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Automated evaluation of retinal 
pigment epithelium disease area 
in eyes with age‑related macular 
degeneration
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The retinal pigment epithelium (RPE) is essential for the survival and function of retinal photoreceptor 
cells. RPE dysfunction causes various retinal diseases including age‑related macular degeneration 
(AMD). Clinical studies on ES/iPS cell‑derived RPE transplantation for RPE dysfunction‑triggered 
diseases are currently underway. Quantification of the diseased RPE area is important to evaluate 
disease progression or the therapeutic effect of RPE transplantation. However, there are no standard 
protocols. To address this issue, we developed a 2‑step software that enables objective and efficient 
quantification of RPE‑disease area changes by analyzing the early‑phase hyperfluorescent area in 
fluorescein angiography (FA) images. We extracted the Abnormal region. This extraction was based 
on deep learning‑based discrimination. We scored the binarized extracted area using an automated 
program. Our program’s performance for the same eye from the serial image captures was within 
3.1 ± 7.8% error. In progressive AMD, the trend was consistent with human assessment, even when 
FA images from two different visits were compared. This method was applicable to quantifying RPE‑
disease area changes over time, evaluating iPSC‑RPE transplantation images, and a disease other 
than AMD. Our program may contribute to the assessment of the clinical course of RPE‑disease areas 
in routine clinics and reduce the workload of researchers.

Retinal pigment epithelial (RPE) cells are essential for the function and maintenance of photoreceptor  cells1. 
Dysfunction of RPE cells often leads to visual impairment which includes age-related macular degeneration 
(AMD),  choroideremia2, and retinitis pigmentosa with a mutation in retinoid cycle-related genes such as RPE653, 
LRAT , BEST1, or phagocytosis genes such as MERTK4. AMD is the leading cause of vision loss among the older 
population in advanced countries. AMD is subdivided into two types: neovascular and non-neovascular, typically 
with geographic atrophy (GA). For neovascular AMD, an intravitreal injection of anti-VEGF agents, photody-
namic therapy, or a combination of both are currently the major treatment options for suppressing choroidal 
neovascularization (CNV)5,6. However, anti-VEGF therapy often requires continual injections over the years due 
to frequent recurrences of CNV. A patient’s vision cannot be easily maintained in the real  world7. Furthermore, 
even when the disease-causing CNV is in remission with treatment, persistent RPE atrophy often affects post-
treatment vision. Therefore, compensation for impaired RPE by transplantation is an ideal therapeutic approach 
for both types of AMD, in addition to surgical removal of CNV in some eyes with neovascular  AMD8–11.

Fundus autofluorescence (FAF) examination and fluorescein angiography (FA) are routinely conducted clini-
cal examinations to evaluate the area of diseased RPE. FAF can detect the distribution of lipofuscin (a metabolite 
from the digestion of outer photoreceptor segments by RPE cells). The absence of autofluorescence indicates 
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the loss of either RPE or  photoreceptors12. In FA, intravenously injected sodium fluorescein dye binds to serum 
albumin and visualizes blood vessels and vascular lesions as hyperfluorescent regions. Findings are termed 
pooling, leakage, or staining according to the pathological features of the disease  site13. The "window defect" is 
another characteristic finding on FA. It is named for a choroidal background fluorescence that becomes evident 
in the absence of healthy RPE. This appears from the very early-phase of FA examination. The other findings of 
pooling, leakage, or staining generally become more evident in later phase FA.

To date, we have conducted clinical studies using induced pluripotent stem cell-derived RPE (iPSC-RPE) 
cells for transplantation in eyes with neovascular AMD. To directly assess the results of RPE transplantation, it is 
mandatory to quantitatively evaluate the increase or decrease in the RPE-disease area in vivo. FA provides more 
detailed information on the pathological features of the lesion site compared to FAF. iPSC-RPE transplanted cells 
often appear dark compared to the RPEs in the healthy fundus on FAF images because of the loss of overlying 
photoreceptors. Therefore, we previously used FA images to assess iPSC-RPE graft cell survival instead of  FAF8. 
We conducted a quantitative evaluation of early-phase abnormal hyperfluorescent areas. We concentrated on the 
abnormal region by focusing on RPE atrophy or window defects that often precede or include other pathological 
events or components such as CNV and fibrosis. These areas are illustrated by pooling, leakage, or staining. We 
showed that the RPE-disease area (abnormal hyperfluorescent area) was reduced after iPSC-RPE transplanta-
tion by manually processing the early-phase FA images to binary images for quantitative  evaluation8. In order 
to refine this evaluation process, it should include both the annotation of the overall abnormal region and the 
evaluation of the degree of mottled hyperfluorescence within that region. Because of this rather complicated 
procedure, similar manual work would be laborious when the sample number increased. It could risk subjective 
bias contamination.

