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Preface

Living organism is a system composed of a wide variety of molecules. Their homeostasis
is maintained by the concerted formation of networks in which various biomolecules are
intricately interacted. For example, within the cell, there is a web of networks at various
hierarchical levels, such as genome, RNA, protein, and metabolism. Therefore, in order
to elucidate the mechanisms of biological phenomena, it is essential to understand these
molecular networks that operate in the complex biological system.

In recent years, the development of high-performance measurement technologies have
facilitated the comprehensive acquisition of a variety of biomolecular data. Among them,
transcriptome analysis can provide information on the expression levels of a very large num-
ber of genes at once. The most widely used method is differential gene expression analysis,
which extracts genes individually whose expression levels change significantly between
samples under different conditions. While this method is useful for the characterization of
samples and the search for biomarkers, it does not describe the relationships between genes.
Another method is to map the gene set extracted as differentially expressed genes (DEGs) to
known pathways in order to determine what biological functions the gene set is associated
with. However, since this analysis relies on existing knowledge like pathways, it is difficult
to find new relationships such as correlation and regulation between genes.

On the other hand, various methods have been proposed in order to discover novel
relationships between genes from their expression data [1]. These methods represent
latent regulatory gene networks, contributing to systematic understanding of biological
phenomena and hypothesis generation. However, the gene networks that have been inferred
are static, and therefore fail to represent the multiple states of the cell. Cells intrinsically
take different states depending on time, environment, and biological function. As the
transcriptional network changes drastically during cell differentiation [2], cells in different
states are regulated by different networks. If a comprehensive gene network that can estimate
the state changes under different conditions of each sample can be constructed, it is expected
to obtain biological knowledge at the network level unlike the conventional analyses.
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In this study, I developed a novel method to quantitatively analyze changes in the state
of the network by constructing a basal gene network from a set of gene expression data and
mapping each sample onto it. To construct the basal gene network, I employed a Bayesian
network, which is a method of representing causal relationships between variables (genes)
as a network based on data. The regulatory relationship between genes is represented by a
nonlinear regression model on the expression levels of each gene. Here, as an extension of
Bayesian network theory, I proposed a method to quantify the network for each sample by
giving a sample-specific quantitative value to the estimated relationships. This enables us to
characterize condition-specific networks for each sample, which was previously impossible.
I described the development and establishment of the proposed method using cancer cell
line data in Chapter 1. Next, I carried out evaluations of this method by applying it to
coronavirus disease 2019 in Chapter 2. Furthermore, I attempted a unique approach to
comprehensively analyze a large number of networks in different states using Graph Neural
Networks for drug-induced liver injury in Chapter 3. The results of these studies were
discussed in the following three chapters.
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Chapter 1

System-based differential gene network analysis
for characterizing a sample-specific subnetwork

1 Introduction

The use of high throughput technologies in molecular biology has led to the generation
of large volumes of data, and thus, the development of precise methods for handling such
large data is required. Understanding the cellular mechanisms at a system level forms a
fundamental goal of these methods. Elucidation of the cellular mechanisms is indispensable
for discovering biologically significant events, especially for clinical applications like finding
new drug targets [3].

Researchers have developed several approaches to elucidate cellular mechanisms. One
of the most popular methods is the conventional mRNA expression analysis to identify
differentially expressed genes (DEG) [4, 5]. This method extracts independent genes using
differences of expression levels between different conditions, e.g., control and perturbated
samples. Likewise, pathway analysis maps genes onto known pathways to classify genes
based on their enrichment in the maps of well-known pathways, such as the EGFR signaling
and DNA damage repair pathways [6, 7, 8]. These traditional approaches, however, are
unable to discover de novo pathways and relationships.

Network analysis constitutes a promising method to interpret the big omics data and
researchers have applied it to many biomolecular investigations [9, 10]. However, since the
gene network estimation brings in a huge number of putative gene regulatory relationships
often expressed as a hairball [11], establishing a method for identifying biologically signif-
icant subnetworks or inter-gene relationships from such a large and complicated network
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Figure 1.1: Overview of the proposed method. The center hairball (blue) is the basal network. The red nodes
in the basal network represent the ΔECv-extracted EMT network.

has been challenging. Established methods that identify regulatory relationships in large
gene networks mainly adopt two approaches: one focuses on hub genes that have a large
number of connections [12, 13, 14, 15], whereas the other, known as differential network
analysis [16], compares network structures derived from different conditions. While the
former approach fails to extract edges regardless of the gene network analysis, the latter re-
quires individual networks reflecting different conditions. Nonetheless, it remains difficult
to satisfy sufficient sampling to generate data-driven and condition-dependent networks.
For instance, my study presented in this Chapter 1 uses a dataset that consists of only three
samples per condition, which makes a Bayesian network (BN) and structure-based approach
unfeasible. In general, machine learning algorithms including BN require a large number
of samples.

Herein, I propose a novel method to extract a biomedically differentiated subnetwork
from a huge number of edges in a gene network estimated using a relatively small number
of samples. Compared to the structure-based network analysis, my approach aims to
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extract edges, which represent the system-level differences between the samples in cellular
networks without comparing network structures. Therefore, even with a limited number
of samples for conditions of interest, this method will extract system-based differential
networks. The outline of the proposed method is shown in Figure 1.1. Following the
reported method [17], a gene network from the available gene expression data was estimated
using nonparametric BN. This generates a basal network with more than a hundred thousand
edges between approximately 20,000 genes. Most importantly, this method calculates an
Edge Contribution value (ECv) to every single edge in a gene network with respect to
each sample. The proposed ECv can quantify a particular edge for each sample using the
estimated model. Therefore, based on the differences in ECv’s between different samples,
which imitate biologically or clinically-specific phenomena, this method highlights the
differentiated subnetwork. This method defines the edges out of a possible hundred thousand
links between genes, and thus demonstrates major differences in regulating the basal gene
network potentially associated with target diseases or phenomena. Since the extracted
subnetwork highlights specific differences between samples, it may portray expression
datasets that are not used in network estimation or subnetwork extraction. I proved that the
network ECv pattern with respect to a patient sample for certain types of diseases can be
adopted for clinical classifications by validating real data.

The idea of estimating sample specific gene networks has already been addressed. For
instance, Shimamura et al. (2011) [18] proposed a structural equation-based model that
estimated sample specific regulator-modulator-target relationships. Their method assumes
the gradual effect of modulators to parent-child relationships throughout the collected
samples. Thus, this method generally requires sufficient samples to detect such relationships.
Yu et al. (2015) [19] tried to extract personalized gene networks based on their differential
network model. Their model assumes an existing network, such as the protein-protein
interaction network, and combines it with genes extracted by traditional methods such as
DEG and gene pairs that are independently evaluated by their novel differential expression
covariance method on that network. Kuijjer et al. (2019) [20] proposed a method to
estimate sample-specific regulatory networks where the linear combination of edge weights
in particular networks forms the aggregated network. Unlike these existing methods, the
proposed method estimates a globally optimized structure as a cellular model with the BN
model and correlates edge differences to the samples using the estimated model parameters.
None of the existing methods realize extraction of the edge from a limited number of samples
and a large network except for the proposed method.

I examined this method on epithelial-mesenchymal transition (EMT) [21] to understand
its process through the representative EMT subnetwork; I then applied it to The Cancer
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Genome Atlas project (TCGA) clinical data [22]. In this analysis, the basal network was
estimated from the small number of samples mimicking EMT in lung cancer cell lines. By
comparing ECv’s between EMT-induced and control samples, I succeeded in extracting the
EMT-characterized network. In addition, I applied this EMT network to TCGA clinical
data to test if the network can generate a prognosis profile, as EMT is a major factor involved
in the prognosis of cancer patients. These results show that the prognosis for lung cancer
patients was partially associated with the ECv patterns in the EMT network, according to the
survival analysis. This indicates that the proposed method correctly extracts a subnetwork
determining patients’ EMT characteristics from a large number of nodes and edges in the
network.

