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Abstract 

 

Objective: Recently, generative adversarial networks began to be actively studied in the 

field of medical imaging. These models are used for augmenting the variation of images 

to improve the accuracy of computer-aided diagnosis. In this paper, we propose an 

alternative new image generative model based on transformer decoder blocks and verify 

the performance of our model in generating SPECT images that have characteristics of 

Parkinson’s disease patients. 

Methods: Firstly, we proposed a new model architecture that is based on a transformer 

decoder block and is extended to generate slice images. From a few superior slices of 

3D volume, our model generates the rest of the inferior slices sequentially. Our model 

was trained by using [123I]FP-CIT SPECT images of Parkinson's disease patients that 

originated from the Parkinson’s Progression Marker Initiative database. Pixel values of 

SPECT images were normalized by the specific/nonspecific binding ratio (SNBR). 

After training the model, we generated [123I]FP-CIT SPECT images. The transformation 

of images of the healthy control case SPECT images into PD-like images was also 

performed. Generated images were visually inspected and evaluated using the mean 

absolute value and asymmetric index. 

Results: Our model was successfully generated and transformed into PD-like SPECT 

images. The mean absolute SNBR was mostly less than 0.15 in absolute value. The 

variation of obtained dataset images was confirmed by the analysis of the asymmetric 

index. 
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Conclusions: These results showed the potential ability of our new generative approach 

for SPECT images that the generative model based on the transformer realized both 

generation and transformation by a single model. 

 

Keywords: [123I]FP-CIT SPECT, Generative model, Parkinson’s disease, Transformer, 

Unsupervised learning 
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Introduction 

In recent years, generative models such as the generative adversarial network 

(GAN) (1) are actively researched to generate medical images. Particularly, the deep 

convolutional GAN (DCGAN) (2) consists of convolutional neural network 

architectures that achieved good-quality images of computed tomography, magnetic 

resonance imaging (MRI), and positron emission tomography (PET). 

Onishi et al. (3) reported that they augmented pulmonary nodule images 

generated by GAN and improved the classification performance by fine-tuning the 

pre-trained convolutional neural network (CNN). Koshino et al. (4) generated MRI 

images using the simple DCGAN approach. Islam et al. (5) generated normal control, 

mild cognitive impairment, and Alzheimer’s disease PET images from random noise 

using DCGAN. Frid-Adar et al. (6) reported the result of improved liver lesion 

recognition performance with augmentation by GAN-based generated images. 

Moreover, there are studies on pathological transformation by conditional GAN 

(7) or CycleGAN (8). Xia et al. (9) proposed the transformation of combined U-net (10) 

base encoder-decoder and conditional GAN to synthesize the aging variation brain 

images. Kimura et al. (11) demonstrated that CycleGAN could synthesize healthy 

controls to abnormal cases using unpaired PET images. Wei et al. (12) augmented minor 

case images using CycleGAN image translation. Liyan Sun et al. (13) proposed 

abnormal-to-normal translation GAN to synthesize MRI-image-contained lesions. 

One of the motivations for generating or synthesizing medical images in previous 

studies is data augmentation for improving the performance of computer-aided 

diagnosis. We thought that it is important to have many kinds of generative models for 

ensuring varieties of augmented data. Therefore, in this paper, we propose an alternative 

new image generative model using Transformer (14). 
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The reason why we adopted Transformer in our generative model is that it is a 

powerful architecture for time series data. Our idea is that the slice order axis of 3D 

SPECT data can be treated as if it corresponds to the time axis. In that case, 3D SPECT 

data can be regarded as a time sequence, and we can use Transformer. We expect 

Transformer to be able to handle the continuity and the transition between slices. In the 

natural language processing community, Transformer has achieved state-of-the-art 

performance and demonstrated its significance on various tasks. 

The number of studies on the application of Transformer for computer vision has 

gradually increased in recent years. In image captioning, Cornia et al. (15) proposed the 

Meshed-Memory Transformer, with learning connectivity between the encoder and the 

decoder, to enhance performance. Girdhar et al. (16) applied Transformer to a video 

context that understood and recognized actions. In object detection, Carion et al. (17) 

improved the end-to-end architecture and reduced hyperparameters like non-maximum 

suppression by the replaced inference design with the transformer encoder and decoder. 

