1	Multi-institutional dose-segmented dosiomic analysis for predicting
2	radiation pneumonitis after lung stereotactic body radiation therapy
3	
4	Takanori Adachi, M.S., ^{1,2)} Mitsuhiro Nakamura, Ph.D., ^{1,2)} Takashi Shintani, M.D.,
5	Ph.D., ²⁾ Takamasa Mitsuyoshi, M.D., Ph.D., ^{2,3)} Ryo Kakino, M.S., ^{1,2)} Takashi Ogata,
6	M.D., ^{2,3)} Tomohiro Ono, Ph.D., ²⁾ Hiroaki Tanabe, R.T.T., ³⁾ Masaki Kokubo, M.D.,
7	Ph.D., ³⁾ Takashi Sakamoto, M.D., ⁴⁾ Yukinori Matsuo, M.D., Ph.D., ²⁾ Takashi Mizowaki,
8	M.D., Ph.D. ²⁾
9	
10	¹⁾ Division of Medical Physics, Department of Information Technology and Medical
11	Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University,
12	Kyoto, Japan
13	²⁾ Department of Radiation Oncology and Image-applied Therapy, Graduate School of
14	Medicine, Kyoto University, Kyoto, Japan
15	³⁾ Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kyoto,
16	Japan
17	⁴⁾ Department of Radiation Oncology, Kyoto Katsura Hospital, Kyoto, Japan
18	

20	Corresponding author:
21	Mitsuhiro Nakamura, Ph.D.
22	Division of Medical Physics, Department of Information Technology and Medical
23	Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University
24	53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
25	Tel: +81-75-751-4176
26	E-mail: m_nkmr@kuhp.kyoto-u.ac.jp
27	
28	Running head: Dosiomic analysis for RP after SBRT
29	
30	Meeting presentation: This work was presented in part as a BLUE RIBBON ePOSTER

31 at the 2020 Joint AAPM|COMP Virtual Meeting, July 12–16, 2020.

32 Abstract

33 **Purpose:** To predict radiation pneumonitis (RP) grade 2 or worse after lung stereotactic 34 body radiation therapy (SBRT) using dose-based radiomic (dosiomic) features. Methods: This multi-institutional study included 247 early-stage non-small cell lung 35 cancer patients who underwent SBRT with a prescribed dose of 48–70 Gy at an isocenter 36 37 between June 2009 and March 2016. Ten dose-volume indices (DVIs) were used, 38 including the mean lung dose, internal target volume size, and percentage of entire lung 39 excluding the internal target volume receiving greater than x Gy (x = 5, 10, 15, 20, 25, 30, 35, and 40). A total of 6,808 dose-segmented dosiomic features, such as shape, first 40 41 order, and texture features, were extracted from the dose distribution. Patients were randomly partitioned into two groups: model training (70%) and test datasets (30%) over 42 43 100 times. Dosiomic features were converted to z-scores (standardized values) with a 44 mean of zero and a standard deviation (SD) of one to put different variables on the same scale. The feature dimension was reduced using the following methods: inter-feature 45 correlation based on Spearman's correlation coefficients and feature importance based on 46 47 a light gradient boosting machine (LightGBM) feature selection function. Three different models were developed using LightGBM as follows: (i) a model with 10 DVIs (DVI 48 49 model), (ii) a model with the selected dosiomic features (dosiomic model), and (iii) a

50	model with 10 DVIs and selected dosiomic features (hybrid model). Suitable
51	hyperparameters were determined by searching the largest average area under the curve
52	(AUC) value in the receiver operating characteristic curve (ROC-AUC) via stratified
53	five-fold cross-validation. Each of the final three models with the closest the ROC-AUC
54	value to the average ROC-AUC value was applied to the test datasets. The classification
55	performance was evaluated by calculating the ROC-AUC, AUC in the precision-recall
56	curve (PR-AUC), accuracy, precision, recall, and f1-score. The entire process was
57	repeated 100 times with randomization, and 100 individual models were developed for
58	each of the three models. Then the mean value and SD for the 100 random iterations were
59	calculated for each performance metric.
60	Results: Thirty-seven (15.0%) patients developed RP after SBRT. The ROC-AUC and
61	PR-AUC values in the DVI, dosiomic, and hybrid models were 0.660 ± 0.054 and 0.272
62	\pm 0.052, 0.837 \pm 0.054 and 0.510 \pm 0.115, and 0.846 \pm 0.049 and 0.531 \pm 0.116,
63	respectively. For each performance metric, the dosiomic and hybrid models outperformed
64	the DVI models ($p < 0.05$). Texture-based dosiomic feature was confirmed as an effective
65	indicator for predicting RP.

66 Conclusions: Our dose-segmented dosiomic approach improved the prediction of the67 incidence of RP after SBRT.

- 68
- 69 Keywords: stereotactic body radiation therapy; radiation pneumonitis; dosiomics;
- 70 machine learning; multi-institutional study

71 Introduction

72	Stereotactic body radiation therapy (SBRT) is typically used to treat early-stage
73	non-small cell lung cancer (NSCLC). The standard treatment for early-stage NSCLC is
74	surgery; however, SBRT is an effective treatment method for patients with inoperable
75	tumors or refusing surgical resection (1). Several multi-institutional phase II studies on
76	SBRT in early-stage NSCLC have indicated high local control rates at 3 years (1-4).
77	Radiation pneumonitis (RP) is the dominant toxicity after lung SBRT.
78	Symptomatic RP predominantly occurs one year after SBRT (5, 6), and the reported
79	incidence rates of RP grade 2 or worse ranged from 2.4% to 28.0% (7–12). Although most
80	RP cases are grade 2 and manageable, some are severe and life-threatening (13). The risks
81	of RPs reduce the benefits of SBRT; hence, it is important to consider the predictive
82	factors of RP incidence. Several studies have been performed to identify dose-volume
83	indices (DVIs), such as the mean lung dose (MLD) and the percentage of the lung volume
84	receiving greater than x Gy ($V_{x Gy}$) corresponding to RP after SBRT (7–12). However,
85	these features describe few characteristics of the dose distribution, and no clear consensus
86	is available regarding the appropriate use of DVIs for predicting RP after SBRT.

