hermitian Hamiltonian. For d = 1, the Nielsen-Ninomiya theorem yields the
relation ∑

pα

sgn[∂k[ReEp(kpα)]] = 0, (3.33)

which is equivalent to∑
ImEp(kpα)>0

sgn[∂k[ReEp(kpα)]] = −
∑

ImEp(knα)<0

sgn[∂k[ReEp(kpα)]]. (3.34)

Therefore, from Eq. (3.31), we obtain Theorem 3 for d = 1 (Theorem 1 in the main text),

w1 =
∑

ImEp(kpα)>0

sgn[∂k[ReEp(kpα)]] = −
∑

ImEp(kpα)<0

sgn[∂k[ReEp(kpα)]]. (3.35)

In a similar manner, we can also derive Theorem 3 for d = 3 (q = 1). In this case, the point
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gap topological invariant n is given by the 3D winding number, and we can deform its form
through tedious calculations [142] into

w3 =
1

2

∑
pα

sgn[ImEp(Spα)]Ch(Spα), (3.36)

where Ch(Spα) is the Chern number on Spα defined by

Ch(Spα) =
1

2πi

∫
Spα

(∇×Ap) · dS. (3.37)

Here Ap = ⟨up(k)|∇up(k)⟩ is the Berry connection of the eigenstate |up⟩ for ReH(k),

ReH(k)|up(k)⟩ = ReEp(k)|up(k)⟩, (3.38)

and the orientation of Spα is chosen as the direction of the Fermi velocity ∂k[ReEp(k)]k∈Spα . In
order to prove Theorem 3 from Eq. (3.36), we again use the original Nielsen-Ninomiya theorem
for ReH(k). As we shall argue in Sec. 3.7, we have a variation of Nielsen-Ninomiya theorem
as ∑

pα

Ch(Spα) = 0, (3.39)

which is recast into ∑
ImEp(Spα)>0

Ch(Spα) = −
∑

ImEp(Spα)<0

Ch(Spα). (3.40)

Using this relation, we finally obtain Theorem 3 for d = 3 (Theorem 2 in the main text),

w3 =
∑

ImEp(Spα)>0

Ch(Spα) = −
∑

ImEp(Spα)<0

Ch(Spα). (3.41)

Class AI†

A point gapped Hamiltonian in class AI† has the 2Z index in 3D. (See Table.3.1.) The 2Z
topological invariant n is given by the winding number in Eq. (3.25) with q = 1, and thus we
obtain Theorem 3 in the form of Eq. (3.41) in the same manner to class A in 3D.

Class AII†

A Hamiltonian H(k) in class AII† satisfies

THT (k)T † = H(−k), (3.42)

where T is a unitary matrix with TT ∗ = −1. As for point gap topological invariants in class
AII†, we have the Z2 invariants in 1D and 2D, and the Z invariant in 3D. In 3D, the Z invariant
is given by the winding number in Eq. (3.25) with q = 1 again, so Theorem 3 holds in the same
manner to class A with d = 3. We prove Theorem 3 in 1D and 3D in the following.
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First, we see the 1D case. The Z2 invariant is given by

(−1)n = sgn

{
Pf[H(π)T ]

Pf[H(0)T ]
exp

[
−1

2

∫ k=π

k=0

dk∂klogdet[H(k)T ]

]}
. (3.43)

After the unitarization, H(k) is recast into the form of

H(k) =
∑
p

eiθp(k)|up(k)⟩⟨up(k)|

= U(k)

 eiθ1(k)

eiθ2(k)

. . .

U †(k) (3.44)

with a unitary matrix U(k) = (|u1(k)⟩, |u2(k)⟩, · · · ), so we have

detH(k) = exp(i
∑
p

θp(k)). (3.45)

Therefore, Eq. (3.29) leads to∫ π

0

dk∂klogdet[H(k)T ] =

∫ π

0

dk∂k

[
i
∑
p

θp(k)

]
= −π

∑
pα

sgn [∂kReEp(kpα) ImEp(kpα)] , (3.46)

where 0 < kpα < π is the α-th Fermi point defined by ReEp(kpα) = 0, and we implicitly
assumed that any Fermi point does not exist just at the time-reversal invariant momentum k =
0, π without loss of generality. The exponential factor in Eq. (3.43) is evaluated as

exp

[
−1

2

∫ π

0

dk∂klogdet[H(k)T ]

]
=
∏
nα

isgn [∂kReEp(kpα)]
∏
pα

sgn [ImEp(kpα)] . (3.47)

It should be noted here that each Fermi point with positive (negative) ∂kReEp(kpα) decreases
(increases) the number of the occupied state Nocc(0) (Nocc(π)) at k = 0 (k = π) by 1, where the
occupied state is defined as a state with ReEp(k) < 0. Thus, the first product of the right-hand
side in Eq. (3.47) becomes∏

pα

isgn [∂kReEp(kpα)] = iNocc(0)−Nocc(π) = (−1)[Nocc(0)−Nocc(π)]/2, (3.48)

thus Eq. (3.47) becomes

exp

[
−1

2

∫ π

0

dk∂klogdet[H(k)T ]

]
= (−1)[Nocc(0)−Nocc(π)]/2

∏
pα

sgn [ImEp(kpα)] . (3.49)

We note that Nocc(k) (k = 0, π) is an even number because of the generalized Kramers degen-
eracy in class AII† [77, 104, 113].
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We now evaluate the Paffians in Eq. (3.43) in the following. At the time-reversal invariant
momentum k0 = 0, π, θp(k0) becomes either 0 or ±π, thus H(k0) is

H(k0) = U(k0)Λ(k0)U
†(k0), (k0 = 0, π) (3.50)

with

Λ(k0) =

(
1Nemp(k0)×Nemp(k0)

−1Nocc(k0)×Nocc(k0)

)
. (3.51)

Therefore, the Pfaffian is rewritten as

Pf [H(k0)T ] = Pf
[
U(k0)Λ(k0)U

†(k0)T
]

= Pf
[
U †(k0)U(k0)Λ(k0)U

†(k0)TU
∗(k0)

]
/detU∗(k0)

= Pf
[
Λ(k0)U

†(k0)TU
∗(k0)

]
detU(k0), (3.52)

where we used the formula Pf[BTAB] = Pf[A]detB for an antisymmetric matrix A. Because
of TRS† in Eq. (3.42), we have [

U †(k0)TU
∗(k0),Λ(k0)

]
= 0, (3.53)

so U †(k0)TU
∗(k0) becomes block-diagonal. Hence, the Pfaffian is

Pf
[
Λ(k0)U

†(k0)TU
∗(k0)

]
= (−1)Nocc(k0)/2Pf

[
U †(k0)TU

∗(k0)
]

= (−1)Nocc(k0)/2Pf[T ]detU∗(k0), (3.54)

which implies

Pf [H(k0)T ] = (−1)Nocc(k0)/2Pf[T ]. (3.55)

Substituting the above result and Eq. (3.49) into the right-hand side of Eq. (3.43), we obtain

(−1)n =
∏
pα

sgn[ImEp(kpα)] = (−1)
∑

ImEp(kpα)>0 . (3.56)

Because of the Kramers degeneracy at k = 0, π, the number of the Fermi points between k = 0

and k = π is even, which implies (−1)
∑

ImEp(kpα)>0 +
∑

ImEp(kpα)<0 = 1. Thus, we have

(−1)n = (−1)
∑

ImEp(kpα)>0 = (−1)
∑

ImEp(kpα)<0 , (3.57)

which gives Eq. (3.24) in Theorem 3 for class AII† in 1D:

n =
∑

ImEp(kpα)>0

= −
∑

ImEp(kpα)>0

(mod 2) (3.58)

As we illustrate in Fig. 3.3, each Kramers pair of Fermi points always encloses a gapless Dirac
point at time-reversal invariant momentum. The middle and the right-hand side in Eq. (3.58)
counts the Dirac points enclosed by the Fermi point.
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Re𝐸

𝑘𝜋−𝜋 Fermi
point

Dirac point

FIGURE 3.3: Typical Dirac and Fermi points in a 1D class AII system. Each Kramers pair of Fermi
points encloses a Dirac point at a time-reversal invariant momentum.

Next, we see the 2D case. The Z2 invariant (−1)n in 2D is given as the product of the 1D Z2

invariants,

(−1)n = sgn

{
Pf[H(π, 0)T ]

Pf[H(0, 0)T ]
exp

[
−1

2

∫ kx=π

kx=0

dkx∂kx logdet[H(kx, 0)T ]

]}
×sgn

{
Pf[H(π, π)T ]

Pf[H(0, π)T ]
exp

[
−1

2

∫ kx=π

kx=0

dkx∂kx logdet[H(kx, π)T ]

]}
. (3.59)

Thus, similarly to the 1D case we obtain

n =
∑

ImEp(kpα,0)>0

+
∑

ImEp(k′pα,π)>0

= −

 ∑
ImEp(kpα,0)<0

+
∑

ImEp(k′pα,π)<0

 (mod 2), (3.60)

where 0 < kpα < π (0 < k′pα < π) is the α-th Fermi point of ReEp(kpα, 0) = 0 (ReEp(k
′
pα, π) =

0). We note that the Fermi points in the above are the intersection between the Fermi surface
Spα defined by ReEp(Spα) = 0 and the ky = 0, π lines. We also notice that since each Kramers
pair of Fermi points enclose a time-reversal invariant momentum, the summation∑

ImEp(kpα,0)>0

+
∑

ImEp(k′pα,π)>0

(3.61)

counts the net number of time-reversal invariant momenta enclosed by the Fermi surfaces with
positive ImEp(Spα). Thus, we have∑

ImEp(kpα,0)>0

+
∑

ImEp(k′pα,π)>0

=
∑

ImEp(Spα)>0

mpα, (3.62)

where mpα is the number of time-reversal invariant momenta enclosed by the Fermi surface Spα.
Consequently, we obtain Eq. (3.24) in Theorem 3 for class AII† in 2D,

n =
∑

ImEp(Spα)>0

mpα =
∑

ImEp(Spα)<0

mpα, (mod.2). (3.63)

Again, since a Fermi surface enclosing a time-reversal invariant momentum also encloses a Dirac
point at the time-reversal invariant point, the second and the third terms in Eq. (3.63) count the
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net number of Dirac points inside the Fermi surfaces.

3.5.2 Case (ii)
We here provide the proof of Theorem 3 in case (ii). The key idea is to use a primitive model
that generates all the topological phases. It has been known that by stacking the generator
and/or trivial generator via a direct sum and performing a smooth deformation, any point-gapped
Hamiltonian can be produced. Therefore, it is enough to prove Eq. (3.24) for the generator. One
primitive model with EP = 0 is given as follows [5],

H(k) = h(k) + iγ(k), (3.64)

with

h(k) =
d∑

j=1

sin kjΓj, γ(k) = m+
d∑

j=1

cos kj. (3.65)

Here we used the gamma matrix Γi, which is Hermitian and obeys {Γi,Γj} = 2δij . CS and
PHS† imply anti-commutation relations {Γ,Γi} = 0 and CΓ∗

i + ΓiC = 0, respectively. We also
assume that −d < m < −d + 2. We need to choose the gamma matrices compatible with the
symmetry classes we want to study. Note that iγ(k) term is consistent with any symmetry of
AZ† classes. The energy spectrum of this model is given as

E(k) = ±

√√√√ d∑
j=1

sin2 kj + i(m+
d∑

j=1

cos kj). (3.66)

At any time-reversal invariant momentum, this model exhibits a gapless point with real line gap
in the form of the Dirac/Weyl point. We note that all the Dirac/Weyl points are forced to appear
on the ReE = 0 axis because of CS and/or PHS† in case (ii).

Now we prove Theorem 3 for this generator model. When we choose −d < m < −d + 2,
only a single Dirac/Weyl point with k = 0 is ImE(k) > 0 in the form of

H(k) =
d∑

j=1

kjΓj + i(m+ d) (3.67)

near k = 0, so its topological charge becomes ν = 1. 10 All other 2d − 1 Dirac/Weyl points are
ImE(k) < 0, and their total topological charge are ν = −1. 11 Therefore, we obtain the second
equality of Eq. (3.24). We next see that n = 1 in the following. The topological invariant n is
given as the topological invariant of the following Hermitian Hamiltonian,

H̃(k) =

(
H(k)

H†(k)

)
= τx ⊗ h(k)− τy ⊗ γ(k). (3.68)

10We note that the topological charge of gapless points are always defined to become 1 for H(k) =
∑d

j=1 kjΓj .
11This is compatible with the original Nielsen-Ninomiya theorem for ReH(k).
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If we consider m → −∞ limit, the Hermitain Hamiltonian H̃(k) becomes atomic insulator
with trivial topological invariant n = 0. For m < −d, γ(k) is always negative and thus H̃(k) is
always gapped in the whole region of k, implying n = 0. Then, as one increases m, the point
gap closes (i.e. detH(k) = 0) at m = −d in the form of gapless Dirac Hamiltonian, which
changes the topological invariant of H̃(k) by 1. As a result, for −d < m < −d + 2, we have
n = 1. Therefore, the first equality of Eq. (3.24) also holds for the generator model.

We also emphasize that this proof is also a proof of case (i) if we include TRS†. 12

3.6 Extended Nielsen-Ninomiya theorem in Floquet systems
In this section, we prove the extended Nielsen-Ninomiya Theorem for Floquet systems from the
non-Hermitian counterparts by using the duality relation

H(k) = iUF (k). (3.69)

Theorem 3’ Let HF (k) be a d-dimensional Floquet Hamiltonian in an AZ class of Floquet
systems. Then, gapless modes in HF (k) obey the following relations,

n =
∑
ϵα=µ

νµα, in case (i’), (3.70)

n =
∑
ϵα=0

ν0α = −(−1)d
∑

ϵα=π/τ

νπα, in case (ii’). (3.71)

where n is the bulk topological invariant of UF = e−iHF (k)τ .
Once we admit Theorem 3 of non-Hermitian systems, the proof of Theorem 3’ is straight-

forward. In the case of (i’), the proof of (i) in non-Hermitian systems is also valid because
we deformed non-Hermitian Hamiltonians into unitary operators. We note that the direction
of the group velocity ∂k[ReEp(kpα)] is flipped for ϵ = π/τ because a gapless fermion at π/τ ,
HF (k) = k ·Γ+π/τ in a Floquet system corresponds to H(k) = −k ·Γ− i in a non-Hermitian
system as shown in the main text. We also notice that we can neglect the minus sign of n and νµα
for classes A, AII, and, AII in even dimensions because n and ν0(π)α in those AZ classes are Z2

numbers in even dimensions. Then, by multiplying UF (k) with an arbitrary phase factor eiµτ ,
we obtain the formula of the form in Eq. (3.70).

In the case of (ii’), we prove it by explicitly relating Floquet and non-Hermitian systems. n as
a point gap topological invariant can be seen as a n of Floquet unitary operators by substituting
H = iUF . να for ImEα > 0 in non-Hermitian systems corresponds to ν0α at ϵ = 0 because the
primitive gapless Hamiltonian HF (k) ∼ k · Γ corresponds to the non-Hermitian Hamiltonian
H(k) ∼ k · Γ + i for O(k2) as shown in Sec. 3.3. 13 In a similar manner, να for ImEα < 0 in
non-Hermitian systems corresponds to (−1)dν0α at ϵ = π/τ because HF (k) ∼ k · Γ + π/τ in
Floquet systems corresponds to H(k) ∼ −k · Γ− i in non-Hermitian systems.

Another proof without utilizing a non-Hermitian counterpart is also given in Appendix. C.

12Even in the case of (i), the gapless topological charge is always defined to become 1 for H(k) =
∑d

j=1 kjΓj .
13We note that topological charge of gapless points are defined to be compatible with the primitive Dirac Hamil-

tonian H(k) = k · Γ.
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FIGURE 3.4: Typical band dispersion in Hermitian systems. In this case, Eq. (3.72) states Ch(S5,1) +
Ch(S5,2) + Ch(S4,1) = 0.

3.7 Nielsen-Ninomiya theorem in 3D
The original Nielsen-Ninomiya theorem [1, 2] in Hermitian systems states that the net chirality
of Weyl points in the whole Brillouin zone should be zero. Here we reformulate the theorem
differently, which is more convenient to describe gapless modes in non-Hermitian and Floquet
systems. 14

Let us consider a Hermitian Hamiltonian H(k) with energy bands Ep(k) in 3D. For this
Hamiltonian, the following relation holds,∑

pα

Ch(Spα) = 0, (3.72)

where Spα is the Fermi surface defined by {k ∈ Spα|Ep(k) = 0} and Ch(Spα) is the Chern
number on Spα, where the orientation of Spα is chosen as the direction of the Fermi velocity
∂k[ReEp(k)]k∈Spα .

Proof: First, we order the bands Ep(k) as E1(k) ≤ E2(k) ≤ E3(k) . . . as illustrated in
Fig. 3.4. Then, we continuously deform each energy Ep(k) so as to satisfy either Ep(k) > 0 or
Ep(k) < 0 in the whole Brillouin zone. 15 After this deformation, Eq. (3.72) obviously holds
because there is no Fermi surface and there is no term on the left-hand side. Therefore, if the
left-hand side of Eq. (3.72) is invariant during the above deformation, we obtain Eq. (3.72) for
general band structures. We show that by moving bands upward one by one.

Let us consider a gapless band that hosts at least one Fermi surface at the Fermi energy
E = 0. When we move the band upward, the following four processes may happen. (a) A Fermi
surface shrinks and vanishes smoothly. (b) A Fermi surface merges into another Fermi surface or
splits into two Fermi surfaces. (c) A new Fermi surface is created smoothly. (d) A Fermi surface
shrinks to a Weyl point then moves to a lower band. During the first three processes (a),(b),
and (c), the left-hand side of Eq. (3.72) is invariant because the Chern number, a topological
invariant, cannot change during such smooth deformations. Notably, the last process also keeps
the left-hand side of Eq. (3.72) invariant because we can show

Ch(Sp0α) = Ch(Sp0−1α′), (3.73)

14This form of the Nielsen-Ninomiya theorem is also convenient for bulk-boundary correspondence of 4D topo-
logical insulator, where Weyl points appear on the boundary.

15Weyl points become obstacles during this deformation, but they always appear in a pair and thus we can gap
out the pair of Weyl points by the collision of the pair of Weyl points.
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FIGURE 3.5: Energy dispersion near a robust degenerate point (Weyl point). We omit the kz dependence
for illustrative simplicity. The upper (lower) gray plane indicates the Fermi energy E = 0 before (after)
the Weyl band moves upward. When the band deforms to move upward, the Fermi surface Sp0α shrinks
to the Weyl point, then a new Fermi surface Sp0−1α′ is created in a lower band p0 − 1. Note that the
orientation of Sp0−1α′ is opposite to that of Sp0α.

FIGURE 3.6: Floquet energy spectra of UF (k) in Eq. (3.75) with (a) θ = 0 and (b) θ = 3/4.

where Sp0α is the Fermi surface shrinking into the Weyl point and Sp0−1α′ is the Fermi surface
created on the lower band in this process. (One can directly show this equation for the typical
Weyl Hamiltonian H(k) =

∑
ij aijkiσj .) Therefore, the left-hand side of Eq. (3.72) is invariant

when we deform to move all metallic bands upward above the Fermi energy. Consequently, we
have Eq. (3.72).

3.8 2D class AIII Floquet system
In this section, we see a nontrivial example of 2D Floquet systems in class AIII. Chiral symmetry
for Floquet Hamiltonians ΓHFΓ

−1 = −HF in class AIII implies the chiral symmetry for one-
cycle time evolution operator ΓU †

FΓ
−1 = UF , and thus ΓUF is Hermitian. The topological

invariant n of UF in 2D class AII systems is the Chern number of ΓUF . For a gapless mode of
HF at ϵF = 0 (π/τ), the topological charge ν0(π) is given by the 1D winding number,

νϵ =

∫
spα

dk

4πi
· tr
[
Γ(HF(k)− ϵ)−1∇(HF(k)− ϵ)

]
, (ϵ = 0, (π/τ)), (3.74)

where spα is a small circle surrounding the gapless point, and the branch cut of HF(k) is chosen
at π/τ (0). For simplicity, we set τ = 1 in the following.
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Let us consider the following 2D model in class AIII,

UF(k) = eiθσx/2U−
y (ky/2)U

−
x (kx)U

+
y (ky/2)U

−
y (ky/2)U

+
x (kx)U

+
y (ky/2)e

iθσx/2, ΓU †
FΓ

−1 = UF,

(3.75)

where U±
j (kj) = P±

j e
∓ikj + P∓

j with P±
j = (σ0 ± σj) /2 and Γ = σ3. ΓUF is rewritten as

ΓUF = dxσx + (dy cos θ − dz sin θ)σy + (dz cos θ + dy sin θ)σz (3.76)

where dx = − cos2 (kx/2) sin ky, dy = − sin kx cos
2 (ky/2), and dz = cos kx cos

2 (ky/2) −
sin2 (ky/2). The Chern number of ΓUF becomes 1 for any θ as the vector d = (dx, dy, dz) wraps
the unit sphere once when k covers the whole Brillouin zone.

