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Abstract 32 

Purpose: To predict radiation pneumonitis (RP) grade 2 or worse after lung stereotactic 33 

body radiation therapy (SBRT) using dose-based radiomic (dosiomic) features.  34 

Methods: This multi-institutional study included 247 early-stage non-small cell lung 35 

cancer patients who underwent SBRT with a prescribed dose of 48–70 Gy at an isocenter 36 

between June 2009 and March 2016. Ten dose–volume indices (DVIs) were used, 37 

including the mean lung dose, internal target volume size, and percentage of entire lung 38 

excluding the internal target volume receiving greater than x Gy (x = 5, 10, 15, 20, 25, 39 

30, 35, and 40). A total of 6,808 dose-segmented dosiomic features, such as shape, first 40 

order, and texture features, were extracted from the dose distribution. Patients were 41 

randomly partitioned into two groups: model training (70%) and test datasets (30%) over 42 

100 times. Dosiomic features were converted to z-scores (standardized values) with a 43 

mean of zero and a standard deviation (SD) of one to put different variables on the same 44 

scale. The feature dimension was reduced using the following methods: inter-feature 45 

correlation based on Spearman’s correlation coefficients and feature importance based on 46 

a light gradient boosting machine (LightGBM) feature selection function. Three different 47 

models were developed using LightGBM as follows: (i) a model with 10 DVIs (DVI 48 

model), (ii) a model with the selected dosiomic features (dosiomic model), and (iii) a 49 
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model with 10 DVIs and selected dosiomic features (hybrid model). Suitable 50 

hyperparameters were determined by searching the largest average area under the curve 51 

(AUC) value in the receiver operating characteristic curve (ROC–AUC) via stratified 52 

five-fold cross-validation. Each of the final three models with the closest the ROC–AUC 53 

value to the average ROC–AUC value was applied to the test datasets. The classification 54 

performance was evaluated by calculating the ROC–AUC, AUC in the precision–recall 55 

curve (PR–AUC), accuracy, precision, recall, and f1-score. The entire process was 56 

repeated 100 times with randomization, and 100 individual models were developed for 57 

each of the three models. Then the mean value and SD for the 100 random iterations were 58 

calculated for each performance metric. 59 

Results: Thirty-seven (15.0%) patients developed RP after SBRT. The ROC-AUC and 60 

PR-AUC values in the DVI, dosiomic, and hybrid models were 0.660 ± 0.054 and 0.272 61 

± 0.052, 0.837 ± 0.054 and 0.510 ± 0.115, and 0.846 ± 0.049 and 0.531 ± 0.116, 62 

respectively. For each performance metric, the dosiomic and hybrid models outperformed 63 

the DVI models (p < 0.05). Texture-based dosiomic feature was confirmed as an effective 64 

indicator for predicting RP. 65 

Conclusions: Our dose-segmented dosiomic approach improved the prediction of the 66 

incidence of RP after SBRT. 67 
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Introduction 71 

Stereotactic body radiation therapy (SBRT) is typically used to treat early-stage 72 

non-small cell lung cancer (NSCLC). The standard treatment for early-stage NSCLC is 73 

surgery; however, SBRT is an effective treatment method for patients with inoperable 74 

tumors or refusing surgical resection (1). Several multi-institutional phase II studies on 75 

SBRT in early-stage NSCLC have indicated high local control rates at 3 years (1–4). 76 

Radiation pneumonitis (RP) is the dominant toxicity after lung SBRT. 77 

Symptomatic RP predominantly occurs one year after SBRT (5, 6), and the reported 78 

incidence rates of RP grade 2 or worse ranged from 2.4% to 28.0% (7–12). Although most 79 

RP cases are grade 2 and manageable, some are severe and life-threatening (13). The risks 80 

of RPs reduce the benefits of SBRT; hence, it is important to consider the predictive 81 

factors of RP incidence. Several studies have been performed to identify dose–volume 82 

indices (DVIs), such as the mean lung dose (MLD) and the percentage of the lung volume 83 

receiving greater than x Gy (Vx Gy) corresponding to RP after SBRT (7–12). However, 84 

these features describe few characteristics of the dose distribution, and no clear consensus 85 

is available regarding the appropriate use of DVIs for predicting RP after SBRT. 86 