87 Recently, machine learning has progressed rapidly in the field of radiation 88 oncology (14). In particular, a radiomic approach that enables the extraction of

89	quantitative medical imaging features for predicting prognostic outcomes was applied to
90	computed tomography (CT) images to predict patient prognosis, such as local recurrence
91	and distant metastasis after lung SBRT (15-18). Similar to the CT-based radiomic
92	approach, some studies have reported the effectiveness of a dose-based radiomic
93	(dosiomic) approach based on three-dimensional (3D) dose distributions to predict
94	toxicities after radiation therapy (19-22). In addition to the limited DVIs, dosiomic
95	features provide quantitative analysis based on multidimensional data, such as the shape,
96	statistics, and texture features of the dose distribution. Although some studies have
97	considered dosiomic features for predicting radiation-induced toxicities, the prediction of
98	RP after SBRT in patients with early-stage NSCLC has not been performed. Furthermore,
99	as a dosiomic approach, no study has focused on using several regions of the dose
100	distribution, for example, inside the region of $V_{x Gy}$, as used in the extraction of DVIs.
101	This study aimed to investigate the effectiveness of dose-segmented dosiomic
102	features for predicting the incidence of RP after lung SBRT in patients with early-stage
103	NSCLC. We developed three predictive models with DVIs, dosiomic features, and a
104	combination of DVI and dosiomic features using a light gradient boosting machine
105	(LightGBM) based on a gradient-boosting decision tree algorithm.

107 Materials and methods

108 Overall workflow

109	The overall workflow of this study is shown in Figure 1. The study involved the
110	following steps: (I) acquire patient data from Digital Imaging and Communications in
111	Medicine Radiation Therapy (DICOM-RT) files and partitioning patients into training
112	and test datasets, (II) extract 10 DVIs and 6,808 dosiomic features from the dose
113	distribution, (III) select features using inter-feature correlation based on Spearman's
114	correlation coefficients (CCs) and feature importance based on a LightGBM feature
115	selection function, and developing predictive models for RP using LightGBM, and (IV)
116	evaluate the three predictive models. The previous steps were repeated 100 times with
117	randomization.

119Figure 1: Overall workflow of dosiomic analysis performed in this study. Abbreviations:120NSCLC = non-small cell lung cancer, SBRT = stereotactic body radiation therapy, RP =121radiation pneumonitis, DVI = dose volume index, ITV = internal target volume, MLD =122mean lung dose, $V_{x Gy}$ = percentage of entire lung excluding ITV volume receiving greater123than x Gy, LightGBM = a light gradient boosting machine, AUC = area under the curve.124

125 Patients

Our retrospective study was approved by the Institutional Review Board of Kyoto University Hospital and other institutions (approval number: R1536). We considered 685 early-stage NSCLC patients who underwent lung SBRT with non-

129	coplanar 3D-conformal radiotherapy at three institutions between June 2009 and March
130	2016. The patients were treated with 6 MV X-rays; the prescribed dose was 48–70 Gy in
131	4-8 fractions at an isocenter. All patients received radiation doses greater than 100 Gy of
132	a biologically effective dose with $\alpha/\beta = 10$ at the isocenter. The patient selection criteria
133	are shown in Figure 2. A total of 247 patients with NSCLC were eligible for this study.

135

Figure 2: Patient inclusion and exclusion criteria. The exclusion criteria were as follows:

137 the absence of CT and clinical data, multiple tumors, use of pencil beam algorithm, no

- development of RP, and a follow-up period of less than one year. *Abbreviations*: SBRT =
- 139 stereotactic body radiation therapy, CT = computed tomography, RP = radiation

140 pneumonitis.

142	Four-dimensional averaged CT images, and an expiratory breath-hold CT image
143	were used for dose calculation. The dose distribution was calculated using the X-ray voxel
144	Monte Carlo (XVMC) algorithm on an iPlan radiation therapy system (Brainlab, Munich,
145	Germany). The grid size for the dose calculation was 2.3 \times 2.3 \times 2.5 mm. The dose-
146	volume constraints of organs at risk were based on the Japan Clinical Oncology Group
147	0403 and 1408 protocols (23).
148	Symptomatic RP was graded based on the National Cancer Institute Common
149	Terminology Criteria for Adverse Events version 4.0, published by the National Cancer
150	Institute, Cancer Therapy Evaluation Program. In this study, cases of RP grade 2 or worse
151	were considered symptomatic.
152	The patients were randomly partitioned into two groups: 70% for the training
153	datasets and 30% for the test datasets over 100 times. The RP incidence rate was
154	approximately equal for each dataset. This study was categorized as "Type 1b:
155	Development and validation using resampling" in the Transparent Reporting of a
156	multivariable prediction model for Individual Prognosis Or Diagnosis statement (24).
157	
158	Feature extraction

159 From the DICOM-RT plan and dose files, contour information and dose

distribution were extracted. Thereafter, DVIs and dosiomic features were extracted from the dose distribution. The 10 DVIs, referred to in previous studies, were as follows: MLD, internal target volume (ITV) size, $V_{5 Gy}$, $V_{10 Gy}$, $V_{15 Gy}$, $V_{20 Gy}$, $V_{25 Gy}$, $V_{30 Gy}$, $V_{35 Gy}$, and $V_{40 Gy}$ (12). In this study, the entire lung, excluding the ITV (Lung-ITV), was regarded as a normal lung.