There are some movements to apply Transformer to image generation. Image 

Transformer (18) proposed a unique transformer architecture to predict pixels and to 

work on super-resolution. Image GPT (19) is an attempt to apply the GPT-2 (20) 

scheme to an unsupervised image generation. Image GPT consists of two stages: 

pre-training by an autoregressive model or BERT (21) and fine-tuning the model. It 

predicts next-to-next pixels of the subsequent pixel of the input pixels. These studies 

generate the subsequent parts of an input image by predicting pixels. Among studies 

based on Transformer architecture, there were no methods that directly generate whole 

images. 

In this paper, we propose a new network model that consists of simple 
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Transformer decoder blocks to generate image slices. From a few superior slices of 3D 

volume data, our model generates the rest of inferior slices sequentially. We named the 

model Generative Image Transformer (GIT). To the best of our knowledge, in the 

medical imaging community, image generation research using Transformer is a new 

approach. 

We demonstrate that our proposed model could generate Parkinson’s disease 

SPECT images and transform healthy control SPECT images into images that are 

characteristic of Parkinson’s disease. 

Since GIT generates image slices sequentially, it can be applied to time series data. 

In our case, GIT predicts future scenes. There are some studies on predicting future 

scenes from past and current images in the field of video processing (22, 23). These 

approaches are composed of the image-specific CNN to feature extraction and recurrent 

neural network to predict time series data. They make the model more complicated and 

require more training time than Transformer. In contrast, GIT is composed of only 

transformer blocks and training speed is fast. 

 

Materials and Methods 

 

[123I]FP-CIT SPECT images on Parkinson’s Progressive Marker Initiative 

database 

In this experiment, we used [123I]FP-CIT SPECT from the Parkinson’s 

Progressive Marker Initiative (PPMI) database (24). SPECT images in the PPMI 

database were normalized into a Montreal Neurological Institute (MNI) space. 

We used 441 Parkinson’s disease (PD) cases. All SPECT images measured 

91 ×  109 ×  91. We split 441 PD SPECT images to 391 training datasets and 50 
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validation datasets. We performed a 5-fold cross-validation and did not permit 

duplication in validation datasets. 

We also used healthy control (HC) SPECT images from the PPMI database to 

verify the transformation ability of GIT. 

Data preprocessing 

For data augmentation, we applied left-right reflection on the axial plane and 

slight rotation (−3 and 3 degree) on the axial, sagittal, and coronal planes to 391 training 

datasets. After augmentation, the number of training datasets changed to 5,474. All 

voxels of [123I]FP-CIT SPECT images were normalized by the specific/nonspecific 

binding ratio (SNBR) (25) like formula, 

𝑆𝑁𝐵𝑅 =
𝐶 − 𝐶𝑟

𝐶𝑟

(1) 

where 𝐶 and 𝐶𝑟 denote the concentration at each voxel and the mean concentration of 

the reference region, respectively. We calculated the mean value of the whole brain 

region, except the area around the striatum, as the reference region. 

Network Architecture 

Figure 1 shows the overview of our model’s architecture. We only used 

Transformer decoder to build the network for the training autoregression model. At first, 

the input data transformed 1024 hidden feature vectors by position-wise fully 

connection. Then, we added positional encoding to each hidden feature vector to 

support slice order information. We used sinusoidal positional encoding following the 

original transformer. 

We constructed a pre-layer normalization transformer architecture (26) instead of 

an original post-layer normalization one. In each transformer decoder block, layer 

normalization (27), multi-head attention, and residual connection were applied to the 
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hidden feature vectors. Thereafter, hidden feature vectors were applied during pre-layer 

normalization and the position-wise feedforward phase. We used mish (28) activation 

function on the position-wise feedforward phase to smoothly optimize the loss function. 

We inserted dropout (29), with dropout rate of 0.1 after multi-head attention and 

intermediate of position-wise feedforward phase for preventing overfitting. 

In our experiment, we built a 16-layer transformer decoder block. The final output 

directly predicts the SNBR value on the next slice by fully connecting with the ELU 

(30) activation function, because the SNBR value is a real number with a lower limit of 

−1. The number of our model parameters is approximately 170 million. 