2 Methods

2.1 Nonparametric Bayesian network

As described in the Introduction, I used nonparametric BN to estimate a gene-to-gene
regulatory system from gene expression data [23]. The BN estimation is an unsupervised
machine learning algorithm that is able to capture cause-and-effect relationships among
variables from its observations by optimizing the global structure of the network. Therefore,
it constitutes an ideal method to estimate gene regulatory systems and has been successfully
applied to many gene network analyses [14, 24, 25]. In this section, I provide a brief
explanation of the model.

Let 𝑿 be an 𝑛-by-𝑝 data matrix whose element 𝑥𝑖 𝑗 corresponds to the observation of
the 𝑗-th variable, that is, the expression value of the 𝑗-th gene, at the 𝑖-th sample, where 𝑛
represents the total number of samples and 𝑝 the number of variables. In the nonparametric
BN model, I consider the joint density of all the variables and assume that it can be
decomposed as the product of the local conditional densities such as

𝑓 (𝑥𝑖1, . . . , 𝑥𝑖𝑝; 𝜽𝐺) =
𝑝∏
𝑗=1

𝑓 (𝑥𝑖 𝑗 | 𝒑𝒂𝐺𝑖 𝑗 (𝑥𝑖 𝑗 ); 𝜽 𝑗 ), (1.1)

where 𝒑𝒂𝐺
𝑖 𝑗
(𝑥𝑖 𝑗 ) = (𝑝𝑎 ( 𝑗)

𝑖1 , . . . , 𝑝𝑎
( 𝑗)
𝑖𝑞 𝑗

) is the set of observations in the 𝑖-th sample of 𝑞 𝑗
dependent variables of the 𝑗-th variable and 𝜽𝐺 = (𝜽1, . . . , 𝜽 𝑝) is the parameters of the
conditional densities. This decomposition can be represented by a directed acyclic graph
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consisting of nodes representing variables and edges connecting the nodes called “children,”
to their dependent variables called “parents.” To model parent-child relationships, 𝐵-spline
nonparametric regression is employed. In the model, the gene expression is represented by

𝑥𝑖 𝑗 = 𝑚
( 𝑗)
1 (𝑝𝑎 ( 𝑗)

𝑖1 ) + · · · + 𝑚 ( 𝑗)
𝑞 𝑗

(𝑝𝑎 ( 𝑗)
𝑖𝑞 𝑗

) + Y 𝑗 , (1.2)

where 𝑚 ( 𝑗)
𝑘

(𝑝𝑎𝑖𝑘 ) =
∑𝑀
𝑙=1 𝛾

( 𝑗)
𝑙𝑘
𝑏
( 𝑗)
𝑙𝑘

(𝑝𝑎 ( 𝑗)
𝑖𝑘

) for 1 ≤ 𝑘 ≤ 𝑞 𝑗 and Y 𝑗 ∼ 𝑁 (0, 𝜎𝑗 ). Here, 𝑏 ( 𝑗)
𝑙𝑘

(·)
is a third-order 𝐵-spline function which is determined by the range of the observations and
𝛾
( 𝑗)
𝑙𝑘

is its coefficient. 𝑀 is the number of the 𝐵-splines and 𝑀 = 20 is used as shown in
Imoto et al. (2002) [23]. The local density in Eq. (1.1) can be written as

𝑓 (𝑥𝑖 𝑗 | 𝒑𝒂𝐺𝑖 𝑗 (𝑥𝑖 𝑗 ); 𝜽 𝑗 ) =
1√︃

2𝜋𝜎2
𝑗

exp
©«−

(
𝑥𝑖 𝑗 −

∑𝑞 𝑗

𝑘=1
∑𝑀
𝑙=1 𝛾

( 𝑗)
𝑙𝑘
𝑏
( 𝑗)
𝑙𝑘

(𝑝𝑎 ( 𝑗)
𝑖𝑘

)
)2

2𝜎2
𝑗

ª®®¬ ,
where 𝜽 𝑗 = (𝛾 ( 𝑗)1,1 , . . . , 𝛾

( 𝑗)
𝑀,𝑞 𝑗

, 𝜎2
𝑗
) is the parameter vector for the local density to be estimated

from the observations. The network structure can be determined based on the maximization
of the marginal posterior

𝑝(𝐺 |𝑿) ∝ 𝜋(𝐺)
∫ 𝑛∏

𝑖=1
𝑓 (𝑥𝑖1, . . . , 𝑥𝑖𝑝; 𝜽𝐺)𝜋(𝜽𝐺 |𝝀)𝑑𝜽𝐺 ,

where 𝐺 represents the network structure, 𝜋(𝐺) the prior probability of 𝐺, and 𝜋(𝜽𝐺 |𝝀)
the prior distribution of 𝜽𝐺 . Here 𝝀 is the hyperparameter vector determined also by the
maximization of the posterior. Searching for the optimal structure of the BN is known to
be an NP-hard problem. Thus, I use the Neighbor Node Sampling and Repeat (NNSR)
algorithm [17] that is applicable to more than twenty thousand genes for obtaining an
approximated structure of the huge BN. This network is called the basal network in the later
steps.
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2.2 Proposed method for evaluating sample specific edge contribution
values

The basic idea is to evaluate a single edge value of an observed sample through the
mathematical model estimated as a BN. In the model, the expression value of a child
gene is represented by a linear combination of their parent values transformed by the
functions denoted as 𝑚 ( 𝑗)

𝑘
(·) in Eq. (1.2). Considering this nonparametric regression

function, 𝑚 ( 𝑗)
𝑘

(𝑝𝑎 ( 𝑗)
𝑖𝑘

) can be regarded as a contribution of the 𝑘-th parent of the 𝑗-th gene
to the expression value of 𝑥𝑖 𝑗 , because these values of 𝑞 𝑗 parents constitute the value of
their child. According to this, I define Edge Contribution value (ECv) of edge 𝑗𝑘 → 𝑗 with
respect to the 𝑖-th sample as

ECv(𝑖) ( 𝑗𝑘 → 𝑗) = 𝑚 ( 𝑗)
𝑘

(𝑝𝑎 ( 𝑗)
𝑖𝑘

), (1.3)

where 𝑗𝑘 represents the index of the 𝑘-th parent of the 𝑗-th gene.

Since ECv is calculated from the model parameters to every single edge in the estimated
network, the ECv of an edge can be considered as its edge weight, representing how it
contributes to the link between a node pair for a certain sample. However, this calculation
of ECv alone does not represent an evaluation of the absolute importance of the edge,
because it is impossible to determine the size of calculated ECv. This is similar to gene
expression values where differential expression is considered. Therefore, two ECv’s of
an edge should be compared between samples. For instance, let us assume that there are
control and drug-perturbated samples in an in vitro cell assay. To obtain the differential
edge in terms of ECv, I define a variation of ECv, ΔECv, as

ΔECv( 𝑗𝑘 → 𝑗) =
����� 1
|𝑆 |

∑︁
𝑠∈𝑆

ECv(𝑠) ( 𝑗𝑘 → 𝑗) − 1
|𝑇 |

∑︁
𝑡∈𝑇

ECv(𝑡) ( 𝑗𝑘 → 𝑗)
����� , (1.4)

where 𝑆 and 𝑇 are sets of indices of samples observed in particular conditions, respectively.
The graphical representation of ΔECv is shown in Figure 1.2.