Figure 3.6 is the quasi-energy spectrum of this model with θ = 0, 3/4. Near the Dirac point
at ϵF = 0, the Floquet Hamiltonian takes the form

HF(k) ≈ (kx − θ)σx + ky

(
cos2

θ

2

)
σy, (3.77)

which gives ν0 = 1. On the other hand, near the Dirac point at ϵF = π, the Floquet Hamiltonian
becomes

HF(k) ≈ π + (kx − θ − π)σx −
(
sin2 θ

2

)
kyσy, (3.78)

which gives νπ = −1. Thus, this model obeys Eq. (3.23) in Theorem 3’.



73

Chapter 4

Non-Hermitian chiral magnetic effect

4.1 Chiral magnetic effect
We propose the following model,

H(k) = (d0 + d(k) · σ) τ1 +m(k)τ3 + iγ(τ3 − τ0), (4.1)

with di(k) = sin ki, m(k) = m0 +
∑3

i=1 cos ki. This model has a point gap at EF = −iγ
and hosts multiple Weyl points in the complex energy plane as shown in Fig. 4.1(a), satisfying
Theorem 2 1. Photonic systems [47, 48] and cold atoms [Takasu20, 49] may provide the spin-
selective (or sublattice selective) loss term in Eq. 4.1, and thus we believe the experimental
realization of the following chiral magnetic effect is feasible.

Weyl fermions in a Floquet system can induce the CME [3, 4]. As a non-Hermitian counter-
part of this effect, we propose the non-Hermitian CME. Figure 4.1(a) and (b) shows the energy
spectrum of the model in Eq. (4.1) without and with a magnetic field Bz. The magnetic field
opens the Landau gap at the Weyl point at k = (0, 0, 0) in Fig. 4.1(a), and a right-going chiral
mode with Im(E −EF) > 0 appears. The chiral mode has a longer lifetime and produces a cur-
rent parallel to the magnetic field, leading to the CME. We confirm the CME by examining the
dynamics of wave packets. Figures 4.1(c) and 4.1(d) show the wave packet dynamics without
and with the magnetic field Bz. While wave packets not subject to a magnetic field tend to move
into the spin direction as a result of the spin-momentum locking of Weyl fermions, we observe
wave packets under magnetic field Bz tend to move in the direction of the magnetic field, which
is consistent with the CME.

Using the extended Nielsen-Ninomiya theorem, we can find a general formula that charac-
terizes the non-Hermitian CME: From Theorem 2, a system with nonzero w3 typically hosts
Weyl fermions with the net chiral charge of w3 with ImE > 0. As in Fig. 4.1 (b), a magnetic
field Bz opens the Landau gap at each Weyl point, leaving a 1D chiral mode of the Landau de-
generacy (eBz/2π)LxLy

2, where e is the electric charge of the Weyl fermion and Li=x,y is the
system length in the i-direction. Therefore, the system supports 1D chiral modes with the net
chiral charge w3(eBz/2π)LxLy. From Theorem 1, this result implies that the system also hosts
the 1D energy winding number w1 given by 3

wz
1 =

eBz

2π
LxLyw3. (4.2)

1See Sec. 4.2.
2See Sec. 4.2
3Detailed analysis of this formula is given in Appendix D
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FIGURE 4.1: (a, b) Energy spectrum of the non-Hermitian Weyl semimetal model in Eq. (4.1) (a) without
and (b) with a magnetic field Bz in the z direction. (a) Four colors distinguish different bands, and each
dotted circle enclose Weyl points. (b) Right-(Left-)going mode has positive (negative) Im(E − EF) for
EF = −i. The right- and left-going mode originate from the Weyl points with k = (0, 0, 0). The
inset is the same figure viewed from a different angle, where we can see the crossing of right- and left-
going modes. (c,d) Wave packet dynamics in the non-Hermitian Weyl semimetal model of Eq. (4.1) (top)
without and (bottom) with magnetic field Bz . We draw snapshots of the probability densities |ψ(z)|2 at
each unit cycle, where the red arrows indicate the direction of movement. This is numerically obtained by
the fourth-order Runge-Kutta method. The initial wave packets are given by |ψ0⟩ = ψ0 |σz⟩σ |τz⟩τ , where
ψ0 is a 3D Gaussian wave packet of the width 2σ̄2 = 5 and the internal degrees of freedom |σz⟩σ |τz⟩τ
is specified in each figure. Under the magnetic field Bz = π/5, all the wave packets tend to move in the
+ẑ direction. The parameters of Eq. (4.1) are d0 = γ = γ0 = 1 and m0 = −2. The system size is (b)
Lx = Ly = Lz = 30 and (c,d) Lx = Ly = Lz = 40 with PBC.

Here wz
1 is defined by Eq. (3.4), where H(k) with k = kz is the Hamiltonian under the magnetic

field Bz, and the trace includes the summation of kx and ky in the magnetic Brillouin zone. We
note that eBzLxLy/2π is an integer under the PBC in x- and y-directions4.

The relation (4.2) gives a profound implication. As mentioned above, a nonzero w1 implies
the occurrence of the non-Hermitian skin effect [83, 140], where extended bulk modes in PBC
become localized boundary modes in the OBC. Therefore, Eq. (4.2) indicates that the system
with a nonzero w3 inevitably shows the skin effect under a magnetic field. This prediction is
consistent with the CME dynamics we have seen above because bulk modes stack to a boundary
in the direction of the magnetic field due to unidirectional CME currents. We have confirmed
the chiral magnetic skin effect in the model of Eq. (4.1) in Sec. 4.2.

4.2 Non-Hermitian Weyl semimetal

4.2.1 Extended Nielsen-Ninomiya theorem
In this section, we see the extended Nielsen-Ninomiya theorem holds in the non-Hermitian Weyl
semimetal

H(k) = (d0 + d(k) · σ) τ1 + (m(k) + iγ) τ3 − iγ0τ0, (4.3)

4See Sec. D.2
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FIGURE 4.2: (a) Complex energy spectrum of the non-Hermitian Weyl semimetal in Eq. (4.3) with
d0 = γ = γ0 = 1 and m0 = −2. Different colors distinguish different bands in Eq. (4.5), and the black
circles emphasize Weyl points. (b) Complex energy spectrum of Eq. (4.3) under a magnetic field Bz . The
red arrow points to a right-going mode originating from the Weyl point at k = (0, 0, 0). The system size
is Lx = Ly = Lz = 30 and the magnetic flux is eBz/2π = 1/10.

with

di(k) = sin ki, m(k) = m0 + cos k1 + cos k2 + cos k3, (4.4)

where d0, m0, γ, and γ0 are real constants. The band energies of this model become

E1(k) =
√
(|d(k)|+ d0)2 + (m(k) + iγ)2 − iγ0,

E2(k) =
√

(|d(k)| − d0)2 + (m(k) + iγ)2 − iγ0,
E3(k) = −

√
(|d(k)|+ d0)2 + (m(k) + iγ)2 − iγ0,

E4(k) = −
√

(|d(k)| − d0)2 + (m(k) + iγ)2 − iγ0. (4.5)

Figure 4.2 illustrates these energy spectrum with Weyl points at k = (0, 0, 0), (π, 0, 0),
(0, π, 0), (0, 0, π), (π, π, 0), (π, 0, π), (0, π, π), (π, π, π). The spectrum has a point gap at E =
EF = −iγ0. Let us evaluate the topological charge of the Weyl points inside the Fermi surfaces
Re(E(k) − EF) = 0. When d0 = γ = γ0 = 1 and m0 = −2, only E2(k) and E4(k) bands
have such Fermi surfaces, which we denote by S2 and S4, respectively. The Fermi surface S2

(S4) has an imaginary part of the energy higher (lower) than EF = −iγ0. For example, the right
eigenfunction of H(k) with the eigenenergy E2(k) is given by

|ψ2(k)⟩ =
1√

2|d(k)|(|d(k)| − d3(k))

(
d3(k)− |d(k)|
d1(k) + id2(k)

)
σ

⊗
(
m(k) + iγ + E2(k)

d0 − |d(k)|

)
τ

.

(4.6)

The corresponding left eigenfunction ⟨⟨ψ2(k)| have a similar expression, which is normalized as
⟨⟨ψ2(k)|ψ2(k)⟩ = 1. The Chern number on the Fermi surface S2 is

Ch(S2) =
1

2πi

∫
S2

(∇×A(k)) · dS, (4.7)

where A(k) = ⟨⟨ψ2(k)|∇ψ2(k)⟩ and the area element dS points to the direction of the Fermi
velocity∇ReE2(k)|k∈S2 . As S2 encloses a Weyl point at k = (0, 0, 0) in the upper right side of
Fig. 4.2, we obtain Ch(S2) = 1. Similarly, we also obtain Ch(S4) = −1. On the other hand, we
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numerically calculate the 3D winding number w3 given by

w3 = −
1

24π2

∫
BZ

tr
[
(H − EF)

−1d(H − EF)
]3
, (4.8)

and obtain w3 = 1 for d0 = γ = γ0 = 1 and m0 = −2. Therefore, Theorem 2 in the main text
holds for this model.

4.2.2 Weyl point under a magnetic field
We review the properties of a Weyl point under an applied magnetic field. We consider the Weyl
Hamiltonian with +1 chirality,

H = kxσx + kyσy + kzσz. (4.9)

Under the magnetic field Bz, given by the vector potential A = (0, Bzx, 0), the Hamiltonian
reads

Ĥ = −i∂xσx + (ky − eBzx)σy + kzσz =

(
kz −i∂x − i(ky − eBzx)

−i∂x + i(ky − eBzx) −kz

)
,

(4.10)

where e is the electric charge of the Weyl fermion. For eBz > 0, Ĥ is rewritten as

Ĥ =

(
kz

√
2eBzâ

†
√
2eBzâ −kz

)
, (4.11)

in terms of the annihilation and creation operators,

â =
−i∂x + i(ky − eBzx)√

2eBz

, â† =
−i∂x − i(ky − eBzx)√

2eBz

, [â, â†] = 1. (4.12)

The Hamiltonian Ĥ has a single right-going chiral mode with E = kz and gapped modes with
E = ±

√
k2z + 2eBzp (p = 1, 2, 3, . . .), as illustrated in Fig. 4.3. For the right-going mode with

E = kz, the Schrödinger equation Ĥ|ψ⟩ = E|ψ⟩ with |ψ⟩ = (|ψ1⟩, |ψ2⟩) leads to

â |ψ1⟩ = 0, |ψ2⟩ = 0, (4.13)

from which we have the wavefunction of the right-going mode,

ψ1(x) =

(
eBz

π

)1/4

exp

[
−eBz

2

(
x− ky

eBz

)2
]
, ψ2(x) = 0. (4.14)

The wave function ψ1(x) is the Gaussian wave packet with the center at xc = ky/eBz. In the
PBC in the x and y directions, xc and ky satisfy 0 < xc ≤ Lx and ky = 2πny/Ly, respectively,
leading to ny = 1, . . . , (eBz/2π)LxLy. Therefore, the right-going mode has (eBz/2π)LxLy-
fold degeneracy. Note that (eBz/2π)LxLy is an integer in PBC of the magnetic translations 5.
Similarly, for eBz < 0, we have a left-going mode E = −kz with −(eBz/2π)LxLy degeneracy.

5See Sec. D.2
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FIGURE 4.3: A typical energy band of Weyl points (a) without and (b) with a magnetic field. (a) Weyl
points with ±1 chiralities. (b) The Weyl point with chirality 1 (−1) becomes a right- (left-)going mode
with (Bz/2π)LxLy-fold degeneracy.

For the Weyl Hamiltonian with −1 chirality such as

H = kxσx + kyσy − kzσz, (4.15)

we have a left-going mode E = −kz with (eBz/2π)LxLy-fold degeneracy when eBz > 0, and
a right-going mode E = kz with −(eBz/2π)LxLy-fold degeneracy when eBz < 0.

4.2.3 Chiral magnetic skin effect
This section compares the complex energy spectra of the non-Hermitian Weyl semimetal in
Eq. (4.3) with and without a magnetic field for PBC and OBC in z-direction, and show the
chiral magnetic skin effect.

We first see the energy spectra of Eq. (4.3) without a magnetic field in Fig. 4.4 (a). The blue
region is the energy spectrum with PBC in all directions, and the red dots are that with OBC in
the z-direction and PBC in x and y directions. Skin modes with E = −i and E = ±1− i appear
under OBC. This skin effect is nothing to do with the chiral magnetic skin effect. Instead, it
originates from the Z2 topological invariant of the model Hamiltonian in Eq. (4.3). Because of
the reciprocity (TRS†) of H(k) in Eq. (4.1), RHT (k)R−1 = H(−k), R = iσ2τ0, we can define
the Z2 topological invariant for H(0, 0, kz),

(−1)ν(E) = sgn

{
Pf[(H(0, 0, π)− E)R]
Pf[(H(0, 0, 0)− E)R]

exp

[
−1

2

∫ π

kz=0

d log det[(H(0, 0, kz)− EF )R]

]}
.(4.16)

We obtain ν(E) = 1 when EF is in the center area enclosed by the blue spectrum in Fig. 4.4 (a).
Thus, as a 1D system in the z-direction, H(0, 0, kz) shows the Z2 skin effect protected by the
reciprocity [83]. By directly solving the Schrödinger equation, we obtain two skin modes with
E = −i as

|↓⟩σ ⊗ |←⟩τ ⊗ |z = 0⟩ , |↑⟩σ ⊗ |←⟩τ ⊗ |z = Lz⟩ , (4.17)

each of which has two-fold degeneracy, and the skin modes with E = ±1− i as

∓ i |↓⟩σ ⊗ |→⟩τ ⊗ |z = 0⟩+ |↓⟩σ ⊗ |←⟩τ ⊗ (2 |z = 0⟩ − i |z = 1⟩),
∓ i |↑⟩σ ⊗ |→⟩τ ⊗ |z = Lz⟩+ |↑⟩σ ⊗ |←⟩τ ⊗ (2 |z = Lz⟩ − i |z = Lz − 1⟩), (4.18)
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FIGURE 4.4: Chiral magnetic skin effect of the non-Hermitian Weyl semimetal in Eq. (4.3). (a,b) Energy
spectra of Eq. (4.3) with d0 = γ = γ0 = 1, m0 = −2 (blue) in full PBC and (red) in the OBC in the z
direction (zOBC). (c,d,e,f) Skin modes in zOBC with (c,e)Bz = 0 and (d,f) eBz/2π = 1/8. Colors in (c)
and (d) correspond to the same colors in (e) and (f). The zOBC spectra and wavefunctions are calculated
in the system size Lx = Ly = Lz = 8. All the skin modes in (f) under the magnetic field are localized at
the right boundary, as expected from the chiral magnetic current parallel to the magnetic field.

each of which has (Lz − 1)-fold degeneracy. Here |↑⟩σ (|↓⟩σ) and |→⟩τ (|←⟩τ ) are the σz = 1
(σz = −1) eigenstate and the τy = 1 (τy = −1) eigenstate, respectively, and |z = i⟩ is the
localized state at the i-th site in the z-direction. The skin modes localized at z = 0, Lz form
Kramers pairs of the reciprocity R, and when one applies a magnetic field, they are mixed and
disappear into the bulk.

In the presence of a magnetic field Bz, however, different skin modes appear. In Fig. 4.4
(b), we show the energy spectra of Eq. (4.3) with the magnetic field Bz. We can see the skin
modes inside the blue spectra. In contrast to the Z2 skin effect in the above, all the skin modes
are localized at z = Lz, as shown in Fig. 4.4 (f). The present skin effect originates from the
Z-valued 1D energy winding number w1 [83]. As discussed in Sec. 4.1, a non-zero w3 induces a
non-zero w1 in the form of Eq. (4.2) under a magnetic field, which induces the skin effect. The
existence of the skin modes is also consistent with the CME since the unidirectional motion of
wave packets in Figs. 4.1 (c) and (d) results in an accumulation of bulk states at the boundary
z = Lz.

We have also studied the chiral magnetic skin effect in a different model. Detailed analysis
of the chiral magnetic skin effect will be reported elsewhere [145].
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Chapter 5

Extrinsic topology in quantum walks

Bulk-boundary correspondence is a fundamental principle, where bulk topological invariants
determine gapless boundary states. On the other hand, it has been known that corner or hinge
modes in higher-order topological insulators can appear due to the "extrinsic" topology of the
boundaries even when the bulk topology is trivial. In this paper, we find that the so-called Flo-
quet anomalous boundary states in quantum walks also have extrinsic topological natures. In
contrast to the case of higher-order topological insulators, the extrinsic topology of quantum
walks is manifest even for first-order topological phases. We present the periodic table of extrin-
sic topology in quantum walks and illustrate extrinsic natures of first-order Floquet anomalous
boundary states in concrete examples.

5.1 Introduction
Recently, it has become clear that a class of gapless boundary states may appear without bulk
topological invariant because of the nontrivial topology of boundaries. Such boundary states
have been called "extrinsic" [146]. In particular, in equilibrium, extrinsic topological phases are
realized in higher-order topological insulators with gapless corner and hinge modes [147–155].
For example, attaching a one-dimensional (1D) Su-Schrieffer-Heeger (SSH) chain [156] onto
an edge of a two-dimensional (2D) chiral-symmetric topologically trivial insulator, extrinsic
zero-energy corner states appear. The zero-energy gapless modes are robust against continu-
ous perturbations of the system unless the energy gap closes. The topological invariant of the
attached SSH chain determines the types and the numbers of these corner modes.

Floquet systems, where time-dependent Hamiltonians are periodic in time [25, 26, 28, 29,
100, 157–159], and quantum walks, where periodic series of unitary operators describe their
dynamics [30, 39–41, 160–173], have attracted uprising interests because of topological phe-
nomena intrinsic to non-equilibrium systems. Both Floquet systems and quantum walks have
the 2π/T quasi-energy periodicity because of the Bloch-Floquet theorem for time translation
symmetry of time period T [19]. The 2π/T periodicity leads to two high-symmetric Fermi en-
ergy levels at ϵ = 0 and ϵ = π/T and defines gaps at these energies, which is a feature in these
systems. Gapless boundary states at ϵ = 0 and ϵ = π/T have been studied both in Floquet
systems [26–29] and quantum walks [30, 39, 40]. Due to the common properties above, quan-
tum walks are studied as a kind of Floquet systems in many previous literatures on topological
phases.

However, as we clarify below, there exists a fundamental difference between Floquet systems
and quantum walks. To see the difference, we compare quantum walks and Floquet systems
in detail. In conventional Floquet systems, the time-evolution operator U(k, t1 → t2) in the
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momentum space representation is given by a time-dependent microscopic HamiltonianH(k, t),

U(k, t1 → t2) = T exp

[
−i
∫ t2

t1

dtH(k, t)

]
, (5.1)

where T indicates the time-ordering operator. The one-cycle time-evolution operator UF (k) :=
U(k, 0→ T ) is often called the Floquet operator, where T is the time period of the microscopic
Hamiltonian H(k, t + T ) = H(k, t). In quantum walks, however, the one-cycle time evolution
is given directly as a series of unitary operators Uj(k),

UQW(k) =
∏
j

Uj(k). (5.2)

For both Floquet systems and quantum walks, we define the effective Hamiltonians HF and
HQW as

UF = e−iHFT , UQW = e−iHQW , (5.3)

which describe the stroboscopic dynamics in these systems. Therefore, quantum walks can be
regarded as a Floquet system of time period T = 1. The quasi-energies of these systems are
defined as the eigenvalues of the effective Hamiltonians, and thus the periodicity 2π/T of the
quasi-energy can be interpreted as the periodicity in the phases of UF and UQW. When Uj(k)’s

are written by a microscopic Hamiltonian: Uj(k) = T exp
[
−i
∫ tj+1

tj
dtH(k, t)

]
, the quantum

walk can be regarded as a Floquet system. However, this is not always the case for general
quantum walks [Fig. 5.1]. An illustrative example is a quantum walk of only the shift operator
UQW(k) = S+(k) [39, 161],

S+(k) =

(
e−ik 0
0 1

)
. (5.4)

As one can show immediately, this model has a non-trivial winding number w1[UQW(k)] = 1,
where w1[U(k)] defined by

w1[U(k)] =

∫ 2π

0

dk

2π
tr[U(k)−1i∂kU(k)]. (5.5)

On the other hand, for any Floquet continuous time evolutionU(k, t1 → t2), the winding number
inevitably becomes zero:

w1[U(k, t1 → t2)] = w1[U(k, 0→ 0)] = 0, (5.6)

as U(k, t1 → t2) is continuously deformed into U(k, 0 → 0) = 1. 1 Therefore, the quantum
walk UQW(k) = S+(k) cannot be written by a form of Floquet continuous time evolution.

In this paper, we argue that this difference enables extrinsic topological phases in quantum
walks even in the first order. We see a simple example of the extrinsic topological phase in a
quantum walk as follows [Fig. 5.2]. First, let us prepare a topologically trivial bulk model in 2D

1During the deformation, the topological invariant w1 cannot change because U(k, t1 → t2) is always well-
defined. This is the basic property of all topological invariants.
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FIGURE 5.1: Relation between the set of quantum walks and the set of Floquet systems. Any Floquet
operator UF can be regarded as a one-step quantum walk UQW. On the other hand, some quantum walks
UQW such as S+(k) in Eq. (5.4) cannot be realized as a form of Floquet operator UF .
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FIGURE 5.2: Lattice construction and quasi-energy spectrum of the simple extrinsic topological model
in Eq. (5.13). (a) We attach a topologically nontrivial (d− 1)-dimensional boundary onto a topologically
trivial d-dimensional bulk. In the simple model, we consider d = 2. We impose PBC in the y-direction
and OBC in the x-direction. (b) The quasi-energy spectrum of Eq. (5.13). The blue (red) line indicates
the bulk (edge) quasi-energy spectrum.

with quasi-energy gaps at ϵ = 0 and ϵ = π/T by using the coin operator C(θ),

Ubulk(k) = C(
π

2
), C(θ) := e−iθσz . (5.7)

The real space representation of this bulk model becomes

Ubulk =
Lx∑
x=2

Ly∑
y=1

−i |r,+⟩ ⟨r,+|+ i |r,−⟩ ⟨r,−| , (5.8)

where r is the (x, y) position, and± is two orthogonal internal states of the walker. The effective
Hamiltonian HQW of this model is

HQW =
π

2
σz, (5.9)

which has the quasi-energies ϵ(k) = ±π/2. Thus, the model has energy gaps both at ϵ = 0, π.
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Furthermore, as the Hamiltonian is a constant2, the bulk topological invariant is zero, so no
gapless boundary mode is expected from bulk-boundary correspondence.