Training and Inference 

We defined 𝑡 as the slice number. Figure 2 shows the training scheme in an 

autoregressive manner. To avoid getting information of future slices, we used masked 

self-attention in transformer decoder block. Therefore, the GIT is a unidirectional 

model and can only use information until the current input. 

In this study, we used a regression approach to directly predict the SNBR value 

and simply minimized the sum squared loss as follows: 

𝑙𝑜𝑠𝑠 = ∑ ∑(𝒙𝑡+1,𝑣 − �̂�𝑡+1,𝑣)
2

𝑉

𝑣=1

𝑇−1

𝑡=1

(2) 

�̂�𝑡+1,𝑣 = 𝑇𝑟𝑚(𝒙𝑡,𝑣) (3) 

where 𝑇 denotes total number of image slices and 𝑉 denotes the total number of 

voxels on each image slice. 𝑇𝑟𝑚 represents our model, which predicts voxels of the 

next image slice. 

We chose the Adam optimizer (31) with its parameter 𝛽1 = 0.9, 𝛽2 = 0.99 and 

used the Cyclical Learning Rate (CLR) (32) for learning rate scheduling. We set the 

base learning rate to 1.0 ×  10−5 , maximum learning rate to 1.0 × 10−3 , and 
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triangular2 policy. 

We trained our model using 5,474 training datasets. We trained by minibatch 

training with 10 minibatch sizes and 100 epochs. These parameters were defined by trial 

and error. To avoid underfitting or overfitting, a learning curve of a loss function and 

generated images were observed. Observed images under smaller epoch time were 

mostly blurred. 

At inference, our model repeats to generate the 𝑡 + 1th image slice from 𝑡 

image slices until the maximum number of slices. 

We used the Microsoft Cognitive Toolkit (CNTK) (33) deep learning framework. 

In our implementation, we ran the training model on NVIDIA GPU Quadro RTX 6000 

24GB. 

Validation 

For evaluating the model, we generated SPECT images from validation data and 

HC data. From superior 40 slice images, the rest of 51 inferior slices were generated. 

Image generation from fewer input slices was also attempted. From the superior 15 

slices, the rest of the 76 slices were generated. 

We evaluated our generated images qualitatively and quantitatively. 

In qualitative evaluations, visual inspections of generated images were performed. 

In quantitative evaluations, we calculated mean absolute value of 51 image slices 

between each validation dataset and the generated SPECT. We also evaluated the 

variation of the generated images by using the asymmetric index (AI) explained in the 

following. In the clinical diagnosis of PD, the striatum is the most important region on 

the SPECT image. We extracted the striatal voxel-of-interest (VOI), whose shape of 

height and width is 60 × 90 mm and 11 slices. We calculated the AI (34) using the 
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following equation: 

AI =
𝑆𝑁𝐵𝑅𝑙𝑒𝑓𝑡 − 𝑆𝑁𝐵𝑅𝑟𝑖𝑔ℎ𝑡

𝑆𝑁𝐵𝑅𝑙𝑒𝑓𝑡 + 𝑆𝑁𝐵𝑅𝑟𝑖𝑔ℎ𝑡

(4) 

where 𝑆𝑁𝐵𝑅𝑙𝑒𝑓𝑡 and 𝑆𝑁𝐵𝑅𝑟𝑖𝑔ℎ𝑡 are the striatum uptake count on the left and right 

striatum in VOI, respectively. The original formula of AI uses the absolute value; 

however, we defined AI with a signed value for obtaining the details of the left-right 

spatial information. 

 

Results 

Figure 3 shows the generated image from the 40 slices to the subsequent 51 slices. 

The left and right images are the original and generated image, respectively. The red 

rectangle includes the generated image slices by our model. The color maps of original 

and generated images have the same range of values. For qualitative evaluation, the first 

author reviewed all generated images and confirmed that [123I]FP-CIT SPECT-like 

images were successfully generated in almost cases. The variations of the tissue and the 

shape of generated images were observed. In addition, three clinicians (the fourth 

author: neurologist, another neurologist, and radiologist) reviewed randomly sampled 

20% cases in fold #2 and confirmed that generated images mostly had features of PD, 

which are a declining SNBR value, an asymmetry, and the shape of the striatum. No 

unnatural discontinuity was observed in axial images. 

Figure 4 shows three cross-sectional images of a generated sample. Left top, right 

top, and right bottom represent sagittal, coronal, and axial image slices, respectively. 

