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Abstract
Aim: To develop and validate a model for the early prediction of long-term neurological outcome in patients with non-traumatic out-of-hospital car-

diac arrest (OHCA).

Methods: We analysed multicentre OHCA registry data of adult patients with non-traumatic OHCA who experienced return of spontaneous circu-

lation (ROSC) and had been admitted to the intensive care unit between 2013 and 2017. We allocated 1329 (2013–2015) and 1025 patients (2016–

2017) to the derivation and validation sets, respectively. The primary outcome was the dichotomized cerebral performance category (CPC) at

90 days, defined as good (CPC 1–2) or poor (CPC 3–5). We developed 2 models: model 1 included variables without laboratory data, and model

2 included variables with laboratory data available immediately after ROSC. Logistic regression with least absolute shrinkage and selection operator

regularization was employed for model development. Measures of discrimination, accuracy, and calibration (C-statistics, Brier score, calibration plot,

and net benefit) were assessed in the validation set.

Results: The C-statistic (95% confidence intervals) of models 1 and 2 in the validation set was 0.947 (0.930–0.964) and 0.950 (0.934–0.966),

respectively. The Brier score of models 1 and 2 in the validation set was 0.0622 and 0.0606, respectively. The calibration plot showed that both

models were well-calibrated to the observed outcome. Decision curve analysis indicated that model 2 was similar to model 1.

Conclusion: The prediction tool containing detailed in-hospital information showed good performance for predicting neurological outcome at

90 days immediately after ROSC in patients with OHCA.

Keywords: Out-of-hospital cardiac arrest, Prognostication, Prediction, Cerebral performance category, Least absolute shrinkage and

selection operator
Introduction

Out-of-hospital cardiac arrest (OHCA) represents a serious public

health concern worldwide.1,2 The importance of in-hospital post-

resuscitation after the return of spontaneous circulation (ROSC)

was recently highlighted to improve patient outcomes after OHCA.3,4

However, in-hospital treatment after ROSC requires considerable

medical/human resources, especially during the initial critical phase.

The neurological outcome remains poor after OHCA, even in

patients with successful ROSC, despite improvements in advanced

life-support measures and efforts to improve the quality of post-

resuscitation care.5–7 Accurate assessment and identification of

patients who are likely to survive with favourable neurological out-

comes after rapidly undergoing advanced time-sensitive interven-

tions for post-cardiac syndrome (PCAS) are vital but complex and

challenging for clinicians.

Various prediction models have been suggested for patients who

achieved ROSC after OHCA.8–11 However, few models have been

rigorously validated, and their discrimination ability in external valida-

tion was not high.12 The utility of previous models for predicting an

individual’s long-term neurological outcome after OHCA has not

been evaluated.

Although machine learning models have been developed recently

to predict outcomes of OHCA,13–16 most cannot be used to deter-

mine whether critical interventions should be performed or not in

patients after ROSC because they include patient populations with

poor prognoses, such as patients without ROSC or those with trau-

matic OHCA. Furthermore, these models did not utilise detailed in-

hospital information available immediately after ROSC as predictors.

An accurate predictive model that can estimate the outcome after

OHCA in the early stage of resuscitation based on objective param-

eters available at the bedside will greatly aid physicians with the clin-

ical decision-making process.

The least absolute shrinkage and selection operator (lasso)

penalisation is one regularization method to prevent over-fitting

and improve the prediction accuracy of the final model.17,18 The

two most popular regularization techniques are ridge regression

and lasso regression. Unlike ridge regression, lasso can effectively

reduce predictors in the model. We applied lasso regression to a
large-scale Japanese prospective OHCA registry. We aimed to

develop and validate a prediction model for adult patients with OHCA

that could be used to predict neurological outcomes immediately

after achieving ROSC using information available at the patient’s

bedside.

Methods

This study complied with the Transparent Reporting of a Multivari-

able Prediction Model for Individual Prognosis or Diagnosis state-

ment for reporting methods and results.19 The ethics committee of

Kyoto University approved this study, which waived the need for

informed consent because its retrospective nature posed minimal

risk to the patients (Approval ID: R1045).