Recent advances in image analysis technology, including machine learning-enabled development of various 
software programs, can identify and quantify the lesion area or automate the comparison of a lesion site at vari-
ous time points. These advances include software that recognizes and characterizes corneal lesions to assist in 
 diagnosis14, automatic detection of non-perfusion areas in diabetic macular  edema15, segmentation of AMD on 
OCT  images16,17, and the classification of AMD disease  grades18,19. However, there have been no reports of auto-
matic or quantitative comparisons of hyperfluorescent areas using FA images. The reasons for these difficulties 
were that the pathological hyperfluorescent area on the FA image was speckled, the boundaries were unclear, 
the various FA images had a luminance slope, and the other FA images were rotated, tilted, and enlarged. These 
difficulties had to be overcome to develop effective software for lesion identification and quantitative comparison 
using routine clinical images.

This study aimed to propose and demonstrate an efficient, reproducible, and objective analysis method to 
quantitatively assess the temporal changes in the RPE-disease areas, as determined by abnormal hyperfluorescent 
areas in FA images. They evaluate the disease progression and efficacy of RPE cell replacement therapy.

To achieve this goal, annotation of hyperfluorescent regions for machine learning is considered to be a basic 
method. However, annotation of hyperfluorescent regions is difficult due to unclear boundaries and various 
degrees of atrophy within the lesion. Therefore, we decided to take a two-step approach. This included the 
prediction of the overall abnormal region by machine learning methods followed by automated binarization 
within that region.

We used U-net20, one of the machine learning methods used for image segmentation tasks, to predict the 
"Abnormal region" in each extracted FA image. To filter out unnecessary regions (e.g., regions with no abnor-
malities or blood vessels), we used these predicted regions as masks. We compared the paired FA images of the 
same eye. The corresponding points were selected and adjusted in size and position, and the summative "Mask 
area" of both images was uniformly applied to both images. After luminance correction, the sum of the speckled 
”Hyperfluorescent area” (Score) pixel numbers were calculated for each image using a customized binarization 
process in the extracted common Mask area. To validate our program, we first evaluated the errors of the Scores 
on the same eyes on the same day to verify the variability in scoring. We then applied the program on the eyes 
with AMD to compare the Scores on 2 different visits. We also applied it over years to quantitatively evaluate 
the disease progress. We further applied this method to one of our iPSC-RPE transplantation data cases and to 
central serous chorioretinopathy (CSC), to show a representative example of how the application of this software 
would function for other purposes or diseases with RPE-disease areas. In this study, we successfully developed 
practical software by solving some of the most clinically challenging problems related to image analysis. We 
accomplished this by combining appropriate existing programs.

Materials and methods
Definition of terms. First, this program is designed to quantify changes in the “RPE-disease area” defined 
as the area of abnormal "Hyperfluorescence" (window defects, leakage, pooling, and staining). Abnormal Hyper-
fluorescence is mostly equivalent with the "window defect" area in non-vascular pathology. However, it may 
include leakage, pooling, and staining in neovascular AMD. Since we consider that the region with leakage, 
pooling, and staining may be included in the "RPE-disease region,” we quantify all of these as Hyperfluorescence. 
We quantify these areas by using early angiography in order to minimize the effect of the expansion of hyper-
fluorescence due to leakage.

Terms.

• Abnormal region The determination of an Abnormal region includes not only Hyperfluorescent regions 
(window defects, leakage, pooling, staining, and blood vessels) but also hypo-fluorescent regions (blocking 
and filling defects).
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• Predicted Abnormal region The regions generated by the program based on deep learning using an RPE-
disease region image annotated by a physician as a training dataset.