Although the GIT predicts axial images in a slice-by-slice manner, no unnatural 

discontinuity between adjacent generated axial slices was observed in the sagittal and 

coronal planes. However, a slight discontinuity was observed between the last input 

slice (40th slice) and the first generated slice (41st slice). 
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Figure 5 shows the input and the generated images of the HC case in the PPMI 

database. The red rectangle includes 40 transformed images. The value of SNBR 

declined and the difference between the left and right striatum became apparent. 

Figure 6 shows the mean absolute value per voxels in each slice among validation 

datasets and SPECT images generated by our model in 5-fold. The horizontal and 

vertical axis represents the slice number and the mean absolute value per slice, 

respectively. The center dot represents the mean and the error bar represents the 

standard deviation. The mean and standard deviation of the mean absolute value are less 

than approximately 0.15 in the slices from 41 to 55 that almost covers the striatum 

region. After 77 slices, the error and the standard deviation get bigger. The following 

approximately 80 slices are not important because of the outside of the brain. 

Figure 7 shows the mean absolute value map between validation and generated 

images of fold #2. The horizontal axis represents slice number and the vertical axis 

represents case number in fold #2. Each pixel represents the mean value of absolute 

error of the slice on the case. We sorted the cases following the absolute error. The right 

bottom of the map has a larger error than other regions. The error value of the blue 

region is less than 0.15, and we regarded it as the successful case. Case 39, in the 

bottom row, is the worst case. Figure 8 shows estimated slices of the worst case in Fig. 7. 

In that case, however, the mean absolute error was small enough until about the 55th 

slice. 

To investigate the variation of the generated images, we compared the SNBR 

value difference between the left and right striatum based on AI. Figure 9 shows the 

histogram of AI of validation datasets and generated SPECT images in 5-fold. Negative 

and positive values of AI mean declines of the right and left striatum, respectively. The 
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histogram of AI of validation datasets is characterized by the right striatum decline 

being bigger than the left one. The histogram of AI of the generated images has a 

smaller width compared to validation images. However, our model could reproduce the 

feature of original datasets, wherein the right striatum decline is larger than the left one. 

Figure 10 shows the generated image from the first 15 slices to the rest of the 76 

slices. The red region includes the generated image slices. These validation data are the 

same as those in Fig. 3. GIT could generate the remaining image slices from only a few 

image slices. However, the SPECT images generated from 15 slices are a little blurrier 

than those generated from 40 slices. 

 

Discussion 

We proposed a new generative image model approach by transformer architecture 

and an autoregressive unsupervised training scheme. In this paper, our model has 

demonstrated that a single model could generate the rest of an image and could 

transform the pathological features of an image. 

We proposed a new generative image model approach by transformer architecture 

and autoregressive unsupervised training scheme. In this paper, our model has 

demonstrated that it could generate the rest of images, including its pathological 

features. 

We presented that our model could generate the rest of slices from input slices, 

and the generated images are confirmed realistic SPECT images by experts (Figs. 3, 4, 5, 

and 10). 

In addition, our model trained in this paper can generate SPECT images, which 

have the features of PD. We showed that the generated SPECT images had asymmetric 

indices from −0.25 to 0.2 (0.45 in the total range) as shown in Fig. 9, which was 
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comparable to those of validation images from −0.35 to 0.15 (0.5 in the total range). In 

addition, we demonstrated that our model not only extrapolates the PD images but also 

generates PD-like images from the HC SPECT image, which were not included in the 

training data at all (Fig. 5). In the generation of PD-like images from HC images, our 

model created the features of the PD image, the declined SNBR value. The generation 

of PD-like images from HC images does not imply diagnostic prediction. Our present 

model just generates images only but does not make a diagnostic prediction as to 

whether the HC case will become PD or not. Mechanisms in the generation of 

asymmetry from symmetric input data should be investigated further in our future work. 

We also demonstrated that GIT could possibly generate images from only 15 

input image slices (Fig. 10). Although PD-like images were also obtained, image 

resolution was slightly lower than images generated from a 40-slice input. Lower 

resolution is thought to be caused by regression into an average image because the input 

information is less. 

In our approach, we can prepare paired targets and predicted data from only the 

validation dataset. That allows quantitative validation to measure the precision of the 

model. This is one of the advantages of our approach. 