Study design and source of data

This study was a secondary analysis of data contained within the

Comprehensive Registry of In-Hospital Intensive Care for OHCA

Survival (CRITICAL) study, a multicentre prospective repository of

pre-hospitalisation and in-hospital data concerning OHCA treat-

ments, whose details have been reported and described previously

(Supplementary Appendix 1).20

Study population

This study included adult patients aged � 18 years with OHCA who

achieved ROSC and had been admitted to the intensive care unit

(ICU) during the study period from January 1, 2013 to December

31, 2017. We defined ROSC as continuous palpable circulation with

a self-beat for > 30 s.21 The exclusion criteria comprised the follow-

ing: patients with traumatic cardiac arrest; patients whose first docu-

mented rhythm was unknown, patients whose collapses were

witnessed by emergency medical services (EMS) personnel,

patients with OHCA for whom cardiopulmonary resuscitation was

not performed by the physician upon hospital arrival, and patients

lacking prehospital data. The data of patients admitted during the ini-

tial 3 years (2013–2015) were used for model development (deriva-

tion set), and data on those admitted during the following 2 years

(2016–2017) were used for model validation (validation set). The val-

idation set was not involved in the development of this model.
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Outcomes

The primary outcome of this study was the neurological outcome at

90 days. The physician responsible for treating the patient evaluated

the neurological outcome using the cerebral performance category

(CPC) scale (category 1, good cerebral performance; category 2,

moderate cerebral disability; category 3, severe cerebral disability;

category 4, coma or vegetative state; category 5, death/brain

death).22 CPC 1–2 denoted a good outcome and CPC 3–5 denoted

a poor outcome.

Predictors of outcome

Potential variables included in the CRITICAL database that were

measurable and available immediately after ROSC were included

as candidate predictors, based on previous studies and expert opin-

ion.23–39 We developed two prediction models using different sets of

variables: model 1 included demographics, pre-hospitalisation and

in-hospital information at the time of ROSC, except for laboratory

data, and model 2 included all variables that contained the laboratory

data available within 3 h of ROSC. The best level of consciousness

to ICU admission was determined using the Glasgow Coma Scale

motor score. All candidate variables were chosen from among the

parameters obtained in the hours after ROSC (Supplementary

Table 1).

Data processing

The no-flow time could not be calculated in patients with unwitnessed

OHCA because the time of collapse was unavailable. Thus, we

merged the no-flow time and unwitnessed patients into one categor-

ical variable. The categories were divided into no-flow time (mins; 0–

4, 5–9, 10–) and unwitnessed patients. A linear relationship with the

outcome was found to be a good approximation for the continuous

predictors, except for low-flow time, after the assessment of nonlin-

earity using restricted cubic splines.40 Since the low-flow time was

log-transformed and exhibited a linear relationship with the outcome,

the log-transformed value was treated as a continuous variable. Con-

tinuous variables were standardised, and the categorical variables

were transformed into dummy variables.

Sample size calculation

Overall, 1317 participants were needed to determine the expected R-

squared value of 0.15 with an estimated prevalence of 15% for a

good outcome using the 24 potential predictor parameters, as per

Riley et al.’s criteria.41 Thus, a sample size of 1329 patients with

OHCA was sufficient to develop the models of interest.

Missing values

We used nonparametric missing value imputation based on the

“missForest” algorithm with the random forest method.42 A random

forest can generate single point estimates accurately, using boot-

strap aggregation of multiple regression trees to reduce the risk of

overfitting and combines the estimates from several trees. Its perfor-

mance is superior to other methods.43,44 The main outcome values

(i.e., CPC at 90 days) were missing for 109 (4.6%) patients due to

loss to follow-up, whereas CPC at 30 days was available for these

patients. Therefore, we imputed the missing 90-day CPC data in

109 patients predictively with the 30-day CPC and all the predictors

using missForest, so as not to compromise the prediction of our out-

come measure.45 The missing predictors were also imputed using all

the predictors (including time of sampling and laboratory data after 3

hours of ROSC) and outcomes.
Statistical analysis

Statistical analysis was used for the demographic findings and out-

comes. Continuous variables were presented as the median with

upper and lower quartiles (interquartile range [IQR]). Categorical

variables were presented as numbers and percentages.

All statistical analyses were conducted using R (The R Founda-

tion for Statistical Computing, version 4.0.3).46 The level of signifi-

cance was set at a two-sided P-value < 0.05.