The ΔECv of an edge is the absolute difference that stands for the difference in edge
contribution between samples of different conditions. Thus, an edge that shows significant
ECv difference between certain samples represents a distinctive edge. In this experiment,
ΔECv implementation did not result in a large number of candidate edges that are needed
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Figure 1.2: Graphical representation of ΔECv. Line (blue) is a nonparametric regression curve 𝑚 (𝑌 )
1 (𝑋) for

edge 𝑋 → 𝑌 estimated with Bayesian Network. Plots for 𝑋 axis correspond to actual mRNA signal values and
𝑌 ′ axis partial residuals where the effects of the other parents are subtracted from the children’s mRNA signal
values. Plots (green) and plots (yellow) represent, for instance, control and perturbated samples, respectively.
Plots (gray) represent other values used for determining the regression curve. Values in 𝑌 ′ axis also stand for
output through the regression function with parents’ mRNA signals. By the definition, these correspond to
ECv’s. ΔECv is defined as the difference between two conditions. In this example, the difference of ECv’s
between perturbated and control samples, i.e., ΔECv of these two conditions is depicted.

for following the investigation. This suggests that ΔECv functions as a screening method
for candidate networks from the estimated basal networks that are important under certain
conditions. The network estimation with a small number of samples generally increases
the number of false positive edges due to spurious correlations between variables. It
is expected that the ΔECv can overcome this problem, because ΔECv might highlight a
sample difference which is determined by not only the estimated model but also the sample-
specific differences through the estimated model. Note that the number of samples in 𝑆 and
𝑇 here can be 1 because I focus only on differences of ECv so that only a single pair of
samples is required to extract edges.

As a consequence of ECv calculation, a matrix consisting of ECv’s for all of the edges
and samples is obtained. This matrix is called an ECv matrix. More precisely, the ECv
matrix 𝑬 is an 𝑛-by-𝑚 matrix whose element 𝑒𝑖𝑣 corresponds to ECv of the 𝑣-th edge at the
𝑖-th sample, where 𝑚 represents the total number of estimated edges and 𝑛 the number of
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samples. The ECv matrix thus can be considered as a set of each sample’s ECv’s. Since
ECv originally represents sample-specific profiling for each estimated edge, clustering of
the ECv matrix highlights differences according to ECv’s for each sample, which is capable
of grouping samples based on their system-level similarities.

2.3 Data preparation

The microarray data for EMT analysis were acquired from Gene Expression Omnibus
(GSE49644) [21]. The dataset is composed of three human non-small cell lung cancer
(NSCLC) cell lines: A549, HCC827, and NCI-H358. The microarray experiments were
replicated 3 times for both control and TGF𝛽-treated cells. Thus, the data consists of 3 ×
3× 2 = 18 samples in total and 19,849 genes. The log2-transformed values of preprocessed
data were applied to BN estimation and ECv calculation. The clinical and RNA-seq data of
lung cancer patients [22] were acquired from the Genomic Data Commons Data Portal at
TCGA and UCSC Xena [26]. NSCLC patients with either lung squamous cell carcinoma
(LUSC) or lung adenocarcinoma (LUAD) were selected. The patients were first screened to
obtain tumor specimens. RNA-seq data (ver 2017-10-13) was filtered to remove genes with
a mean percentile lower than 15, resulting in 17,450 genes. In the clinical data (downloaded
at 9 Dec 2019), entries for patients whose follow-up or decease data was more than 2000
days were removed. Further to these preprocesses, the patient data that were not common
in the RNA-seq and clinical data were deleted. The number of the final patients for analyses
was 426 (alive: 238, deceased: 188) for LUSC and 457 (alive: 285, deceased: 172) for
LUAD.

2.4 Differential expression gene analysis

The differential expression gene analysis for GSE49644 microarray data was performed
using R package limma [27]. Benjamini-Hochberg method was applied for calculation of
false discovery rate [28].

2.5 Molecular function analysis

The functional analysis was generated through the use of Ingenuity Pathway Analysis [29].
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2.6 ECv matrix clustering and survival analysis

Unsupervised-clustering for the ECv matrix was performed using the ‘ward.D2’ clustering
method with Euclidean distance for both edges and samples in R. The following survival
analysis was performed with log-rank test using R package surveminer and TCGAbiolinks
[30, 31].

2.7 Network analysis and visualization

The network visualization and a part of network analysis were performed using Cytoscape
[32].

2.8 Computation environment

All the computation for the network estimation and ECv calculation in this study was
performed by the SHIROKANE supercomputer system (Shirokane3) at Human Genome
Center, the Institute of Medical Science, the University of Tokyo, where the computation
nodes were equipped with dual Intel Xeon E5-2670 v3 2.3GHz CPUs and 128GB memory
per node.

3 Results

3.1 Basal gene network estimation

For the basal gene network estimation using the BN, I adopted the NNSR algorithm [17]
as described in Materials and Methods. The algorithm repeatedly iterates subnetwork
estimations in parallel many times for gene sets extracted by the neighbor node sampling
method, and determines a final network structure by incorporating edges whose estimated
frequencies are greater than the cutoff threshold. The frequencies correspond to strengths
of edges in terms of stability or confidence of them. To begin with, I tuned these parameter
settings for this analysis. As for the cutoff threshold, since the number of extracted edges
is fixed with another quantitative measurement after the network estimation, I employed a
threshold of 0.1, which is slightly relaxed comparing the default setting (threshold of 0.2),
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to include weak putative edges in this step. Although the algorithm can estimate networks
for more than ten thousand genes, it supposedly requires more than a hundred samples for
an input data. Therefore, I need to confirm if the algorithm works with an extremely small
number of samples, i.e., 18 samples in this case. For this purpose, I defined the degree of
concordance between two networks as the ratio of edges that are estimated in both networks
to the total number of edges, and then I tested if the algorithm produces stable results using
this degree. Following the recommendations of Tamada et al. (2011) [17], I performed the
network estimation three times with 10,000 times for the number of iterations (denoted as
“T”) of the subnetwork estimation, and calculated the averaged degree of concordance for
every estimated-network pair. As a result, the degree of concordance was 72.7%, suggesting
that the algorithm could not produce stable gene network structures (Table 1.1). Therefore, I
assessed whether the increased T results in stable network structures with the EMT dataset.
The identical evaluations were performed as above for T=100,000, 500,000 and 1,000,000.
I found that T=1,000,000 is sufficient for this network analysis owing to reduced error rate
below 5% and the stable networks with just 18 samples. The results are summarized in
Table 1.1. The final network structure consisted of 154,369 edges with a threshold of 0.1
and the node degree average of 15.55. This basal network is shown in Figure 1.1. When we
used the dataset consisting of 19,849 genes and 18 samples, the computation time required
for this network estimation was 7h 55m 42s at T=1,000,000 using 64 CPU cores.

Table 1.1: The list of concordance following different iterations.