Our model could precisely predict approximately 15 image slices (41st~55th) (Fig. 

6, 7). The error is small until about the 55th slice. Although the standard deviation 

increases from about the 70th, these image slices are not important for diagnosis 

(whether PD or not) because these slices are out of the brain region. 

In the field of image generation, we are interested in the variation of generated 

images. Although the generative model generally produces average images, it is not 

acceptable. Therefore, we explored that our model had variations of asymmetric 
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striatum, which is important to diagnose PD on generated images (Fig. 9). In the 

training phase, we adopted left-right reflection for data augmentation. Then, the average 

image slices of training data were completely symmetric. Although the variation of our 

model is a little smaller than the validation datasets, our model could produce enough 

variation of the striatum. The decline of variations could be caused by sum squared loss 

in the training phase because L2 loss assumed the normal distribution. In future work, 

we need to consider the more effective loss function. 

Our model sometimes failed to generate images in the second half. GIT, however, 

could generate more than 15 image slices that cover the striatum region even in the 

worst case (Fig. 8). 

The limitation of GIT is the need for a few input image slices. Therefore, GIT 

does not support the generation of data from latent vectors of random noise like GAN. 

However, GIT can generate PD images and generate PD-like images from HC images in 

the single model. 

Other limitations of the present study originated from the use of the PPMI 

database. Since SPECT images in the PPMI database were normalized into the MNI 

space, image interpolation degraded the image resolution. Also, the images we used 

have a lower resolution than modern realistic SPECT or PET images. Although the 

lower resolution might reduce the degree of variation in a disease representation, the 

PPMI database has high accessibility and reliability. To evaluate the feasibility of the 

use of our model in image generation, especially in the first step, accessibility and 

reliability seem important. In this regard, we only used the PPMI database to verify 

image generation by our model in this paper. Many atypical PD cases are encountered 

in the realistic clinical situations, PPMI database; however, this includes just regular 
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staged PD data. Therefore, much higher degrees of variation will be expected in clinical 

situations. In a future study, we should address whether our model can maintain a higher 

resolution or higher degree of variation even in those realistic clinical situations. We 

expect that the current model could be extended by using such techniques as a transfer 

learning technique. Since higher-resolution images may have a rich information in the 

superior slices, it can be useful for GIT to generate inferior slices. 

 

  



  Generative Image Transformer  15 

 

Acknowledgments 

The data we used in training and validation in this study were obtained from the 

Parkinson’s Progression Marker Initiative (PPMI) database 

(https://www.ppmi-info.org/data). PPMI—a public private partnership—was funded by 

the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including 

Abbvie, Avid, Biogen Idec, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, 

GlaxoSmithKline, Lilly, Lundbeck, Merck, Meso Scale Discovery, Pfizer, Piramal, 

Roche, and UCB. 

The authors thank professor Nobukatsu Sawamoto (MD, neurologist) and 

Associate professor Koichi Ishizu (MD, radiologist) for reviewing generated SPECT 

images. Both belong to the Graduate School of Medicine, Kyoto University. 

 

  



  Generative Image Transformer  16 

 

References 

1. Goodfellow Ian J, Pouget-Abadie J, Mirza M, Xu Bing, Warde-Farley D, Ozair S, 

et al. Generative adversarial nets. AdvNeural Inf Process Syst2014, p. 2672–2680. 

2. Radford A, Metz L, and Chintal S. Unsupervised Representation Learning with 

Deep Convolutional Generative Adversarial Networks. arXiv preprint 

arXiv:1511.06434 (2015). 

3. Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, et al., 

Automated pulmonary nodule classification in computed tomography images using 

a deep convolutional neural network trained by generative adversarial networks. 

BioMed Red. Int. 2019. 

4. Koshino K, Werner Rudolf A, Toriumi F, Javadi Mehrbod S, Pomper Martin G, 

Solnes Lilja B, et al. Generative adversarial networks for the creation of realistic 

artificial brain magnetic resonance images. Tomography, 2018. vol. 4, no. 4, 159. 

5. Islam J and Zhang Y. GAN-based synthetic brain PET image generation. Brain 

Informatics, 2020. vol. 7, p. 1–12. 

6. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, and Greenspan H. 