Model development and internal validation

The model development strategy to predict the binary outcome

entailed logistic regression with lasso. Lasso regression adds the

L1 norm of coefficients as the penalty term to the loss function, thus

adding constraints to the coefficients, which effectively selects impor-

tant predictors and helps reduce the dimensions of the prediction

model, thereby minimizing the potential overfitting.17,18,47 Lasso reg-

ularization calculates the optimal regularization parameter (lambda)

that computes the minimal misclassification error rate to penalise

large coefficients resulting from small sample sizes. Herein, we used

10-fold cross-validation to find lambda using R package’s ‘glm-

net.’47,48 Furthermore, the internal validity of the constructed model

was assessed using bootstrapping analysis (resampling the model

1000 times). We evaluated the confidence intervals (CIs) of the pre-

diction accuracy measures for the prediction models based on the

optimism correction methods (i.e., Harrell’s bootstrapping bias cor-

rection) that were used to compute the 95% CI for the C-statistic

of the model in the derivation set using R package’s ‘preboot.’49

Assessment of model performance

External validation was performed through applying the constructed

model to the validation set to assess the predictive performance. C-

statistics with the 95% CI were used for the assessment of the dis-

criminatory ability. Additionally, we calculated a Brier score for each

model to measure model accuracy.50 This score was defined as the

average squared difference between predicted probabilities and

observed outcomes, with lower values indicating greater predictive

accuracy. Furthermore, the calibration was investigated with a cali-

bration plot through plotting the predicted probability and observed

frequency of poor outcome across vigintiles (the values that divide

the distribution into twenty groups of equal frequency) of the pre-

dicted risk in the validation set.51 Moreover, we calculated the net-

benefit values and depicted the decision curves.52 Decision curve

analysis is a plot of the “net-benefit” against “threshold probabili-

ties”, assessing the clinical usefulness of different models at appro-

priate thresholds for clinical use. Subsequently, we compared the

performance of our model with models 1 and 2 using DeLong

et al.’s method for calculating the differences in the C-statistics.53

Results

Patient characteristics

A total of 11,924 patients with OHCA were registered during the

study period. Finally, 2,354 patients admitted to the ICU were

included in our analyses, and data imputation was performed for

the missing values. Fig. 1 depicts the study’s flow diagram. The

derivation and validation sets included 1329 and 1025 eligible

patients, respectively (median age, 72 and 73 years; men, 887

(66.7%) and 681 (66.4%), respectively). The aetiology of cardiac

arrest was cardiogenic [derivation set, 755 (56.8%); validation set,



Fig. 1 – Study flowchart. OHCA indicates out-of-hospital cardiac arrest; EMS, emergency medical services; ROSC,

return of spontaneous circulation; and CPC, cerebral performance category.
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588 (57.4%)] in > 50% of the patients and their collapse was wit-

nessed by a bystander [derivation set, 888 (63.3%); validation set,

681 (66.1%)]. The percentage of patients who were dead or alive

at day 90 with an unfavourable neurological outcome was 83.1%

(1105) in the derivation set and 84.5% (867) in the validation set.

The characteristics of patients in both data sets and patients with

missing variables are presented in Table 1 and Supplementary

Table 2, respectively.

Predictor selection, model development, and internal

validation

In models 1 and 2, 12 predictor variables (17 parameters) and 19

predictor variables (24 parameters) were entered into the variable

selection process, respectively. After lasso regression selection with

the optimal lambda (Supplementary Fig. 1), 10 predictor variables

(12 parameters) for model 1 and 15 predictor variables (17 parame-

ters) for model 2 retained their significance as predictors of poor out-

come (Table 2). The C-statistic (95% CI) in the derivation set was

0.946 (0.933–0.960) in model 1 and 0.957 (0.945–0.969) in model

2. The bias-corrected C statistic (95% CI) (Harrell’s bias correction)

obtained using bootstrapping was 0.939 (0.930–0.955) and 0.950

(0.942–0.965) in models 1 and 2, respectively. The coefficients

acquired via the lasso regression can be used to calculate a patient’s

risk score through multiplying the patient’s values by the coefficients

and summing the products. The risk score can then be translated to

a predicted probability of a poor outcome with the following formula:

Prob = exp (score)/(1 + exp [score]). A simple calculator to calculate

the risk probabilities for specific patients can be accessed here:

https://pcas-prediction.shinyapps.io/pcas_lasso_90d/

Model performance

For discrimination, the C-statistic (95% CI) of model 1 in the valida-

tion set was 0.947 (0.930–0.964, Fig. 2). No significant difference
was observed between the C-statistic (95% CI) of model 2 and that

of model 1 (0.950 [0.934–0.966]; DeLong test: p = 0.344). The aver-

age Brier score of models 1 and 2 in the validation set was 0.0622

and 0.0606, respectively. For the visual assessment of the calibra-

tion plot (Fig. 3) and the detailed values (predicted probability and

observed frequency) by risk vigintile (Supplementary Table 3) in

the validation set, both models were well-calibrated to the observed

overall range of the predicted poor outcome, although both models

partially overestimated the low range of the predicted outcome.

The prognostic accuracies of our model in the validation set are

shown in Supplementary Tables 4 and 5. The decision curve analy-

sis illustrated in Fig. 4 indicated that the net benefit of model 2 was

equal to that of model 1 for most of the threshold probabilities in

the validation set.
Discussion

We developed and validated a tool for predicting the long-term neu-

rological outcome of adult patients with non-traumatic cardiac arrest

at an early stage after ROSC using data from a large-scale Japanese

prospective OHCA registry. The lasso regression model, based on

the predictors available during ROSC, showed excellent ability for

predicting outcomes during internal validation training and perfor-

mance on the validation set. Model 2 with laboratory data available

immediately after ROSC performed similarly to the model perfor-

mance of model 1 including no-flow time instead of laboratory data.

The web-based application can be used by clinicians to estimate an

individual’s neurological outcome.

This study has some strengths over previous studies. First, we

considered the neurological outcome at 90 days as the longer-term

outcome by recent guidelines that recommend

reassessment � 3 months after the event.3,54,55 Most prediction

https://pcas-prediction.shinyapps.io/pcas_lasso_90d/


Table 1 – Patient characteristics.

Deriviation set Validation set

Favorable outcome at 90 days Unfavorable outcome at 90 days Favorable outcome at 90 days Unfavorable outcome at 90 days

(n = 224) (n = 1105) (n = 158) (n = 867)

Patient information

Age, median [IQR] 62 [49, 71] 73 [64, 82] 61 [50, 72] 74 [65, 83]

Sex, male, n (%) 182 (81.2) 705 (63.8) 118 (74.7) 563 (64.9)

Cardiac etiology of arrest, n (%) 200 (89.3) 555 (50.2) 143 (90.5) 445 (51.3)

Initial rhythm at the scene, n (%)

VF /pVT 178 (79.5) 216 (19.5) 117 (74.1) 159 (18.3)

PEA 32 (14.3) 425 (38.5) 32 (20.3) 311 (35.9)

Asystole 14 (6.2) 464 (42.0) 9 (5.7) 396 (45.7)

Bystander CPR, n (%) 106 (47.3) 426 (38.6) 94 (59.5) 421 (48.6)

Bystander automated electrical defibrillation use, n (%) 8 (3.6) 15 (1.4) 26 (16.5) 13 (1.5)

Shock during cardiac arrest, n (%) 185 (82.6) 311 (28.1) 122 (77.2) 227 (26.2)

Administration of adrenaline during cardiac arrest, n (%) 67 (29.9) 963 (87.1) 60 (38.0) 780 (90.0)

Advanced airway management during cardiac arrest, n (%) 183 (81.7) 956 (86.5) 126 (79.7) 750 (86.5)

Initial rhythm on hospital arrival, n (%)

VF/pVT 51 (22.8) 84 (7.6) 40 (25.3) 70 (8.1)

PEA 12 (5.4) 340 (30.8) 12 (7.6) 281 (32.4)

Asystole 5 (2.2) 454 (41.1) 5 (3.2) 345 (39.8)

ROSC 156 (69.6) 227 (20.5) 100 (63.3) 169 (19.5)

Glasgow Coma Scale motor score < 2, n (%) 171 (76.3) 1083 (98.0) 127 (80.4) 843 (97.2)

No witnessed arrest, n (%) 50 (22.3) 391 (35.4) 26 (16.5) 318 (36.7)

No flow time (Collapse - CPR)a, min (median [IQR]) 5 [2,6] 6 [3,8] 4 [1,7] 6 [3,8]