Recently, machine learning has progressed rapidly in the field of radiation 87 

oncology (14). In particular, a radiomic approach that enables the extraction of 88 
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quantitative medical imaging features for predicting prognostic outcomes was applied to 89 

computed tomography (CT) images to predict patient prognosis, such as local recurrence 90 

and distant metastasis after lung SBRT (15–18). Similar to the CT-based radiomic 91 

approach, some studies have reported the effectiveness of a dose-based radiomic 92 

(dosiomic) approach based on three-dimensional (3D) dose distributions to predict 93 

toxicities after radiation therapy (19–22). In addition to the limited DVIs, dosiomic 94 

features provide quantitative analysis based on multidimensional data, such as the shape, 95 

statistics, and texture features of the dose distribution. Although some studies have 96 

considered dosiomic features for predicting radiation-induced toxicities, the prediction of 97 

RP after SBRT in patients with early-stage NSCLC has not been performed. Furthermore, 98 

as a dosiomic approach, no study has focused on using several regions of the dose 99 

distribution, for example, inside the region of Vx Gy, as used in the extraction of DVIs. 100 

This study aimed to investigate the effectiveness of dose-segmented dosiomic 101 

features for predicting the incidence of RP after lung SBRT in patients with early-stage 102 

NSCLC. We developed three predictive models with DVIs, dosiomic features, and a 103 

combination of DVI and dosiomic features using a light gradient boosting machine 104 

(LightGBM) based on a gradient-boosting decision tree algorithm. 105 

 106 



8 
 

Materials and methods 107 

Overall workflow 108 

The overall workflow of this study is shown in Figure 1. The study involved the 109 

following steps: (I) acquire patient data from Digital Imaging and Communications in 110 

Medicine Radiation Therapy (DICOM-RT) files and partitioning patients into training 111 

and test datasets, (II) extract 10 DVIs and 6,808 dosiomic features from the dose 112 

distribution, (III) select features using inter-feature correlation based on Spearman’s 113 

correlation coefficients (CCs) and feature importance based on a LightGBM feature 114 

selection function, and developing predictive models for RP using LightGBM, and (IV) 115 

evaluate the three predictive models. The previous steps were repeated 100 times with 116 

randomization.  117 
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 118 

Figure 1: Overall workflow of dosiomic analysis performed in this study. Abbreviations: 119 

NSCLC = non-small cell lung cancer, SBRT = stereotactic body radiation therapy, RP = 120 

radiation pneumonitis, DVI = dose volume index, ITV = internal target volume, MLD = 121 

mean lung dose, Vx Gy = percentage of entire lung excluding ITV volume receiving greater 122 

than x Gy, LightGBM = a light gradient boosting machine, AUC = area under the curve. 123 

 124 

Patients 125 

Our retrospective study was approved by the Institutional Review Board of 126 

Kyoto University Hospital and other institutions (approval number: R1536). We 127 

considered 685 early-stage NSCLC patients who underwent lung SBRT with non-128 
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coplanar 3D-conformal radiotherapy at three institutions between June 2009 and March 129 

2016. The patients were treated with 6 MV X-rays; the prescribed dose was 48–70 Gy in 130 

4–8 fractions at an isocenter. All patients received radiation doses greater than 100 Gy of 131 

a biologically effective dose with α/β = 10 at the isocenter. The patient selection criteria 132 

are shown in Figure 2. A total of 247 patients with NSCLC were eligible for this study.  133 

 134 

  135 

Figure 2: Patient inclusion and exclusion criteria. The exclusion criteria were as follows: 136 

the absence of CT and clinical data, multiple tumors, use of pencil beam algorithm, no 137 

development of RP, and a follow-up period of less than one year. Abbreviations: SBRT = 138 

stereotactic body radiation therapy, CT = computed tomography, RP = radiation 139 

pneumonitis. 140 

 141 
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Four-dimensional averaged CT images, and an expiratory breath-hold CT image 142 

were used for dose calculation. The dose distribution was calculated using the X-ray voxel 143 

Monte Carlo (XVMC) algorithm on an iPlan radiation therapy system (Brainlab, Munich, 144 