• Mask The area for filtering unnecessary regions for subsequent analyses. We used the Predicted Abnormal 
regions as the Mask regions.

• Hyperfluorescent area The Hyperfluorescent area on fundus FA images, including normal fluorescent areas 
(e.g., blood vessels) and the abnormal Hyperfluorescent area (window defect, pooling, leakage, staining) in 
the Mask. In this study, the Hyperfluorescent area is technically defined by images of < 1 min after fluorescein 
injection. The early-phase was used to minimize the effect of the expansion of hyperfluorescence due to leak-
age.

• Reference alignment image A fundus FA image that is used as a reference when aligning between two images 
and provides a Reference score when producing the Growth rate described later.

• Aligned image A fundus FA image that is moved to align with the reference image when aligning between 
two images and provides a Test score when producing the Growth rate described later.

• Score Sum of pixel numbers of the Hyperfluorescent area in the binarized image.
• Reference score Score calculated from Reference alignment image.
• Test score Score calculated from Aligned image.
• Growth rate The Growth rate represents the (Test score—Reference score)/Reference score. This indicator 

shows the percentage increase in the Test score compared to the original Reference score. The numerator 
indicates the RPE-disease area changes between the two images by subtracting the normal blood vessels.

• Data processing program A program that takes two FA retinal images from the same individuals as input, 
outputs images of the Hyperfluorescent area and calculates the Score and determines the Growth rate.

Guidelines. This study was approved by the Institutional Review Board of Kobe City Eye Hospital, Kobe 
City Medical Center General Hospital, and the RIKEN Center for Biosystems Dynamics Research. This study 
was conducted in compliance with the Declaration of Helsinki. The study protocol and its implementation were 
approved by the Ethics Committee of Kobe City Eye Hospital (approval number: ezn190203). The committee 
waived the requirement for informed consent due to the retrospective nature of the study.

Image acquisition. We used FA images acquired from AMD patients who visited the Kobe City Eye Hos-
pital and Kobe City Medical Center General Hospital between January 2006 and February 2021 using SD-OCT 
(Heidelberg Spectralis, Heidelberg Engineering, Heidelberg, Germany) at 30°.

Because hyperfluorescent lesions of pooling or leakage often expand with recording time, we focused on the 
Hyperfluorescent area by selecting the early-phase FA of < 1 min for this study. This showed equalized brightness 
of retinal vessels and no halos.

Annotation of Abnormal regions. FA images were annotated independently by two ophthalmologists in 
charge of the AMD outpatient clinic using ImageJ for a local database. A total of 963 images (202 healthy eyes 
and 761 AMD eyes) were mutually agreed upon for the accuracy of their clinical labels. We assigned 953 images 
(202 healthy and 751 AMD eyes) for the training set and 10 disease images for the testing set. Annotated regions 
were defined as areas that were determined to be Abnormal regions, including abnormal Hyperfluorescent areas 
and hypofluorescent areas.

Preprocessing. All the FA images were anonymized. Before using the images in our research, we ensured 
that the image files did not reveal names, birthdays, or patient IDs.

If the obtained FA image provided information such as the photograph date and time derived from the 
measuring instrument, the relevant area was trimmed and removed. All images were converted before use to 
496 pixels × 496 pixels of 8‐bit tiff images by using the rescale function of the scikit-image without anti-aliasing.

Extraction of Abnormal regions in FA images using U‑net.. We used U-net20 to build a deep learn-
ing model for Abnormal region extraction. The network was implemented using TensorFlow version 2.4.0. We 
used a Python program on a computer with an NVIDIA Tesla V100 graphics card. The performance of the 
developed extraction function was quantified by calculating the sensitivity and specificity of 10 test FA images 
from patients with AMD. The definitions of sensitivity and specificity were as follows:

Sensitivity = number of true Abnormal pixel counts for the entire image/(number of true Abnormal pixels in 
the entire image + the number of false normal pixels in the entire image).

Specificity = number of true normal pixel counts for the entire image/(number of true normal pixels in the 
entire image + number of false Abnormal pixels in the entire image).

Image alignment to binarization. Image alignment: Corresponding points were automatically detected 
by using FAST corner  detection21 and BRIEF  features22. If corresponding points were not detected, we prepared 
a CSV file containing each image’s corresponding points. The transformation matrix was estimated from the 
corresponding points by RANSAC  estimation23. The images were aligned (parallel translation, scaling, rotation, 
and skew) by an affine transformation.