0–4 min 91 (40.6) 285 (25.8) 69 (43.7) 222 (25.6)

5–9 min 62 (27.7) 251 (22.7) 46 (29.1) 160 (18.5)

10- min 21 (9.4) 178 (16.1) 17 (10.8) 167 (19.3)

Low flow time, min (median [IQR]) 12 [7,20] 32 [22,42] 13 [9,24] 33 [22,45]

Extracorporeal membrane oxygenation, n (%) 37 (16.5) 135 (12.2) 29 (18.4) 127 (14.6)

Coronary angiography, n (%) 167 (74.6) 221 (20.0) 113 (71.5) 181 (20.9)

Percutaneous coronary intervention, n (%) 74 (33.0) 102 (9.2) 56 (35.4) 87 (10.0)

Target temperature management, n (%) 142 (63.4) 240 (21.7) 94 (59.5) 150 (17.3)

Laboratory data

Albumin, g/dL (median [IQR]) 3.7 [3.3, 4.0] 3.0 [2.7, 3.4] 3.7 [3.3, 4.0] 3.0 [2.6, 3.3]

Creatinine, mg/dL (median [IQR]) 1.07 [0.90, 1.20] 1.10 [0.90, 1.58] 1.06 [0.90, 1.20] 1.12 [0.88, 1.47]

Potassium, mEq/L (median [IQR]) 3.8 [3.4, 4.3] 4.7 [3.9, 5.8] 3.70 [3.3, 4.3] 4.6 [3.9, 5.6]

Glucose, mg/dL (median [IQR]) 227 [174, 300] 251 [174, 326] 250 [202, 298] 260 [184, 327]

pH (median [IQR]) 7.27 [7.17, 7.33] 6.99 [6.87, 7.15] 7.24 [7.11, 7.32] 6.98 [6.86, 7.13]

pCO2, mmHg (median [IQR]) 41.2 [33.7, 48.6] 64.5 [46.7, 86.1] 39.9 [32.8, 48.7] 64.2 [46.9, 84.4]

Lactate, mEq/L (median [IQR]) 7.5 [4.8, 9.9] 12.2 [9.0, 15.3] 8.4 [6.4, 11.6] 12.1 [9.4, 15.1]

All variables are shown with their values after imputation.

IQR, Interquartile range; VF, ventricular fibrillation; pVT, pulseless ventricular tachycardia; PEA, pulseless electrical activity; ROSC, return of spontaneous

circulation;

CPR, cardiopulmonary resuscitation; EMS, emergency medical services.
a No flow time was obtained only for patients with witnessed OHCA.
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models for OHCA present little information regarding the long-term

neurological outcome. The ultimate goal of resuscitation after OHCA

should be neurologically intact survival and further neurological

recovery can occur after hospital discharge. Moreover, the CRITI-

CAL repository covers most (15 of 16) critical care centres with

excellent EMS in Osaka Prefecture, Japan, where emergency med-

icine and critical care are well developed and termination of resusci-

tation is rare, and preferential treatment is provided by physicians

and EMS personnel for a long duration for most OHCA cases.7,20

Goldberger et al. reported that efforts to increase the duration of

resuscitation could improve survival in some populations,56 but the

duration of resuscitation was generally too short to improve survival.

This model that predicts long-term neurological prognosis could pro-

vide valuable information for devising best practices to improve out-

comes after OHCA.

Second, we applied lasso regression strategies to the prediction

process. Most previous models have used conventional logistic

regression,8,9,11 reducing the number of predictive steps; such as

stepwise selection or univariable screening, which is problematic

due to the instability of selection and biased estimation.47,56 Lasso

regression can eliminate predictors through shrinking their coeffi-
cients and alleviate the problem of model overfitting.18,47 An overfit-

ted model typically overestimates the probability of an event in high-

risk patients.47 Overestimation of poor neurological prognosis of

OHCA could lead to inappropriate withdrawal of life-sustaining ther-

apies (WLST), which must be avoided in patients with a chance of

recovery. In our prediction model, overestimation at the high pre-

dicted poor outcome was rarely observed in the validation set.

Although our model alone cannot determine WLST, it may be one

more tool available to reduce inappropriate WLST in the early stage.