165 Dosiomic features were extracted from the dose distribution using PyRadiomics 166 version 2.2.0, which enables the extraction of a large group of developed features from multiple medical images, including the dose distribution (25). Considered as dosiomic 167 features, Lung-ITVs receiving doses greater than x Gy (x = 5, 10, 15, 20, 25, 30, 35, and 168 169 40) were used as regions of interest (ROIs) that were also used in the extraction of DVIs (Figure 3). The dosiomic features, extracted from the eight types of ROIs without 170 171 preprocessing were as follows: 112 (14 \times 8) shape features, 144 (18 \times 8) first-order 172 features, and 600 (75 \times 8) texture features; features extracted with wavelet filters were 173 1,152 (144 \times 8) first-order features and 4,800 (600 \times 8) texture features (Supplemental 174 Table 1). In the first-order and texture features, wavelet filters were used in eight 175 decompositions (i.e., LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH) to extract 176 multiple features from different frequency bands of the original dose distribution. A total 177 of 6,808 dosiomic features were used in this study.

Lung-ITV receiving greater than x Gy (= ROI)

179

Figure 3: Eight types of ROIs in dose-segmented dosiomic features extraction. Lung-ITV
receiving greater than x Gy (x = 5, 10, 15, 20, 25, 30, 35, and 40) were used as the ROIs.
Area painted in dark blue shows Lung-ITV receiving greater than x Gy. *Abbreviations*:
Lung-ITV = entire lung excluding internal target volume; ROI = region of interest.

184

185 *Feature selection*

186 To reduce the feature dimensions, dosiomic features were selected based on the 187 redundancy and significance of the features. First, redundant features were eliminated 188 using Spearman's correlation analysis. The Spearman's CCs were calculated after the

189	dosiomic features were converted to z-scores. The z-scores are the standardized values
190	with a mean of zero and a standard deviation (SD) of one to put different variables on
191	the same scale. If a high correlation exists between two features (CC \ge 0.8), then one of
192	the two features that are highly correlated with the other remaining features is eliminated
193	(18, 26, 27). The threshold value above was determined to eliminate the multicollinearity
194	of the features for the next step. Second, important features were selected using the
195	"Boruta" package based on the LightGBM, which is widely used for binary
196	classifications (28). The LightGBM repeatedly utilizes the learning results of prior weak
197	predictors for subsequent predictors and yields a feature selection method based on a
198	feature significance score. In LightGBM feature selection, features with significantly
199	worse importance than shadow ones are eliminated, whereas features related to the
200	outcome variable are selected.

For the training datasets, three different models were developed using LightGBM as follows: (i) a model with 10 DVIs (DVI model), (ii) a model with the selected dosiomic features (dosiomic model), and (iii) a model with 10 DVIs and selected dosiomic features (hybrid model). To address the imbalanced sample size in the datasets,

²⁰² Model building

207	the minority and majority classes were automatically weighted based on their sample size
208	proportion using the LightGBM parameter "scale_pos_weight." To develop significantly
209	accurate models and prevent overfitting to the training datasets, hyperparameters for
210	LightGBM were optimized using stratified five-fold cross-validation with Bayesian
211	optimization (29). Suitable hyperparameters were determined by searching the largest
212	average area under the curve value in the receiver operating characteristic curve (ROC-
213	AUC) of the five models. Furthermore, each of the final three models with the closest
214	ROC-AUC value to the average ROC-AUC value in five-fold cross-validation was
215	applied to the test datasets. The significance of the three models' features was calculated
216	based on the LightGBM by counting the frequency of the top five important features.

218 *Performance evaluation*

The ROC curve is a diagnostic tool for evaluating the performance of binary classifiers. However, because class imbalance can introduce bias to the majority class, high predictive performances on ROC curves may not be high on precision–recall (PR) curves (30). To focus on the incidence of RP belonging to the minor class, the AUCs in the precision–recall curves (PR–AUC) were calculated. Considering the performance metrics for the predictive models, the accuracy [= (TP + TN) / (TP + TN + FP + FN)],

225	recall $[= TP / (TP + FN)]$, precision $[= TP / (TP + FP)]$, and f1-score $[= 2TP / (2TP + FP)]$
226	+ FN)] were calculated, where TP is true positive, TN is true negative, FP is false positive,
227	and FN is false negative (31). To assess the binary classifications, a default cutoff value
228	of 0.5 was used as the threshold for the predictive probability of each model. The entire
229	process was repeated 100 times with randomization, and 100 individual models were
230	developed for each of the three models. Then the mean value and SD for the 100 random
231	iterations were calculated for the ROC-AUC, PR-AUC, accuracy, recall, precision, and
232	fl-score.
233	
234	Statistical analysis
235	The statistical significance of the ROC-AUC and the PR-AUC for the three
236	models was evaluated using the paired t-test and Wilcoxon signed-rank test. Bonferroni
237	correction was applied to adjust the p-value of multiple comparisons. An appropriate test
238	was determined based on normality using the Shapiro-Wilk test. Statistical analyses were
239	performed using R software version 3.6.1 (32). A p-value < 0.05 was considered
240	statistically significant.
241	

Results

243 Patient characteristics

244	Table 1 summarizes the characteristics of the study participants in the three
245	institutions. The median follow-up duration was 36.3 months (range: 1.6–119.0 months),
246	and the median duration for the RP incidence was 3.7 months (range: 1.6-8.7 months). A
247	total of 37 patients (15.0%) developed RP grade 2 or worse after SBRT. The number of
248	patients who developed RP after SBRT with the prescribed doses of 48, 50, 56, 60, 64,
249	and 70 Gy were 23 (15.3%), 4 (26.7%), 0 (0%), 4 (13.3%), 0 (0%), and 6 (12%),
250	respectively. In the training and test datasets, the data distribution of the RP class was
251	consistent. Table 2 summarizes the mean value and SD for 10 DVIs. All treatment plans
252	satisfied the dose-volume constraints shown in Table 2.