However, we can obtain a gapless chiral edge mode by decorating the boundary at x = 1 of
this model with a local unitary operator

Uedge(ky) = S+(ky)C(
π

2
), (5.10)

where ky is the momentum along the edge. The effective Hamiltonian Hedge
QW at the edge is

Hedge
QW =

(
ky + π/2 0

0 −π/2

)
, (5.11)

and thus the edge supports a chiral gapless mode with the linear dispersion ϵ(ky) = ky + π/2.
The real space representation of the edge unitary is

Uedge =

Ly∑
y=1

−i |1, y + 1,+⟩ ⟨1, y,+|+ i |1, y,−⟩ ⟨1, y,−| , (5.12)

where PBC is imposed in the y-direction. By attaching this 1D model to the bulk 2D model
Ubulk in Eq. (5.8) at x = 1, we have a edge-decorated bulk model,

Ubulk ⊕ Uedge. (5.13)

In spite of the trivial bulk topological invariant, the decorated model has a nontrivial chiral edge
mode, as shown in Fig. 5.2 (b).

The extrinsic gapless chiral mode is understood from the winding number of the edge unitary
operator. As shown above, in contrast to conventional Floquet systems, a unitary operator in a
quantum walk may have a nonzero winding number, and the edge unitary operator Uedge(ky) in
Eq. (5.10) has w1[Uedge(ky)] = 1. Following the extended Nielsen-Ninomiya theorem proved in
Chapter 3 (Eq. (3.7) in Theorem 1’), nontrivial winding number assures the existence of gapless
chiral modes both at ϵ = 0, π at the same time:∑

ϵp(kpα)=0

sgn vpα =
∑

ϵp(kpα)=π

sgn vpα = w1[Uedge(ky)], (5.14)

where kpα is the α-th gapless point of band p of the edge effective Hamiltonian defined by
ϵ(kpα) = 0 or π, and vpα = (∂ϵp/∂ky)ky=kpα

is the group velocity of the gapless mode at kpα.
Since sgn vpα is the chirality of the gapless mode, a nonzero winding number implies the net
nonzero chiral gapless modes both at ϵ = 0, π.

Based on the extended Nielsen-Ninomiya theorem in Chapter 3, we classify the extrinsic
topological phases in quantum walks in arbitrary dimensions and symmetry classes. Superfi-
cially, the classification coincides with that for gapless states in ordinary topological insulators
and superconductors [Table 5.2]. This is because the gapless boundary states in quantum walks
are characterized by the same topological charges as those in usual topological insulators and
superconductors. However, contrary to the conventional gapless modes, gapless modes in the
extrinsic topological phases appear even in the absence of bulk topological invariants because of

2a kind of atomic insulator
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the nontrivial topology of boundary unitary operators. Remarkably, the extrinsic gapless modes
always appear in a pair at ϵ = 0, π/T . Furthermore, in even (odd) dimensions, the net topolog-
ical charge of extrinsic gapless modes at ϵ = 0 is the same as (opposite to) the net topological
charge of those at ϵ = π/T .

The extrinsic topological phase of quantum walks is closely related to the so-called Flo-
quet anomalous topological phase [33]. In Floquet systems, there are two types of topological
phases: one is the conventional topological phase characterized by the topology of the effective
Hamiltonian in Eq. (5.3), and the other is the anomalous one characterized by the topology of
the microscopic Hamiltonian in Eq. (5.1). These two types of topological invariants are needed
to fully determine the boundary states both at ϵ = 0 and ϵ = π/T . In quantum walks, however,
the microscopic Hamiltonian does not always exist, and thus anomalous topological phase is
ill-defined in general. As a result, the bulk topology is insufficient to determine the boundary
gapless states. Instead, we find that additional boundary unitary operators can be topological,
which enables us to fully control gapless states on the boundary.

We also discuss the physical implementations of such extrinsic topological phases. We first
numerically and analytically study the robustness of extrinsic chiral gapless modes against disor-
ders using the Anderson localization Hamiltonian [174]. We also show that suitable modulations
of boundaries can eliminate gapless boundary states in the split step quantum walk in 1D [39–
41] and the five-step model in 2D [27], which clearly illustrates the extrinsic nature of gapless
states in the quantum walks.

This paper is organized as follows. In Sec. 5.2, we see the classification of extrinsic topo-
logical phases in quantum walks. In Sec. 5.3, we discuss extrinsic topological phases in one-
dimensional quantum walks in detail. In Sec. 5.4, the relation between the topological classi-
fication of Floquet topological insulators and that of quantum walks is discussed. The relation
between Floquet anomalous boundary states and extrinsic boundary states in quantum walks is
clarified. In Sec. 5.5, we review the bulk-boundary correspondence for chiral-symmetric quan-
tum walks in 1D through our theory. For chiral symmetric quantum walks in 1D, it has been
shown that the bulk topological invariants fully determines the number of boundary zero modes
[30], i.e. no extrinsic topological phase can appear. On the other hand, our classification in-
dicates the presence of an extrinsic topological phase in this case. We make it clear that this
difference comes from the difference in the definitions of chiral symmetry. Indeed, Ref. [30] in-
troduces chiral symmetry for the quantum walks composed from two half-cycle time-evolution
operators, and we demonstrate that the extrinsic topological phase becomes trivial under this
special realization of chiral symmetry. We also find that class CII 1D quantum walks have a
similar property: Using an appropriate realization of symmetries, the bulk topological invari-
ants fully determine the number of boundary zero modes. In Sec. 5.6, we see three physical
implementations of extrinsic topological phases, and examine their dynamical properties.

5.2 Classification of extrinsic topology in quantum walks
Let us consider a general one-cycle time-evolution unitary operator UQW(k) and the corre-
sponding effective Hamiltonian HQW(k) defined by UQW(k) = e−iHQW(k) in d-dimensions
with momentum k = (k1, k2, . . . , kd). We first introduce the Altland-Zirnbauer (AZ) symme-
try classes [35]. HQW(k) may satisfies time-reversal symmetry (TRS), particle-hole symmetry
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FIGURE 5.3: A typical quasi-energy spectrum of a quantum walk: The quasi-energy has 2π periodicity,
we have two high-symmetric bulk energy gaps at ϵ = 0 and π. Gapless boundary states may appear at
both energy gaps. Here a is a lattice constant. If we consider a group of people lined up in a grid, the
lattice constant needs to be a ≈ 2 m because of COVID-19 these days.

(PHS) and/or chiral symmetry (CS):

THQW(k)T−1 = HQW(−k), (5.15)
CHQW(k)C−1 = −HQW(−k), (5.16)
ΓHQW(k)Γ−1 = −HQW(k). (5.17)

Here, T and C are anti-unitary operators with T 2 = ±1 and C2 = ±1, and Γ is a unitary
operator with Γ2 = 1. The AZ symmetry classes are defined by the presence or absence of TRS,
PHS and/or CS [Table 5.1]. In quantum walks, it is beneficial to rewrite the AZ

TUQW(k)T−1 = UQW(−k)†, (5.18)
CUQW(k)C−1 = UQW(−k), (5.19)

ΓUQW(k)Γ−1 = UQW(k)†. (5.20)

When there are particle-hole and/or chiral symmetries, we have a symmetry constraint ϵn =
−ϵm (mod 2π) for the quasi-energy bands n,m, and obtain high-symmetric energy gaps at
ϵ = 0, π. We suppose that these energy gaps are open for bulk bands in the following [Fig. 5.3].

Gapless boundary states can appear at ϵ = 0 and ϵ = π individually. They are described by
a gapless Dirac Hamiltonian:

HQW(k∥) =
d−1∑
j=1

kjγj + ϵgap1̂, (5.21)

up to continuous deformations 3. Here, we take the OBC in the xd-direction, and k∥ = (k1, k2, . . . , kd−1)
is the momentum along the boundary, and ϵgap = 0, π is the energy gaps we consider. The gamma
matrix γj is a Hermitian matrix satisfying {γi, γj} = 2δij . We note that this boundary Hamilto-
nian is taken to be compatible with AZ symmetries. The gapless Dirac Hamiltonian Eq. (5.21)
has the same form as that for boundary gapless states in conventional topological insulators and
superconductors in equilibrium [16, 37, 98, 175]. In equilibrium, owing to the bulk-boundary

3and addiction and/or subtraction of trivial bands
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TABLE 5.1: Periodic table for (d − 1)-dimensional gapless boundary states of d-dimensional quantum
walks in AZ symmetry class. We assume the existence of bulk gaps at ϵ = 0 and π.

AZ class T C Γ d = 1 2 3
A 0 0 0 0 Z2 0

AIII 0 0 1 Z2 0 Z2

AI +1 0 0 0 0 0
BDI +1 +1 1 Z2 0 0
D 0 +1 0 Z2

2 Z2 0
DIII −1 +1 1 Z2

2 Z2
2 Z2

AII −1 0 0 0 Z2
2 Z2

2

CII −1 −1 1 (2Z)2 0 Z2
2

C 0 −1 0 0 (2Z)2 0
CI +1 −1 1 0 0 (2Z)2

correspondence, the topological classification of gapless boundary states in (d− 1)-dimensions
is the same as that of insulators and superconductors in d-dimensions. Therefore, the topological
classification of (d − 1)-dimensional boundary states in quantum walks coincides with that of
ordinary insulators and superconductors in d-dimensions [Table. 5.1]. We note that the topo-
logical numbers in Table 5.1 are doubled because each gap at ϵ = 0, π may host gapless states
individually.

The gapless boundary states of quantum walks have two different topological origins. The
first one is the bulk topology of the effective Hamiltonian HQW(k) in the same manner as the
bulk-boundary correspondence in equilibrium. The two gaps ϵ = 0 and ϵ = π separate bulk
bands of HQW(k) into two, from which one can define "occupied" and "empty" bands like con-
ventional insulators. Therefore, in a manner similar to ordinary topological insulators, HQW(k)
can be topological, which gives gapless boundary states at ϵ = 0 through bulk-boundary corre-
spondence. One of the doubled topological numbers Z2, Z2

2 and (2Z)2 in Table 5.1 corresponds
the boundary gapless states determined from the bulk topological invariant of HQW(k).

Another origin is the main subject of this paper, i.e., extrinsic topology of boundary unitary
operators. Below, we see possible lattice terminations of d-dimensional quantum walks, which
is given by (d− 1)-dimensional unitary operators UBDQW(k∥).

For this purpose, we employ a theory on gapless states of unitary operators discussed in
Chapter 3. For a boundary unitary operator UBDQW(k∥) in an AZ symmetry classes, we have
gapless states if the unitary operator UBDQW(k∥) has a non-trivial topological number. The ex-
tended Nielsen-Ninomiya theorem for Floquet systems in Chapter 3 summarizes the exact re-
lation between gapless states and the topological invariant for the (d − 1)-dimensional unitary
operator UBDQW(k∥): ∑

ϵα=0

ν0α = (−1)d
∑
ϵα=π

νπα = n, (5.22)

where ν0,πα is the topological charge of α-th gapless states at ϵ = 0, π, and n is the topological
invariant of UBDQW(k∥). Equation (5.14) is an example of the extended Nielsen-Ninomiya theo-
rem for class A with d = 2 (d = 1 as the boundary dimensions), and explicit forms of ν0,πα and
n for d = 1 (d = 0 as the boundary dimensions) is discussed in Sec. 5.3. In general, we can



86 Chapter 5. Extrinsic topology in quantum walks

TABLE 5.2: Periodic table of extrinsic topological phases in (d − 1)-dimensional boundary states of d-
dimensional quantum walks. This table shows the presence or absence of the Z or Z2 topological number
n for (d− 1)-dimensional boundary unitary operators.

AZ class T C Γ d = 1 2 3
A 0 0 0 0 Z 0

AIII 0 0 1 Z 0 Z
AI +1 0 0 0 0 0

BDI +1 +1 1 Z 0 0
D 0 +1 0 Z2 Z 0

DIII −1 +1 1 Z2 Z2 Z
AII −1 0 0 0 Z2 Z2

CII −1 −1 1 2Z 0 Z2

C 0 −1 0 0 2Z 0
CI +1 −1 1 0 0 2Z

define n as follows: We introduce the doubled HamiltonianHU(k∥) [3]:

HU(k∥) =

(
0 UBDQW(k∥)

U †
BDQW(k∥) 0

)
, (5.23)

which is Hermitian and has eigenvalues ±1 due toHU(k∥)
2 = 1̂. It also obeys the proper CS,

ΣzHU(k∥)Σz = −HU(k∥), Σz =

(
1̂ 0

0 −1̂

)
. (5.24)

The AZ symmetries of UBDQW(k∥), which has the same form as that of the bulk operator UQW(k)
in Eqs. (5.18)-(5.20), lead to the AZ symmetries for the doubled Hamitlonian as

T̃HU(k∥)T̃
−1 = HU(−k∥), T̃ =

(
0 T
T 0

)
, (5.25)

C̃HU(k∥)C̃
−1 = HU(−k∥), C̃ =

(
C 0
0 C

)
, (5.26)

Γ̃HU(k∥)Γ̃
−1 = HU(k∥), Γ̃ =

(
0 Γ
Γ 0

)
. (5.27)

Therefore,HU(k∥) can be regarded as a topological insulator or superconductor with symmetries
in Eq. (5.24) and Eqs. (5.25)-(5.27). As shown in Sec 1.1.3, by using the standard Clifford al-
gebra extension method [14, 17], we can obtain the topological classification ofHU(k∥), which
provides a topological classification of the boundary operator U(k∥). The resultant classification
of UBDQW(k∥) in (d− 1)-dimensions is equivalent to the classification of conventional topolog-
ical insulators and superconductors in d-dimensions [Table 5.2]. The topological invariant of
HU(k∥) gives the topological invariant n in Eq. (5.22).

Attaching the boundary unitary operator of nonzero n to any boundary of quantum walks,
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we can change the number of gapless boundary states, in accordance with the extended Nielsen-
Ninomiya theorem in Eq. (5.22): The net number of boundary states changes as∑

ϵα=0

ν0α →
∑
ϵα=0

ν0α + n, (5.28)∑
ϵα=π

νπα →
∑
ϵα=π

νπα + (−1)dn. (5.29)

On the other hand, for even (odd) dimensions d, the difference (summation) of the boundary
states between ϵ = 0 and ϵ = π does not change during this boundary deformation, so it is
intrinsically determined by the bulk topological invariant nbulk of HQW(k) as∑

ϵα=0

ν0α − (−1)d
∑
ϵα=π

νπα = nbulk. (5.30)

Therefore, the bulk-boundary correspondence partially holds in quantum walks.
For classes A, AI, and AII, we can arbitrarily choose the energy gaps because there is no

symmetry constraint on the quasi-energy. If there are l energy gaps ϵ = µi (i = 1, . . . , l),
the topological classification of the gapless boundary states in Table 5.1 changes as Z2 → Zl,
Z2

2 → Zl
2, and (2Z)2 → (2Z)l. In these cases, the extended Nielsen-Ninomiya theorem in

Eq. (5.22) can be rewritten as ∑
ϵα=µ

νµα = n, (5.31)

where νµα is the topological charge of α-th gapless state at ϵ = µ. We note that this formula is
compatible with Eq. (5.22) even for odd d since in class A, AI and AII, the topological invariants
n of UBDQW(k∥) is always 0 or Z2 for odd d.

5.3 Extrinsic boundary states of quantum walks in 1D
Topological phenomena in quantum walks have been studied mainly in 1D [30, 39, 40, 162–
165, 167–170]. In this section, we study extrinsic topological phases of quantum walks in
1D (extrinsic boundary states in 0D). According to the periodic table in Table 5.2, nontrivial
extrinsic topological phases exist for classes AIII, BDI, D, DIII, and CII in 1D. We identify the
topological invariants n and topological charges ν0,π for these classes, and see that they obey the
extended Nielsen-Ninomiya theorem in Eq. (5.22).

5.3.1 class AIII
A boundary quantum walk operator UBDQW in class AIII 1D quantum walks is a unitary matrix
obeying

ΓU †
BDQWΓ−1 = UBDQW, Γ2 = 1, (5.32)

with a unitary matrix Γ. UBDQWΓ is Hermitian from this relation, and it has nonzero real eigen-
values because of det[UBDQWΓ] ̸= 0. Thus, we can define the Z-valued topological invariant n
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in Eq. (5.22) as

n =
1

2
[N+(UBDQWΓ)−N−(UBDQWΓ)] , (5.33)

whereN+(UBDQWΓ) (N−(UBDQWΓ)) is the number of positive (negative) eigenvalues ofUBDQWΓ.
We can also introduce the topological charge ν0,π of gapless modes at ϵ = 0, π as follows. For a
gapless mode |u0⟩ at ϵ = 0, we have

UBDQW|u0⟩ = |u0⟩, U †
BDQW|u0⟩ = |u0⟩, (5.34)

and CS implies for the latter relation as

UBDQWΓ|u0⟩ = Γ|u0⟩. (5.35)

Thus, Γ |u0⟩ may be |u0⟩ itself up to phase factor 4. In other words, the gapless mode may be an
eigenstate of Γ,

Γ |u0⟩ = ± |u0⟩ . (5.36)

Then, the eigenvalue of Γ defines the topological charge ν0 fof |u0⟩. Similarly, we can also
define νπ for a gapless mode |uπ⟩ at ϵ = π. In summary, the topological invariants ν0,π are given
as

ν0,π = ⟨u0,π|Γ |u0,π⟩ . (5.37)

When n is nonzero, we have gapless modes according to the extended Nielsen-Ninomiya
theorem in Eq. (5.22). To check the theorem, let us consider a general 2 × 2 unitary matrix in
class AIII,

UBDQW = a0σ0 + ia1σ1 + ia2σ2 + a3σ3, Γ = σ3, (5.38)

where aµ are real parameters. The unitarity condition UBDQWU
†
BDQW = 1 leads to three possible

cases: 
(i) a3 = 0, a20 + a21 + a22 = 1,
(ii) a3 = 1,
(iii) a3 = −1.

(5.39)

The eigenvalues of UBDQW in each case are{
(i) λ± = a0 ± i

√
a21 + a22,

(ii), (iii) λ± = ±1. (5.40)

4We can take as such by taking an appropriate basis.
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The corresponding eigenstates in each case are
(i) |u±⟩ = 1√

2(a21+a22)

(
±i
√
a21 + a22

ia1 − a2

)
,

(ii) |u+⟩ = (1, 0)T, |u−⟩ = (0, 1)T,
(iii) |u+⟩ = (0, 1)T, |u−⟩ = (1, 0)T.

(5.41)

which gives topological charges

ν± = ⟨u±|Γ |u±⟩ =


0 for (i),
±1 for (ii),
∓1 for (iii),

(5.42)

Therefore, we have

∑
ν0 = −

∑
νπ =


0 for (i),
+1 for (ii),
−1 for (iii).

(5.43)

Now we compare this result with the topological invariant n. The Hermitian matrix UBDQWΓ
is

UBDQWΓ =


a0σ3 + a1σ2 − a2σ1 for (i),
+σ0 for (ii),
−σ0 for (iii),

(5.44)

with eigenvalues

E =


±1 for (i),
+1 for (ii),
−1 for (iii).

(5.45)

Thus, n in Eq. (D.30) becomes

n =


0 for (i),
+1 for (ii),
−1 for (iii).

(5.46)

Equations. (5.43) and (5.46) are compatible with the extended Nielsen-Ninomiya theorem in
Eq. (5.22).

5.3.2 class BDI
A boundary unitary operator in class BDI obeys TRS and PHS,

TUBDQWT
−1 = U †

BDQW,

CUBDQWC
−1 = UBDQW, (5.47)
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where T and C are anti-unitary operators with CT = TC and T 2 = C2 = 1. By combining
TRS with PHS, the boundary operator also obeys CS,

ΓU †
BDQWΓ−1 = UBDQW, Γ = TC. (5.48)

Using CS, the topological invariant n of UBDQW and the topological charge ν0,π of gapless
modes at ϵ = 0, π are given in the same manner as the case in class AIII.

The theorem in Eq. (5.22) can be checked in the same way as class AIII. A general 2 × 2
unitary matrix in class BDI is given by

UBDQW = a0σ0 + ia1σ1 + a3σ3,

T = K, C = σ3K, (5.49)

where aµ are real parameters, andK is the complex conjugation operator. From UBDQWU
†
BDQW =

1, we have three possible cases: 
(i) a3 = 0, a20 + a21 = 1,
(ii) a3 = 1,
(iii) a3 = −1.