Brightness correction: All aligned images were Gaussian filtered at σ = 70 pixels. After the background lumi-
nance was removed, the image was obtained by dividing the pixel value of the image before filtering by the pixel 
value after filtering. Histogram matching was performed on the reference alignment images.
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Binarization: All brightness-corrected images were binarized with a threshold of 1.2 times the mode value 
of the pixel value. We chose a value of 1.2 times the threshold because this was a reasonable value when viewing 
various images.

Mask generation, overlay on the binarized images, and Score calculation. Mask generation: 
The prediction Mask of the Abnormal regions was obtained using the discriminator for two FA images to be 
compared. The pixel values of the Mask images are 1 for the area predicted to be an abnormal area and 0 for the 
others. Because the obtained Mask image was before position alignment, the Mask image after alignment was 
obtained by applying the alignment parameter for FA image position alignment. One mask image for the overlay 
was obtained by performing image processing on all mask images after position alignment.

Mask overlay and scoring: By performing AMD image processing on the FA images after binarization and 
the Mask image for overlay, we obtained the number of pixels of the Hyperfluorescent area (Score).

Performance evaluation of the created program. We tested whether the program would output the 
same Score using two images. These images were from the serial captures, from the same FA examination, with 
the same Hyperfluorescent area (Score) in the early-phase FA images 45–60 s after injection (n = 53 pairs; 60 
images). Images with halos were excluded. We calculated the mean and standard deviation of the ratio of the 
Scores between the two images.

To test the correlation between the Growth rate and subjective judgment by the ophthalmologists, two oph-
thalmologists unanimously judged 54 pairs (108 images) in the 21-time course cases by three ranks (approxi-
mately the same = Rank 1, slightly worse = Rank 2, much worse = Rank 3). We tested the correlation between 
the Growth rate outputs by the program and human ratings using a trend test (Jonckheere-Terpstra trend test).

For this data, we used the images acquired between 2006 and 2020 by multiple photographers. The intervals 
between the two compared images ranged from 44 to 2454 days for Rank 1, 213 to 3209 days for Rank 2, and 
from 365 to 3248 days for Rank 3.

Application of the created program. We assessed the temporal changes in the Abnormal area (Mask 
area) and Hyperfluorescent area by calculating the Growth rate at each follow-up point compared to the earliest 
visit in the series in four AMD eyes over 10 years.

The Growth rate was also calculated before and after iPS cell transplantation in one eye and two cases of 
central serous chorioretinopathy (CSC) at two points in two eyes of two patients.

Results
Overview of processing. The data processing program developed in this study outputs Scores by automat-
ically performing the following operations using FA images as inputs: position adjustment, brightness adjust-
ment, binarization, extraction of Abnormal regions by applying the program obtained by deep learning, and 
Score calculation. An overview of the developed program is shown in Fig. 1. U-net predicted the Abnormal 
region (Mask region) on each extracted FA image (Fig. 2). We evaluated the performance of the U-net using the 

Figure 1.  Developed software overview. (a) This program outputs Scores by automatically performing the 
following operations using FA images as inputs: position adjustment, brightness adjustment, binarization, and 
extraction of Abnormal regions by applying the program obtained by deep learning. (b) The developed program 
automatically calculates a Score based on the Hyperfluorescent area on FA images acquired from a patient over 
time.
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loss function. The results were 0.80 for sensitivity and 0.96 for specificity. The Mask regions of the two FA pairs 
were combined. The corresponding points were selected and adjusted for size and position (Fig. 3). The Score 
was calculated using a customized binarization process in the combined Mask region. By subtracting the Score 
of the image pairs, we subtracted the unchanged RPE-disease area, including the normal vessel area. We then 
calculated the time-varying RPE-disease area.

Error evaluations of the Scores on the same eyes on the same day. We evaluated the errors of the 
Scores on two images from serial captures of the same eye (Figs. 4, S1). Figure 4a shows a typical pair of images 
from the serial captures of two patients on the same day. The image of the later capture in the FA examination 
was used as the Test score. Figure 4b shows a pair of images with the highest Growth rate. We calculated the 
distribution of the Growth rates. The mean ± standard deviation was 0.031 ± 0.078 (n = 53). Figure  4c shows 
the distribution of the Growth rates. The x-axis represents the number of samples and the y-axis represents the 
Growth rate.