	All (n = 247)	Institution A ($n = 120$)	Institution B $(n = 91)$	Institution C (n = 36)
Age [years]	Median: 78 (range: 41-92)	Median: 78 (range: 56–92)	Median: 80 (range: 58–92)	Median: 79 (range: 41-92)
Sex [Male / Female]	158 / 89	86 / 34	54 / 37	18 / 18
Histology [AC / SqCC / Others / unknown]	93 / 45 / 7 / 102	39 / 23 / 3 / 55	46 / 19 / 3 / 23	8 / 3 / 1 / 24
Tumor location [RUL / RML / RLL / LUL / LLL]	67 / 19 / 66 / 63 / 32	31 / 8 / 37 / 30 / 14	28 / 7 / 18 / 24 / 14	8 / 4 / 11 / 9 / 4
Prescribe dose [48 / 50 / 56 / 60 / 64 / 70 (Gy)]	150 / 15 / 1 / 30 / 1 / 50	69 / 0 / 0 / 1 / 0 / 50	71 / 0 / 0 / 20 / 0 / 0	10 / 15 / 1 / 9 / 1 / 0
Planning CT [Ave-CT / Ex-CT]	156 / 91	120 / 0	0 / 91	36 / 0
RP grade [2 / 3 / 4 / 5]	33 / 3 / 0 / 1	8 / 1 / 0 / 1	16 / 2 / 0 / 0	9 / 0 / 0 / 0
RP rate [Total / training / test (%)]	15.0 / 15.1 ± 0.0 / 14.7 ± 0.0	$8.3 / 8.4 \pm 1.5 / 8.1 \pm 3.5$	19.8 / 19.7 ± 2.2 / 20.2 ± 5.0	$25.0/26.1\pm4.7/22.9\pm6.2$

Table 1: Characteristics of the study participants.

255 *Abbreviations*: AC = adenocarcinoma; SqCC = squamous cell carcinoma; RUL = right upper lobe; RML = right middle lobe; RLL = right

lower lobe; LUL = left upper lobe; LLL = left lower lobe; CT = computed tomography; Ave-CT = four-dimensional averaged CT images

257 generated from 10 respiratory phase CT images; Ex-CT = expiratory breath-hold CT images; RP = radiation pneumonitis.

- 258 Note: The incidence rates of RP in the training and test are shown as mean ± SD because we randomly partitioned the patients into training
- and test datasets 100 times while maintaining the RP rate for each dataset in three institutions.

Object	DVI	Dose-volume	All	48 Gy	50 Gy	56 Gy	60 Gy	64 Gy	70 Gy
		constraints	(n = 247)	(n = 150)	(n = 15)	(n = 1)	(n = 30)	(n = 1)	(n = 50)
ITV	size (cm ³)		16.7 ± 15.3	15.8 ± 14.6	6.9 ± 7.1	13.4	24.6 ± 19.2	18.9	16.6 ± 12.7
Lung-ITV	Mean lung dose (Gy)	≤ 18 Gy	4.3 ± 1.6	3.9 ± 1.4	4.1 ± 1.6	4.2	5.5 ± 1.9	3.6	4.7 ± 1.4
	V _{5 Gy} (%)		19.9 ± 6.6	19.2 ± 6.7	18.4 ± 6.9	18.4	21.8 ± 6.7	13.5	20.7 ± 5.4
	V _{10 Gy} (%)		12.8 ± 5.4	11.9 ± 5.4	13.2 ± 5.4	13.1	15.5 ± 5.9	10.1	13.5 ± 4.2
	V _{15 Gy} (%)	\leq 25%	8.7 ± 4.4	7.6 ± 4.0	9.9 ± 4.5	8.0	11.5 ± 5.1	7.5	9.5 ± 3.6
	V _{20 Gy} (%)	$\leq 20\%$	6.1 ± 3.4	5.3 ± 3.0	6.9 ± 3.9	5.8	8.4 ± 4.1	5.3	6.6 ± 2.7
	V _{25 Gy} (%)		4.5 ± 2.6	3.8 ± 2.2	4.8 ± 2.7	4.5	6.5 ± 3.2	4.1	4.8 ± 2.2
	V _{30 Gy} (%)		3.4 ± 2.0	2.9 ± 1.7	3.4 ± 1.8	3.5	5.2 ± 2.6	3.2	3.7 ± 1.8
	V _{35 Gy} (%)		2.6 ± 1.6	2.1 ± 1.3	2.5 ± 1.4	2.8	4.1 ± 2.2	2.4	2.9 ± 1.4
	V _{40 Gy} (%)		1.9 ± 1.3	1.5 ± 1.0	1.8 ± 1.1	2.1	3.3 ± 1.8	1.7	2.3 ± 1.2

Table 2: Mean value and standard deviation for dose-volume indices by the prescribed dose.

- *Abbreviations*: DVI = dose volume index; ITV = internal target volume; Lung-ITV = entire lung excluding ITV; $V_{x Gy} = percentage of the$
- 263 Lung-ITV volume receiving greater than x Gy.
- *Note*: dose–volume constraints were based on the Japan Clinical Oncology Group 0403 and 1408 protocols (22).

Model performance

266	Figure 4 shows the resultant ROC and PR curves for predicting RP in the training
267	and test datasets. The mean \pm SD of the ROC-AUC and PR-AUC values for the test
268	datasets in the DVI, dosiomic, and hybrid models were 0.660 ± 0.054 and 0.272 ± 0.052 ,
269	0.837 ± 0.054 and 0.510 ± 0.115 , and 0.846 ± 0.049 and 0.531 ± 0.116 , respectively. In
270	the analyses, the ROC-AUC and PR-AUC values in the dosiomic and hybrid models
271	were significantly higher than those in the DVI models (p < 0.05). Furthermore, no
272	significant differences were observed in the ROC-AUC and PR-AUC between the
273	dosiomic and hybrid models.