(5.50)

Then, UBDQW in Eq. (5.49) obeys the extended Nielsen-Ninomiya theorem since it is a special
case of Eq. (5.38) with a2 = 0.

5.3.3 class D
A boundary operator UBDQW in class D satisfies

CUBDQWC
−1 = UBDQW, C2 = 1, (5.51)

with an anti-unitary operator C. This relation implies that det(UBDQW) is real, and thus it takes
only the values ±1. Therefore, we can define the Z2-valued topological invariant n of UBDQW

by

(−1)n = det(UBDQW). (5.52)

On the other hand, the topological charge ν0,π is given by the presence or absence of a gapless
state at ϵ = 0, π. We note that an even number of gapless states trivializes ν0,π as a consequence
of the Z2 structure.

A general 2× 2 unitary matrix in class D is given by

UBDQW = a0σ0 + a1σ1 + ia2σ2 + a3σ3, C = K, (5.53)

Then, the unitarity condition for UBDQW leads to two possible cases:{
(i) a0 = a2 = 0, a21 + a23 = 1,
(ii) a1 = a3 = 0, a20 + a22 = 1,

(5.54)
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where the eigenvalues of UBDQW are given as{
(i) λ± = ±1,
(ii) λ± = a0 ± ia2.

(5.55)

Thus, only for (i), we have a single gapless mode exists at ϵ = 0, π. Thus, we obtain∑
ν0 = −

∑
νπ =

{
1 for (i),
0 for (ii). (5.56)

On the other hand, through a direct calculation, we have

det(UBDQW) = a20 + a22 − a21 − a23, (5.57)

and thus, the Z2-valued invariant n in Eq. (5.52) is

n =

{
1 for (i),
0 for (ii). (5.58)

The topological invariants and the topological charges of gapless states in Eqs. (5.56) and (5.58)
satisfy the extended Nielsen-Ninomiya theorem in Eq. (5.22).

5.3.4 class DIII
A boundary unitary operator UBDQW in class DIII obeys

TUBDQWT
−1 = U †

BDQW,

CUBDQWC
−1 = UBDQW, (5.59)

where T and C are anti-unitary operators with T 2 = −1, C2 = 1 and CT = TC. For con-
venience, we decompose anti-unitary operators T and C into the unitary parts T and C and the
complex conjugation operator K:

T = T K, C = CK. (5.60)

Then, the matrix iUBDQWT is found to be antisymmetric, so we can introduce the Pfaffian
Pf(UBDQWT ). We can also show

[Pf(UBDQWT )]∗ = det(C∗)Pf(iUBDQWT ), (5.61)

and thus, we have Pf(UBDQWT ) = ±1 in the basis with det(C∗) = 1. Then, the sign of the
Pfaffian defines the Z2-valued invariant n for UBDQW:

(−1)n = −Pf(UBDQWT ). (5.62)

On the other hand, for gapless states at ϵ = 0, π, the presence or absence of a Kramers pair of
gapless states defines the Z2-valued topological charge ν0,π. Note that any eigenstate of UBDQW

is two-fold degenerates due to the Kramers theorem for TRS.
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To obtain a non-trivial example, we need at least a 4 × 4 unitary matrix in class DIII. We
consider a general 4× 4 unitary matrix in class DIII,

UBDQW = a00τ0σ0 + a10τ1σ0 + a30τ3σ0

+ia21τ2σ1 + ia22τ2σ2 + a23τ2σ3, (5.63)

where TRS and PHS are given by T = τ0σ2K and C = τ0σ1K. From the unitarity condition
UBDQWU

†
BDQW = 1, we obtain two possible cases,{

(i) a00 = a21 = a22 = 0, a230 + a210 + a223 = 1,
(ii) a30 = a10 = a23 = 0, a200 + a221 + a222 = 1.

(5.64)

The eigenvalues of UBDQW with Kramers degeneracy are{
(i) λ± = ±1,
(ii) λ± = a00 ± i

√
a221 + a222,

(5.65)

and thus, the system supports a single Kramers pair of gapless states at ϵ = 0, π for (i). There-
fore, we have ∑

ν0 = −
∑

νπ =

{
1 for (i),
0 for (ii). (5.66)

On the other hand, Pf(UQWT ) becomes

Pf(iUBDQWT ) = a230 + a210 + a223 − a200 − a221 − a222, (5.67)

so the topological invariant n in Eq. (5.62) is evaluated as

n =

{
1 for (i),
0 for (ii), (5.68)

which is compatible wihe the extended Nielsen-Ninomiya theorem in Eq. (5.22).

5.3.5 class CII
We finally examine boundary unitary operators for class CII quantum walks in 1D. The boundary
unitary operator obeys

TUBDQWT
−1 = U †

BDQW,

CUBDQWC
−1 = UBDQW, (5.69)

where T and C are anti-unitary operators with T 2 = −1, C2 = −1 and CT = TC. Combining
TRS and PHS, we also have CS,

ΓU †
BDQWΓ−1 = UBDQW, Γ = TC. (5.70)

Using CS, we can introduce the topological invariants n and ν0,π in Eqs. (D.30) and (5.37) in
the same manner as those in class AIII. However, in contrast to class AIII, because of additional
TRS in Eq. (5.69), these topological invariants only take even integers. First, the Hermitian
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matrix UBDQWΓ has its own TRS for C as

C[UBDQWΓ]C−1 = UBDQWΓ, (5.71)

which results in the Kramers degeneracy for the eigenstates of UBDQWΓ. Therefore,

n =
1

2
[N+(UBDQWΓ)−N−(UBDQWΓ)] , (5.72)

in Eq. (D.30) becomes a 2Z-valued topological invariant. Furthermore, gapless modes at ϵ =
0, π also form Kramers pairs due to the original TRS of T . The Kramers pairs have a common
eigenvalue of Γ since T commutes with Γ, so the net charges

∑
ν0,π of gapless modes with ν0,π

defined by Eq. (5.37) also become even integers.
A general 4× 4 unitary matrix in class CII is

UBDQW = a00τ0σ0 + ia10τ1σ0 + a30τ3σ0

+ ia21τ2σ1 + ia22τ2σ2 + ia23τ2σ3, (5.73)

with T = τ0σ2K and C = τ3σ2K. The unitarity condition of UBDQWU
†
BDQW = 1 leads to the

following three possible cases:
(i) a30 = 0, a200 + a210 + a221 + a222 + a223 = 1,
(ii) a30 = 1, a00 = a10 = a21 = a22 = a23 = 0,
(iii) a30 = −1, a00 = a10 = a21 = a22 = a23 = 0.

(5.74)

The eigenvalues of UBDQW of Kramers degeneracy are (i) λ± = a00 ± i
√
a210 + a221 + a222 + a223,

(ii) λ± = ±1,
(iii) λ± = ±1.

(5.75)

and thus the boundary supports nontrivial gapless states at ϵ = 0, π for (ii) and (iii). Then, we
can see that each Kramers pair satisfies

ν± = ⟨u±|Γ |u±⟩ =


0 for (i),
∓1 for (ii),
±1 for (iii),

(5.76)

and thus, we have

∑
ν0 = −

∑
νπ =


0 for (i),
−2 for (ii),
+2 for (iii).

(5.77)

On the other hand, the Hermitian matrix UBDQWΓ has the form

UBDQWΓ =a00τ3σ0 + a10τ2σ0 + a30τ0σ0

− a21τ1σ1 − a22τ1σ2 − a23τ1σ3. (5.78)
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The eigenvalues are

E = −a30 ±
√
a200 + a210 + a221 + a222 + a223, (5.79)

with two-fold Kramers degeneracy. Thus, the topological invariant n in Eq. (D.30) is evaluated
as

n =


0 for (i),
−2 for (ii),
+2 for (iii).

(5.80)

The results in Eqs. (5.77) and (5.80) is compatible with the extended Nielsen-Ninomiya theorem
in Eq. (5.22).

5.4 Classification of Floquet systems v.s. quantum walks
In this section, we compare the topological classification of quantum walks with that of Floquet
systems. We firstly give a brief review of the topological classification of Floquet topological
insulators and superconductors [33]. We consider a general time periodic Hamiltonian H(k, t+
T ) = H(k, t) and the corresponding time-evolution operator

U(k, t) = T exp

[
−i
∫ t

0

dtH(k, t)

]
. (5.81)

From the one-cycle time evolution UF (k) = U(k, T ), we define the effective Hamiltonian
through UF (k) = e−iHF (k)T . The AZ symmetries, TRS, PHS and CS in Floquet systems are
defined for the microscopic Hamiltonian as:

TH(k, t)T−1 = H(−k,−t), (5.82)
CH(k, t)C−1 = −H(−k, t), (5.83)
ΓH(k, t)Γ−1 = −H(k,−t). (5.84)

Here, T and C are anti-unitary operators with T 2 = ±1 and C2 = ±1, and Γ is a unitary
operator of Γ2 = 1. These symmetries lead to TRS, PHS and CS for the effective Hamiltonian
HF (k):

THF (k)T
−1 = HF (−k), (5.85)

CHF (k)C
−1 = −HF (−k), (5.86)

ΓHF (k)Γ
−1 = −HF (k). (5.87)

For convenience, we rewrite the symmetries as those for time-evolution operator U(k, t):

TU(k, t)T−1 = U(−k,−t), (5.88)
CU(k, t)C−1 = U(−k, t), (5.89)
ΓU(k, t)Γ−1 = U(k,−t). (5.90)
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Instead of the microscopic Hamiltonian H(k, t), we classify the time-evolution operator
U(k, t) because it has the same information as H(k, t). 5 We then decompose U(k, t) into two
parts:

C(k, t) = e−iHF (k)t, L(k, t) = U(k, t)C(k, t)−1, (5.91)

where L(k, t) is periodic in t. We call C(k, t) and L(k, t) as the "constant time evolution" and
the "loop unitary", each. We have supposed HF (k) is gapped both at ϵ = 0, π/T and have
taken the branch cut at ϵ = π/T , One can show this decomposition is unique up to homotopy
equivalence [33]. Thus the topological classification problem of U(k, t) reduces to those of the
constant time evolution C(k, t) and the loop unitary L(k, t).

The topological classification of C(k, t) is equivalent to that of HF (k), and thus the same
as that of usual topological insulators and superconductors. It it the same as the classification of
HQW(k) in the previous section.

On the other hand, the loop unitary L(k, t) allows the Floquet anomalous topological phase
intrinsic to Floquet systems [27]. Remarkably, for a very different reason, the topological clas-
sification of L(k, t) also coincides with that of usual topological insulators and superconductors
as shown below: One can classify L(k, t) by introducing the doubled HamiltonianHL(k, t),

HL(k, t) =

(
0 L(k, t)

L†(k, t) 0

)
, (5.92)

which is Hermitian, gapped due toHL(k, t)
2 = 1̂, periodic both in k and t, and obeys the proper

CS

ΣzHL(k, t)Σz = −HL(k, t), Σz =

(
1̂ 0

0 −1̂

)
. (5.93)

Since L(k, t) obeys the same symmetries as U(k, t) in Eqs. (5.88)-(5.90),HL(k, t) obeys

T̃HL(k, t)T̃
−1 = HL(−k,−t), T̃ =

(
T 0
0 T

)
, (5.94)

C̃HL(k, t)C̃
−1 = HL(−k, t), C̃ =

(
C 0
0 C

)
, (5.95)

Γ̃HL(k, t)Γ̃
−1 = HL(k,−t), Γ̃ =

(
Γ 0
0 Γ

)
. (5.96)

Therefore, by regarding t as a momentum kd+1 and thus HL(k, t) as a (d + 1)-dimensional
topological insulator with proper symmetries shown above, we can classify L(k, t). As shown
in Sec. 1.1.1, one can perform the classification by using the Clifford algebra extension method
[14, 17], and find that the classification coincides with that of ordinary topological insulators and
superconductors in d-dimensions for each of AZ symmetry classes. Thus, we see the periodic
table of L(k, t) is the same as that of extrinsic topological phases in quantum walks [Table 5.2].

Therefore, combining the classifications of C(k, t) and L(k, t), we find that the periodic

5If a H(k, t) is given, we uniquely obtain U(k, t) as the corresponding time-evolution operator. On the other
hand, if a U(k, t) is given, we uniquely obtain H(k, t) by Schrödinger equation.
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table of U(k, t) agrees with the boundary classification of quantum walks in Table 5.1. Further-
more, the bulk-boundary correspondence in Floquet systems can be summarized as [33]∑

ϵα=0

ν0α = nC + nL, (5.97)∑
ϵα=π/T

νπα = (−1)dnL, (5.98)

where nC is the topological invariant calculated from C(k, t) or equivalently HF (k), and nL

is the topological invariant calculated from L(k, t), and ν0,πα is the topological charge of α-th
gapless states at ϵ = 0 or π/T . This formula corresponds to the combination of Eq. (5.29) and
Eq. (5.30) in quantum walks.

In summary, extrinsic boundary states determined by the boundary topology of quantum
walks correspond to the boundary states determined by L(k, t) of Floquet systems. In other
words, the extrinsic gapless boundary states in quantum walks correspond to the Floquet anoma-
lous boundary states. We note that no well-defined loop unitary exists in quantum walks due to
the absence of the microscopic Hamiltonian H(k, t): Even though one can introduce L(k, t) for
a quantum walk in some ways [166], the constructions are not unique. For instance, the same
one-cycle time-evolution operator for the quantum walk can be constructed by the constant mi-
croscopic Hamiltonian H(k, t) = HQW(k), for which L(k, t) = 1̂. As a result, we constructed
a microscopic Hamiltonian with nL = 0. Thus, nL cannot be uniquely determined in quan-
tum walks. This observation is also consistent with the extrinsic topological nature of Floquet
anomalous boundary states in quantum walks.

5.5 Bulk-boundary correspondence in 1D chiral-symmetric
quantum walks

For 1D chiral-symmetric quantum walks, it has been known that the bulk-boundary correspon-
dence holds [30] for a specific definition of CS different from ours. In this section, we explain
why the bulk topological invariants fully determine gapless boundary states in their definition
of CS, and also discuss another possibility of a similar bulk-boundary correspondence in other
symmetry classes.

We first review a specific realization of CS given in Ref. [30]. To define CS, Asbóth and
Obuse decomposed the time-evolution unitary operator of a quantum walk into two half-period
time evolutions

UQW = U2U1, (5.99)

where U1 and U2 may also consist of multiple unitary operators. Then, they introduce the de-
composed CS as [30],

ΓU1Γ
−1 = U †

2 , Γ2 = 1, (5.100)

for a unitary operator Γ2 = 1, which leads to the original CS in Eq. (5.20) we have shown. We
note that Floquet systems with CS in Eq. (5.84) naturally satisfy Eq. (5.100) by regarding U1

and U2 as continuous time-evolution operators as U1 = U(0→ T/2) and U2 = U(T/2→ T ).
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Under the decomposed CS, one can see that the bulk-boundary correspondence holds [30,
38]. For this purpose, we take the basis where Γ and U1 becomes

Γ =

(
1̂ 0

0 −1̂

)
, U1 =

(
a b
c d

)
, (5.101)

and we note that if the band gap at ϵ = 0 (ϵ = π) is open, b and c (a and d) have the well-defined
1D winding number w1[b] and w1[c] (w1[a] and w1[d]) [38]. Then, we have the bulk-boundary
correspondence [30], 

∑
ϵα=0

ν0α =
w1[b]− w1[c]

2
,∑

ϵα=π

νπα =
w1[a]− w1[d]

2
,

(5.102)

where ν0,πα is the topological charge of boundary zero modes in Eq. (5.37). Therefore, the
net topological charges of boundary modes at ϵ = 0 and ϵ = π are determined by the bulk
topological invariants. In other words, no extrinsic boundary modes exist under the decomposed
CS in Eq. (5.100).

We can easily see why extrinsic boundary modes are prohibited under CS in Eq. (5.100)
from our theory. Using the decomposed CS, UQWΓ is recast into

UQWΓ = U2U1Γ = U2(Γ
−1U †

2Γ)Γ = U2ΓU
†
2 , (5.103)

which is a unitary transformation of Γ by U2. Therefore, any boundary operator UBDQW satisfy-
ing the decomposed CS in Eq. 5.100 also has the form

UBDQWΓ = U ′
2ΓU

′
2
†. (5.104)

From this, we can show that the 0D topological number n in Eq. (D.30) becomes zero: Because
of the above form, UBDQWΓ has the same eigenvalues as Γ, and thus the occupied states and
unoccupied states of UBDQWΓ are the same, so we have

n =
1

2
[N+(UBDQWΓ)−N−(UBDQWΓ)] = 0. (5.105)

Therefore, the boundary unitary operator cannot give additional zero modes. Thus, in 1D quan-
tum walks with the decomposed CS Eq. (5.100), the bulk topological invariants uniquely deter-
mine the net numbers of boundary states at ϵ = 0, π.

Whereas the decomposed CS in Eq. (5.100) prohibits the extrinsic gapless states at bound-
aries of 1D systems, it may allow extrinsic topological phases in other dimensions. For in-
stance, extrinsic gapless boundary states of 3D systems are allowed under the decomposed CS
Eq. (5.100). The topological invariant for a 2D boundary operator UBDQW(kx, ky) with CS is
the Chern number of UBDQW(kx, ky)Γ. Equation (5.104) merely implies that UBDQWΓ is di-
agonalized by U ′

2, so it should be possible to realize arbitrary Chern numbers by choosing a
proper U ′

2. Consequently, we can add arbitrary numbers of 2D extrinsic boundary states to
three-dimensional quantum walks under the decomposed CS Eq. (5.100).

One may ask a question if there is any other symmetry class that can recover the bulk-
boundary correspondence with an appropriate definition of symmetries. The answer is YES! We
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find 1D quantum walks in class CII have full bulk-boundary correspondence under an appropri-
ate realization of symmetries. To see this, we again decompose the one-cycle time-evolution of
a quantum walk into two parts,

UQW = U2U1. (5.106)

Then, we introduce decomposed TRS and PHS, which give the original TRS and PHS for UQW

in Eq. (5.18) and (5.19),

TU1(k)T
−1 = U †

2(−k), (5.107)
CU1(k)C

−1 = U1(−k), CU2(k)C
−1 = U2(−k). (5.108)

Here T and C are anti-unitary operators with CT = TC and T 2 = C2 = −1. Combining TRS
and PHS, we also have the decomposed CS,

ΓU1Γ
−1 = U †

2 , Γ = TC. (5.109)

For the decomposed CS, we again take the basis in Eq. (5.101) and then obtain the bulk-boundary
correspondence in Eq. (5.102). We note that the decomposed PHS in Eq. (5.108) leads to two-
fold Kramers degeneracy, and thus the topological invariants and the topological charges of
gapless states in Eq. (5.102) take only even integers. (See Appendix E.1.) Similarly to chiral-
symmetric quantum walks, we can also see that 0D extrinsic boundary states are prohibited
by Eq. (5.109). The 0D 2Z topological invariant in Eq. (5.72) becomes always zero from the
decomposed CS again.

5.6 Physical implementations
In this section, we exemplify three possible physical implementations of the extrinsic topological
phases in quantum walks.

5.6.1 2D disordered systems with extrinsic edge modes
In this section, we examine the robustness of extrinsic edge modes against disorders, which is
an analog of that of quantum Hall edge states against impurity scatterings [176]. In this section,
we consider a simple single-band model with an extrinsic edge mode in quantum walks. The
extrinsic edge mode is robust against impurities, and shows a unidirectional pumping along the
edge, which is characterized by the topological winding number [26, 32, 42, 137, 168, 177].

We will consider the following single-band tight-binding model with random onsite poten-
tials in 2D, which is typically used for the study of the Anderson localization:

HA =
∑
x,y

J |x+ 1, y⟩ ⟨x, y|+ J |x, y + 1⟩ ⟨x, y|

+ h.c.+ δx,y |x, y⟩ ⟨x, y| , (5.110)

where J is the hopping amplitude and δx,y ∈ [−W,W ] is the random potential uniformly dis-
tributed on [−W,W ]. As J and δx,y are real, the above Hamiltonian belongs to class AI and is
topologically trivial. For class AI 2D cases, it is known that all the eigenstates are localized for
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FIGURE 5.4: (a) Dynamics of a wave packet, (b) DOS and (c) a typical distribution of eigenstate of
the Anderson model in Eq. (5.110). The parameters are J = 0.2,W = 1, Lx = 25 and Ly = 15.
The initial state of the wave packet is |x = 10, y = 1⟩, localized at an edge. We consider the strongly
localized regime W ≫ J , and thus we see all the eigenstates are localized. (a) We see that a wave packet
starting from the edge does not diffuse into the bulk and shows a localization with almost the same radius
as a bulk eigenstate. (b) The width of the quasi-energy band is broader than 2J due to the existence of
random potential δx,y ∈ [−W,W ]. (c) The density distribution of a typical eigenstate shows the Anderson
localization.

any W if the system is large enough [174]. Below, we impose PBC in the x-direction, and OBC
in the y-direction.

The one-cycle time evolution by the Hamiltonian Eq. (5.110) is given by

UA = e−iHAT . (5.111)

with T = 1. The state at time step t is derived by multiplying the state by U t
A. Figure 5.4

shows (a) the wave packet dynamics at time step t starting from a localized state at the edge,
(b) the density of states (DOS) histogram, and (c) a typical eigenstate of UA. The Anderson
localization occurs for W/J = 5 in Fig. 5.4. After long time steps, the wave packet dynamics
show a localization with almost the same radius as the typical eigenstate, and thus the wave
packets do not diffuse into the bulk.