Germany). The grid size for the dose calculation was 2.3 × 2.3 × 2.5 mm. The dose-145 

volume constraints of organs at risk were based on the Japan Clinical Oncology Group 146 

0403 and 1408 protocols (23). 147 

Symptomatic RP was graded based on the National Cancer Institute Common 148 

Terminology Criteria for Adverse Events version 4.0, published by the National Cancer 149 

Institute, Cancer Therapy Evaluation Program. In this study, cases of RP grade 2 or worse 150 

were considered symptomatic.  151 

The patients were randomly partitioned into two groups: 70% for the training 152 

datasets and 30% for the test datasets over 100 times. The RP incidence rate was 153 

approximately equal for each dataset. This study was categorized as “Type 1b: 154 

Development and validation using resampling” in the Transparent Reporting of a 155 

multivariable prediction model for Individual Prognosis Or Diagnosis statement (24). 156 

 157 

Feature extraction 158 

From the DICOM-RT plan and dose files, contour information and dose 159 
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distribution were extracted. Thereafter, DVIs and dosiomic features were extracted from 160 

the dose distribution. The 10 DVIs, referred to in previous studies, were as follows: MLD, 161 

internal target volume (ITV) size, V5 Gy, V10 Gy, V15 Gy, V20 Gy, V25 Gy, V30 Gy, V35 Gy, and 162 

V40 Gy (12). In this study, the entire lung, excluding the ITV (Lung-ITV), was regarded as 163 

a normal lung.  164 

Dosiomic features were extracted from the dose distribution using PyRadiomics 165 

version 2.2.0, which enables the extraction of a large group of developed features from 166 

multiple medical images, including the dose distribution (25). Considered as dosiomic 167 

features, Lung-ITVs receiving doses greater than x Gy (x = 5, 10, 15, 20, 25, 30, 35, and 168 

40) were used as regions of interest (ROIs) that were also used in the extraction of DVIs 169 

(Figure 3). The dosiomic features, extracted from the eight types of ROIs without 170 

preprocessing were as follows: 112 (14 × 8) shape features, 144 (18 × 8) first-order 171 

features, and 600 (75 × 8) texture features; features extracted with wavelet filters were 172 

1,152 (144 × 8) first-order features and 4,800 (600 × 8) texture features (Supplemental 173 

Table 1). In the first-order and texture features, wavelet filters were used in eight 174 

decompositions (i.e., LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH) to extract 175 

multiple features from different frequency bands of the original dose distribution. A total 176 

of 6,808 dosiomic features were used in this study. 177 
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 178 

 179 

Figure 3: Eight types of ROIs in dose-segmented dosiomic features extraction. Lung-ITV 180 

receiving greater than x Gy (x = 5, 10, 15, 20, 25, 30, 35, and 40) were used as the ROIs. 181 

Area painted in dark blue shows Lung-ITV receiving greater than x Gy. Abbreviations: 182 

Lung-ITV = entire lung excluding internal target volume; ROI = region of interest. 183 

 184 

Feature selection 185 

To reduce the feature dimensions, dosiomic features were selected based on the 186 

redundancy and significance of the features. First, redundant features were eliminated 187 

using Spearman’s correlation analysis. The Spearman’s CCs were calculated after the 188 
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dosiomic features were converted to z-scores. The z-scores are the standardized values 189 

with a mean of zero and a standard deviation (SD) of one to put different variables on 190 

the same scale. If a high correlation exists between two features (CC ≥ 0.8), then one of 191 

the two features that are highly correlated with the other remaining features is eliminated 192 

(18, 26, 27). The threshold value above was determined to eliminate the multicollinearity 193 

of the features for the next step. Second, important features were selected using the 194 