Figure 4: Mean receiver operating characteristic (ROC) and precision–recall (PR) curves
with 100 individual models for each of the three models; ROC curves in (A) training and
(B) test datasets, and PR curves in (C) training and (D) the test datasets. For the curves,
each line indicates the DVI models (green), dosiomic models (blue), and hybrid models
(red). *Abbreviations*: DVI = dose volume index; AUC = area under the curve.

281	Table 3 summarizes the mean \pm SD of the accuracy, precision, recall, and f1-
282	score in the training and test datasets. For each performance metric, the dosiomic and
283	hybrid models outperformed the DVI models. Furthermore, for the hybrid models, each
284	performance metric value improved by adding the DVIs to the dosiomic models.
285	

Table 3: Performance metrics of three models.

		Accuracy	Recall	Precision	F1-score
DVI models	Training	0.699 ± 0.067	0.620 ± 0.140	0.285 ± 0.066	0.383 ± 0.070
	Test	0.653 ± 0.062	0.507 ± 0.170	0.214 ± 0.053	0.297 ± 0.073
Dosiomic models	Training	0.899 ± 0.051	0.821 ± 0.133	0.658 ± 0.155	0.718 ± 0.113
	Test	0.843 ± 0.038	0.660 ± 0.145	0.482 ± 0.096	0.551 ± 0.098
Hybrid models	Training	0.900 ± 0.047	0.837 ± 0.128	0.662 ± 0.163	0.725 ± 0.109
	Test	0.846 ± 0.038	0.660 ± 0.138	0.494 ± 0.093	0.556 ± 0.087

Abbreviation: DVI = dose volume index.

289 *Feature importance*

In the DVI models, $V_{10 \text{ Gy}}$ was the most frequently occurring feature among the 10 DVIs (Figure 5A). In the dosiomic and hybrid models, the gray level co-occurrence matrix (GLCM) was indicated as the most important group (Supplemental Figure 1), whereas "Wavelet.HLH_glcm_Correlation in V_{5 Gy}" was classified as a highly frequent feature (Figures 5B, C).

Dosiomic models

B Wavelet.HLH_glcm_Correlation in V_{5 Gy} Wavelet.HLH_gldm_DependenceEntropy in V_{5 Gy} Wavelet.LHH_glcm_Correlation in V_{5 Gy} Wavelet.HLH_glcm_MaximumProbability in V_{25 Gy} Wavelet.HLH_firstorder_Mean in V_{40 Gy} Wavelet.HLL_firstorder_Skewness in V_{30 Gy} Wavelet.HLH_firstorder_Skewness in V_{20 Gy} Wavelet.HLH_firstorder_Skewness in V_{20 Gy} Wavelet.HLH_firstorder_Mean V_{25 Gy} Wavelet.HLH_firstorder_Mean V_{25 Gy}

Hybrid models

295

297	Figure 5: Importance of features used in (A) DVI, (B) dosiomic, and (C) hybrid models.
298	Vertical axis shows top-10 important features; horizontal axis shows normalized
299	occurrence frequency of features. In the dosiomic and hybrid models,
300	"Wavelet.HLH_glcm_Correlation in $V_{5 Gy}$ " was the most important feature. The feature
301	indicates the glcm correlation with wavelet filter in HLH decomposition inside the region
302	of V _{5 Gy} . <i>Abbreviation</i> : DVI = dose volume index; ITV = internal target volume; MLD =
303	mean lung dose; $V_{x Gy}$ = percentage of entire lung excluding ITV volume receiving greater
304	than x Gy; GLCM = gray level co-occurrence matrix; GLDM gray level dependence
305	matrix.

307 Figure 6 shows examples of the dose distribution, feature map, and follow-up 308 CT images after SBRT comprising RP grade 2 and non-RP cases. The dosiomic feature maps of (C) and (D) were calculated based on planned dose distributions of (A) and (B), 309 310 respectively. Follow-up CT scans of (E) and (F) were obtained after treatment, and they 311 indicate the same axial slice as those in the dosiomic feature maps of (C) and (D), respectively. Although $V_{10 \text{ Gy}}$ was greater than the median value (11.8%) in both cases, 312 313 the feature map calculated by the "Wavelet.HLH glcm Correlation in $V_{5 Gy}$ " feature with RP grade 2 cases used predominantly low values (blue) near the RP position, whereas the 314

non-RP case used predominantly high values (red) in the ROI. The feature maps
calculated from the dose distribution were highly correlated with the RP incidence based
on follow-up CT after treatment.

319 Figure 6: Example of (A, B) dose distribution; (C, D) dosiomic feature map calculated

320 by "Wavelet.HLH_glcm_Correlation in V_{5 Gy}" feature; (E, F) follow-up CT scan after