We next introduce an extrinsic chiral edge mode onto the boundary at y = 1. We multiply
UA by a unitary operator A that have a nontrivial anomaly at the edge,

A(kx) = Uedge(kx)⊗ |y = 1⟩ ⟨y = 1|+
Ly∑
y=2

1⊗ |y⟩ ⟨y| . (5.112)
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FIGURE 5.5: (a) Dynamics of a wave packet, (b) DOS and (c) adelocalized eigenstates of the decorated
Anderson model with a boundary unitary in Eq. (5.113). The parameters are J = 0.2, W = 1, Lx = 25,
Ly = 15 and T = 1. The color scales are different between (a) and (c). The initial state of the wave
packet is |x = 10, y = 1⟩. Since W ≫ J , all bulk eigenstates are strongly localized. (a) The wave packet
propagates in the +x-direction. (b) The nonzero DOS around ϵ = π implies the presence of an anomalous
chiral edge mod. (c) Delocalized eigenstates with quasi-energies ϵ = 3.12 and ϵ = 0.06 are anomalous
chiral edge mode.

where the edge unitary operator is given as Uedge(kx) = e−ikx , and consider the decorated time-
evolution operator as

U ′
A = AUA. (5.113)

In the above sections, we have discussed the attachment of completely decoupled boundary
unitary operators. In this section, however, we see attachments of boundary unitary operators
coupled with the bulk. As discussed in Sec. 5.1, Uedge(kx) provides an extrinsic chiral edge mode
ϵ = kx, which is robust against disorders as shown in the following.

Figure 5.5 shows (a) the dynamics of a wave packet starting at the decorated edge with
y = 1, (b) the DOS histogram, and (c) a typical eigenstate distribution of U ′

A. The wave packet
propagates in the +x-direction, as we expected. Thus, the boundary unitary operator A induces
a robust edge mode analogous to a quantum Hall edge state. We also find that the delocalized
state along the edge survives even when the quasi-energy of chiral modes inside energy gaps is
overlapped with bulk bands. This is due to the Anderson localization of the bulk states, which
suppresses the mixing of the bulk states and the chiral edge modes. In Appendix E.4, we also
show the extrinsic chiral edge mode is also robust against random phases along the edge at
y = 1.

In general, we can characterize the unidirectional wave packet movement due to extrinsic
chiral edge modes by the winding number in Eq. (5.5). To see this, we first consider the time
evolution by Û in 1D, then apply the result to the extrinsic edge modes in 2D.
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For a quantum walk in 1D, we introduce the polarization at x as

Px =
∑
α

⟨x, α| x̂ |x, α⟩ , (5.114)

where |x, α⟩ represents a state localized at the position xwith a internal degree of freedom α rep-
resenting such as spin, orbital and so on. After one-cycle time evolution by Û , the polarization
becomes

Px(T ) =
∑
α

⟨x, α| Û †x̂Û |x, α⟩ . (5.115)

If Û obeys translation symmetry, one can show that the position displacement in one cycle equals
the winding number [26, 32, 42, 137, 168, 177]

Px(T )− Px = w1[U(k)], (5.116)

where U(k) is the momentum space representation of Û . The proof is given as follows: From
the Fourier transformation, the polarization after one cycle in Eq. (5.115) is rewritten as

Px(T ) =
∑
α

⟨x| ⟨α| Û †x̂Û |x⟩ |α⟩

=
∑
α

[
1√
L

∑
k

eikx ⟨k|

]
⟨α| Û †

[∑
x′

x′ |x′⟩ ⟨x′|

]

× Û

[
1√
L

∑
k′

e−ik′x |k′⟩

]
|α⟩

=
1

L2

∑
α,k,k′,x′

eikx ⟨α|U †(k)e−ikx′
[−i∂k′eik

′x′
]

× U(k′)e−ik′x |α⟩ , (5.117)

where U(k) is a matrix on the space of internal degrees of freedom α. Using the partial integra-
tion and the discrete delta function of the form

1

L

∑
x′

ei(k
′−k)x′

= δk,k′ , (5.118)

we have

Px(T ) =
1

L

∑
α,k

eikx ⟨α|U †(k)i∂k[U(k)e
−ikx] |α⟩

=
1

L

∑
α,k

⟨α|U †(k)[i∂kU(k)] |α⟩+
∑
α

x. (5.119)
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The first term on the right hand side becomes the winding number in Eq. (5.5)

1

L

∑
α,k

⟨α|U †(k)[i∂kU(k)] |α⟩

=

∫ 2π

0

dk

2π
tr[U †(k)i∂kU(k)] = w1[U(k)], (5.120)

while the second term reproduces the polarization Px∑
α

x =
∑
α

⟨x, α| x̂ |x, α⟩ = Px. (5.121)

Therefore, we have Px(T ) = w1[U(k)] + Px, and thus the formula in Eq. (5.116).
We check this formula in Eq. (5.116) for a simple example UQW = S+R(θ) with

S+ =

(
e−ik 0
0 1

)
, R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (5.122)

which has nontrivial winding number w1[UQW(k)] = 1. Let us consider the initial states

|x, ↑⟩ =
(
|x⟩
0

)
, |x, ↓⟩ =

(
0
|x⟩

)
, (5.123)

with the polarization

Px = ⟨x, ↑| x̂ |x, ↑⟩+ ⟨x, ↓| x̂ |x, ↓⟩
= 2x. (5.124)

After one cycle, the states become

UQW

(
|x⟩
0

)
=

(
cos θ |x+ 1⟩

sin θ

)
|x⟩ , (5.125)

UQW

(
0
|x⟩

)
=

(
− sin θ |x+ 1⟩

cos θ |x⟩

)
, (5.126)

and we obtain

Px(T ) = ⟨x, ↑|U †
QWx̂UQW |x, ↑⟩

+ ⟨x, ↓|U †
QWx̂UQW |x, ↓⟩

= 2x+ 1 = Px + 1. (5.127)

Therefore, we have Px(T ) − Px = w1[UQW] = 1, which is compatible with the formula in
Eq. (5.116)

We generalize the above relation between the displacement and the winding number in the
presence of disorders. For this purpose, we introduce the flux inserted unitary operator Û(Φ),
where the hopping terms in Û are modified by the uniform gauge potential Ax = Φ/L as
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|x+ q⟩ ⟨x| → e−i(Φ/L)q |x+ q⟩ ⟨x| [82]. Then, we define its winding number [68]

w1[Û(Φ)] =

∫ 2π

0

dΦ

2π
tr[Û †(Φ)i∂ΦÛ(Φ)]. (5.128)

Here we used that the flux inserted unitary operator Û(Φ) is periodic in Φ with the period 2π

up to the large gauge transformation ÛG = e−
2πi
L

x̂ as Û(Φ + 2π) = ÛGÛ(Φ)Û
†
G, and thus the

winding number takes an integer. Similarly to Eq. (5.116), one can prove

P (T )− P = w1[Û(Φ)], (5.129)

where P (T ) − P is an spatially averaged version of the one-cycle displacement Px(T ) − Px.
See Appendix E.2 for details.

Now, we extend the above results into the 2D systems. Since an extrinsic edge mode is
localized along the edge y = 1 of the system, we consider the polarization projected along
y = 1,

Px|y=1 =
∑
α

⟨x, y = 1, α| x̂ |x, y = 1, α⟩ . (5.130)

Then, the polarization after one cycle time evolution becomes

Px(T )|y=1 =
∑
α

⟨x, y = 1, α| Û †x̂Û |x, y = 1, α⟩ , (5.131)

where Û is the time-evolution operator in 2D systems. As shown in Appendix E.3, if the system
has translation symmetry, the formula in Eq. (5.116) can be generalized as follows,

Px(T )|y=1 − Px|y=1 = wP [U(kx)], (5.132)

where wP is the winding number projected onto the edge, defined by

wP [U(kx)] =

∫ 2π

0

dkx
2π

try,α

[
P̂edgeU

†(kx)i∂kxU(kx)
]
, (5.133)

with the projection operator P̂edge = |y = 1⟩ ⟨y = 1| at the edge. Similarly, if the system is
subject to disorders, we have a generalization of Eq. (5.129) with the projected winding number
for Eq. (5.128).

We remark that the projected winding number is not quantized in general because the wave
packet at y = 1 diffuses into the bulk. If bulk states are gapped or localized, however, edge
modes rarely diffuse into the bulk, so the quantization of the projected winding numbers is
almost recovered. In such situations, an extrinsic chiral mode induces a unidirectional movement
of wave packets along the edge since it has a non-trivial winding number. For instance, our
model in 2D has a strongly localized bulk state as shown in Fig. 5.4 (c), and thus the above
mechanism explains the wave packet dynamics in Fig. 5.5 (a). Here we note that the above
argument does not require a bulk gap. In Fig. 5.6, we show the wave packet dynamics in the
model of Eq. (5.113) with W = 10, J = 1, where the bulk band at ϵ = π is closed in the
+x-direction and there exist delocalized eigenstates along the edge.

Finally, we discuss a noisy environment where the random potential in Eq. (5.110) fluctuates
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FIGURE 5.6: In case of no band gap: (a) Dynamics of a wave packet, (b) DOS and (c) a delocalized
eigenstate of the decorated Anderson model with an extrinsic edge mode in Eq. (5.113). The parameters
are J = 1, W = 10, Lx = 25, Ly = 15 and T = 1. The color scales are different between (a) and (c).
The initial state of the wave packet is |x = 10, y = 1⟩, localized at the edge. Due to W ≫ J , all the bulk
eigenstates are strongly localized. Whereas no band gap exists due to the strong random potential and
the 2π periodicity in energy, the delocalized edge state survives and enables a unidirectional wave packet
motion.

in each time step [162, 178–181]. Our numerical simulations show that the unidirectional wave
packet motion because of the extrinsic chiral edge mode during the time scale shorter than
diffusion. In Fig. 5.7, we compare the t-step dynamics defined as

Uw/o =
t∏

s=1

e−iHA(s)T , (5.134)

with the dynamics with the extrinsic edge mode,

Uw/e =
t∏

s=1

A · e−iHA(s)T . (5.135)

Here HA(s) at each time step s has the same form as in Eq. (5.110) except for the random
potential δx,y ∈ [−W,W ] changes at each step s. As shown in Fig. 5.7 (a), the time-dependent
randomness leads to diffusive behavior. The details of the diffion is shown in Appendix E.5. In
the case with the extrinsic chiral edge mode [Fig. 5.7 (b)], on the other hand, we find again a
unidirectional wave packet motion due to the nontrivial winding number w1[Uw/e(Φ)] = t. Such
robustness in a noisy environment may enable extrinsic modes to realize fault-tolerant quantum
devices.
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FIGURE 5.7: In case of noisy environment (spatial and temporal disorder): Dynamics of a wave packet
(a) for the time-dependent Anderson model in Eq. (5.134), and (b) the decorated one with the extrinsic
edge mode in Eq. (5.135), where the random potentials change at each time step. The parameters are
J = 0.2, W = 1, Lx = 25, Ly = 15 and T = 1. (a) The time-dependent Anderson model shows the
diffusion of a wave packet starting at the edge. (b) For the decorated Anderson model with the extrinsic
edge mode, the wave packet propagates in the +x-direction during the time scale shorter than that of
diffusion.

5.6.2 Class AIII 1D: the split-step quantum walk and the cancellation of
its boundary states

Boundary states of chiral-symmetric quantum walks in 1D have been experimentally observed
as localization of dynamics [40, 169]. The extrinsic topological phase, however, can cancel out
the boundary states, leading to delocalized dynamics.

Let us consider the split step quantum walk model in 1D [39–41]:

UQW = U2U1,

U1 = R
1/2
2 S−R

1/2
1 , U2 = R

1/2
1 S+R

1/2
2 . (5.136)

Here, S+ and S− are the shift operators, and Rj = R(θj) is the spin rotation operator, which are
defined as follows:

S+(k) =

(
e−ik 0
0 1

)
, S−(k) =

(
1 0
0 eik

)
, (5.137)

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (5.138)

This model has the decomposed CS in Eq. (5.100) for Γ = σx. After performing a unitary
transformation of the basis that changes Γ into Γ = σz, we can calculate the bulk topological
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FIGURE 5.8: (a) Topological phase diagram of the split-step quantum walk. (w0, wπ) are the bulk
topological invariants given by Eq. (5.139). The red triangle and star symbol indicate the parameters for
the left chain, (θL1 , θ

L
2 ) = (0, π/4), and those for the right chain, (θR1 , θ

R
2 ) = (0,−π/4), used in the

numerical simulations in Figs. 5.9 and 5.10. (b) The setup of the split-step quantum walk. The left and
right chains of the quantum walk are joined at two edges at x = 1 and L.

invariants (w0, wπ) defined by the right hand side of Eq. (5.102),

w0 =
w1[b]− w1[c]

2
, wπ =

w1[a]− w1[d]

2
. (5.139)

The calculated topological invariants are summarized in the phase diagram in Fig. 5.8 (a).
To examine the boundary states of the system, we introduce the loop configuration shown

in Fig. 5.8 (b). The loop consists of left and right half chains with the same length N , where
UQW in the left (right) chain has the rotation operators of the parameters (θL1 , θ

L
2 ) = (0, π/4)

((θR1 , θ
R
2 ) = (0,−π/4)). The boundary states appear at the interfaces x = 1, N + 1.

Figure 5.9 (a) shows eigenvalues λ of the eigenequation UQW |ψ⟩ = λ |ψ⟩ in the loop config-
uration, where λ = 1 (λ = −1) indicates the ϵ = 0 (ϵ = π) boundary states. Both the interfaces
at x = 1, N + 1 host a single zero-mode |ψ0

x=1,N+1⟩ and a π-mode |ψπ
x=1,N+1⟩ with the topo-

logical charges ν0,πx=1,N+1 = ⟨ψ0,π
x=1,N+1|Γ|ψ

0,π
x=1,N+1⟩ shown in Figs. 5.9 (c)-(f). We note that the

boundary gapless states are determined from the bulk-boundary correspondence:

ν0,πx=1 = −ν
0,π
x=N+1 = w0,π

L − w
0,π
R , (5.140)

where w0,π
R,L are the bulk topological invariants in the right and left chains. Here the original

bulk-boundary correspondence in Eq. (5.102) is slightly modified because we are considering
the interfaces between two topologically non-trivial chains. Due to the existence of the bound-
ary modes, a wave packet initially localized at one interface remains localized after long time
dynamics [Fig. 5.9(b)].

As discussed in Sec. 5.5, if one relaxes the decomposed CS in Eq. (5.100) into the original
CS in Eq. (5.20), we can arbitrarily change the number of boundary gapless states by using the
extrinsic topology. To see this, we introduce a unitary operator with an anomaly at the boundary
as

A =
2N∑
x ̸=N

|x⟩ ⟨x| ⊗ σ0 + |x = N⟩ ⟨x = N | ⊗ UBDQW, (5.141)
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FIGURE 5.9: (a) quasi-energy spectrum, (b) dynamics, and (c-f) the boundary states of the split step
walk in Eq. (5.136). The total system length is 2N = 20. The parameters in the left half chain are
(θL1 , θ

L
2 ) = (0, π/4), and those in the right half chain are (θR1 , θ

R
2 ) = (0,−π/4). The initial state is

located at the interface |x = N + 1, ↓⟩. At x = N + 1, we have one gapless state at ϵ = 0 and ϵ = π
each. The topological invariant of the zero modes is −1, while that of the π-mode is +1.

where the boundary unitary operator UBDQW is 0D nontrivial one,

UBDQW = σx. (5.142)

We insert A between U1 and U2 in Eq. (5.136),

UQW = U2AU1. (5.143)

Since A obeys ΓA†Γ−1 = A, UQW in the above satisfies the original CS. We can see that UBDQW

has nontrivial extrinsic boundary states. From the Hermitian matrix UBDQWΓ = σ0, we obtain a
nontrivial topological invariant in Eq. (D.30),

n =
1

2
[N+(UBDQWΓ)−N−(UBDQWΓ)] = 1. (5.144)

Therefore, from the extended Nielsen-Ninomiya theorem in Eq. (5.22), we obtain extrinsic
boundary states at x = N of the quasi-energies ϵ = 0, π with the opposite topological charges
ν0 = −νπ = 1. As we see below, these extrinsic boundary states cancel the original boundary
states at the interface at x = N + 1.

The eigenspectrum of UQW in Eq. (5.143) is shown in Fig. 5.10 (a). The spectrum shows
ϵ = 0 and ϵ = π modes, which are localized near the interface at x = 1, as shown in Fig. 5.10
(c) and (d). Remarkably, no gapless boundary state exists near the interface at x = N + 1.
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FIGURE 5.10: (a) quasi-energy spectrum, (b) dynamics, and (c,d) the boundary states of the decorated
split step walk with the extrinsic boundary states in Eq. (5.143). The total system length is 2N = 20. The
parameters in the left chain is (θL1 , θ

L
2 ) = (0, π/4), while those in the right chain is (θR1 , θ

R
2 ) = (0,−π/4).

The initial state is |x = N + 1, ↓⟩, which is localized at the boundary. No localized state at the interface
x = N + 1 is found both in the spectrum and the dynamics.

As a result, in contrast to the previous case, a wave packet initially localized at the interface
x = N + 1 spreads after time evolution [Fig. 5.10 (b)].

5.6.3 Class A in 2D: cancellation of the chiral edge mode
Floquet topological phases may host chiral edge modes with zero Chern number [26, 27, 166].
The Floquet anomalous edge modes originate from the bulk topological invariant defined from
the time-evolution operator U(k, t) in Eq. (5.81), and its experimental realizations were given
in photonic systems [171, 182, 183]. In this section, we see that the Floquet anomalous edge
modes can be eliminated by utilizing the extrinsic topology of quantum walks in 2D.

We consider the 2D model with Floquet anomalous edge states in Ref. [27]:

H(t) = Hj, t ∈ [(j − 1)T/5, jT/5], (5.145)

with

Hj=1,2,3,4 = Jeibj ·kσ+ + Je−ibj ·kσ− + δABσz,

H5 = δABσz. (5.146)

Here we introduced b1 = −b3 = (a, 0) and b2 = −b4 = (0, a), σ± = (σx ± iσy)/2, and δAB is
a real parameter. The one-cycle time evolution of the model is

UR =
5∏

j=1

e−iHjT/5. (5.147)

The quasi-energy spectrum and the wave packet dynamics for the model are shown in
Figs. 5.11 (a) and (c). This model has gapless chiral edge modes both at the ϵ = 0, π energy
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FIGURE 5.11: quasi-energy spectrum and dynamics (a,c) without and (b,d) with the decoration by unitary
operator A in Eq. (5.151). We use (a,c) the model UR in Eq. (5.147) and (b,d) U ′

R in Eq. (5.150). The
parameters are J/T = 2.2π, δ = 1.3π. For (a) and (b), the length size is Ly = 30. For (c) and (d), the
system lengths are Lx = 25 and Ly = 15. The initial state is |x = 5, y = 1, ↓⟩, localized at an edge.
We take PBC (OBC) in the x-(y-)direction. (a) The model UR in Eq. (5.147) has Floquet anomalous
chiral edge states. (c) Because of the existence of chiral edge modes, a wave packet on the edge at y = 1
propagates in the +x-direction. (b) The decorated model U ′

R in Eq. (5.150) has no chiral edge mode. (d)
Because of the disappearance of chiral edge modes, we cannot see the unidirectional movement.

gaps. The existence of the chiral edge modes is pictorially understood for a specific parameter
set JT/5 = π/2 and δAB = 0. In this case, each time-evolution unitary operator reduces

e−iHj=1,2,3,4T/5 = −i(eibj ·kσ+ + e−ibj ·kσ−),

e−iH5T/5 = 1, (5.148)

and thus, the total time-evolution operator becomes trivial UR = 1̂ for the bulk, but there exist
chiral edge modes as shown in Fig. 5.12. The chiral edge mode remains even if we modify the
parameters δAB and J unless the energy gaps at ϵ = 0, π are closed.
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FIGURE 5.12: One-cycle dynamics of the model Eq. (5.147) at a specific set of parameters JT/5 = π/2
and δAB = 0. This model has a bipartite lattice structure of spin up (red) and spin down (blue). After
the one-cycle time evolution, the bulk state return to the same state, but a spin up (down) edge state at
y = 1 (Ly) propagates in the +(−)x-direction.

The existence of the Floquet anomalous chiral edge state is assured by the three-dimensional
winding number defined for the loop unitary L(k, t) in Eq. (5.91),

w3[L] =
1

8π2

∫
dkxdkydt

× tr
(
L−1∂tL[L

−1∂kxL,L
−1∂kyL]

)
. (5.149)

However, as we already pointed out in Sec. 5.4, L(k, t) is well-defined only when the micro-
scopic Hamiltonian H(k, t) is given. If one allows a general deformation of the microscopic
Hamiltonian, one can trivialize L(k, t) without closing energy gaps at ϵ = 0, π. Therefore,
in the framework of quantum walks, where we have no unique microscopic Hamiltonian, the
Floquet anomalous edge mode is not protected by the bulk topological invariant.