T concordance
10,000 72.7%

100,000 89.0%
500,000 94.3%

1,000,000 95.6%

3.2 ΔECv highlights the EMT-characterized edges

To examine if the proposed method is applicable to real data, I applied an ECv calculation to
the basal network. The microarray data cells were treated with TGF𝛽 to induce EMT. EMT
is a cellular process in which metastasis and invasion are involved [33]. Although EMT
has been well-investigated and many EMT-related genes were identified, its molecular
mechanism is not fully understood. Once cancer cells invade tissues, this is critical for
treatment of cancer and even more so for patient prognosis. Therefore, I aimed to extract
an EMT-characterized subnetwork which represents a putative core mechanism of EMT
as a cellular system modeled by the nonparametric regression. Compared to control cells,
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TGF𝛽-treated cells represented the EMT profile, which was confirmed by the alteration
in cellular morphology and expression levels of EMT markers in the previous study [21].
Following ECv calculation, a 18-by-154,369 ECv matrix was obtained. Since the samples
were replicated 3 times for both control and EMT-induced conditions over three cell lines,
I calculated ΔECv with respect to each cell line as

ΔECv(𝑢) ( 𝑗𝑘 → 𝑗) =

������13 ∑︁
𝑠∈{EMT-induced}

ECv(𝑢)
(𝑠) ( 𝑗𝑘 → 𝑗) − 1

3

∑︁
𝑡∈{control}

ECv(𝑢)
(𝑡) ( 𝑗𝑘 → 𝑗)

������ ,
where 𝑢 = A549, HCC827 and NCI-H358. The edges that were assigned high ΔECv can
be considered as significant differences in the cellular system between control and EMT-
induced samples in each cell line. The distribution of ΔECv values for each cell line is
displayed in Figure 1.3A. As shown, most edges do not show significant differences between
the two conditions. The number of edges with ΔECv more than 1.0 for A549, HCC827
and NCI-H358 were only 946, 1420 and 1041, respectively, out of 154,369. Given that
the total number of edges in the estimated network is 154,369, ΔECv filters out edges
which are assumed to be significantly different in EMT. To compare the log2 fold change
(FC) distribution of mRNAs, which is a standard indicator in DEGs, their histograms were
overlapped (Figure 1.3A). This showed that the distribution of ΔECv is much steeper than
that of log2FC throughout the thresholds, suggesting that ΔECv can be considered as a
better indicator for extracting condition-dependent edges. I have set ΔECv threshold as
1.0 because it corresponds to approximately top 0.1% of edges out of the total number
of edges. To gain reliable EMT-distinctive edges, I extracted 120 edges which exceeded
the threshold in all of the three cell lines that are composed of 150 genes (Figure 1.3B,
C). Because there are 9 samples both for TGF𝛽-treated and control cells, I can evaluate
statistical significance of the extracted edges. I performed t-test for ECv between TGF𝛽-
treated and control samples, and found that 108 edges out of ΔECv-extracted 120 satisfied a
criteria of FDR-corrected 𝑝-value < 0.01 (Figure 1.3D). This supports that ΔECv extracted
edges are statistically significant even though the basal network was estimated from a small
number of samples. Furthermore, considering that log2-transformed expression data was
used, threshold 1.0 for ΔECv was generally supposed to be a 2-FC cutoff for the estimated
system. Therefore, I hypothesized that 1.0 was a moderate threshold for the EMT dataset
and used this in the following analyses. The ΔECv heat map reflects the samples’ distinctive
ECv matrix for the selected 120 edges (Figure 1.3E). This shows that the EMT-induced and
control samples were clearly separated into two clusters, which further suggests that the
ECv method captures the EMT-induced pattern of cellular network differences.
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Figure 1.3: ΔECv analysis. (A) The histograms of absolute ΔECv (green) and absolute log2FC (magenta) for
each cell line. FC is defined as TGF𝛽-treated/control. The number of total edges is 154,369 for ΔECv. The
total number of genes for log2FC is 19,849. Y axis stands for density. X axis corresponds to the threshold for
each ΔECv and log2FC. (B) The Venn diagram represents the numbers of ΔECv-extracted edges for all the cell
lines with threshold 1.0. (C) The subnetwork of all the 2601 edges which were extracted from each cell line
by ΔECv. The nodes (150) and edges (120) with red highlight the common edges for each cell line. (D) Venn
diagram for ΔECv-extracted edges and t-test-significant edges. The t-test for ECv between TGF𝛽-treated (9
samples) and control (9 samples) were performed. The t-test-significant edges were selected with a criteria
of FDR-corrected 𝑝-value < 0.01. The number of the obtained edges was displayed in Venn diagram. (E)
Heat map and the result of hierarchical clustering for the ECv matrix of ΔECv-extracted 120 edges with 18
samples.
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3.3 ΔECv unveils the EMT networks

Using these ΔECv-extracted edges, I aimed to build and visualize a network. I mapped
120 edges and linked the edges that are absent in ΔECv using their connections in the basal
network, resulting in the establishment of the EMT-characterized subnetwork (hereafter
referred as the EMT network) (Figure 1.4). Eventually, this network comprised 150 nodes
and 411 edges. Remarkably, the EMT network shared many nodes of ΔECv-extracted
edges, i.e., these edges were linked to each other. The biggest connected component in the
120 ΔECv-extracted edges consisted of 54 edges with 50 nodes. Many other connected
components or independent edges were also connected to the biggest one within a single
edge of the basal network, whereas only few edges were completely isolated. The inclusion
of the basal network edges resulted in the connected component consisting of 371 edges with
127 nodes in the EMT network. Additionally, if I highlighted the ΔECv-extracted nodes
and edges in the basal network whose node layout was arranged only using its topological
structure, I observed that these were closely located and seemed to constitute a module in
the basal network (Figure 1.1). Furthermore, I mapped top 5% rank hub genes for the basal
network and the EMT network to compare their topological localization in the EMT network
and identified 28 of the 1156 genes as the ECv-extracted genes (Figure 1.4). Interestingly,
these basal hub genes did not function as hub genes in the EMT network.

3.4 Biological validation for the EMT network with the comparison
between ΔECv and DEG

To investigate the extent to which ΔECv-extracted genes explain the EMT features biologi-
cally, I conducted a method-based comparison between ΔECv and DEG. The DEG analysis
was performed by a criteria of absolute log2FC > 2 and FDR-corrected 𝑝-value < 0.00001,
approximately following a previous report [21], resulting in 125 genes (Figure 1.5A). This
DEG-extracted gene set principally reflects a difference between control and TGF𝛽-treated
samples. The number of shared genes obtained by ΔECv and DEG was 71 (Figure 1.5B),
suggesting that some population of the ΔECv genes belongs to the DEG-extracted gene
set. Considering that 2-FC is a standard lowest cutoff for making a decision for potential
DEGs, the remaining 79 genes for ΔECv and 54 genes for DEG might be exclusive for each
method (Figure 1.5B). This implies that network-driven ΔECv can extract genes that the
conventional DEG method never does. To get more of an insight into the biology involved, I
examined whether biological functions are different between the gene sets obtained by these
two methods. The molecular functions in the top 6 ranks out of 10 are exactly the same
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Figure 1.4: Visualization of the EMT network. 150 nodes and 411 edges constitute the network. The total
number of connected components is 7. Node: Top 5% hub genes (filled with red) in the EMT network,
and top 5% (labeled with red) hub genes in the basal network are displayed. Nodes (blue line) represent
genes extracted by ΔECv exclusively. Edge: Bold edges (gray) and standard edges (gray) represent ones
with absolute ΔECv more than 1.5 and 1.0, respectively. ECv high 38 (green) and low (magenta) 70 edges
in TCGA data-fitting experiment (Figure 1.6A, B) are labeled. Dotted edges (gray) originally belong to the
basal network.
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between them (Figure 1.5C, D), and the top 3 functions of “cellular movement”, “cellular
development” and “cellular growth and proliferation” might represent the EMT features.
This further supports that at least the major population of ΔECv-extracted genes consists
of EMT-related genes. Moreover, I observed that representative EMT markers, CDH1 and
CDH2 were included in the EMT network (Figure 1.4). On the other hand, the lower
four molecular functions are different between ΔECv and DEG, which might reflect their
characteristics (Figure 1.5C, D). These results show that the proposed method enables us
to identify genes that are not done through DEG along with a biological validity, indicating
the advantage of the ΔECv method.