“Boruta” package based on the LightGBM, which is widely used for binary 195 

classifications (28). The LightGBM repeatedly utilizes the learning results of prior weak 196 

predictors for subsequent predictors and yields a feature selection method based on a 197 

feature significance score. In LightGBM feature selection, features with significantly 198 

worse importance than shadow ones are eliminated, whereas features related to the 199 

outcome variable are selected. 200 

 201 

Model building 202 

For the training datasets, three different models were developed using 203 

LightGBM as follows: (i) a model with 10 DVIs (DVI model), (ii) a model with the 204 

selected dosiomic features (dosiomic model), and (iii) a model with 10 DVIs and selected 205 

dosiomic features (hybrid model). To address the imbalanced sample size in the datasets, 206 
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the minority and majority classes were automatically weighted based on their sample size 207 

proportion using the LightGBM parameter “scale_pos_weight.” To develop significantly 208 

accurate models and prevent overfitting to the training datasets, hyperparameters for 209 

LightGBM were optimized using stratified five-fold cross-validation with Bayesian 210 

optimization (29). Suitable hyperparameters were determined by searching the largest 211 

average area under the curve value in the receiver operating characteristic curve (ROC–212 

AUC) of the five models. Furthermore, each of the final three models with the closest 213 

ROC–AUC value to the average ROC–AUC value in five-fold cross-validation was 214 

applied to the test datasets. The significance of the three models' features was calculated 215 

based on the LightGBM by counting the frequency of the top five important features. 216 

 217 

Performance evaluation 218 

The ROC curve is a diagnostic tool for evaluating the performance of binary 219 

classifiers. However, because class imbalance can introduce bias to the majority class, 220 

high predictive performances on ROC curves may not be high on precision–recall (PR) 221 

curves (30). To focus on the incidence of RP belonging to the minor class, the AUCs in 222 

the precision–recall curves (PR–AUC) were calculated. Considering the performance 223 

metrics for the predictive models, the accuracy [= (TP + TN) / (TP + TN + FP + FN)], 224 
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recall [= TP / (TP + FN)], precision [= TP / (TP + FP)], and f1-score [= 2TP / (2TP + FP 225 

+ FN)] were calculated, where TP is true positive, TN is true negative, FP is false positive, 226 

and FN is false negative (31). To assess the binary classifications, a default cutoff value 227 

of 0.5 was used as the threshold for the predictive probability of each model. The entire 228 

process was repeated 100 times with randomization, and 100 individual models were 229 

developed for each of the three models. Then the mean value and SD for the 100 random 230 

iterations were calculated for the ROC–AUC, PR–AUC, accuracy, recall, precision, and 231 

f1-score. 232 

 233 

Statistical analysis 234 

The statistical significance of the ROC–AUC and the PR–AUC for the three 235 

models was evaluated using the paired t-test and Wilcoxon signed-rank test. Bonferroni 236 

correction was applied to adjust the p-value of multiple comparisons. An appropriate test 237 

was determined based on normality using the Shapiro–Wilk test. Statistical analyses were 238 

performed using R software version 3.6.1 (32). A p-value < 0.05 was considered 239 

statistically significant. 240 

 241 

Results 242 
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Patient characteristics 243 

Table 1 summarizes the characteristics of the study participants in the three 244 

institutions. The median follow-up duration was 36.3 months (range: 1.6–119.0 months), 245 

and the median duration for the RP incidence was 3.7 months (range: 1.6–8.7 months). A 246 

total of 37 patients (15.0%) developed RP grade 2 or worse after SBRT. The number of 247 

patients who developed RP after SBRT with the prescribed doses of 48, 50, 56, 60, 64, 248 

and 70 Gy were 23 (15.3%), 4 (26.7%), 0 (0%), 4 (13.3%), 0 (0%), and 6 (12%), 249 

respectively. In the training and test datasets, the data distribution of the RP class was 250 

consistent. Table 2 summarizes the mean value and SD for 10 DVIs. All treatment plans 251 

satisfied the dose–volume constraints shown in Table 2.  252 



18 
 

Table 1: Characteristics of the study participants.  253 

 254 
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Abbreviations: AC = adenocarcinoma; SqCC = squamous cell carcinoma; RUL = right upper lobe; RML = right middle lobe; RLL = right 255 

lower lobe; LUL = left upper lobe; LLL = left lower lobe; CT = computed tomography; Ave-CT = four-dimensional averaged CT images 256 

generated from 10 respiratory phase CT images; Ex-CT = expiratory breath-hold CT images; RP = radiation pneumonitis. 257 