GAN-based synthetic medical image augmentation for increased CNN performance 

in liver lesion classification. Neurocomputing, 2018. vol. 321, pp. 321–331. 

7. Mirza M and Osindero S. Conditional generative adversarial nets. arXiv preprint 

arXiv:1411.1784 (2014). 

8. Zhu J-Y, Park T, Isola P, and Efros A A. Unpaired Image-to-Image Translation 

using Cycle-Consistent Adversarial Networks. the IEEE international conference 

on computer vision, 2017. p. 2223–2232. 

9. Xia T, Chartsias A, and Tsaftaris S A. Consistent brain ageing synthesis, in Med. 

Image Comput Assist. Interv. Springer, Cham, 2019. p. 750–758. 



  Generative Image Transformer  17 

 

10. Ronneberger O, Fischer P, and Brox T. U-Net: convolutional networks for 

biomedical image segmentation. Med. Image Comput Assist. Interv. Springer, 

Cham, 2015. p. 234–241. 

11. Kimura Y, Watanabe A, Yamada T, Watanabe S, Nagaoka T, Nemoto M, et al. AI 

approach of cycle-consistent generative adversarial networks to synthesize PET 

images to train computer‑aided diagnosis algorithm for dementia. Ann. Nucl. Med. 

2020. p. 1–4. 

12. Wei J, Suriawinata A, Vaickus L, Ren Bing, Liu X, Wei J, et al. Generative Image 

Translation for Data Augmentation in Colorectal Histopathology Images. arXiv 

preprint arXiv:1910.05827 (2019). 

13. Liyan Sun, Wang J, Huang Yue, Ding X, Greenspan H, and Paisley J. An 

adversarial learning approach to medical image synthesis for lesion detection. IEEE 

J. Biomed. Health Inform, 2020. p. 2303–2314. 

14. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. 

Attention is all you need. In Adv. Neural Inf. Process. Syst. 2017. p. 5998–6008. 

15. Cornia M, Stefanini M, Baraldi L, and Cucchiara R. Meshed-memory transformer 

for image captioning. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 

Recognit. 2020. p. 10578–10587. 

16. Girdhar R, Carreira J, Doersch C, and Zisserman A. Video action transformer 

network. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019. p. 

244–253. 

17. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, and Zagoruyko S. 

End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872 

(2020). 



  Generative Image Transformer  18 

 

18. Parmar N, Vaswani A, Uszkoreit J, Kaiser Ł, Shazeer N, Ku A, et al. Image 

transformer. arXiv:1802.05751 (2018). 

19. Chen M, Radford A, Child R, Wu J, Jun H, Luan D, et al. Generative pretraining 

from pixels. In: Proceedings of the 37th International Conference on Machine 

Learning. 2020. 

20. Radford A, Wu J, Child R, Luan D, Amodei D, and Sutskever I. Language models 

are unsupervised multitask learners. OpenAI Blog, 2019. vol 1, no. 8, p 9 

21. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep 

bidirectional transformers for language understanding. arXiv preprint 

arXiv:1810.04805 (2018). 

22. Fragkiadaki K, Agrawal P, Levine S, and Malik J. Learning visual predictive 

models of physics for playing billiards. arXiv preprint arXiv:1511.07404 (2015). 

23. Lotter W, Kreiman G, and Cox D. Deep predictive coding networks for video 

prediction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016). 

24. Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, et al. The 

parkinson progression marker initiative (PPMI). Prog. Neurobiol. 2011. vol. 95, p 

629‒35. 

25. Tossici-Bolt L, Hoffmann S M A, Kemp P M, Mehta R L, Fleming J S. 

Quantification of [123I]FP‒CIT SPECT brain images: an accurate technique for 

measurement of the specific binding ratio. Eur. Img. J. Nucl. Med. Mol. 2006. vol. 

33, p 1491–1499. 

26. Xiong R, Yang Y, He D, Zheng K, Zheng S, Xing C, et al. On layer normalization 

in the transformer architecture. arXiv preprint arXiv:2002.04745 (2020). 



  Generative Image Transformer  19 

 

27. Ba J L, Kiros J R, and Hinton G E. Layer normalization. arXiv preprint 

arXiv:1607.06450 (2016). 

28. Diganta M. Mish: A self regularized non-monotonic neural activation function. 

arXiv preprint arXiv:1908.08681 (2019). 

29. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a 

simple way to prevent neural networks from overfitting. J. Mach. Learn Res. 2014. 

vol. 15, no. 1, p 1929–1958. 

30. Clevert D-A, Unterthiner T, and Hochreiter S. Fast and accurate deep network 

learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 

(2015). 

31. Kingma D P and Ba J L. Adam: A method for stochastic optimization. arXiv 

preprint arXiv:1412.6980 (2014). 

32. Smith L N. Cyclical learning rates for training neural networks. In IEEE Winter 

Conference on Applications of Computer Vision. 2017. p. 464–472. 

33. Seide F and Agarwal A. CNTK: Microsoft's open-source deep-learning toolkit. In 

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining. 2016. p. 2135–2135. 

34. Hayashi T, Mishina M, Sakamaki M, Sakamoto Y, Suda S, Kimura K. Effect of 

brain atrophy in quantitative analysis of 123I iofupane SPECT. Ann. Nucl. Med. 

2019. vol 33, no. 8, pp 579–585. 

  



  Generative Image Transformer  20 

 

Figures 

 

Fig. 1 

 

Fig. 1. Our implemented transformer decoder block. At first, input data are applied 

position-wise fully connected to embed hidden dimensional features. Next, sinusoidal 

positional encodings are added. Transformer decoder blocks are stacked in 16 layers. 

We constructed pre-layer normalization to multi-head masked self-attention and to 

position-wise feedforward. Finally, features are applied layer normalization and fully 

connected with ELU activation to predict SNBR values directly 

  



  Generative Image Transformer  21 

 

Fig. 2 

 

Fig. 2. Our model training scheme operates in an autoregressive manner like OpenAI 

GPT (18). Trm represents our transformer decoder block. The model predicts next input 

�̂�2 based on up to current input 𝑥1. Therefore, the target data of �̂�2 is original next 

input 𝑥2. When we train the model, we can simultaneously feed all slices to the model 

because masked self-attention for future information applies in transformer decoder 

block. At inference, the model needs some image slices until t and predicts the t+1th 

image slice 
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Fig. 3 

 

Fig. 3. The input data are 40 image slices from the original SPECT image (left). Output 

data predicted that our model is the subsequent 51 image slices. The region surrounded 

by the red rectangle shows the generated image slices 
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Fig. 4 

 

Fig. 4. We displayed generated data from the 40 slices of validation data as 3D 

tomography. Left top, right top, and right bottom show the sagittal, coronal, and axial 

image slice, respectively. Our model only used information about the axial image slice; 

therefore, the gap between input data and generated data in the coronal and sagittal 

directions 
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Fig. 5 

 

Fig. 5. An example of a transformation from a healthy control case to a PD case. The 

left image is original healthy control SPECT images. The right one is the generated 

image transformed by the subsequent of healthy control from the 40th slice. The small 

SNBR value in the striata, especially the right striatum, is declined 
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Fig. 6 

 

Fig. 6. The mean and standard deviation of the mean absolute error between validation 

and generated images in 5-fold. The horizontal axis represents the slice number from 41 

to 91. The vertical axis represents the mean absolute error. The center dot represents the 

mean and error bars represent the standard deviation 
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Fig. 7 

 

Fig. 7. The mean absolute error map of fold #2. The horizontal axis represents the slice 

number and the vertical axis represents the case number. Each pixel represents the mean 

absolute error in each slice on each case, and we sorted in ascending order based on the 

mean absolute error of each case. The right bottom of the map is the largest error case 
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Fig. 8 

 

Fig. 8. The worst case in fold #2. The region surrounded by the red rectangle shows the 

generated image slices. GIT could succeed up to approximately 15 image slices 
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Fig. 9 

 

Fig. 9. Blue histogram is AI of validation datasets and orange one is the generated 

images on 5-fold. The horizontal axis represents the asymmetric index and the vertical 

axis represents the number of counts. The negative AI represents the right striatum 

decline, the 0 represents no difference between left and right, and the positive represents 

left striatum decline 
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Fig. 10 

 

Fig. 10. Input data are 15 image slices from an original SPECT image (left). Output data 

predicted that our model is the subsequent 76 image slices. The region surrounded by 

the red rectangle shows generated image slices 
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