3.5 A clinical approach using the EMT network

Finally, considering thatΔECv enables us to emphasize network differences between normal
and clinically relevant samples, I attempted to investigate if the pattern of ΔECv-extracted
edges over patients’ samples identifies their properties regarding their EMT network suit-
ability. I directly applied the EMT network on the RNA-seq data of the two types of lung
cancer (LUSC and LUAD) patients by calculating their own RNA-seq specific ECv as

ECv′(𝑖) ( 𝑗𝑘 → 𝑗) = 𝑚 ( 𝑗)
𝑘

(𝑝𝑎′( 𝑗)
𝑖𝑘

)

where 𝑝𝑎
′( 𝑗)
𝑖𝑘

represents the RNA-seq expression of the 𝑘-th parent of the 𝑗-th node in
the basal network, and 𝑖 the patient index in the TCGA dataset. Note that 𝑚 ( 𝑗)

𝑘
(·) here

is the same as the one estimated for the 18-sample microarray data and I calculated them
for only the ΔECv-extracted edges. This experiment tried to reassign the EMT network,
which was obtained by the microarray data, to a new RNA-seq data. I hypothesized that
it can also highlight the EMT network in the RNA-seq data. Due to the differences in the
total number of genes between the microarray and RNA-seq data, this was performed on
the 136 genes shared with both EMT network and RNA-seq to gain an RNA-seq-derived
ECv, resulting in 108 edges out of 120 edges. Therefore, this ECv calculation produces
the 426-by-108 and 457-by-108 ECv matrix for both LUSC and LUAD. The ECv patterns
of these matrices were shown as a heat map along with the result of the unsupervised
clustering analysis (Figure 1.6A, B). The 108 edges were classified into ECv high and low
clusters, indicating that these are involved in network gene up- or down- regulation. Since
the patients were clearly clustered into two groups, I considered that these groups highlight
a system difference in the process of EMT. Given that the metastasis and invasion that is a
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Figure 1.5: Comparison of ΔECv and DEG. (A) DEG analysis was performed with the criteria of absolute
log2FC > 2 and FDR-corrected 𝑝-value < 0.00001 for each cell line; A549, HCC827 and NCIH-358. The
number of the obtained genes was displayed in Venn diagram. (B) Venn diagram for the genes extracted by
ΔECv and DEG. (C) Top 10 terms of the molecular function analysis for the ΔECv-extracted 150 genes. (D)
Top 10 terms of the molecular function analysis for the 125 genes through DEG.
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Figure 1.6: Unsupervised clustering and survival analysis for LUSC and LUAD. (A) Heat map with hierarchical
clustering for the ECv matrix of 108 edges with 426 samples in LUSC RNA-Seq data. Kaplan-Meier curves
for the two patient groups; group 1 (blue, n: 244) and group 2 (orange, n: 182), corresponding the patient
clusters in the heat map in A. (B) Heat map with hierarchical clustering for the ECv matrix of 108 edges with
457 samples in LUAD RNA-Seq data. Kaplan-Meier curves for the two patient groups; group 1 (blue, n: 203)
and group 2 (orange, n: 254), corresponding the patient clusters in the heat map in B. The survival analysis
was performed using log rank-test for p value calculation.

consequence of EMT is fatal for patients’ cancer prognosis, in order to ask whether these
two groups are clinically different, I performed a survival analysis. The result showed that,
although this failed (log-rank test 𝑝-value=0.1) for LUAD (Figure 1.6B), these two groups
were significantly different (𝑝-value=0.011 < 0.05) in terms of their prognosis for LUSC
(Figure 1.6A), suggesting that the LUSC patients were distinguished into groups of better
and worse prognosis by their ECv patterns based on their EMT network differences.

4 Discussion

Here, I report a novel method to obtain a sample-specific subnetwork using ECv derived
from the estimated parameters of the BN. I investigated the application of this method
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in EMT biology and clinical data analysis. This method shows a potential ability of
capturing the subnetwork and the patient-specific ECv patterns, and these patterns further
characterized the prognosis. The prognosis in cancer patients depends on more than its
metastasis. This is probably one reason why the combination of clustering and survival
analysis works on LUSC, but not LUAD. On the other hand, the results of conventional
clustering analysis on ECv matrices showed clear discriminations into two groups both on
cell line microarray data and patient tumor sample RNA-seq data. Therefore, these results
imply that individuals are distinguished through network differentiation using the proposed
quantification of the edges.

Although translating laboratory experiments into the clinical context remains a big
hurdle, this study indicates that my approach could be a powerful tool for bridging the divide
between them. However, if we use it for this purpose, in vitro experiment design such as using
cell lines should at least relate directly to practical clinical realities. In addition, because
some datasets in replicate experiments involving in vitro assay are markedly homogeneous,
I calculate ΔECv using mean ECv difference for each condition-specific sample set in this
study. This, however, would not be appropriate for a heterogeneous dataset because mean
ECv is not supposed to reflect a representative ECv for a particular set of samples. These
issues are current limitations of the proposed method and can be improved in the future
work.

As discussed previously, existing gene network analyses generally focus on hub genes
that are supposed to catalog important regulatory genes in a network. In the EMT network,
most of the basal network hub genes were either located at the corners of the EMT network
or completely isolated from the biggest connected component (Figure 1.4). Only a few of
these hubs are at the network’s center, suggesting that the basal network hub genes are the
master regulators responsible for various cellular processes in the basal network, but not
in specific functional modules in the EMT network as discussed below. This may imply
that the major difficulty in hub gene analysis lies in the acquisition of significant genes,
especially for samples relating to specific conditions. However, this may also suggest that
the network estimation involves appropriate consideration of all the system-level cellular
features even when the number of samples are very small and are measured for a specific
condition.

Within the biggest connected component in Figure 1.4, HS3ST3B1, FAM198B and
IGFBP5 are the three top hub genes of the EMT network. Genes farthest from the hub genes
were closely linked, suggesting that the subnetwork centered on the hub genes essentially
represents EMT profiles depicted in the EMT dataset. In particular, I found that these
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components are more enriched in extracellular matrix (ECM) genes. ECM constructs a
multi-layer scaffold structure located outside of the cell membrane and functions as an
attachment between cells and tissues, assisting in cell growth, movement, development and
differentiation [34]. Given that collagen, proteoglycan, and glycosaminoglycans (GAGs)
constitute ECM, it is reasonable that ECM-functional genes, HAS3, FN1 and MMP7 are
located proximal to the top three hub genes. HS3ST3B1 encodes an enzyme that controls
the ECM environment following organization of heparin sulfate in GAGs and reports show
its expression level regulates EMT [35]. A low level of FAM198B attenuates tumor growth
and metastasis [36]. Overexpression of GFBP5 reduces EMT [37]. Although these reports
support the notion that hub genes identified in this study actually engage in the EMT process,
elucidation of the EMT mechanism remained incomplete as clear interactions have not been
defined. Given that dysregulation of ECM was found to be a profound connection with
EMT [38], the EMT network indicates a possible regulatory system of interactions between
ECM and EMT. Moreover, PDK4—identified biologically as a novel EMT-associated gene
[21]—has a network location close to the hub genes, supporting the finding of including
this previously validated gene and the interaction of PDK4 with EMT-related genes.