Guidelines recommend delaying neurological prognostication after

cardiac arrest for several days following ROSC.3,54,57 Complemen-

tary prognostic information collected over time; such as the cause

of cardiac arrest, neurological findings, and imaging studies, should

be added to our application to provide a basis for WLST.

Third, we suggested the importance of detailed in-hospital infor-

mation, including initial rhythm on hospital arrival, to identify rhythm

conversion, and laboratory data at the point of ROSC as predictors.

Despite the early timing, the discriminatory ability of our model was

excellent. Previous machine learning techniques for OHCA included

information about treatment (i.e., extracorporeal membrane oxy-

genation, target temperature management, and percutaneous coro-



Table 2 – LASSO regression coefficients for poor neurological outcome at 90 days.

Variables Model1 Model2

(Intercept) �5.2892 11.0535

Age 0.0421 0.0419

Male 0 0

Initial rhythm at the scene (Reference: VF/pVT)

PEA 0.6420 0.2733

Asystole 0.7653 0.3780

Bystander CPR �0.0478 �0.1027

Bystander automated electrical defibrillation use 0 0

Shock during cardiac arrest �1.2712 �1.1993

Administration of adrenaline during cardiac arrest 1.4157 1.1486

Advanced airway management during cardiac arrest 0.5051 0.6124

In-hospital first documented cardiac rhythm (Reference: VF/pVT)

PEA 1.0990 1.0801

Asystole 1.7880 1.3109

ROSC 0 0

Glasgow Coma Scale motor score < 2 (Reference: score � 2) 1.1884 0.8253

Witness / No flow time (Reference: No flow time < 5 min)

5–9 min 0 0

�10 min 0.1727 0

No witness 0 0

Low flow time (Log-transformed) 0.5450 0.4319

Albumin - �0.8320

Creatinine - 0

Potassium - 0.0723

Glucose - 0.0005

pH - �1.8962

pCO2 - 0.0059

Lactate - 0.0241

VF, ventricular fibrillation; pVT, pulseless ventricular tachycardia; PEA, pulseless electrical activity; CPR, cardiopulmonary resuscitation; EMS, emergency medical

services; ROSC, return of spontaneous circulation.

Fig. 2 – Receiver operating characteristic curves in

validation set.

Fig. 3 – Calibration plot of the predicted probability

(vigintiles) versus the observed frequency in validation

set. The x-axis and the y-axis represents predicted

probability, and observed frequency in validation

cohort, respectively.
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nary intervention) for PCAS,15 but these variables cannot be

included in a model intended to assist decision-making at the point

of ROSC as this information would be unavailable while performing

the prediction. Moreover, we showed that the model performance

that included laboratory data was as good as the model including
no-flow time instead of laboratory data. While some pre-hospital

information such as time of collapse is unreliable,58 laboratory data

are quickly and objectively available at the hospital. The addition of



Fig. 4 – Decision curve analysis in validation set. The y-

axis represents the net benefit. The red dot line and the

black dot line represents model 1 and model 2,

respectively. The grey curved line represents the

clinical benefit conferred by assuming all patients will

perform intensive care (All treatment strategies). The

black flat line represents the clinical benefit conferred

by assuming all patients will perform no intensive

treatment. The x-axis represents the threshold

probability, which is where the expected benefit of

treatment is equal to the expected benefit of avoiding

treatment. The vertical distance from each model

represents the net clinical benefit conferred by

algorithms at varying risk thresholds.
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laboratory data may contribute to better prediction and decision-

making through reducing ambiguous predictors from the model.

Clinicians have to perform risk stratification during the initial stage

of resuscitation based on readily available parameters to identify

patients who are likely to benefit from expensive and labour-

intensive life-sustaining therapeutic options. The decision-making

process for the allocation of these resources remains a complex

challenge for physicians. A web-based application with the variables

available at the patient’s bedside can interactively visualize the pos-

sibility of neurological recovery in real-time.

Limitations

This study had some limitations. First, interpretation of potential pre-

dictors by the medical staff in charge of the patient might have influ-

enced the decision-making process for the resuscitation strategies.