Actually, we can eliminate the anomalous edge mode in Fig. 5.11 (a) by multiplying UR a
unitary operator A that have nontrivial anomaly at the edge,

U ′
R = AUR, (5.150)

A(kx) = Uy=1
edge (kx)⊗ |y = 1⟩ ⟨y = 1|

+ U
y=Ly

edge (kx)⊗ |y = Ly⟩ ⟨y = Ly|

+

Ly−1∑
y=2

σ0 ⊗ |y⟩ ⟨y| , (5.151)

Uy=1
edge (kx) =

(
e2ikx 0
0 1

)
, U

y=Ly

edge (kx) =

(
1 0
0 e−2ikx

)
, (5.152)

where we impose OBC for UR at y = 1, Ly. As shown in Figs. 5.11 (b) and (d), no chiral edge
mode exists in the quasi-particle spectrum of U ′

R, and no unidirectional wave packet motion is
observed on the edges.

The extrinsic topological nature of Uy=1
edge and Uy=Ly

edge in A explains the disappearance of the
anomalous edge modes. these boundary unitary operators have nonzero winding numbers in
Eq. (5.5),

w1

[
Uy=1

edge (kx)
]
= −w1

[
U

y=Ly

edge (kx)
]
= 2. (5.153)
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Thus, Uy=1
edge andUy=Ly

edge induce extrinsic boundary states. From the the extended Nielsen-Ninomiya
theorem in Eq. (5.22), Uy=1

edge and Uy=Ly

edge provide an additional edge modes on each boundary that
has the net chiralities opposite to those in the original model. As a result, the decorated unitary
U ′
R has net zero topological charges of edge modes, and thus no stable anomalous edge mode

remains.
We emphasize again that the unitary operatorA affects nontrivially only on the boundary, and

it controls the presence and absence of anomalous gapless edge modes, implying the extrinsic
nature of the edge states in the context of quantum walks.
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Chapter 6

Summary and outlook

In this thesis, we have investigated the topological gapless structures unique to Floquet and
non-Hermitian systems based on an extended version of the Nielsen-Ninomiya theorem.

In Chapter 1, we have seen the topological classification of Floquet systems, and have re-
viewed the previous studies using the classification table. We have also seen the topological
classification of non-Hermitian systems, and have reviewed topological phenomena unique to
non-Hermitian systems using the classification table.

In Chapter 2, we have overviewed the properties of Dirac Hamiltonians. Dirac Hamiltonians
provide minimal models of topological insulators, superconductors, and semimetals. Further-
more, Dirac operators can be regarded as generators of Clifford algebra, then we can relate the
classification of topological insulators with the extension problem of Clifford algebra.

In Chapter 3, we have formulated the extended Nielsen-Ninomiya theorem for Floquet and
non-Hermitian systems. Both in Floquet and non-Hermitian systems, we have constructed sim-
ple models breaking the Nielsen-Ninomiya theorem, and also found formulae that relate the
breakdown of the Nielsen-Ninomiya theorem with bulk topological invariant unique to Floquet
unitary operators and non-Hermitian point-gapped Hamiltonians. In general, we can establish
topological duality between Floquet and non-Hermitian systems by regarding a Floquet unitary
operator as a non-Hermitian point-gapped Hamiltonian. We have first formulated the extended
Nielsen-Ninomiya theorem for non-Hermitian systems for all the AZ† symmetry classes and di-
mensions. The general proof is based on the topological properties of Dirac Hamiltonians. Then,
topological duality induces the Floquet version of the extended Nielsen-Ninomiya theorem.

The extended Nielsen-Ninomiya theorem summarizes the topological physics unique to Flo-
quet and non-Hermitian systems, and has the potential to provide various exotic phenomena.
As applications of this theorem, we have proposed non-Hermitian chiral magnetic effect and
extrinsic topology in quantum walks.

We have discussed the extended Nielsen-Ninomiya theorem for Floquet unitary operators.
During the argument, however, we did not use any physical properties of Floquet systems other
than symmetries. Therefore, if a physical system is described by unitary operators, we can
analyze the topological properties of the system by applying the extended Nielsen-Ninomiya
theorem. For example, the Wilson loop is a unitary operator, and the dynamics of cellular
automatons are described by unitary operators.

In Chapter 4, we have proposed the non-Hermitian chiral magnetic effect with an experimen-
tally practical model. The model is composed of Hermitian terms and a spin-selective loss term.
We have numerically simulated the dynamics for this model under a magnetic field, and found
that wave packets tend to go in the direction of the magnetic field, which is a non-Hermitian
version of the chiral magnetic effect. From the unidirectional dynamics, we can expect that
all the wave packets accumulate at one boundary and skin effect occurs. We have numerically
confirmed skin modes localize at the boundary where the magnetic field goes out.
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We have studied the dynamics of the non-Hermitian chiral magnetic effect while the original
chiral magnetic effect indicates the occurrence of current parallel to the magnetic field. This is
because it is difficult to define electric current in non-Hermitian systems. In Hermitian systems,
electric charge is a conserved quantity, and the measurement of electric current at any part of a
wire gives the same result. In non-Hermitian systems, however, particles go in and out of the
system, and thus the strongness of electric current depends on the place where we measure it.
Therefore, we need to correctly define the electric current. It will need a rigorous understanding
of the original systems that yield effective non-Hermitian descriptions.

We have also found a formula that characterizes the non-Hermitian chiral magnetic effect.
The formula states that the 1D winding number equals the product of the 3D winding number
and the magnetic field, which is a typical dimensional reduction formula. This result may open
up the studies of magnetic response in non-Hermitian systems, which have attracted comparably
little interest ever.

In Chapter 5, we have argued the bulk-boundary correspondence in quantum walks. Due to
the discrete nature of quantum walk dynamics, the bulk topological invariant is insufficient to de-
termine the boundary states. The numbers of boundary states depend on both the bulk topology
and the boundary topology. While the conventional topological insulators and superconduc-
tors in equilibrium have extrinsic nature in higher-order topological phases, quantum walks can
support the extrinsic topology even in the first-order topological phases.

The extrinsic boundary states in quantum walks resemble anomalous boundary states in
Floquet systems, but their topological origins are different. For Floquet systems, the anomalous
boundary states originate from the non-trivial topology of the bulk continuous time-evolution
operator, but for quantum walks, the continuous time-evolution operator is not given. Instead,
the boundary states depend on the boundary topological invariants in quantum walks.

In the previous work [30], it was shown that the bulk-boundary correspondence holds for
class AIII systems in 1D with a decomposed realization of CS. We have seen how the decom-
posed CS assures the bulk-boundary correspondence, and discussed a similar bulk-boundary
correspondence in other dimensions and symmetry classes. Then, we have found that class CII
quantum walks in 1D obey the bulk-boundary correspondence under the decomposed TRS and
PHS.

We have also examined the physical implementations of extrinsic topological phases in quan-
tum walks. We have numerically seen that the extrinsic boundary states induce charge pumping
and that the pumping is robust against disorders. We have also given general arguments for the
robustness of the pumping. Moreover, we have seen that the extrinsic topology can eliminate
the pre-existing anomalous boundary states in the class AIII 1D split step walk and a class A
2D model, respectively. We can change the types and the numbers of gapless boundary states
without changing the bulk, which implies the breakdown of the bulk-boundary correspondence.

One possible future work is to study higher-order boundary states in quantum walks. Al-
though we have studied only the first-order boundary states in this work, higher-order boundary
states may have richer extrinsic topological behaviors. Quantum walks have novel symmetries
that have no counterpart in static systems such as time-glide symmetry [38]. Such symmetry
may produce extrinsic topological phases unique to dynamical systems.

Roughly speaking, Topology is just a mathematical tool. I believe that this mathematical tool
can be used for many systems other than Floquet and non-Hermitian systems to predict exotic
phenomena.
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Appendix A

Construction of non-Hermitian Weyl
semimetal

In this section, we explain how to obtain the non-Hermitian Weyl model Eq. (4.1). We first
notice that the following topological equivalence holds with respect to the point gap,

H =

(
I

eik

)
≈
(
eik

I

)
. (A.1)

In general, let us consider the following Hamiltonian

H(θ) = cos θ

(
I

HP

)
+ sin θ

(
HP

I

)
, (A.2)

where HP is point-gapped detHP ̸= 0. Then, we can show detH(θ) ̸= 0, and thus H(θ) is a
homotopy for (

I
HP

)
≈
(
HP

I

)
, (A.3)

with respect to the point gap.
For example, we consider the case

HP (k) = sin kxσx + sin kyσy + sin kzσz + i(m− cos kx − cos ky − cos kz), (A.4)

which is a special case of the general nontrivial model given by J. Y. Lee, et al. [5]. This model
has a 3D nontrivial point-gapped topological invariant in Eq. (3.9) for 1 < m < 3. From the
above relation, this model has the same point-gapped topologcal invariant as the model,(

I
sin kxσx + sin kyσy + sin kzσz + i(m− cos kx − cos ky − cos kz)

)
. (A.5)

By adding perturbation to this model, we obtain the non-Hermitian CME model in Eq. (4.1).
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Appendix B

Extended Nielsen-Ninomiya theorem in
other than AZ† symmetry classes

In this paper, we discussed the extended Nielsen-Ninomiya theorem in 10 AZ† symmetry classes.
In non-Hermitian systems, however, there are 38 symmetry classes in total. Then, one naive
question is "similar formula as the extended Nielsen-Ninomiya theorem exists in other 28 sym-
metry classes?"

The answer is yes. It is systematically understood by symmetry forgetting functor in non-
Hermitian systems proposed by Ken Shiozaki. Tables of symmetry forgetting functor in all
symmetry classes and dimensions are given in the supplemental material of Ref. [83].

B.1 Symmetry forgetting functor
There are some point-gapped (P-gapped) topological phases that can be created by L → P: a
line-gapped (L-gapped) topologically nontrivial phase (including a Hermitian gapped topologi-
cally nontrivial phase) can also be a P-gapped topologically nontrivial phase at the same time1.
If a topologically nontrivial P-gapped topological phase originates from a Hermitian gapped
topological phase, we cannot expect novel topological phenomena intrinsic to non-Hermitian
systems.

Thus, we have the motivation to know which P-gapped topological phase originate from a
L-gapped topological phase and which P-gapped topological phase is the one unique to non-
Hermitian systems. It is systematically obtained from the symmetry forgetting functor.

Symmetry forgetting functor is based on the observation that P-gapped classification is ob-
tained by removing a proper chiral symmetry from the L-gapped classification. From the K-
theoretic argument, we can obtain periodic tables of symmetry forgetting functors in all the
symmetry classes and dimensions. Some of them are shown in TABLE B.1-3. We see how to
use this table.

0 → Z indicates that there is no L-gapped topological invariant in the symmetry class and
dimensions, and thus no P-gapped topologically nontrivial phase originates from a L-gapped
topologically nontrivial phase. In other words, the P-gapped topologically nontrivial phase is a
novel topological phase unique to non-Hermitian systems.

Z→ Z : n 7→ n indicates that there are one L-gapped topological invariant nL ∈ Z and one
P-gapped topological invariant nP ∈ Z in the symmetry class and dimensions, and any L-gapped
Hamiltonian of nL = n is also a P-gapped Hamiltonian of nP = n at the same time.

1We note, for example, if a Hamiltonian is L-gapped for the line gap ReE = 0, the Hamiltonian is also P-gapped
for the point gap E = 0 at the same time.
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Z2 → Z2 : n 7→ 0 indicates that there are one L-gapped topological invariant nL ∈ Z2 and
a P-gapped topological invariant nP ∈ Z2, and any L-gapped Hamiltonian of nL = 0, 1 is a
P-gapped Hamiltonian of nP = 0 at the same time. In other words, the P-gapped topologically
nontrivial phase (nP = 1) is a novel topological phase unique to non-Hermitian systems.

Z→ Z⊕Z : n→ (n, n) indicates that there are one L-gapped topological invariant nL ∈ Z
and two P-gapped topological invariant nP

1 , n
P
2 ∈ Z, and any L-gapped Hamiltonian of nL = n

is also a P-gapped Hamiltonian of (nP
1 , n

P
2 ) = (n, n) at the same time. Therefore, the P-gapped

topological phase of nP
1 ̸= nP

2 is a novel topological phase unique to non-Hermitian systems.

TABLE B.1: Symmetry forgetting functor for AZ symmetry classes.

2
1

TABLE S1. Homomorphisms fr, fi from line-gap to point-gap topology for AZ class.

Symm. class Gap d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A L → P Z → 0 0 → Z Z → 0 0 → Z Z → 0 0 → Z Z → 0 0 → Z

AIII Lr → P 0 → Z Z → 0 0 → Z Z → 0 0 → Z Z → 0 0 → Z Z → 0

Li → P Z ⊕ Z → Z 0 → 0 Z ⊕ Z → Z 0 → 0 Z ⊕ Z → Z 0 → 0 Z ⊕ Z → Z 0 → 0
(n, m) 7→ n − m (n, m) 7→ n − m (n, m) 7→ n − m (n, m) 7→ n − m

AI Lr → P Z → Z2 0 → Z 0 → 0 0 → 0 2Z → 0 0 → 2Z Z2 → 0 Z2 → Z2

n 7→ n n 7→ n
Li → P Z2 → Z2 Z2 → Z Z → 0 0 → 0 0 → 0 0 → 2Z 2Z → 0 0 → Z2

n 7→ 0
BDI Lr → P Z2 → Z2 Z → Z2 0 → Z 0 → 0 0 → 0 2Z → 0 0 → 2Z Z2 → 0

n 7→ n n 7→ n
Li → P Z2 ⊕ Z2 → Z2 Z2 ⊕ Z2 → Z2 Z ⊕ Z → Z 0 → 0 0 → 0 0 → 0 2Z ⊕ 2Z → 2Z 0 → 0

(n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m
D L → P Z2 → 0 Z2 → Z2 Z → Z2 0 → Z 0 → 0 0 → 0 2Z → 0 0 → 2Z

n 7→ n n 7→ n
DIII Lr → P 0 → 2Z Z2 → 0 Z2 → Z2 Z → Z2 0 → Z 0 → 0 0 → 0 2Z → 0

n 7→ n n 7→ n
Li → P Z → 2Z 0 → 0 Z → Z2 0 → Z2 Z → Z 0 → 0 Z → 0 0 → 0

n 7→ n n 7→ n n 7→ 2n
AII Lr → P 2Z → 0 0 → 2Z Z2 → 0 Z2 → Z2 Z → Z2 0 → Z 0 → 0 0 → 0

n 7→ n n 7→ n
Li → P 0 → 0 0 → 2Z 2Z → 0 0 → Z2 Z2 → Z2 Z2 → Z Z → 0 0 → 0

n 7→ 0
CII Lr → P 0 → 0 2Z → 0 0 → 2Z Z2 → 0 Z2 → Z2 Z → Z2 0 → Z 0 → 0

n 7→ n n 7→ n
Li → P 0 → 0 0 → 0 2Z ⊕ 2Z → 2Z 0 → 0 Z2 ⊕ Z2 → Z2 Z2 ⊕ Z2 → Z2 Z ⊕ Z → Z 0 → 0

(n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m
C L → P 0 → 0 0 → 0 2Z → 0 0 → 2Z Z2 → 0 Z2 → Z2 Z → Z2 0 → Z

n 7→ n n 7→ n
CI Lr → P 0 → Z 0 → 0 0 → 0 2Z → 0 0 → 2Z Z2 → 0 Z2 → Z2 Z → Z2

n 7→ n n 7→ n
Li → P Z → Z 0 → 0 Z → 0 0 → 0 Z → 2Z 0 → 0 Z → Z2 0 → Z2

n 7→ 2n n 7→ n n 7→ n
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TABLE B.2: Symmetry forgetting functor for AZ† symmetry classes.

2
2

TABLE S2. Homomorphisms fr, fi from line-gap to point-gap topology for AZ† class.

Symm. class Gap d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

AI† L → P Z → 0 0 → 0 0 → 0 0 → 2Z 2Z → 0 0 → Z2 Z2 → Z2 Z2 → Z
n 7→ 0

BDI† Lr → P Z2 → Z Z → 0 0 → 0 0 → 0 0 → 2Z 2Z → 0 0 → Z2 Z2 → Z2

n 7→ 0
Li → P Z ⊕ Z → Z 0 → 0 0 → 0 0 → 0 2Z ⊕ 2Z → 2Z 0 → 0 Z2 ⊕ Z2 → Z2 Z2 ⊕ Z2 → Z2

(n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m

D† Lr → P Z2 → Z2 Z2 → Z Z → 0 0 → 0 0 → 0 0 → 2Z 2Z → 0 0 → Z2

n 7→ 0
Li → P Z → Z2 0 → Z 0 → 0 0 → 0 2Z → 0 0 → 2Z Z2 → 0 Z2 → Z2

n 7→ n n 7→ n

DIII† Lr → P 0 → Z2 Z2 → Z2 Z2 → Z Z → 0 0 → 0 0 → 0 0 → 2Z 2Z → 0
n 7→ 0

Li → P Z → Z2 0 → Z2 Z → Z 0 → 0 Z → 0 0 → 0 Z → 2Z 0 → 0
n 7→ n n 7→ 2n n 7→ n

AII† L → P 2Z → 0 0 → Z2 Z2 → Z2 Z2 → Z Z → 0 0 → 0 0 → 0 0 → 2Z
n 7→ 0

CII† Lr → P 0 → 2Z 2Z → 0 0 → Z2 Z2 → Z2 Z2 → Z Z → 0 0 → 0 0 → 0
n 7→ 0

Li → P 2Z ⊕ 2Z → 2Z 0 → 0 Z2 ⊕ Z2 → Z2 Z2 ⊕ Z2 → Z2 Z ⊕ Z → Z 0 → 0 0 → 0 0 → 0
(n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m (n, m) 7→ n + m

C† Lr → P 0 → 0 0 → 2Z 2Z → 0 0 → Z2 Z2 → Z2 Z2 → Z Z → 0 0 → 0
n 7→ 0

Li → P 2Z → 0 0 → 2Z Z2 → 0 Z2 → Z2 Z → Z2 0 → Z 0 → 0 0 → 0
n 7→ n n 7→ n

CI† Lr → P 0 → 0 0 → 0 0 → 2Z 2Z → 0 0 → Z2 Z2 → Z2 Z2 → Z Z → 0
n 7→ 0

Li → P Z → 0 0 → 0 Z → 2Z 0 → 0 Z → Z2 0 → Z2 Z → Z 0 → 0
n 7→ n n 7→ n n 7→ 2n

TABLE B.3: Symmetry forgetting functor for AZ+SLS+pH symmetry classes.

2
4

TABLE S4. *
(Continued)

AZ class Add. symm. Gap d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A S L → P 0 → 0 Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z
n 7→ (n, n) n 7→ (n, n) n 7→ (n, n) n 7→ (n, n)

AIII S−, η− Lr → P Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0
n 7→ (n, n) n 7→ (n, n) n 7→ (n, n) n 7→ (n, n)

Li → P Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0 Z → Z ⊕ Z 0 → 0
n 7→ (n, −n) n 7→ (n, −n) n 7→ (n, −n) n 7→ (n, −n)

AI S− Lr → P 0 → 0 0 → Z 0 → 0 2Z → Z 0 → 0 Z2 → Z Z2 → 0 Z → Z
n 7→ 2n n 7→ n

Li → P 0 → 0 Z2 → Z Z2 → 0 Z → Z 0 → 0 0 → Z 0 → 0 2Z → Z
n 7→ n n 7→ 2n

BDI S−+, η+− Lr → P Z → Z 0 → 0 0 → Z 0 → 0 2Z → Z 0 → 0 Z2 → Z Z2 → 0
n 7→ n n 7→ 2n

Li → P Z2 → Z Z2 → 0 Z → Z 0 → 0 0 → Z 0 → 0 2Z → Z 0 → 0
n 7→ n n 7→ 2n

D S+ L → P Z2 → 0 Z → Z 0 → 0 0 → Z 0 → 0 2Z → Z 0 → 0 Z2 → Z
n 7→ n n 7→ 2n

DIII S−+, η−+ Lr → P Z2 → Z Z2 → 0 Z → Z 0 → 0 0 → Z 0 → 0 2Z → Z 0 → 0
n 7→ n n 7→ 2n

Li → P Z → Z 0 → 0 0 → Z 0 → 0 2Z → Z 0 → 0 Z2 → Z Z2 → 0
n 7→ n n 7→ 2n

AII S− Lr → P 0 → 0 Z2 → Z Z2 → 0 Z → Z 0 → 0 0 → Z 0 → 0 2Z → Z
n 7→ n n 7→ 2n

Li → P 0 → 0 0 → Z 0 → 0 2Z → Z 0 → 0 Z2 → Z Z2 → 0 Z → Z
n 7→ 2n n 7→ n

CII S−+, η+− Lr → P 2Z → Z 0 → 0 Z2 → Z Z2 → 0 Z → Z 0 → 0 0 → Z 0 → 0
n 7→ 2n n 7→ n

Li → P 0 → Z 0 → 0 2Z → Z 0 → 0 Z2 → Z Z2 → 0 Z → Z 0 → 0
n 7→ 2n n 7→ n

C S+ L → P 0 → 0 2Z → Z 0 → 0 Z2 → Z Z2 → 0 Z → Z 0 → 0 0 → Z
n 7→ 2n n 7→ n

CI S−+, η−+ Lr → P 0 → Z 0 → 0 2Z → Z 0 → 0 Z2 → Z Z2 → 0 Z → Z 0 → 0
n 7→ 2n n 7→ n

Li → P 2Z → Z 0 → 0 Z2 → Z Z2 → 0 Z → Z 0 → 0 0 → Z 0 → 0
n 7→ 2n n 7→ n
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B.2 Relation between point-gapped structures and line-gapless
structures

In this section, we discuss the relation between P-gapped topological structures and L-gapless
topological structures, which can be seen a natural extension of the extended Nielsen-Ninomiya
theorem 2. For the P-gapped topological phases that do not originate from L-gapped topological
phases, we can always find L-gapless structures accompanying it. In some symmetry classes,
we need to differentiate the real line gap (Lr-gap) for ReE = 0 and the imaginary line gap
(Li-gap) for ImE = 0. For convenience, we call the P-gapped topological phase that does
not originate from Lr(i)-gapped topological phases as Lr(i) → P trivial phase, and we call the
P-gapped topological phase that originate from Lr(i)-gapped topological phases as Lr(i) → P
nontrivial phase in the following.