Comparison of the Scores on the eyes at 2 different visits. We compared whether the Growth rate 
was consistent with the subjective evaluation by ophthalmologists. Two ophthalmologists reviewed the images 
of the disease time course of each eye and unanimously determined the change in the image at each time point 
as follows: approximately the same = Rank 1, slightly worse = Rank 2, much worse = Rank 3. (Figs. 5 and S2). 
Figure 5a shows a representative pair of images for each rank. Figure 5b shows the plots of the Growth rate deter-
mined by our program for each rank group. The mean and standard deviation of the Scores were 0.048 ± 0.134 
for Rank 1 (approximately the same) (n = 19), 0.205 ± 0.375 for Rank 2 (slightly worse) (n = 18), and 0.450 ± 0.447 
for Rank 3 (much worse) (n = 17) (Figs. 5a, S2a–c). The value of the Growth rate increased monotonically with 
increasing rank using the Jonckheere-Terpstra trend test (P = 0.00005616). This indicates that the scoring output 
of our program can estimate the subjective judgment of ophthalmologists.

The presence of a difference between Rank 1 and Rank 2 suggests that data acquisition by different radiog-
raphers and at various times may have resulted in acceptable ratings that matched the physician’s observations.

Rank 2 contained four pairs with negative values (Fig. 5b). Figure 5c shows all four cases with negative values 
in Rank 2. These cases included some expansion of hemorrhage, which appears as hypofluorescence, with an 
overall stable RPE-disease region. This is a limitation of our current program in that it cannot distinguish lesions 
such as hemorrhage from healthy hypofluorescence. This was confirmed by comparing the Score output with 
the judgment of ophthalmologists.

Figure 2.  Extraction of abnormal regions from FA images using U-net. Three representative outputs of the 
processes are based on deep learning (U-net) to detect Abnormal regions (Mask regions) from fluorescein 
fundus angiography. These images were taken from three different patients (P1-3). Upper: Original raw 
FA images. Lower: annotated/predicted images. Purple frames represent Abnormal regions annotated by 
ophthalmologists, and yellow frames represent Abnormal regions predicted by U-net.
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Quantitative assessment of the clinical course of the RPE‑disease area. We then applied our 
program to output the quantitative changes in the RPE-disease area of four eyes that had been followed for over 
10 years. These changes were also used as a part of the data in Fig. 5. Growth rate at each indicated time point(t)
was calculated in reference to the initial image as day 0 (reference data), as indicated in Fig. 6a with patient 1 
(P1). The comparison of the RPE-disease area is primarily for non-exudative eyes, as exudative changes such as 
hemorrhage and lipids block fluorescence. The Growth rate can underestimate the actual disease growth. Thus, 
we also plotted the predicted overall Mask area, that is, the Mask area at each time point for reference, together 
with the judgment of the ophthalmologists in Fig. 5 (Rank 1–3) (Fig. 6b). It is noteworthy that the visit with rank 
3 in patient 2 and 3 (P2 and 3) showed a discrepancy between the increased Mask area and decreased Growth 
rate. The FA images of these visits showed blocked fluorescence within the expanding lesion. This was revealed 
as the transition of the eyes to exudative, active AMD with hemorrhage and lipids (Fig. 6c). In contrast, patient 
4 (P4) shows an increase in Growth rate only with a mild increase in the Mask area, as also indicated by the FA 
images (Fig. 6c, bottom panel). The discrepant point with P1 (t = 2034) is shown in Fig. 5 as one of the four cases 
with a negative value in Rank 2. These clinical course plots may suggest a different use for this program. It could 
be used as a disease monitoring program, presenting how the overall disease size changed, as well as indicating 
an appearance or enlargement of a block lesion including exudative changes, which can be shown by the separa-
tion of the Growth rate and Mask area.