Note: The incidence rates of RP in the training and test are shown as mean ± SD because we randomly partitioned the patients into training 258 

and test datasets 100 times while maintaining the RP rate for each dataset in three institutions.259 
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Table 2: Mean value and standard deviation for dose-volume indices by the prescribed dose. 260 

 261 
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Abbreviations: DVI = dose volume index; ITV = internal target volume; Lung-ITV = entire lung excluding ITV; Vx Gy = percentage of the 262 

Lung-ITV volume receiving greater than x Gy. 263 

Note: dose–volume constraints were based on the Japan Clinical Oncology Group 0403 and 1408 protocols (22). 264 
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Model performance 265 

Figure 4 shows the resultant ROC and PR curves for predicting RP in the training 266 

and test datasets. The mean ± SD of the ROC-AUC and PR-AUC values for the test 267 

datasets in the DVI, dosiomic, and hybrid models were 0.660 ± 0.054 and 0.272 ± 0.052, 268 

0.837 ± 0.054 and 0.510 ± 0.115, and 0.846 ± 0.049 and 0.531 ± 0.116, respectively. In 269 

the analyses, the ROC–AUC and PR–AUC values in the dosiomic and hybrid models 270 

were significantly higher than those in the DVI models (p < 0.05). Furthermore, no 271 

significant differences were observed in the ROC–AUC and PR–AUC between the 272 

dosiomic and hybrid models. 273 
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 274 

Figure 4: Mean receiver operating characteristic (ROC) and precision–recall (PR) curves 275 

with 100 individual models for each of the three models; ROC curves in (A) training and 276 

(B) test datasets, and PR curves in (C) training and (D) the test datasets. For the curves, 277 

each line indicates the DVI models (green), dosiomic models (blue), and hybrid models 278 

(red). Abbreviations: DVI = dose volume index; AUC = area under the curve. 279 
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 280 

Table 3 summarizes the mean ± SD of the accuracy, precision, recall, and f1-281 

score in the training and test datasets. For each performance metric, the dosiomic and 282 

hybrid models outperformed the DVI models. Furthermore, for the hybrid models, each 283 

performance metric value improved by adding the DVIs to the dosiomic models. 284 

  285 
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Table 3: Performance metrics of three models. 286 

 287 
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Abbreviation: DVI = dose volume index.  288 
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Feature importance 289 

In the DVI models, V10 Gy was the most frequently occurring feature among the 290 

10 DVIs (Figure 5A). In the dosiomic and hybrid models, the gray level co-occurrence 291 

matrix (GLCM) was indicated as the most important group (Supplemental Figure 1), 292 

whereas “Wavelet.HLH_glcm_Correlation in V5 Gy” was classified as a highly frequent 293 

feature (Figures 5B, C). 294 
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 295 

 296 



29 
 

Figure 5: Importance of features used in (A) DVI, (B) dosiomic, and (C) hybrid models. 297 

Vertical axis shows top-10 important features; horizontal axis shows normalized 298 

occurrence frequency of features. In the dosiomic and hybrid models, 299 

“Wavelet.HLH_glcm_Correlation in V5 Gy” was the most important feature. The feature 300 

indicates the glcm correlation with wavelet filter in HLH decomposition inside the region 301 

of V5 Gy. Abbreviation: DVI = dose volume index; ITV = internal target volume; MLD = 302 

mean lung dose; Vx Gy = percentage of entire lung excluding ITV volume receiving greater 303 

than x Gy; GLCM = gray level co-occurrence matrix; GLDM gray level dependence 304 

matrix. 305 

 306 

Figure 6 shows examples of the dose distribution, feature map, and follow-up 307 

CT images after SBRT comprising RP grade 2 and non-RP cases. The dosiomic feature 308 

maps of (C) and (D) were calculated based on planned dose distributions of (A) and (B), 309 

respectively. Follow-up CT scans of (E) and (F) were obtained after treatment, and they 310 

indicate the same axial slice as those in the dosiomic feature maps of (C) and (D), 311 

respectively. Although V10 Gy was greater than the median value (11.8%) in both cases, 312 

the feature map calculated by the “Wavelet.HLH_glcm_Correlation in V5 Gy” feature with 313 