In general, we find the following statements 1 and 2.

1. Lr(i) → P trivial phase has robust Lr(i)-gapless structure with ImE ≶ 0 (ReE ≶ 0).
2. Lr(i) → P nontrivial phase do not have robust Lr(i)-gapless structure with ImE ≶ 0 (ReE ≶

0).

The Lr(i)-gapless structure typically takes the form of Dirac point.

B.3 Examples
In this section, we check the statement 1 through examples.

B.3.1 AZ† class
In AZ† symmetry classes, all the P-gapped topologically nontrivial phases are Lr → P trivial
phases according to the tables of symmetry forgetting functors. In other words, P-gapped topo-
logically nontrivial phases do not originate from Lr-gapped topological phases. In class AZ†, we
know the extended Nielsen-Ninomiya theorem, which is a relation between P-gapped topolog-
ical invariants and Lr-gapless structures with ImE ≶ 0. Therefore, the Lr(i) → P trivial phase
actually has robust Lr(i)-gapless structure with ImE ≶ 0.

We also note that the same result is obtained for the i multiplied counterparts of AZ† sym-
metry classes.

B.3.2 class A +SLS
According to the table, 1D systems in class A + sublattice symmety (SLS) have the symmetry
forgetting functor L→ P: Z → Z ⊕ Z : n → (n, n). We construct the concrete P-gapped
topological numbers. From the sublattice symmetry, the non-Hermitian Hamiltonian has the
form of

H(k) =

(
b

c

)
, SHS−1 = −H, S = σz. (B.1)

2The general statements we provide here is weaker than the extended Nielsen-Ninomiya theorem. For specific
symmetry classes, however, we can construct stronger statements like the extended Nielsen-Ninomiya theorem.
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Thus, we can obtain two P-gapped topological invariants

nP
1 = −

∫ 2π

0

dk

2πi
tr[b−1∂kb], nP

2 =

∫ 2π

0

dk

2πi
tr[c−1∂kc]. (B.2)

On the other hand, the L-gapped topological invariant is

nL =

∫ 2π

0

dk

4πi
tr[SH̃−1∂kH̃]. (B.3)

where H̃ is the Hermitian flattended Hamiltonian of H [64, 77].
For example, we can see the P-gapped topological phase of (nP

1 , n
P
2 ) = (1, 1) originates

from a L-gapped topological phase. Let us consider a simple model,

H =

(
e−ik

eik

)
, (B.4)

which is a L-gapped Hamiltonian with nL = 1. We can also check nP
1 = nP

2 = 1.
On the other hand, the P-gapped topological phase of (nP

1 , n
P
2 ) = (1, 0) do not originate

from a L-gapped topological phase, and we can also see this P-gapped topological phase has
Lr-gapless structure with ImE ≶ 0. Let us consider the following model

H =

(
eik

1

)
, E± = ±eik/2, (B.5)

which has (nP
1 , n

P
2 ) = (1, 0). As any L-gapped topological phases cannot be the origin of this P-

gapped topological phase, this model is in the Lr → P trivial phase. We note that this model has
energy winding number, the P-gapped topological invariant for class A 1D P-gapped systems,

w =

∫ 2π

0

dk

2πi
tr[H−1∂kH] =

1

2π

∮
dk∂karg[E+E−] = 1. (B.6)

Therefore, from the extended Nielsen-Ninomiya theorem in class A 1D systems, we have the
following formula,

w = nP
1 − nP

2 =
∑

ImEj>0

νR
j = −

∑
ImEj<0

νR
j , (B.7)

where νRj = sign[Re[dE/dk] characterize Lr-gapless structures. Therefore, the Lr → P trivial
phase actually has robust Lr-gapless structure with ImE ≶ 0. We obtained more detailed formula
than the statement 1 in this specific case.

B.4 Proof of statements 1 and 2
The proofs of statements 1 and 2 are almost evident from its definition, but we give the proofs
for completeness.

Proof of statement 1
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We prove by contradiction. Let us consider a Lr(i) → P trivial phase, i.e., a P-gapped topolog-
ical phase that do not originate from any L-gapped topological phase. Assume that there is no
robust Lr(i)-gapless structure with ImE ≶ 0 (ReE ≶ 0). Then, if we consider a model in Lr(i) →
P trivial phase, we can be continuously deform the model to be Lr(i)-gapped without closing the
point gap. This is contrary to the fact that we are considering a Lr(i) → P trivial phase, i.e., a
P-gapped topological phase that do not originate from any Lr(i)-gapped phase.

Hence, Lr(i) → P trivial phase has robust Lr(i)-gapless structure with ImE ≶ 0 (ReE ≶ 0).

Proof of statement 2

We prove by contradiction. Let us consider Lr(i) → P nontrivial phase, i.e., a P-gapped
topological phase that originates from L-gapped topological phases. Assume that there exists
robust Lr(i)-gapless structure with ImE ≶ 0 (ReE ≶ 0). Then, if we consider a model in Lr(i) →
P nontrivial phase, we cannot continuously deform the model to be Lr(i)-gapped. This is contrary
to the fact that we are considering a Lr(i) → P nontrivial phase, i.e., a P-gapped topological phase
that originate from Lr(i)-gapped phase.

Hence, Lr(i) → P nontrivial phase do not have robust Lr(i)-gapless structure with ImE ≶ 0
(ReE ≶ 0).
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Appendix C

Extended Nielsen-Ninomiya theorem for
Floquet systems: another proof

In the main text, we proved the Theorem 3’,

n =
∑
ϵα=0

ν0α = −(−1)d
∑

ϵα=π/τ

νπα, (C.1)

In this section, we directly show this theorem for class A and AIII without using the non-
Hermitian counterparts.

Firstly, we give an intuitive proof of the first equality, n =
∑

ϵα=0 ν
0
α. We suppose a model

has n = 0, which means the model can be continuously deformed into a trivial model such
as UF (k) = −1̂. Then, there is no robust zero-energy gapless mode, and thus we obtain∑

ϵα=0 ν
0
α = 0. We next suppose a model has n = 1. Then, there exist robust zero-energy

gapless structures; otherwise, we can gap out ϵ = 0 and continuously deform the energy spec-
trum and the resulting Floquet unitary operator becomes a trivial one, UF = −1 again. The
robust zero-energy gapless structures should be characterized by some topological invariant,
i.e., the topological charge of gapless states, ν0α. As a result, we obtained nF =

∑
j ν

0
j = 0 and

nF =
∑

j ν
0
j = 1 1. For general n, we can obtain by considering direct sums of n = 1 models.

Next, we prove the second equality,
∑

ϵα=0 ν
0
α = −(−1)d

∑
ϵα=π/τ ν

π
α . An important obser-

vation is that the Floquet Hamiltonian HF := i
τ
lnUF and ordinary Hermitian Hamiltonian has

the same property except for the 2π/τ -periodicity in Floquet energy spectrum.
We split the Brillouin zone (BZ) into two regions [Fig. C.1] such that one region M does

not include π-energy gapless structures, while the complementary region M̄ := BZ−M does
not include zero-energy gapless structures 2. In the case where some regions in BZ have both
zero-energy gapless structures and π-energy gapless structures at the same time, we need to add
some perturbation to the model to obtain the above situation. This is possible for class A and
AIII, but impossible for other symmetry classes in general: We cannot move Dirac points from
time-reversal invariant momenta. Then, inside the regionM, the Floquet Hamiltonian HF has
an energy gap at ϵ = π/τ , and thus HF can be seen as an ordinary Hermitian Hamiltonian by
taking the branch within −π/τ < ϵ < π/τ . We focus on ∂M, where both ϵ = 0, π are gapped.

1Here, we implicitly supposed ν0α = 1 for the gapless structures accompanying the bulk topology of n = 1.
For class A and AIII, we know the gapless structures take the form of gapless Dirac Hamiltonians up to continuous
deformations.

2M and/or M̄ may be disconnected in general, but that does not change the problem.
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−𝜋/𝑇

𝜋/𝑇

0 Dirac points

−𝜋/𝑎
−𝜋/𝑎
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𝑘𝑥

𝜖

FIGURE C.1: Sketch of the proof. The region M does not include π-energy gapless regions. The
complementary region M̄ = BZ−M does not include zero-energy gapless regions.

We can rewrite the Floquet Hamiltonian on ∂M as

Hπ
F (k) =

∑
−π/τ<ϵj(k)<0

ϵj(k)Pj(k) +
∑

0<ϵj(k)<π/τ

ϵj(k)Pj(k) (C.2)

where Hπ
F (k) has the branch cut at ϵ = ±π/τ and the energy spectrum is within −π/τ < ϵ <

π/τ [100]. ϵj(k) is the Floquet energy eigenvalue of the band j. Pj(k) = |ψj(k)⟩ ⟨ψj(k)| is
the projection operator on to the band j. We took summation of energy bands j for lower bands
ϵj < 0 and upper bands ϵj > 0. Here, we implicitly used the fact that ϵj(k) ̸= 0, π/τ on ∂M.
Then the Hπ

F (k) can be seen as Hermitian Hamiltonian with zero-energy gap, i.e., a topological
insulator, thus we can calculate a topological invariant Q[Hπ

F ] for this topological insulator. In
class A and AIII, nontrivial topological insulators on ∂M indicates the existence of Dirac/Weyl
points insideM,

Q[Hπ
F ] =

∑
j

ν0j , (C.3)

where ν0j is the topological charge of the zero-energy gapless region j (or simply the chirality of
Dirac/Weyl zero-modes) and Q[Hπ

F ] is the topological invariant of the topological insulator Hπ
F .

We can continuously flatten the energy spectrum of Hπ
F (k) without closing energy gap ϵ = 0 as

Hπ
F (k) =

∑
−π/τ<ϵj(k)<0

(
− π

2T

)
Pj(k) +

∑
0<ϵj(k)<π/τ

( π

2T

)
Pj(k). (C.4)

This Hamiltonian on the boundary ∂M can also be seen as a Hamiltonian on the boundary
of M̄ but inside out. In this case, we need to take the branch cut at ϵ = 0 and take 0 < ϵ < 2π/τ
because there are π/τ -gapless regions inside M̄. So, we rewrite Hπ

F (k) in Eq. (C.4) by using
2π/τ -energy periodicity as,

Hπ
F (k) =

∑
−π/τ<ϵj(k)<0

(
3π

2T

)
Pj(k) +

∑
0<ϵj(k)<π/τ

( π

2T

)
Pj(k), (C.5)
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the energy spectrum of which is within 0 < ϵ < 2π/τ . In order to shift the energy gap from
ϵ = π/τ to ϵ = 0, we redefine the Hamiltonian with energy shift π/τ ,

H0
F (k) := Hπ

F (k)−
π

T
=

∑
−π/τ<ϵj(k)<0

π

2T
Pj(k) +

∑
0<ϵj(k)<π/τ

(
− π

2T

)
Pj(k). (C.6)

This can be seen as a Hermitian Hamiltonian with ϵ = 0 gap. We note that the topological
invariantQ[H0

F ] for this topological insulator indicates the existence of Dirac/Weyl points inside
M at π-energy,

Q[H0
F ] =

∑
j

νπj , (C.7)

because we shifted the energy π/τ .
Comparing Eq. (C.4) and Eq. (C.6), we find

H0
F (k) = −Hπ

F (k) (C.8)

In general, topological invariants of topological insulators has the following properties,

Q[−H] = (−1)d+1Q[H]. (C.9)

We will explain this relation later. If we accept this relation, we have

Q[H0
F (k)] = Q[−Hπ

F (k)] = (−1)d+1Q[Hπ
F (k)]. (C.10)

Then, combining with Eq. (C.3) and Eq. (C.7), we obtain the second equiality of Theorem 3’ as∑
j

ν0j = (−1)d+1
∑
j

νπj . (C.11)

For completeness, we explain the relation in Eq. (C.9). For example in class A d = 2, the
massive Dirac Hamiltonian 3 is given by [KitaevTable, 15, 16, 37]:

H(k) = k1σ1 + k2σ2 +mσ3, m > 0 (C.12)

This model has Ch = +1/2, but −H has Ch = −1/2 because

−H = −k1σ1 − k2σ2 −mσ3 ≈ k1σ1 + k2σ2 −mσ3, (C.13)

where, ≈ means the topological equivalence (we can continuously deform from left-hand side
into right-hand side without closing zero-energy gap). Here, we continuously rotated (−k1,−k2)
into (k1, k2) by (

cos θ − sin θ
sin θ cos θ

)(
k1
k2

)
, θ = π → 0. (C.14)

3We note that the massive Dirac Hamiltonian represents topological insulators near topological transition points
as discussed in Chapter. 2.
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We can also a give different explanation for class A d = 2. If a topological insulator has the
form

H = d1σ1 + d2σ2 + d3σ3, (C.15)

the covering number of the d vector around d = 0 becomes the Chern number. As d and −d
has an opposite covering number, we obtain the relation Q[−H] = −Q[H].

In general, massive Dirac Hamiltonians of topological insulators can be written as 4,

H =
d∑

j=1

kjΓj +mΓ0, (C.16)

by using gamma matrices {Γi,Γj} = 2δij [KitaevTable, 15, 16, 37]. Then, −H has the follow-
ing topological equivalence,

−H =
d∑

j=1

(−kj)Γj −mΓ0 ≈

{∑d
j=1 kjΓj −mΓ0 (d = 2n)∑d
j=1 kjΓj +mΓ0 (d = 2n+ 1)

(C.17)

Here we repeated the continuous rotation (−kj,−kj+1)→ (kj, kj+1). We note that
∑d

j=1 kjΓj−
mΓ0 has the opposite topological invariant from H =

∑d
j=1 kjΓj + mΓ0. This is because the

covering number of the generalized d vector for H =
∑d

j=1 djΓj takes opposite values between
them. Therefore, we obtain

Q[−H] =

{
−Q[H] (d = 2n)

Q[H] (d = 2n+ 1)
, (C.18)

or equivalently Eq. (C.9).

4See Chapter 2 why it is enough to consider only massive Dirac Hamiltonians.
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Appendix D

Details for non-Hermitian chiral magnetic
effect

We give miscellaneous arguments about the formula of non-Hermitian CME in Eq. (4.2),

wz
1

LxLy

=
eBz

2π
w3. (D.1)

We see detailed properties of this formula by using a minimal model

H(kx, ky, kz) = e−ikxσx + e−ikyσy + e−ikzσz , (D.2)

which is a special case of the general model proposed by Lee, et al., [5]. This model has w3 = 1
for the 3D point-gapped topological invariant given in Eq. (3.9).

D.1 Lattice realization of magnetic field
In order to study the CME formula in detail, we review Peierls substitution method. Magnetic
field on a lattice is realized by multiplying Peierls phase onto translation operators (hopping
terms) as ∑

x,y

|x+ 1, y⟩ ⟨x, y| → Tx :=
∑
x,y

|x+ 1, y⟩ ⟨x, y| eie
∫ (x+1,y)
(x,y)

A·dx, (D.3)

∑
x,y

|x, y + 1⟩ ⟨x, y| → Ty :=
∑
x,y

|x, y + 1⟩ ⟨x, y| eie
∫ (x,y+1)
(x,y)

A·dx. (D.4)

Here the vector potential A is chosen to satisfy∫ (x+1,y)

(x,y)

A · dx+

∫ (x+1,y+1)

(x+1,y)

A · dx+

∫ (x,y+1)

(x+1,y+1)

A · dx+

∫ (x,y)

(x,y+1)

A · dx =

∫∫
Sx,y

BzdS,

(D.5)

where the area Sx,y is a square plaquette with vertices (x, y), (x+1, y), (x+1, y+1) and (x, y+1).
We also introduce the magnetic flux per area 2πϕx,y = e

∫∫
Sx,y

BzdS. Correspondingly, the
translation operators satisfy

T †
yT

†
xTyTx |x, y⟩ = ei2πϕx,y |x, y⟩ . (D.6)
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Thus, we have a nontrivial commutation relation TyTx = ei2πϕx,yTxTy. We suppose the magnetic
flux is uniform and takes a rational number: ϕx,y = ϕ = p/q, where p and q are coprime integers.
Then, successive application of the above commutation relation leads to T q

xTy = ei2πqϕx,yTyT
q
x ,

and thus we obtain

T q
xTy = TyT

q
x . (D.7)

If a Hamiltonian is composed of the hoppings Tx and Ty, the Hamiltonian commute with
T q
x and Ty, and from the same argument as Bloch theorem, the eigenstates are characterized by

magnetic momentum (k0x, ky) as

H |un(k0x, ky)⟩ = En(k
0
x, ky) |un(k0x, ky)⟩ , (D.8)

T q
x |un(k0x, ky)⟩ = e−ik0xq |un(k0x, ky)⟩ , (D.9)

Ty |un(k0x, ky)⟩ = e−iky |un(k0x, ky)⟩ , (D.10)

and the magnetic Brillouin zone is (k0x, ky) ∈ [−π/q, π/q]× [−π, π]. From the relation TyTx =
ei2πϕTxTy, we have

TyTx |un(k0x, ky)⟩ = ei2πϕTxTy |un(k0x, ky)⟩ = e−i(ky−2πϕ)Tx |un(k0x, ky)⟩ . (D.11)

Thus we have Tx |un(k0x, ky)⟩ = |un′(k0x, ky − 2πϕ)⟩. Then, we have the energy periodicity

En(k
0
x, ky) = En′(k0x, ky − 2πϕ). (D.12)

As a result, the energy spectra of all bands have the periodicity 1

{En(k
0
x, ky)}n = {En(k

0
x, ky − 2π/q)}n. (D.13)

We choose the Landau gauge (Ax, Ay) = (0, Bzx) in the following. Then the translation opera-
tors become

Tx :=
∑
x,y

|x+ 1, y⟩ ⟨x, y| , Ty :=
∑
x,y

|x, y + 1⟩ ⟨x, y| ei2πϕx. (D.14)

They are Fourier transformed into 2

Tx =

∫ π

−π

dkx

∫ π

−π

dkye
−ikx |kx, ky⟩ ⟨kx, ky|

=

q−1∑
n=0

∫ π/q

−π/q

dk0x

∫ π

−π

dkye
−i(k0x+2πϕn) |k0x + 2πϕn, ky⟩ ⟨k0x + 2πϕn, ky| , (D.15)

Ty =

∫ π

−π

dkx

∫ π

−π

dkye
−iky |kx + 2πϕ, ky⟩ ⟨kx, ky|

=

q−1∑
n=0

∫ π/q

−π/q

dk0x

∫ π

−π

dkye
−iky |k0x + 2πϕ(n+ 1), ky⟩ ⟨k0x + 2πϕn, ky| . (D.16)

1We have not used Hermiticity, so this relation is valid even for non-Hermitian Hamiltonians.
2The wave numbers in Fourier transformation is a realization of magnetic momenta.
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We apply the above relations onto the model in Eq. (D.2) for kz = 0,

H ′(kx, ky) = e−ikxσx + e−ikyσz , (D.17)

where we subtracted a trivial term −1̂ and interchanged σy ↔ σz
3. We note that this model has

pseudo-Hermiticity

σyH
′(kx, ky)

†σy = H ′(kx, ky). (D.18)

Under uniform magnetic flux ϕ = p/q for coprime integers p and q, this model becomes

H ′ =

q−1∑
n=0

∫ π/q

−π/q

dk0x

∫ π

−π

dky e
−i(k0x+2πϕn)σx |k0x + 2πϕn, ky⟩ ⟨k0x + 2πϕn, ky| (D.19)

+

(
e−iky |k0x + 2πϕ(n+ 1), ky⟩ ⟨k0x + 2πϕn, ky| 0

0 eiky |k0x + 2πϕn, ky⟩ ⟨k0x + 2πϕ(n+ 1), ky|

)
.

(D.20)

We can rewrite it by regarding n as a sublattice degree of freedom

H′ =

∫ π/q

−π/q

dk0x

∫ π

−π

dky (D.21)

=



e−ik0xσx
0 0
0 e−iky O · · · eiky 0

0 0
eiky 0
0 0

ie−i(k0x+2πϕ)σx
0 0
0 e−iky · · · O

O
eiky 0
0 0

. . . . . . ...

...
... . . . ie−i(k0x+2(q−2)πϕ)σx

0 0
0 e−iky

0 0
0 e−iky O · · · eiky 0

0 0
ie−i(k0x+2(q−1)πϕ)σx


.

(D.22)

Here (H′)nn′ is a block matrix on the basis |k0x + 2πϕn, ky⟩ ⟨k0x + 2πϕn′, ky|.