321	SBRT. "Wavelet.HLH_glcm_Correlation in $V_{5 Gy}$ " indicates the glcm correlation with
322	wavelet filter in HLH decomposition inside $V_{5 Gy}$ region. Follow-up CT scans are shown
323	at (E) 271 days and (F) 203 days after SBRT. RP grade 2 case is shown in (A, C, E), and
324	non-RP case is shown in (B, D, F). White contour lines show Lung-ITV in (A) and (B);
325	black contour lines show Lung-ITV receiving greater than x Gy in (C) and (D).
326	Abbreviations: RP = radiation pneumonitis; Lung-ITV = entire lung excluding the internal
327	target volume; $V_{x Gy}$ = percentage of Lung-ITV volume receiving greater than x Gy.
328	
329	Discussion
330	We investigated a novel approach for predicting RP after lung SBRT in patients
330 331	We investigated a novel approach for predicting RP after lung SBRT in patients with early-stage NSCLC using dose-segmented dosiomic features with the machine-
330331332	We investigated a novel approach for predicting RP after lung SBRT in patients with early-stage NSCLC using dose-segmented dosiomic features with the machine- learning algorithm in LightGBM. To the best of our knowledge, our study is the first to
330331332333	We investigated a novel approach for predicting RP after lung SBRT in patients with early-stage NSCLC using dose-segmented dosiomic features with the machine- learning algorithm in LightGBM. To the best of our knowledge, our study is the first to focus on dose-segmented dosiomic features extracted from the regions of $V_{x Gy}$.
 330 331 332 333 334 	We investigated a novel approach for predicting RP after lung SBRT in patients with early-stage NSCLC using dose-segmented dosiomic features with the machine- learning algorithm in LightGBM. To the best of our knowledge, our study is the first to focus on dose-segmented dosiomic features extracted from the regions of V_x _{Gy} . Subsequently, we developed an accurate model that thoroughly described the
 330 331 332 333 334 335 	We investigated a novel approach for predicting RP after lung SBRT in patients with early-stage NSCLC using dose-segmented dosiomic features with the machine- learning algorithm in LightGBM. To the best of our knowledge, our study is the first to focus on dose-segmented dosiomic features extracted from the regions of V_x _{Gy} . Subsequently, we developed an accurate model that thoroughly described the characteristics of the dose distribution. Furthermore, we identified that the dosiomic
 330 331 332 333 334 335 336 	We investigated a novel approach for predicting RP after lung SBRT in patients with early-stage NSCLC using dose-segmented dosiomic features with the machine- learning algorithm in LightGBM. To the best of our knowledge, our study is the first to focus on dose-segmented dosiomic features extracted from the regions of V_x Gy. Subsequently, we developed an accurate model that thoroughly described the characteristics of the dose distribution. Furthermore, we identified that the dosiomic feature, "Wavelet.HLH_glcm_Correlation in V _{5 Gy} " was more significant than the other
 330 331 332 333 334 335 336 337 	We investigated a novel approach for predicting RP after lung SBRT in patients with early-stage NSCLC using dose-segmented dosiomic features with the machine- learning algorithm in LightGBM. To the best of our knowledge, our study is the first to focus on dose-segmented dosiomic features extracted from the regions of V_x Gy. Subsequently, we developed an accurate model that thoroughly described the characteristics of the dose distribution. Furthermore, we identified that the dosiomic feature, "Wavelet.HLH_glcm_Correlation in V _{5 Gy} " was more significant than the other DVIs. Our dosiomic approach can aid in predicting RP after SBRT.

A previous study reported the effectiveness of dosiomics in predicting the RP

339	incidence. Liang et al. predicted RP grade 2 or worse after volumetric modulated arc
340	therapy (VMAT) in stage I to IV NSCLC patients (19). They used the ipsilateral,
341	contralateral, and the entire lung as the ROI because the irradiation field for patients with
342	multiple stages was large. Their AUC for predicting RP improved from 0.676 (with a DVI
343	model) and 0.744 (with a normal tissue complication probability model) to 0.782 (with a
344	dosiomic model). Applying this approach to our study in early-stage NSCLC patients will
345	affect the interpretation of the partial-dose distribution that correlates with the RP
346	incidence because the non-irradiated lung area may not be critical for the analysis. To
347	thoroughly analyze the dose distribution, our dose-segmented dosiomic approach focused
348	on whether dose-segmented dosiomic features improve the prediction of RP after SBRT.
349	In this study, we developed accurate predictive models for RP after SBRT using dose-
350	segmented dosiomic features rather than DVIs. We discovered that
351	"Wavelet.HLH_glcm_Correlation in V5 $_{Gy}$ " was the most important feature in the
352	dosiomic and hybrid models. Liang et al. indicated that the "GLCM contrast" feature was
353	a significant feature correlated with the incidence of RP after VMAT, although their
354	irradiation technique and patient characteristics differed from those of our study (19).
355	Therefore, the group of GLCM features may contribute to the incidence of RP regardless
356	of the irradiation technique.

357	The unbalanced patient dataset can result in a bias to the majority class (non-RP
358	class) in the model building. Although the current study is based on TRIPOD type 1b (24),
359	the patient partition and model development were repeated 100 times to focus on the
360	minority class (RP grade 2 or worse class). Moreover, PR curves were calculated with
361	emphasis on the incidence of RP in the minor class (30). For predicting RP after VMAT,
362	Liang et al. conducted a PR curve analysis using a convolution 3D neural network (33);
363	the result was consistent with our dosiomic approach. In our study, the PR-AUC
364	significantly improved when switching from the DVI models to the dosiomic and hybrid
365	models. As shown in Figure 6, regardless of the similarity of $V_{10 \text{ Gy}}$, the dosiomic feature
366	maps can distinguish between the RP and non-RP cases based on the non-uniform
367	quantitative information inside the ROIs. The most selected dosiomic feature was
368	"GLCM correlation" at $V_{5 Gy}$. The linear dependency of the doses on neighboring voxels
369	mainly contributed to this feature (34), indicating that the non-uniform dose distribution
370	between the connected voxels was correlated with RP after SBRT. Moreover, the
371	predictive performances of the dosiomic and hybrid models were equivalent. This is
372	because most of the DVIs implemented in the hybrid models were commonly regarded
373	as dosiomic features representing the dose distribution shape. Hence, it is important to
374	apply dosiomic features to RP prediction, and it can be concluded that the hybrid models,

375 including DVIs, does not necessarily improve the predictive performance. Furthermore, 376 our dosiomic approach can be applied to radiation treatment planning. In general, DVIs 377 are used as indicators of RP. In this study, we found that texture features derived from 378 GLCM, representing information regarding the heterogeneity of dose distribution, would 379 be better indicators for RP than DVIs. Although our dosiomic study did not directly reveal 380 clinical application details, the finding can potentially be applied to treatment plan 381 optimization. In addition to the conventional DVI-based optimization, dosiomic-based 382 optimization that can analyze the quantitative information inside the ROI may contribute to reducing the incidence of RP after SBRT. 383