RP grade 2 cases used predominantly low values (blue) near the RP position, whereas the 314 
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non-RP case used predominantly high values (red) in the ROI. The feature maps 315 

calculated from the dose distribution were highly correlated with the RP incidence based 316 

on follow-up CT after treatment. 317 

  318 

Figure 6: Example of (A, B) dose distribution; (C, D) dosiomic feature map calculated 319 

by “Wavelet.HLH_glcm_Correlation in V5 Gy” feature; (E, F) follow-up CT scan after 320 
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SBRT. “Wavelet.HLH_glcm_Correlation in V5 Gy” indicates the glcm correlation with 321 

wavelet filter in HLH decomposition inside V5 Gy region. Follow-up CT scans are shown 322 

at (E) 271 days and (F) 203 days after SBRT. RP grade 2 case is shown in (A, C, E), and 323 

non-RP case is shown in (B, D, F). White contour lines show Lung-ITV in (A) and (B); 324 

black contour lines show Lung-ITV receiving greater than x Gy in (C) and (D). 325 

Abbreviations: RP = radiation pneumonitis; Lung-ITV = entire lung excluding the internal 326 

target volume; Vx Gy = percentage of Lung-ITV volume receiving greater than x Gy. 327 

 328 

Discussion 329 

We investigated a novel approach for predicting RP after lung SBRT in patients 330 

with early-stage NSCLC using dose-segmented dosiomic features with the machine-331 

learning algorithm in LightGBM. To the best of our knowledge, our study is the first to 332 

focus on dose-segmented dosiomic features extracted from the regions of Vx Gy. 333 

Subsequently, we developed an accurate model that thoroughly described the 334 

characteristics of the dose distribution. Furthermore, we identified that the dosiomic 335 

feature, “Wavelet.HLH_glcm_Correlation in V5 Gy” was more significant than the other 336 

DVIs. Our dosiomic approach can aid in predicting RP after SBRT. 337 

A previous study reported the effectiveness of dosiomics in predicting the RP 338 
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incidence. Liang et al. predicted RP grade 2 or worse after volumetric modulated arc 339 

therapy (VMAT) in stage I to IV NSCLC patients (19). They used the ipsilateral, 340 

contralateral, and the entire lung as the ROI because the irradiation field for patients with 341 

multiple stages was large. Their AUC for predicting RP improved from 0.676 (with a DVI 342 

model) and 0.744 (with a normal tissue complication probability model) to 0.782 (with a 343 

dosiomic model). Applying this approach to our study in early-stage NSCLC patients will 344 

affect the interpretation of the partial-dose distribution that correlates with the RP 345 

incidence because the non-irradiated lung area may not be critical for the analysis. To 346 

thoroughly analyze the dose distribution, our dose-segmented dosiomic approach focused 347 

on whether dose-segmented dosiomic features improve the prediction of RP after SBRT. 348 

In this study, we developed accurate predictive models for RP after SBRT using dose-349 

segmented dosiomic features rather than DVIs. We discovered that 350 

“Wavelet.HLH_glcm_Correlation in V5 Gy” was the most important feature in the 351 

dosiomic and hybrid models. Liang et al. indicated that the “GLCM contrast” feature was 352 

a significant feature correlated with the incidence of RP after VMAT, although their 353 

irradiation technique and patient characteristics differed from those of our study (19). 354 

Therefore, the group of GLCM features may contribute to the incidence of RP regardless 355 

of the irradiation technique. 356 
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The unbalanced patient dataset can result in a bias to the majority class (non-RP 357 

class) in the model building. Although the current study is based on TRIPOD type 1b (24), 358 

the patient partition and model development were repeated 100 times to focus on the 359 

minority class (RP grade 2 or worse class). Moreover, PR curves were calculated with 360 

emphasis on the incidence of RP in the minor class (30). For predicting RP after VMAT, 361 

Liang et al. conducted a PR curve analysis using a convolution 3D neural network (33); 362 

the result was consistent with our dosiomic approach. In our study, the PR–AUC 363 

significantly improved when switching from the DVI models to the dosiomic and hybrid 364 

models. As shown in Figure 6, regardless of the similarity of V10 Gy, the dosiomic feature 365 

maps can distinguish between the RP and non-RP cases based on the non-uniform 366 

quantitative information inside the ROIs. The most selected dosiomic feature was 367 