D.2 Exact quantization of total flux
As wz

1 and w3 are integers, we expect the factor eBz

2π
LxLy is also an integer. This expectation

is correct. From the periodic boundary condition (PBC) for the vector potential (Ax, Ay), we
obtain the quantization of total flux e

2π

∫∫
dxdyBz ∈ Z in general.

The Peierls substitutions

Tx :=
∑
x,y

|x+ 1, y⟩ ⟨x, y| eie
∫ (x+1,y)
(x,y)

A·dx, Ty :=
∑
x,y

|x, y + 1⟩ ⟨x, y| eie
∫ (x,y+1)
(x,y)

A·dx (D.23)

3Strictly speaking, we need to flip ky → −ky when we realize the interchange σy ↔ σz as a unitary transfor-
mation.
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indicate that Ax(x, y) := e
∫ (x+1,y)

(x,y)
A · dx and Ay(x, y) := e

∫ (x,y+1)

(x,y)
A · dx are defined mod

2π. As a magnetic flux on a cell is given by

eAx(x, y) + eAy(x+ 1, y)− eAx(x, y + 1)− eAy(x, y) = 2πϕx,y (mod 2π), (D.24)

the total flux on a lattice of system size Lx × Ly is becomes

e

∫∫
dxdyBz =

Lx−1∑
x=0

Ly−1∑
y=0

2πϕx,y (D.25)

=
Lx−1∑
x=0

Ly−1∑
y=0

[eAx(x, y) + eAy(x+ 1, y)− eAx(x, y + 1)− eAy(x, y)] (D.26)

=
Lx−1∑
x=0

[eAx(x, 0)− eAx(x, Ly)] +

Ly−1∑
y=0

[eAy(Lx, y)− eAy(0, y)] (mod 2π).

(D.27)

If we use the PBC Ax(x, 0) = Ax(x, Ly) and Ay(0, y) = Ay(Lx, y), we obtain the constraint on
the total magnetic flux; e

∫∫
dxdyBz = 0 (mod 2π), or equivalently

e

2π

∫∫
dxdyBz = n (n ∈ Z). (D.28)

For completeness, we see the explicit realization of unit flux: eBz

2π
LxLy = 1 in PBC [Fig. D.1].

It is given by

eA0
x(x, y) =

{
0 (y = 0, · · · , Ly − 2)
2πy
Ly

(y = Ly − 1).
, eA0

y(x, y) =
2πx

LxLy

. (D.29)

D.3 w3 with and without magnetic field
One naive question is "does w3 change before and after inserting a magnetic field?" In the CME
formula, w3 is calculated for a model without a magnetic field, while w1 is calculated for the
model with a magnetic field. We found the answer is NO! We checked the minimal model in
Eq. (D.2) has w3 = 1 after inserting magnetic field. 4

We remember the non-Hermitian model Eq. (D.2) has w3 = 1. Let us consider the case
ϕ = 1/5 for kz = 0 5. The energy spectra are shown in Fig. D.2. We can see that one of the
spectra is a Fermi surface of ImEn = 0 with ReEn > 0. We numerically calculated the Chern
number of the Fermi surface and obtained Ch = 1. From the extended Nielsen-Ninomiya
theorem in Eq. (3.8), we can say that the winding number is w3 = 1 6. Therefore, w3 does not
change after inserting a magnetic field.

4Any other models can be continuously deformed into direct sums of this minimal model and trivial models.
Therefore, this result assures that w3 does not change with and without a magnetic field for any model.

5Strictly speaking, we need to check w3 = 1 for any ϕ.
6We need to transform as H → iH in this case.
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FIGURE D.1: (a) A lattice realization of a unit magnetic flux (eBz/2π)LxLy = 1. F (b) These Peierls
phases are chosen to satisfy Ax(x, y) + Ay(x + 1, y) − Ax(x, y + 1) − Ay(x, y) = 2π/LxLy. For
simplicity, we have chosen the unit e = 1.

D.4 Finite magnetic field case

The proof of the non-Hermitian CME formula wz
1

LxLy
= eBz

2π
w3 used the fact that a Weyl point

becomes a ϕLxLy-degenerate chiral mode under an applied magnetic field eBz = 2πϕ. The
Landau degeneracy (ϕLxLy-degeneracy) is explained by semiclassical arguments. However,
this semiclassical method may not be rigorous, especially for strong (not infinitesimally small)
magnetic fields. Thus, we need to numerically confirm this formula for finite Bz. We can
numerically find that this formula is exact for ϕ = p/q < 23/81 at most for the model Eq. (D.2).
For a strong enough magnetic field ϕ = p/q > 23/81, the point gap of this model is closed.

We explain the numerical method in detail. The model iH ′(kx, ky) = ie−ikxσx + ie−ikyσz ,
where H ′(kx, ky) is given in Eq. (D.17), has chiral symmetry Γ(iH ′)†Γ = −iH ′ with Γ = σy.
We apply the extended Nielsen-Ninomiya theorem for class AIII d = 0. It is obtained by
recasting the Floquet version in Sec. 5.3.1 into a non-Hermitian version by H = iUF

7. The
point-gapped topological invariant is given by

n =
1

2
[N+(iHΓ)−N−(iHΓ)] , (D.30)

where N+(iHΓ) (N−(iHΓ)) is the number of positive (negative) eigenvalues of iHΓ. The
topological charge of gapless state is the chirality sgn[⟨ψR|Γ|ψR⟩] = ±1, where |ψR⟩ is a right-
eigenstate satisfying H |ψR⟩ = E |ψR⟩ with ReE = 0.

From this extended Nielsen-Ninomiya theorem, if the zero-dimensional point-gapped topo-
logical invariant n takes a nontrivial value, iH ′ has a nontrivial net number of real line-gapless
modes with the chirality sgn[⟨ψR|σy|ψR⟩] = ±1.

7For detailed arguments about the topological duality H = iUF , see Chapter 3.
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Re𝐸

Im𝐸

𝑘𝑦

FIGURE D.2: The energy spectra of a minimal non-Hermitian Weyl model Eq. (D.2) under magnetic
field ϕ = 1/5 in z-direction for fixed kz = 0. One band encircled black is imaginary line-gapless
satisfying ImEn(k

0
x, ky, kz = 0) = 0 with ReEn(k

0
x, ky, kz = 0) > 0. Due to the difficulty of numerical

calculations, there are meaningless planes around ImE = −1.

If we add perturbation kzσy to iH ′(kx, ky), the real line-gapless modes have additional real
energy

∆E = ⟨ψR|kzσy|ψR⟩ = ±kz, (D.31)

from the first-order perturbation theory. We note that the energy takes the form of chiral modes,
i.e., the real line-gapless modes, of class A d = 1.

According to the extended Nielsen-Ninomiya theorem for class A d = 1 (Eq. (3.6)), we have
the relation w1 = (the number of +kz modes with Im E > 0)− (the number of−kz modes with
Im E > 0) for Eq. (D.2). Therefore, we have

w1 = (the number of + kz modes with ImE > 0)

− (the number of− kz modes with ImE < 0) (for Eq. (D.2)) (D.32)

= (the number of ⟨ψR|σy|ψR⟩ = +1 modes with ImE > 0)

− (the number of ⟨ψR|σy|ψR⟩ = −1 modes with ImE > 0 (for Eq. (D.17)) (D.33)
= n. (D.34)

We can numerically check n = ϕLxLy for ϕ = p/q < 23/81 with −102 < p, q < 102.
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Appendix E

Details in extrinsic quantum walks

E.1 The winding numbersw1[a], w1[b], w1[c], andw1[d] in class
CII 1D

In this section, we prove that the winding number w1[a] in Sec. 5.5 takes an even integer for
class CII in 1D under decomposed TRS and PHS in Eqs. (5.107) and (5.108). The following
argument also holds for w1[b] w1[c], and w1[d].

For this purpose, we take the basis where CS and PHS becomes

Γ =

(
1̂ 0

0 −1̂

)
, C =

(
σ2 0
0 −σ2

)
K. (E.1)

Then, PHS in Eq. (5.108) leads to the following constraints(
σ2a

∗(k)σ2 −σ2b∗(k)σ2
−σ2c∗(k)σ2 σ2d

∗(k)σ2

)
=

(
a(−k) b(−k)
c(−k) d(−k)

)
. (E.2)

When the system has a energy gap at ϵ = 0, one can show det[a(k)] ̸= 0 [38] and thus define
the winding number w1[a]. To see that w1[a] is an even integer, we first deform a(k) into a
unitary matrix [68, 77]. This deformation keeps the condition det[a(k)] ̸= 0, and so w1[a] does
not change. After the deformation, a(k) becomes diagonalizable. Because of the constraint
σ2a

∗(k)σ2 = a(−k) in Eq. (E.2) 1, any eigenstate of a(k) has a Kramers partner, and thus a(k)
has the form of

a(k) =
∑
n

[
λn(k) |ψn(k)⟩ ⟨ψn(k)|

+ λ∗n(−k)σ2 |ψ∗
n(−k)⟩ ⟨ψ∗

n(−k)|σ2
]
, (E.3)

1This constraint can be seen as TRS with T 2 = −1 for non-Hermitian Hamiltonians. In the periodic table in
Table. 1.3, we see the point-gap topological number in class AII 1D is 2Z. This indicates that w1[a(k)] takes only
even integers.
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where |ψn(k)⟩ is an eigenstate of a(k) with the eigenvalue λn(k). Then, we obtain

tr[a(k)†∂ka(k)] = ∂k log det[a(k)]

= ∂k log

[∏
n

λn(k)λ
∗
n(−k)

]

= ∂k

[∑
n

log λn(k) +
∑
n

log λ∗n(−k)

]
, (E.4)

which leads to

w1[a] =

∫ 2πi

0

dk

2π
tr[a(k)†∂ka(k)]

=

∫ 2πi

0

dk

2π
∂k

[∑
n

log λn(k) +
∑
n

log λ∗n(−k)

]

= 2

∫ 2πi

0

dk

2π
∂k
∑
n

log λn(k). (E.5)

As the integral ∫ 2πi

0

dk

2π
∂k
∑
n

log λn(k) (E.6)

takes an integer due to the periodicity of a(k) in k, w1[a] is an even integer.
The same argument also holds for w1[b], w1[c], and w1[d].

E.2 Proof of Eq. (5.129)
In this section, we prove the formula in Eq. (5.129) in Chapter 5. For a rigorous argument,
instead of the original quantum walk operator Û having L sites, we introduce N copies of Û
arranged in a line, ÛN . Whereas Û does not have translation symmetry in the presence of
disorder potentials, ÛN has translation invariance of L-sites translations. We also assume PBC
for ÛN . Below we see that the position displacement in one-cycle by ÛN equals the winding
number of Û(Φ):

L∑
x=1

∑
α

⟨x, α| Û †
N

x̂

L
ÛN |x, α⟩ −

L∑
x=1

∑
α

⟨x, α| x̂
L
|x, α⟩

=

∫ 2π

0

dΦ

2π
tr
[
Û †(Φ)i∂ΦÛ(Φ)

]
. (E.7)

The left hand side of the above equation defines P (T )−P , i.e., an position-averaged version of
Px(T )− Px. Equation (E.7) is the exact description of Eq. (5.129) in Chapter 5.

To show the above formula, we introduce a flux insertion to the N-copied systems

ÛN(Φ) = e−i(Φ/L)x̂ÛNe
i(Φ/L)x̂, (E.8)
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where Φ takes the discrete values of Φ = 2πp/N with integers p. For these values of Φ, e−i(Φ/L)x̂

has NL-periodicity for x̂ and thus ÛN is well-defined. We note that this form of flux insertion
is equivalent to the flux insertion by the uniform gauge potential Ax = Φ/L. Below, we assume
the large N limit, and we treat Φ as a continuous real number.

The flux inserted operator satisfies the Heisenberg equation

i∂ΦÛN(Φ) =

[
x̂

L
, ÛN

]
. (E.9)

Thus, we have

Û †
N(Φ)i∂ΦÛN(Φ) = Û †

N(Φ)
x̂

L
ÛN(Φ)−

x̂

L
, (E.10)

which leads to

L∑
x=1

∑
α

⟨x, α| Û †
N(Φ)i∂ΦÛN(Φ) |x, α⟩

=
L∑

x=1

∑
α

⟨x, α| Û †
N(Φ)

x̂

L
ÛN(Φ) |x, α⟩

−
L∑

x=1

∑
α

⟨x, α| x̂
L
|x, α⟩ . (E.11)

From the translation invariance for ÛN(Φ) under L-sites translations TL,

T †
L ÛN(Φ)TL = ÛN(Φ), (E.12)

the left hand side of Eq. (E.11) is rewritten as

L∑
x=1

∑
α

⟨x, α| Û †
N(Φ)i∂ΦÛN(Φ) |x, α⟩

=
1

N

L∑
x=1

N∑
n=1

∑
α

⟨x, α|
(
T †
L

)n
Û †
N(Φ)i∂ΦÛN(Φ) (TL)n |x, α⟩

=
1

N

NL∑
x=1

∑
α

⟨x, α| Û †
N(Φ)i∂ΦÛN(Φ) |x, α⟩

=
1

N
trN

[
Û †
N(Φ)i∂ΦÛN(Φ)

]
, (E.13)
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where trN is the trace over the Hilbert space for ÛN . On the other hand, the first term of the
right hand side of Eq. (E.11) becomes

L∑
x=1

∑
α

⟨x, α| Û †
N(Φ)

x̂

L
ÛN(Φ) |x, α⟩

=
L∑

x=1

∑
α

⟨x, α| e−i(Φ/L)x̂Û †
Ne

i(Φ/L)x̂ x̂

L
e−i(Φ/L)x̂

× ÛN(Φ)e
i(Φ/L)x̂ |x, α⟩

=
L∑

x=1

∑
α

⟨x, α| Û †
N

x̂

L
ÛN |x, α⟩ . (E.14)

Thus, Eq. (E.11) rewritten as

1

N

∫ 2π

0

dΦ

2π
trN

[
Û †
N(Φ)i∂ΦÛN(Φ)

]
=

L∑
x=1

∑
α

⟨x, α| Û †
N

x̂

L
ÛN |x, α⟩

−
L∑

x=1

∑
α

⟨x, α| x̂
L
|x, α⟩ . (E.15)

Finally, we have the relation that 2

1

N

∫ 2π

0

dΦ

2π
trN

[
Û †
N(Φ)i∂ΦÛN(Φ)

]
=

∫ 2π

0

dΦ

2π
tr
[
Û †(Φ)i∂ΦÛ(Φ)

]
, (E.16)

and thus we obtain Eq. (E.7).

E.3 Proof of Eq. (5.132)
The proof is almost the same as that of the formula in Eq. 5.116.

2Note that Eq. (E.16) can be easily shown forU(k) = e±ik. In general, any model can be continuously deformed
into a direct product of U(k) = e±ik and trivial models, and thus Eq. (E.16) holds.



E.3. Proof of Eq. (5.132) 135

The polarization at t = T becomes

Px(T )|y=1 =
∑
α

⟨x, y = 1, α| Û †x̂Û |x, y = 1, α⟩

=
∑
α

[
1√
Lx

∑
kx

eikxx ⟨kx|

]
⟨y = 1, α| Û †

[∑
x′

x′ |x′⟩ ⟨x′|

]

× Û

 1√
Lx

∑
k′x

e−ik′xx |k′x⟩

 |y = 1, α⟩

=
1

L2
x

∑
α,kx,k′x,x′

eikxx ⟨y = 1, α|U †(kx)e
−ikxx′

[−i∂k′xe
ik′xx

′
]

× U(k′x)e−ik′xx |y = 1, α⟩

=
1

Lx

∑
α,kx

eikxx ⟨y = 1, α|U †(kx)i∂kx [U(kx)e
−ikxx] |y = 1, α⟩

=
1

Lx

∑
α,kx

⟨y = 1, α|U †(kx)[i∂kxU(kx)] |y = 1, α⟩+
∑
α

x

=

∫ 2π

0

dkx
2π

try,α

[
P̂edgeU

†(kx)i∂kxU(kx)
]
+ Px|y=1, (E.17)

where we introduced the projection operator P̂edge = |y = 1⟩⟨y = 1|. Thus we obtain
Eq. (5.132).

As an example for the formula in Eq. (5.132), we consider a model with 2 sites in the y-
direction,

U(kx)

= e−ikx cos θ |y = 1⟩ ⟨y = 1| − e−ikx sin θ |y = 1⟩ ⟨y = 2|
+ sin θ |y = 2⟩ ⟨y = 1|+ cos θ |y = 2⟩ ⟨y = 2| . (E.18)

The model provides one-site displacement in the x-direction when a particle is located along
y = 1 after one-cycle time evolution. If the particle starts at y = 1, only the first term in the
right hand side of Eq. (E.18) affects the dynamics. Thus, the particle is expected to move in the
x-direction along y = 1 at rate cos2 θ.

Equation (5.132) reproduces the same result. From direct calculations, we have

P̂edgeU
†(kx) = eikx cos θ |y = 1⟩ ⟨y = 1|

+ sin θ |y = 1⟩ ⟨y = 2| ,
i∂kxU(kx) = e−ikx cos θ |y = 1⟩ ⟨y = 1|

− e−ikx sin θ |y = 1⟩ ⟨y = 2| , (E.19)
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and thus the projected winding number becomes

wP [U(kx)] =

∫ 2π

0

dkx
2π

try,α

[
P̂edgeU

†(kx)i∂kxU(kx)
]

=

∫ 2π

0

dkx
2π

try,α
[
cos2 θ |y = 1⟩ ⟨y = 1|

]
= cos2 θ. (E.20)

E.4 Robustness of extrinsic chiral edge modes against ran-
dom phase

In this section, we numerically check that the extrinsic edge mode in Eq. (5.113) is also robust
against random phases along the edge. For this purpose, we consider U ′′

A as follows,

U ′′
A = A′ · e−iHAT ,

A′ =
Lx∑
x=1

e−iϕx |x+ 1⟩ ⟨x| ⊗ |y = 1⟩ ⟨y = 1|

+
Lx∑
x=1

Ly∑
y=2

|x⟩ ⟨x| ⊗ |y⟩ ⟨y| , (E.21)

where ϕx is uniformly distributed in the range [0, 2π]. The resultant dynamics of a wave packet
starting at an edge, the DOS histogram, and a edge mode distribution are shown in Fig. E.1.
We can see the unidirectional wave packet motion along y = 1 even in this case. Actually, this
behavior is ensured from the formulae Eqs. (5.129) and (5.132).

E.5 Diffusive behavior of the time-dependent Anderson model
Here we see diffusive behaviors of the time-dependent Anderson models in Eqs. (5.134) and
(5.135). For this purpose, we numerically calculate ρ(y, t) and ⟨y2⟩ defined by

ρ(y, t) =

∫
ρ(x, y, t)dx,

⟨y2⟩ =
∫
y2ρ(x, y, t)dxdy, (E.22)

where ρ(x, y, t) = |ψ(x, y, t)|2 is the density distribution. If ρ(x, y) obeys the diffusion equation

∂ρ

∂t
=
D

2

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
, (E.23)

with a diffusion constant D, then the solution takes the form of the Gaussian distribution:

ρ(x, y, t) =
1

2πσ2
t

exp

[
−x

2 + y2

2σ2
t

]
, σt =

√
Dt, (E.24)
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FIGURE E.1: (a) A wave packet Dynamics, (b) DOS and (c) a delocalized edge mode of the decorated
Anderson model with the disordered extrinsic edge mode in Eq. (E.21). The parameters are J = 0.2,
W = 1, Lx = 25, Ly = 15 and T = 1. The color scales are different between (a) and (c). The initial
state of the wave packet is the localized state at an edge |x = 10, y = 1⟩. We take the PBC (OBC) in the
x-(y-)direction. Even in the presence of random phases on the boundary unitary operator, the anomalous
edge state survives, and enables a unidirectional wave packet motion.

and thus we have

ρ(y, t) =
1√
2πσ2

t

exp

[
− y2

2σ2
t

]
, ⟨y2⟩ = Dt. (E.25)

We obtain the numerical results of ρ(y, t = 100T ) and ⟨y2⟩ for the time-dependent Anderson
models in Eqs. (5.134) and (5.135) in Figs. E.2 and E.3, respectively. These numerical results
show Gaussian tails for ρ(y, t = 100T ) and nearly linear behaviors of ⟨y2⟩ in time t, which
are consistent with the diffusive behaviors in Eq. (E.25). Similar results have been reported for
similar models in Refs. [178–181].
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FIGURE E.2: Density distribution ρ(y) = ρ(y, t = 100T ) and the mean squared distance ⟨y2⟩ of the
time-dependent Anderson model in Eq. (5.134). The system lengths are Lx = 40 and Ly = 25. The
parameters are J = 0.2, W = 1, and T = 1. The initial state of the wave packet is the edge localized one
|x = 20, y = 1⟩. The density distribution ρ(y) exhibits a Gaussian tail, and the mean squared distance
⟨y2⟩ shows a nearly linear behavior in time.
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FIGURE E.3: Density distribution ρ(y) = ρ(y, t = 100T ) and the mean squared distance ⟨y2⟩ of the
time-dependent Anderson model with the extrinsic edge mode in Eq. (5.135). System lengths areLx = 40
and Ly = 25. The parameters are J = 0.2, W = 1, and T = 1. The initial state of the wave packet is the
localized state at an boundary |x = 20, y = 1⟩. Even in this case, we see the density distribution ρ(y, t)
exhibits a Gaussian tail, and the mean squared distance ⟨y2⟩ shows a nearly linear behavior in time.
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