Their interpretation could have intrinsically compromised the out-

come in patients with poor prognostic factors, akin to a self-fulfilling

prophecy. Although the medical staff were blinded to the study’s

objective and the patients in our model admitted to the ICU rarely

reached the state of WLST, our study may have overestimated the

model’s discriminatory ability. Second, the registry did not contain

complete information on comorbidities or setting factors that could

have helped outcome prediction. The inclusion of these currently
unavailable data may improve the accuracy of the models if they

are obtained immediately after ROSC. Third, some predictor vari-

ables and outcomes were missing. We performed an algorithm to

impute the missing values using missForest. However, missForest

may lead to underperformance with a substantial amount of missing

data.59 In this study, missing data, especially missing laboratory

data, may have led to a biased assessment. Finally, there was a lack

of generalisability of the model owing to insufficient external valida-

tion. This model was validated using bootstrapping and the validation

set. However, the predictive performance for new cases was not fully

assessed because the derivation and validation sets were derived

from the same registry. All data for the development and validation

sets were collected from a Japanese urban area, which limited the

generalisability of our model to other regions. Studies validating

our model using a registry obtained from another area should be con-

ducted to confirm the model’s generalisability.

Conclusions

We developed and validated a tool to predict the long-term neurolog-

ical outcome immediately after ROSC in patients with OHCA based

on lasso regression. This application calculates the probable neuro-

logical outcome at 90 days and could help identify the need for crit-

ical interventions.

Source of funding

This study was supported by a scientific research grant provided by

the Ministry of Education, Culture, Sports, Science and Technology

of Japan (16K09034 and 19K09393).

CRediT authorship contribution statement

Norihiro Nishioka: Conceptualization, Methodology, Software,

Resources, Data curation, Writing – original draft, Writing – review

& editing, Visualization. Daisuke Kobayashi: Methodology,

Resources, Writing – review & editing. Takeyuki Kiguchi: Concep-

tualization, Methodology, Writing – review & editing, Visualization.

Taro Irisawa: Investigation, Resources, Project administration.

Tomoki Yamada: Investigation, Resources, Supervision. Kazuhisa

Yoshiya: Investigation, Resources, Project administration.

Changhwi Park: Investigation, Resources. Tetsuro Nishimura:

Investigation, Resources, Writing – review & editing. Takuya Ishibe:

Investigation, Resources. Yoshiki Yagi: Investigation, Resources.

Sung-Ho Kim: Investigation, Resources. Yasuyuki Hayashi: Inves-

tigation, Resources. Taku Sogabe: Investigation, Resources.

Takaya Morooka: Investigation, Resources. Haruko Sakamoto:

Investigation, Resources. Keitaro Suzuki: Investigation, Resources.

Fumiko Nakamura: Investigation, Resources. Tasuku Matsuyama:

Formal analysis, Data curation. Yohei Okada: Formal analysis, Data

curation. Satoshi Matsui: Formal analysis, Data curation. Satoshi

Yoshimura: Formal analysis, Data curation. Shunsuke Kimata:

Formal analysis, Data curation. Shunsuke Kawai: Formal analysis,

Data curation. Yuto Makino: Formal analysis, Data curation. Tet-

suhisa Kitamura: Validation, Data curation, Writing – review & edit-

ing, Funding acquisition. Taku Iwami: Conceptualization, Writing –

review & editing, Supervision, Funding acquisition.



R E S U S C I T A T I O N 1 6 8 ( 2 0 2 1 ) 1 4 2 –1 5 0 149
Declaration of Competing Interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-

ence the work reported in this paper.

Acknowledgements

We wish to thank Dr. Koichiro Gibo, Okinawa Chubu Hospital, for

advice on statistical analysis. We are also deeply indebted to all

members of the CRITICAL study group for their contribution. Finally,

we are also deeply grateful to all the EMS personnel for collecting

Utstein data and Ms. Ikuko Nakamura for supporting the CRITICAL

study.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.resuscitation.2021.09.027.
R E F E R E N C E S
1. Merchant RM, Topjian AA, Panchal AR, et al. Part 1: Executive

summary: 2020 American heart association guidelines for

cardiopulmonary resuscitation and emergency cardiovascular care.

Circulation 2020;142. https://doi.org/10.1161/

CIR.0000000000000918.

2. Gräsner J-T, Herlitz J, Tjelmeland IBM, et al. European resuscitation

council guidelines 2021: Epidemiology of cardiac arrest in Europe.

Resuscitation 2021;161:61–79.
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