Recently, the emergence of deep learning technology has allowed us to apply it to many
scientific fields, including biology and medicine. However, such a situation depends on
a large number of data. More importantly, the explainability of deep learning technology
remains elusive. This disadvantage is a key issue, especially for biological or clinical
situations, because the predictive process must also have responsibility for interpretation
and ultimate outcome. In contrast, BN has been conventionally developed as an explainable
model, and thus it is considered to be more appropriate to these fields. However, BN
was unable to explain the individuality of samples as well as additional statistical models
intended to interpret the population of certain data. In this study, by overcoming this
weakness of BN, ECv has proved to be a more powerful tool in terms of explainability in
machine learning. Therefore, the application possibilities of this BN model to analyses of
biomedical data beyond existing bioinformatics methods makes it superior to other models.
Although multi-omics analysis is becoming mainstream in biology, single transcriptome
analysis still possesses a broad scope. Integration of other types of omics data such as
genome, proteome, and epigenome with transcriptome using BN would lead us to analyze
these big data more precisely than in existing studies, which in turn may result in a new
approach in precision medicine.
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Chapter 2

Dynamic changes in gene-to-gene regulatory
networks in response to SARS-CoV-2 infection

1 Introduction

The newly emerging coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has spread rapidly worldwide [39, 40], with more than 21,000,000 cases of coro-
navirus disease 2019 (COVID-19) and 770,000 deaths as of August 18, 2020 [41]. This
pandemic outbreak has drastically changed our society and has compelled us to be vigilant
of the continuous risk of SARS-CoV-2 infection [42]. To overcome this dire situation, the
development of novel drugs or vaccines continues to be an urgent global challenge. During
the therapeutic development process, the elucidation of cellular mechanisms is essential
for the discovery of potential targets; the fundamental question to be solved is how the
SARS-CoV-2 influences host cells and causes COVID-19 at the molecular level. However,
the cellular mechanisms underlying COVID-19 are poorly understood.

High-throughput technologies have contributed to the acquisition of a large amount of
“omics” data, which has provided comprehensive information on cellular systems. These
technologies have also been utilized during the current research into SARS-CoV-2. Several
reports have provided various clues to understanding the global cellular signatures in re-
sponse to SARS-CoV-2 infection at both the proteome and transcriptome levels [43, 44, 45].
Recently, network-based approaches have attracted great interest in the use of emerging
omics data for drug discovery and systems biological analysis in the current field of SARS-
CoV-2 research [46, 47, 48, 49, 50, 51]. Their major approaches combine publicly available
sources, including knowledge of the already established pathways and drugs with these
omics data to reconstruct molecular networks. However, these networks do not sufficiently
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Figure 2.1: Illustration of overview. The hairball (blue) is the basal network consisting of 127,126 edges and
15,258 nodes established using the respiratory viruses RNA-seq including SARS-CoV-2. The highlighted-
network (magenta) in the basal network represents the COVID-19-perturbated network extracted by using the
biopsy RNA-seq.

represent a real cellular system for the following two main reasons: 1) public data consist
of heterogeneous knowledge that has been accumulated throughout longstanding biologi-
cal research; and 2) previous studies use mixed networks that combine data from various
samples, but cannot reflect an individual cell-/patient-specific network.

To address these problems, I developed a method to extract a core sample-specific
network from a massive gene network generated from a Bayesian network in Chapter 1
[52]. Gene regulatory network estimation has been developed as a prospective method to
model the cellular system using omics data [12, 13, 14, 15, 16]. Although the Bayesian
network-based approach can infer the cause-and-effect relationships between genes with
transcriptome data, the key issue is the extraction of biologically significant information
from a huge, complicated network, which is often sarcastically referred to as a hairball [11].
My unique framework consists of the following three steps: 1) estimation of a global gene
network; 2) extraction of context-specific core networks based on differences in molecular
systems from the global network; and 3) identification of a sample or patient-specific
network (Figure 2.1). The prominent advantage is that it enables us to identify putative
context-specific or sample-specific potential sets of edges in the form of a network, that is,
gene-to-gene relationships with directions as well as nodes.
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In this study, by using the developed framework for gene network analysis, I have
presented the core host cellular systems involved in SARS-CoV-2 over several in vitro
experiments, including different viral loads, cell lines, and respiratory viruses. No studies
have been performed on the computational data-driven gene regulatory network approach for
SARS-CoV-2. I characterized interferon signaling and subsequent inflammatory signaling
cascades as significantly changed networks in human host cells, which represent the innate
antiviral immune system in response to SARS-CoV-2 infection. Additionally, recent studies
have reported that patients with COVID-19 exhibit various clinical outcomes depending on
each patient, and that a certain proportion of patients will experience a severe disease
[53, 54, 55]. Therefore, it is much more important to reveal the cellular mechanisms
causing these clinical symptoms at the individual level. To this end, I have further identified
the gene networks specifically for patients with COVID-19. I believe that the landscape of
gene networks characterized in this study is beneficial for understanding the mechanisms
by which cellular systems respond to SARS-CoV-2 and to further drug development.

2 Methods

2.1 Global gene network estimation and core network extraction

The network estimation and network extraction were performed using the method developed
in Chapter 1. Briefly, this method first estimates a global gene network, called the basal
network, which includes all the genes in a dataset using a Bayesian network with 𝐵-spline
nonparametric regression with the NNSR algorithm [23, 17]. After the basal network
estimation, I then quantified every single edge with respect to a certain sample in terms
of the system-level usage of the edge with the estimated mathematical model using the
ECv method developed in Chapter 1 [52]. The ΔECv definition in this study followed
Eq. (1.4) in Chapter 1, where 𝑆 and 𝑇 were sets of infected and control (mock) replicated
samples, respectively. As the target dataset includes control samples for a particular series
of experiments, I can extract certain core networks from them by calculating ΔECv for
the series of experiments using their corresponding control samples. For example, a
SARS-CoV-2-perturbated core network was extracted by calculating ΔECvs for the SARS-
CoV-2-infected and their corresponding mock-triplicate samples. As shown in Chapter 1
[52], we generally employ ΔECv ≥ 1.0 for the threshold and carry out statistical t-tests
to extract a core network extraction. This threshold approximately corresponds to 2-fold
changes in differentially expressed genes for the extracted genes. Thus, I considered that the
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extracted networks, including edges and nodes, were significantly activated by the infection
in cellular regulatory systems. In this study, statistical tests were not performed due to the
small number of samples.

2.2 Proposed relative contribution of edges for characterization of
individual networks

This ECv development allowed for a new solution for gene network analyses. In Chapter
1 [52], I succeeded in characterizing network profiles by calculating ECvs for edges in
a ΔECv-extracted core network with respect to many samples from patients with cancer.
Conventional clustering onto these calculated ECvs led to the identification of prognosis-
related subgroups. Thus, I demonstrated that the differences and similarities in the edge
profiles of the network could be captured as patterns of ECvs. Despite the high availability
of ECvs, it is impossible to directly compare ECvs between individual samples because
ECvs have different sizes depending on the estimated pairwise edge and the sample. The
normalization of ECvs across samples is inappropriate for this purpose due to the mutual
dependency of the individual network on each sample. Thus, it is not possible to highlight
the differences in regulatory systems at an individual level.

For these reasons, ECvs are not appropriate for the analysis of individual networks. To
overcome these drawbacks, I have proposed a novel method, relative contribution (RC), to
quantify edges with respect to individual samples using the estimated gene network model.
I hypothesized that the differences in individual samples in terms of the cellular system
could be attributed to the differences in the ratios of the contributions of edges connecting
to a certain node in the network. Edges with different samples need to be described as
differently weighted edges according to the ratios of effects between parents that regulate or
are connected to a certain gene. Additionally, the quantification of a network with a single
sample needs to be independent from other samples and their distributions. To achieve this,
I define the relative contribution of an edge with respect to a sample as

RC(𝑖) ( 𝑗𝑘 → 𝑗) :=
|ECv(𝑖) ( 𝑗𝑘 → 𝑗) |

max1≤𝑘 ′≤𝑞 𝑗
|ECv(𝑖) ( 𝑗𝑘 ′ → 𝑗) | ,

where 𝑖 represents a certain sample (0 < RC ≤ 1). That is, an RC of the edge is the
relative strength of the contribution of the edge to the maximum strength among the parents
connecting to the same child node. The reason why an RC is not divided by the sum of
the ECvs is that the range of RCs does not shrink depending on the number of parents

25



of the child node. One drawback of RCs is that if the ratio of ECvs of the parents is
not changed, the changes in parent values do not affect the RCs. However, the RCs of
their downstream edges will be affected by such changes. Therefore, this drawback is not
problematic in terms of the specification of differences in individual networks. Note that,
similar to ECvs, sample 𝑖 does not necessarily need to be a single sample used for the
network estimation. As illustrated in the Results section, I have shown that RCs can be used
to analyze individual networks, even if we have a single sample, or only a few samples,
of gene expression data, as long as a basal network can be estimated from other datasets.
RC, therefore, offers a significant enhancement to the framework for gene network analysis.
The results have demonstrated that the framework, through an integration of the three
key pieces—Bayesian network estimation, ECv, and RC—provides a powerful data-driven
solution to seek biological phenomena through cellular systems ranging from a global level
to an individual level.