Application of the program to iPSC‑RPE cell transplantation and CSC images. We applied our 
program to FA images of the eye obtained before and after iPSC-RPE implantation. We previously reported a 
similar result using a manual analysis as a part of our clinical  study8 (Fig. 7a). The Scores before and 1 year after 
the hiPSC-RPE transplantation were 26,984 and 24,026 respectively (Growth rate, − 0.11). This is an example of 
the application of our method to evaluate the changes in the mottled area within the overall Abnormal area due 
to the presence of RPE cells after iPSC-RPE transplantation. We also applied our program to FA images of eyes 
with CSC. This demonstrates an example of the potential application of our current software for other diseases 
with RPE atrophy (Fig. 7b). Ophthalmologists judged these images and an increase in the Hyperfluorescent area 
was observed. The Growth rates were calculated to be 1.016 and 1.013, respectively.

Discussion
This study developed an efficient, reproducible, and objective analysis method to quantitatively assess temporal 
changes in the RPE-disease areas as determined by the Hyperfluorescent area in early FA images. The software 
was used for the comparison of FA images at different visits and quantitative presentation of the long-term clini-
cal course of RPE lesions. Our approach not only provides reproducibility and objectivity, but also shows the 
possibility of saving ophthalmologists from the burden of reviewing various types of images to judge various 

Figure 3.  Image alignment. Three representative outputs of the aligned image processes. Upper: A pair of 
images at different time points of three patients (P1–P3). Lower: Aligned images. We used the FAST corner 
detection and BRIEF features. The transformation matrix was estimated from the corresponding points by 
RANSAC estimation. The images were aligned (parallel translation, scaling, rotation, and skew) by an affine 
transformation.
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levels of change over time in daily clinical practice. It was insufficient to simply apply an existing method to 
automate the analysis of our clinical FA images. In developing our current method, we successfully solved some 
of the most clinically challenging problems related to image analysis (discussed below) by combining appropri-
ate existing programs.

A common difficulty with these comparative image analysis is that the images taken at multiple time points 
have various levels of brightness, contrast, and misalignment. To overcome these difficulties, we used image 
processing, which includes multiple steps. To extract the feature points, we used the FAST corner detection with 
vessel branches. We used BRIEF to match feature points and RANSAC to handle translation, scaling, rotation, 
and skew by aligning without the effect of outliers. We applied a Gaussian filter to address the problem of the 
luminance slope in the image during image capture. Our program allowed automated processing in seconds and 
significantly reduced the operational costs of human alignment.

Another difficulty in evaluating the RPE-disease area is that it involves not only the total size of the Abnormal 
area but also the degree of atrophy inside the lesion. This is indicated by the size and degree of mottled Hyperfluo-
rescence, with undefined boundaries. In the current program, we took a 2-step approach to predict the overall 
Abnormal area (Mask area) first, followed by the binarization of the mottled area within the Abnormal area. 
Therefore, we can annotate the disease region in a more precise manner and evaluate the degree of the mottled 
Hyperfluorescence area. Using Mask, we succeeded in quantifying the difference within the Hyperfluorescent 
area at two different time points by avoiding the influence of noise or normal hyperfluorescence outside the Mask 
area (no abnormality region), such as blood vessels. We believe that the comparison within the specified diseased 
region may beneficially increase the sensitivity to detect subtle changes in pathological hyperfluorescence. We 
expect the remaining blood vessels inside the Mask area to be voided by subtraction between the two images. We 
used out-of-mask avoidance and inside-mask cancellation to reduce the risk of overscoring from blood vessels. 
(In the future, it might also be possible to remove blood vessels without subtraction by using previous reports 
on extracting blood vessel regions in fundus  images24).

In this study, the Growth rate of the RPE-disease area calculated by our 2-step program that included two 
features of size and mottled degree of Hyperfluorescence was well correlated with human judgment. However, 

Figure 4.  Error validation using the sample FA images from the same eyes. (a) A typical pair of images from 
two patients on the same day. Upper: A pair of FA images that are aligned and brightness corrected by image 
processing. Lower: Output binary images. Yellow frames represent Abnormal regions predicted by the U-Net. 
Green areas represent Hyperfluorescent areas. The Score represents the sum of the pixel numbers of the 
Hyperfluorescent area in the binarized image. The Growth rate is represented as (Test score—Reference score)/
Reference score. (b) A pair of images with the highest Growth rate. Upper and Lower: represent the same as (a). 
(c) Graph showing the Growth rate distribution.
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the major concern is that the Growth rate based on the Hyperfluorescence area has a risk of underestimating the 
progressive lesion when the lesions include hypo-fluorescent exudative changes such as hemorrhage and lipids. 
As shown in Fig. 6, the temporal plots of Mask size and Growth rate presented a discrepancy in these parameters 
at the point of disease worsening with exudative changes. These combined assessments, or an additional quick 
observation of color fundus images, can easily overcome the misjudgment by Growth rate. With this possible 
risk in mind, temporal disease monitoring by Growth rate may also help clarify the disease progress in a quan-
titative manner.