“GLCM correlation” at V5 Gy. The linear dependency of the doses on neighboring voxels 368 

mainly contributed to this feature (34), indicating that the non-uniform dose distribution 369 

between the connected voxels was correlated with RP after SBRT. Moreover, the 370 

predictive performances of the dosiomic and hybrid models were equivalent. This is 371 

because most of the DVIs implemented in the hybrid models were commonly regarded 372 

as dosiomic features representing the dose distribution shape. Hence, it is important to 373 

apply dosiomic features to RP prediction, and it can be concluded that the hybrid models, 374 



34 
 

including DVIs, does not necessarily improve the predictive performance. Furthermore, 375 

our dosiomic approach can be applied to radiation treatment planning. In general, DVIs 376 

are used as indicators of RP. In this study, we found that texture features derived from 377 

GLCM, representing information regarding the heterogeneity of dose distribution, would 378 

be better indicators for RP than DVIs. Although our dosiomic study did not directly reveal 379 

clinical application details, the finding can potentially be applied to treatment plan 380 

optimization. In addition to the conventional DVI-based optimization, dosiomic-based 381 

optimization that can analyze the quantitative information inside the ROI may contribute 382 

to reducing the incidence of RP after SBRT. 383 

Multiple DVIs are often considered as dose constraints for reducing the risk of 384 

developing RP after SBRT (7–12). Matsuo et al. analyzed 74 patients who underwent 385 

SBRT based on a dose distribution calculated using an analytical anisotropic algorithm 386 

(AAA) (12). They discovered that V25 Gy and the planning target volume size were 387 

significant factors for RP. Moreover, Ryckman et al. analyzed 93 patients who underwent 388 

SBRT using a dose-calculation algorithm, including the AAA, pencil beam, and collapsed 389 

cone convolution (CCC) (8). They discovered that V20 Gy and MLD were associated with 390 

the development of RP. Although these studies identified significant factors for RP, dose-391 

calculation algorithms included several types. The dose distributions calculated with 392 
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“type c” algorithms such as the XVMC are more accurate compared with those calculated 393 

with “type a” algorithms such as the pencil beam and “type b” algorithms such as AAA 394 

and CCC in inhomogeneous regions such as the lungs (35, 36). Therefore, dose 395 

distributions calculated with “type a” and “type b” algorithms overestimate the dose in 396 

low-density lung regions compared with those with “type c.” Hence, the values of DVIs 397 

and dosiomic features can vary depending on the dose calculation algorithm. Therefore, 398 

caution is required when extracting dosiomic features based on different dose calculation 399 

algorithms. 400 

Several limitations are presented in this study, including the following. First, this 401 

study was based on retrospective analysis. Although this study included patients who 402 

underwent SBRT at three institutions, they might contain biases associated with treatment 403 

protocols, such as planning policy and dose constraints in each institution. Moreover, 404 

because patients with multiple tumors were excluded, our dosiomic approach can be 405 

applied to patients with a single tumor. Nevertheless, accurate models for predicting RP 406 

were developed. Second, various fractionation schemes were included in this study. In 407 

this case, treatment expectations are typically quantified using equivalent doses of 2 Gy 408 

fractions (37). However, in our analysis, no treatment plans violated the dose–volume 409 

constraints, and no bias was observed in the incidence of RP after SBRT among various 410 
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prescribed doses; hence, we did not convert physical doses to biological doses. Third, we 411 

included only the dose-related features extracted from the dose distribution. Several 412 

studies have shown that the incidence of RP is strongly correlated with other clinical 413 

factors (7, 38). However, owing to missing clinical factors, such as performance status 414 

and smoking history, we did not include them in this study. These features may improve 415 

the prediction of RP after SBRT if included in the dosiomic analysis. 416 

 417 

Conclusions 418 

We developed predictive models for RP grade 2 or worse after SBRT using dose-419 

segmented dosiomic features and DVIs. The dosiomic features improved the prediction 420 

compared with other DVIs. This novel approach for analyzing dose distribution can 421 

enhance the practicality of the precision technique for reducing the risk of RP after SBRT. 422 
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