2.3 Dataset

The transcriptome dataset GSE147507 was downloaded from the NCBI Gene Expression
Omnibus [45]. The samples were infected with respiratory viruses, including SARS-CoV-2,
and biological replicates were performed. The samples exclusive for human RNA-seq with
78 samples were selected. The detailed descriptions of samples are listed in Table 2.1,
which was created according to the source paper [45]. Among the samples, four samples of
the in vivo experiment (biopsy) data were pre-eliminated. The log2-transformed dataset was
filtered to remove genes with a mean percentile lower than 30%, resulting in 74 samples and
15,258 genes. This preprocessed dataset of the 74 × 15,258 matrix was used as input for
the basal network estimation. The biopsy dataset eliminated above, prior to global network
estimation, consisted of four samples (two healthy samples and two COVID-19-positive
samples). The RPM (reads per million)-normalized biopsy dataset was log2-transformed,
and genes with at least one zero value were removed to obtain more reliable data. The two
technical replicate samples for COVID-19 were averaged for the RC calculation. Following
this preprocessing, the input dataset for the RC calculation finally comprised a 3 × 4,516
matrix. The RNA-seq samples used forΔECv calculations in this study were: SARS-CoV-2
in A549 cells (MOI of 0.2/2 for 24 hr, 𝑛 = 3) and the corresponding mock (𝑛 = 3); SARS-
CoV-2 in normal human bronchial epithelial (NHBE) cells (MOI of 2 for 24 hr, 𝑛 = 3) and
the corresponding mock (𝑛 = 3); SARS-CoV-2 in Calu-3 cells (MOI of 2 for 24 hr, 𝑛 = 3)
and the corresponding mock (𝑛 = 3); human respiratory syncytial virus (RSV) in A549 cells
(MOI of 2 for 24 hr, 𝑛 = 3) and the corresponding mock (𝑛 = 3); human parainfluenza virus
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3 (HPIV3) in A549 cells (MOI of 2 for 24 hr, 𝑛 = 3) and the corresponding mock (𝑛 = 3);
influenza A virus (IAV) in A549 cells (MOI of 5 for 9 hr, 𝑛 = 2) and the corresponding
mock (𝑛 = 2); COVID-19 (𝑛 = 2) and healthy (𝑛 = 2).

Table 2.1: The detailed list of sample descriptions. hACE2, human ACE2; IAVdNS1, a
mutant IAV lacking its antiviral antagonist.

Series cell treatment time replicates
1 NHBE mock 24 hr 3
1 NHBE SARS-CoV-2 (MOI 2) 24 hr 3
2 A549 mock 24 hr 3
2 A549 SARS-CoV-2 (MOI 0.2) 24 hr 3
3 A549 mock 24 hr 2
3 A549 RSV (MOI 15) 24 hr 2
4 A549 mock 24 hr 2
4 A549 IAV (MOI 5) 24 hr 2
5 A549 mock 24 hr 3
5 A549 SARS-CoV-2 (MOI 2) 24 hr 3
6 A549 mock with hACE2 vector 24 hr 3
6 A549 SARS-CoV-2 (MOI 0.2) with hACE2 vector 24 hr 3
7 Calu3 mock 24 hr 3
7 Calu3 SARS-CoV-2 (MOI 2) 24 hr 3
8 A549 mock 24 hr 3
8 A549 RSV (MOI 2) 24 hr 3
8 A549 HPIV3 (MOI 2) 24 hr 3
9 NHBE mock 12 hr 4
9 NHBE IAV (MOI 3) 12 hr 4
9 NHBE IAVdNS1 (MOI 3) 12 hr 4
9 NHBE human IFN𝛽 4 hr 2
9 NHBE human IFN𝛽 6 hr 2
9 NHBE human IFN𝛽 12 hr 2
16 A549 mock with hACE2 vector 24 hr 3
16 A549 SARS-CoV-2 (MOI 0.2) with hACE2 vector 24 hr 3

16 A549 SARS-CoV-2 (MOI 0.2)
with hACE2 vector and Ruxolitinib 24 hr 3

2.4 Pathway analysis

The canonical pathway analysis was performed through the use of Ingenuity Pathway
Analysis software [29].
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2.5 Network analysis and visualization

The network visualization and the network analysis were performed using Cytoscape (ver-
sion 3.7.2 and 3.8.0) [32]. The genes for known drug targets were acquired from IPA
knowledge database [29] and the representative drugs were listed in Table 2.2.

2.6 Computational environments

All the computations for the network estimation and the ECv calculations in this study were
performed by the SHIROKANE supercomputer system (Shirokane5) at Human Genome
Center, the Institute of Medical Science, the University of Tokyo, where the computation
nodes were equipped with dual Intel Xeon Gold 6154 3.0GHz CPUs and 192GB memory
per node.

3 Results

3.1 Estimation of the basal gene network in the involvement of respi-
ratory virus infection using a Bayesian network

I first characterized a global gene network (hereafter referred to as the basal network) using
a Bayesian network with a transcriptome dataset involved in the engagement of respiratory
virus infection, including SARS-CoV-2, in several human cell lines [45] (Table 2.1). Since
the outstanding characteristic of my approach is to capture sample-specific signatures from
the basal network, it is preferable that various reactions are included to model complex gene
regulatory systems [52]. To determine the basal network structure, I performed a network
estimation using the neighbor node sampling and repeat algorithm [17], and screened the
best algorithm parameters for the target dataset, as described in Chapter 1 [52]. Briefly,
the network estimation was run three times independently, and the subsequent concordance
test was performed to ensure the robustness and stability of the estimated basal network. I
confirmed that the iteration number 𝑇 = 500, 000 satisfied less than 5% error (Error=4.0%
for𝑇 = 500, 000; error=5.3% for𝑇 = 300, 000). The final basal network comprised 127,126
edges and 15,258 nodes, with a threshold of 0.05 and an average degree of 16.7. This final
basal network was used for subsequent analyses.
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3.2 Dynamics of host cellular network profiles at different viral loads
of SARS-CoV-2

To examine the transition of host cellular system dynamics during the increase of SARS-
CoV-2 viral loads, I characterized the networks perturbated by SARS-CoV-2 with two
viral loads, namely a low multiplicity of infection (MOI) of 0.2 and a high MOI of 2 in
A549 cells. I expected that cells exposed to different viral loads would present a unique
cellular system, and that my approach could capture the fluctuation of system dynamics
in whole cellular systems. To obtain differential core gene networks for each viral load, I
followed multiple steps using an edge quantification technique, called the edge contribution
value (ECv), established in Chapter 1 [52]. I first calculated ΔECvs following Eq. (1.4)
, where 𝑆 is SARS-CoV-2 infected and 𝑇 is mock samples for each MOI condition (see
Methods). The distributions ofΔECv showed that the innate cellular system was extensively
more perturbated in the cells exposed to the high MOI than those exposed to low MOI
(Figure 2.2A). I next set a threshold of 1 for ΔECv and obtained differentially regulated
edges (DREs) from the basal network. The Venn diagram analysis for the ΔECv-extracted
DREs showed that the number of DREs in the high MOI was larger than that in the low MOI
(Figure 2.2B). Interestingly, the number of shared DREs between high- and low- MOIs was
42, which was only 6% of the total number of DREs in both conditions, thereby indicating
that the underlying regulatory system between them was not similar. To confirm the
biological involvement of the DREs, I performed canonical pathway analysis for the genes
contained in the ΔECv-obtained DREs, which showed that these genes were associated with
some cellular antiviral systems (Figure 2.2C). These results support that the components of
the DREs are biologically relevant to viral infection.