384 Multiple DVIs are often considered as dose constraints for reducing the risk of developing RP after SBRT (7-12). Matsuo et al. analyzed 74 patients who underwent 385 386 SBRT based on a dose distribution calculated using an analytical anisotropic algorithm 387 (AAA) (12). They discovered that $V_{25 Gy}$ and the planning target volume size were 388 significant factors for RP. Moreover, Ryckman et al. analyzed 93 patients who underwent SBRT using a dose-calculation algorithm, including the AAA, pencil beam, and collapsed 389 cone convolution (CCC) (8). They discovered that $V_{20 \text{ Gy}}$ and MLD were associated with 390 391 the development of RP. Although these studies identified significant factors for RP, dose-392 calculation algorithms included several types. The dose distributions calculated with

393 "type c" algorithms such as the XVMC are more accurate compared with those calculated 394 with "type a" algorithms such as the pencil beam and "type b" algorithms such as AAA 395 and CCC in inhomogeneous regions such as the lungs (35, 36). Therefore, dose distributions calculated with "type a" and "type b" algorithms overestimate the dose in 396 397 low-density lung regions compared with those with "type c." Hence, the values of DVIs 398 and dosiomic features can vary depending on the dose calculation algorithm. Therefore, 399 caution is required when extracting dosiomic features based on different dose calculation 400 algorithms.

Several limitations are presented in this study, including the following. First, this 401 402 study was based on retrospective analysis. Although this study included patients who 403 underwent SBRT at three institutions, they might contain biases associated with treatment 404 protocols, such as planning policy and dose constraints in each institution. Moreover, 405 because patients with multiple tumors were excluded, our dosiomic approach can be 406 applied to patients with a single tumor. Nevertheless, accurate models for predicting RP were developed. Second, various fractionation schemes were included in this study. In 407 this case, treatment expectations are typically quantified using equivalent doses of 2 Gy 408 409 fractions (37). However, in our analysis, no treatment plans violated the dose-volume 410 constraints, and no bias was observed in the incidence of RP after SBRT among various

411	prescribed doses; hence, we did not convert physical doses to biological doses. Third, we
412	included only the dose-related features extracted from the dose distribution. Several
413	studies have shown that the incidence of RP is strongly correlated with other clinical
414	factors (7, 38). However, owing to missing clinical factors, such as performance status
415	and smoking history, we did not include them in this study. These features may improve
416	the prediction of RP after SBRT if included in the dosiomic analysis.
417	
418	Conclusions
419	We developed predictive models for RP grade 2 or worse after SBRT using dose-
420	segmented dosiomic features and DVIs. The dosiomic features improved the prediction
421	compared with other DVIs. This novel approach for analyzing dose distribution can
422	enhance the practicality of the precision technique for reducing the risk of RP after SBRT.
423	
424	Conflict of Interest Statement
425	We have no financial relationships to disclose.
426	
427	Acknowledgments

428 This study was partly supported by the Takeda Science Foundation. We sincerely

- 429 appreciate all the staff members at the Medical Physics Laboratory of Kyoto University
- 430 Graduate School of Medicine (http://medicalphysics.hs.med.kyoto-u.ac.jp/) for their
- 431 significant technical support and valuable comments regarding this study.

References

433	1.	Nagata Y, Hiraoka M, Shibata T, et al. Prospective trial of stereotactic body radiation
434		therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: Japan
435		Clinical Oncology Group Study JCOG0403. Int J Radiat Oncol Biol Phys.
436		2018;93(5):989–96.
437	2.	Baumann P, Nyman J, Hoyer M, et al. Outcome in a prospective phase II trial of
438		medically inoperable stage I non-small-cell lung cancer patients treated with
439		stereotactic body radiotherapy. J Clin Oncol. 2009;27(20):3290-6.
440	3.	Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for
441		inoperable early stage lung cancer. JAMA. 2010;303:1070-6.
442	4.	Fakiris AJ, McGarry RC, Yiannoutsos CT, et al. Stereotactic body radiation therapy
443		for early-stage non-small-cell lung carcinoma: four-year results of a prospective
444		phase II study. Int J Radiat Oncol Biol Phys. 2009;75:677-82.
445	5.	Baker R, Han G, Sarangkasiri S, et al. Clinical and dosimetric predictors of radiation
446		pneumonitis in a large series of patients treated with stereotactic body radiation
447		therapy to the lung. Int J Radiat Oncol Biol Phys. 2013;85(1):190-5.
448	6.	Chang JY, Liu H, Balter P, et al. Clinical outcome and predictors of survival and
449		pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung

450 cancer. *Radiat Oncol.* 2012;7(1):152.

- 451 7. Ueki N, Matsuo Y, Togashi Y, et al. Impact of pretreatment interstitial lung disease
- 452 on radiation pneumonitis and survival after stereotactic body radiation therapy for
- 453 lung cancer. J Thorac Oncol. 2015;10(1):116–25.
- 454 8. Ryckman JM, Baine M, Carmicheal J, et al. Correlation of dosimetric factors with
- the development of symptomatic radiation pneumonitis in stereotactic body
 radiotherapy. *Radiat Oncol.* 2020;15(1):33.
- 457 9. Zhao J, Yorke ED, Li L, et al. Simple factors associated with radiation-induced lung
- 458 toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of
- 459 88 studies. Int J Radiat Oncol Biol Phys. 2016;95(5):1357–66.
- 460 10. Guckenberger M, Baier K, Polat B, et al. Dose-response relationship for radiation-
- 461 induced pneumonitis after pulmonary stereotactic body radiotherapy. Radiother
- 462 *Oncol.* 2010;97(1):65–70.
- 463 11. Barriger RB, Forquer JA, Brabham JG, et al. A dose-volume analysis of radiation
- 464 pneumonitis in non-small cell lung cancer patients treated with stereotactic body
- 465 radiation therapy. *Int J Radiat Oncol Biol Phys.* 2012;82(1):457–62.
- 466 12. Matsuo Y, Shibuya K, Nakamura M, et al. Dose-volume metrics associated with
- 467 radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J

Radiat Oncol Biol Phys. 2012;83(4):e545–e549.