With all these technological advances in our program, a limitation in the binarization method remains. This 
can be easily affected by light exposure and results in misjudgment of RPE-disease areas as determined by the 
Hyperfluorescent area. In the present study, we avoided this risk by excluding images such as those containing 
halos. It is important to set a standard for the use of adequate images for analysis.

In this study, in addition to AMD, we also applied the method to CSC, which is also associated with RPE-
disease. This method may be applicable to eyes with other diseases associated with RPE disorders. As for an 
additional possibility for the use of the current program, if we compare the early and late-phase FA images 
from a single examination, we could quantify the degree of leakage, which may reflect the activity of choroidal 
neovascularization. Although the output Scores based on the FA Hyperfluorescence area seemed to be a good 
biomarker for the progression of the disease stage and examining the indications and effects of treatment, the 
quantitative verification of the association between these Scores, FA hyperfluorescence, and visual function 
should be further investigated. Finally, this was our first challenge using FA images. We may also be able to apply 
similar technology to the comparison of other grayscale images, including fundus autofluorescence.

Figure 5.  Comparison of Score change with a specialized ophthalmologist. (a) Representative pair of images 
for each rank as unanimously determined by two specialized ophthalmologists. Rank 1: approximately the 
same; Rank 2: slightly worse; Rank 3: much worse. Upper: Pairs of FA images aligned and brightness-corrected 
by image processing. Lower: Output binary images. yellow frames represent Abnormal regions (Mask regions) 
predicted by U-net. Green areas represent Hyperfluorescent areas. The Score represents the sum of the pixel 
numbers of the Hyperfluorescent area in the binarized image within the Mask area. The Growth rate represents 
the (Test score—Reference score)/Reference score. (b) The scatter and box plot graph shows the Growth rate in 
the three ranks of changes in the disease status that were judged by two specialized ophthalmologists. The black 
bars represent averages. (c) Four discrepant cases in Rank 2 where the value of the Growth rate was less than 0. 
Upper and Lower: represent the same as (a).
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Conclusion
This study developed software for the quantitative assessment of temporal changes in RPE-disease areas. These 
areas were determined by pathological Hyperfluorescent areas using FA images between the various time points 
or over a long-term clinical course. Our program allowed us to reduce the workload of researchers and obtain 
a reproducible evaluation of the differences in fluorescence fundus images. Our program will contribute to the 
evaluation of RPE cell function and follow-up observations after iPSC-RPE transplantation.

Figure 6.  Quantitative assessment of the expanding Hyperfluorescent area over time. Quantitative assessment 
of the Hyperfluorescent area in four AMD eyes of four patients over 10 years (~ 4694 days). The first image 
acquisition was defined as day 0. (a) Representative temporal analysis of Patient 1 (P1). The FA image of each 
visit was paired with the initial image, aligned, and corrected for brightness by image processing. Binary images 
were produced within the merged mask frames of the initial and at each time point as Abnormal regions (yellow 
frames) predicted by U-Net. Green areas represent areas with Hyperfluorescent Score areas. The Growth rate 
was calculated between the image of each time point and the initial point. (b) Binary images of the indicated 
time points with a discrepancy between the mask and Growth rate. Rank 3 points with patients 2 and 3 (P2, P3), 
and Rank 2 points with patient 4 (P4). The relevant sample is shown in the graph in c, with the points circled. (c) 
Temporal change in Growth rate of four eyes and the Mask areas (overall Abnormal areas) at each time point. 
The judgment by two doctors (Rank 1–3) at each time point is also shown for reference. Images of the circled 
points are shown in (b).
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Data availability
The data that support the findings of this study are available from the corresponding author, M.M., upon rea-
sonable request.
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