469	13.	Yamashita H, Nakagawa K, Nakamura N, et al. Exceptionally high incidence of
470		symptomatic grade 2-5 radiation pneumonitis after stereotactic radiation therapy for
471		lung tumors. Radiat Oncol. 2007;2:21.
472	14.	El Naqa I, Ruan D, Valdes G, et al. Machine learning and modeling: Data, validation,
473		communication challenges. Med Phys. 2018;45(10):834-e840.
474	15.	Li Q, Kim J, Balagurunathan Y, et al. CT imaging features associated with recurrence
475		in non-small cell lung cancer patients after stereotactic body radiotherapy. Radiat
476		Oncol. 2017;12(1):158.
477	16.	Lafata KJ, Hong JC, Geng R, et al. Association of pre-treatment radiomic features
478		with lung cancer recurrence following stereotactic body radiation therapy. Phys Med
479		Biol. 2019;64(2):025007.
480	17.	Huynh E, Coroller TP, Narayan V, et al. CT-based radiomic analysis of stereotactic
481		body radiation therapy patients with lung cancer. Radiother Oncol. 2016;120(2):258-
482		66.
483	18.	Kakino R, Nakamura M, Mitsuyoshi T, et al. Application and limitation of radiomics
484		approach to prognostic prediction for lung stereotactic body radiotherapy using
485		breath-hold CT images with random survival forest: A multi-institutional study. Med

Phys. 2020;47(9):4634-4643.

487	19.	Liang B, Yan H, Tian Y, et al. Dosiomics: extracting 3D spatial features from dose
488		distribution to predict incidence of radiation pneumonitis. Front Oncol. 2019;9:269.
489	20.	Rossi L, Bijman R, Schillemans W, et al. Texture analysis of 3D dose distributions
490		for predictive modelling of toxicity rates in radiotherapy. Radiother Oncol. 2018;
491		29(3):548–53.
492	21.	Gabryś HS, Buettner F, Sterzing F, Hauswald H, Bangert M. Design and selection of
493		machine learning methods using radiomics and dosiomics for normal tissue
494		complication probability modeling of xerostomia. Front Oncol. 2018;8:35.
495	22.	Wu A, Li Y, Qi M, et al. Dosiomics improves prediction of locoregional recurrence
496		for intensity modulated radiotherapy treated head and neck cancer cases. Oral Oncol.
497		2020;104:104625.
498	23.	Kimura T, Nagata Y, Eba J, et al. A randomized phase III trial of comparing two dose-
499		fractionations stereotactic body radiotherapy (SBRT) for medically inoperable stage
500		IA non-small cell lung cancer or small lung lesions clinically diagnosed as primary
501		lung cancer: Japan clinical oncology group study JCOG1408 (J-SBRT Trial). Jpn J
502		<i>Clin Oncol.</i> 2017;47(3):277-281.
503	24.	Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a

520

multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the

- 505 TRIPOD statement. *Br J Surg*. 2015;102(3):148-158.
- 506 25. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system
- 507 to decode the radiographic phenotype. *Cancer Res.* 2017;77(21):e104-e107.
- 508 26. Lv W, Yuan Q, Wang Q, et al. Radiomics analysis of PET and CT components of

509 PET/CT imaging integrated with clinical parameters: application to prognosis for

- 510 nasopharyngeal carcinoma. *Mol Imaging Biol.* 2019;21(5):954-964.
- 511 27. Wu G, Woodruff HC, Sanduleanu S, et al. Preoperative CT-based radiomics
- 512 combined with intraoperative frozen section is predictive of invasive 513 adenocarcinoma in pulmonary nodules: a multicenter study. *Eur Radiol.* 514 2019;30(5):2680-2691.
- 515 28. Ke G, Meng Q, Finely T, et al. LightGBM: a highly efficient gradient boosting
- 516 decision tree. Adv Neural Inform Process Syst. 2017;30:3149-3157.
- 517 29. Zhang J, Mucs D, Norinder U, Svensson F. LightGBM: an effective and scalable
- algorithm for prediction of chemical toxicity-application to the tox21 and
 mutagenicity data sets. *J Chem Inf Model*. 2019;59(10):4150–4158.
- 521 plot when evaluating binary classifiers on imbalanced datasets. *PLoS One*.

30. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC

522 2015;10(3): e0118432.

523	31. 5	Sokolova M, Lapalme G. A systematic analysis of performance measures for
524	(classification tasks. Information Processing & Management. 2009;45:427–37.
525	32.]	R Development Core Team. R: A Language and Environment for Statistical
526	(Computing. Vienna, Austria: R Foundation Statistical Computing; 2016.
527	33.]	Liang B, Tian Y, Chen X, et al. Prediction of radiation pneumonitis with dose
528	(distribution: a convolutional neural network (CNN) based model. Front Oncol.
529	-	2020;9:1500.
530	34. (Chaddad A, Desrosiers C, Bouridane A, Toews M, Hassan L, Tanougast T. Multi
531	1	texture analysis of colorectal cancer continuum using multispectral imagery. PLoS
532	(One. 2016;11(2):e0149893.
533	35.]	Knöös T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms
534	t	for treatment planning in external photon beam therapy for clinical situations. Phys
535	1	Med Biol. 2006;51(22):5785–807.
536	36. (Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of
537	(dose calculation algorithms from three generations in lung SBRT: comparison with
538	t	full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2):4–18.
539	37.	Jones B, Dale RG, Deehan C, Hopkins KI, Morgan DA. The role of biologically

- 540 effective dose (BED) in clinical oncology. *Clin Oncol (R Coll Radiol)*. 2001; 13:71–
- 541 81.
- 542 38. Kong FM, Wang S. Nondosimetric risk factors for radiation-induced lung toxicity.
- 543 Semin Radiat Oncol. 2015; 25(2):100–9.