To gain a greater insight into the profiles of the DREs from the perspective of network
topology, I next generated networks using a set of all the DREs in the Venn diagram (Fig-
ure 2.2B). These DREs connected mutually and, in turn, generated subnetwork fragments of
various sizes (Figure 2.2D). I reasoned that if these fragments had biological significance,
these features should be reflected as modular, as biologically close functions in cellular
systems link together and shape modules [56]. Hence, small-sized fragments were likely to
be less informative, and I focused on the largest connected component among the various
fragments. The largest connected component was extracted and the basal edges were addi-
tionally mapped on this network, which established the SARS-CoV-2-perturbated network
with 130 nodes and 305 edges (Figure 2.3). I found that this network clearly consisted
of three modules linked to each other. One module (module 1, yellow-marked region)
was mainly composed of a set of DREs under low-MOI conditions, and its constituent
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Defferential Regulation of Cytokine Production
in Macrophages and T Helper Cells by IK-17A and IL-17F

Figure 2.2: Dynamics of the SARS-CoV-2-perturbated network for different viral loads in host cells. (A)
The histograms of ΔECv for different SARS-CoV-2 viral loads; a low MOI of 0.2 (blue) and a high MOI
of 2 (magenta). The X-axis corresponds to the threshold for each ΔECv. The Y-axis shows the number
of edges on a log scale. (B) The Venn diagram represents the numbers of differentially regulated edges
(DREs) for two SARS-CoV-2 viral loads (blue: low MOI, magenta: high MOI) with a threshold of 1.0 for
ΔECv in Figure 2.2A. (C) The top 10 terms of canonical pathway analysis for the genes comprising a union
set of ΔECv-extracted DREs in the Venn diagram analysis (Figure 2.2B). (D) The whole illustration for the
subnetwork fragments of various sizes is shown. Image of how the ΔECv-extracted DREs mutually connected
and generated the subnetworks.

30



module 1

module 2

module 3

Figure 2.3: The SARS-CoV-2-perturbated network. The SARS-CoV-2-perturbated host cellular network
in response to different viral loads in A549 cells (the SARS-CoV-2-perturbated network). The network
comprises 130 nodes and 305 edges (including 155 basal edges). The colored solid edges represent the
SARS-CoV-2-perturbated DREs; high MOI of 2 (magenta), low MOI of 0.2 (blue), and high MOI ∩ low MOI
(purple). Dotted edges represent basal edges (gray). The nodes (green) represent the known drug target genes
(Table 2.2). The node size represents the extent of outdegree.

elements were interferon (IFN)-stimulated genes (ISGs), namely IFIs, MXs, OASs, TRIMs,
IFTMs, IRFs, and STATs. These highly orchestrated webs of various ISGs are induced
by transductions of both IFN signaling and subsequent JAK/STAT signaling [57]. This
evidence strongly suggests that module 1 represents the consequences of activation of both
these signaling pathways by the acute antiviral response. Contrary to module 1, the other
two modules (module 2, green-marked region; and module 3, purple-marked region) are
mainly shaped by a set of DREs in the high-MOI condition. Modules 2 and 3 were found
to comprise fewer IFN-related genes. While module 2 appeared to be a GAS5-centralized
module, module 3 was composed of chemokines (CXCL1, CXCL2, CXCL3, CX3CL1,
and CCL20), interleukins (IL6, IL1A, IL1B, and IL32), and colony-stimulating factors
(CSF2 and CSF3), which have been implicated in inflammatory-related cytokine signaling
followed by the acute activation of IFN and JAK/STAT signaling represented in module
1. In particular, the cluster of modules 1 and 3 likely represents the transition of the gene
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regulatory system in response to SARS-CoV-2 infection. Specifically, the cellular system
perturbated by SARS-CoV-2 gradually switched to inflammatory signaling (module 3) via
IFN and JAK/STAT signaling (module 1) as the viral load increased. This was consistent
with the clinical observations of COVID-19, and may thus partially explain the process
of cytokine storm syndromes, which is a severe clinical feature of COVID-19 [53, 55]. I
also performed the same analyses among the four respiratory viruses (HPIV3, IAV, RSV,
and SARS-CoV-2) and found that module 3 was exclusive for SARS-CoV-2 (Figure 2.4A-
D). Collectively, I identified the SARS-CoV-2-perturbated network and its three modules,
which reflected distinctive host cellular functions in response to SARS-CoV-2 infection.
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Figure 2.4: Network comparison analyses across four respiratory viruses. (A) The histograms of ΔECv for each respiratory virus as
indicated: SARS-CoV-2 (MOI: 2), HPIV3, IAV, and RSV. The X-axis corresponds to the threshold for each ΔECv. The Y-axis stands for
the number of edges on a log scale. (B) The Venn diagram represents the numbers of ΔECv-extracted edges for all respiratory viruses.
(C) The respiratory viruses-shared network comprised 62 nodes and 116 edges (including 53 basal edges). The colored solid edges
represent DREs; SARS-CoV-2 ∩ IAV ∩ HPIV3 ∩ RSV (purple), SARS-CoV-2 ∩ RSV ∩ HPIV3 (red), IAV ∩ RSV ∩ HPIV3 (blue). The
top 10 terms of canonical pathway analysis for the genes of ΔECv-extracted DREs shared by at least three viruses in the Venn diagram
(Figure 2.4B). (D) The SARS-CoV-2 specific network comprising 182 nodes and 295 edges (including 171 basal edges). The solid edges
(magenta) represent DREs for SARS-CoV-2 (MOI: 2). The dotted edges represent the basal edges (gray). The size of the node represents
the extent of outdegree. The nodes (green) are target genes for existing drugs (Table 2.2). The top 10 terms of canonical pathway analysis
for the genes of ΔECv-extracted DREs exclusive for the SARS-CoV-2 in the Venn diagram (Figure 2.4B).
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3.3 Characterization of the SARS-CoV-2-perturbated network at the
individual sample level

Next, I determined how the signaling represented in the SARS-CoV-2-perturbated network
(Figure 2.3) changed across the samples. To this end, I developed a novel quantitative
method, called relative contribution (RC), to measure the edge contribution at an individual
level. The mathematical definition of RC is described in the Methods section. Within
a set of pairwise parent-child relations for a certain child, the RC captures how parent
genes influence a child gene in response to the pairwise parent’s mRNA expression, and it
can therefore reveal local regulatory changes in response to SARS-CoV-2 infection at an
individual sample level. To characterize the individual networks, I calculated RCs for 12
samples within four groups (mock × 3 for SARS-CoV-2-infected (MOI: 0.2), SARS-CoV-
2-infected × 3 (MOI: 0.2), mock × 3 for SARS-CoV-2-infected (MOI: 2), SARS-CoV-2-
infected × 3 (MOI: 2)) involved in the network generation process, as shown in Figure 2.3.
Since I confirmed that the RC profiles exhibit almost the same between the replicates, four
representative samples were selected from each group. By representing RCs as the sizes
of edge widths, I depicted these four sample-specific individual networks (Figure 2.5), and
found that the vicinity of the GAS5-centralized module (module 2) drastically changed
at an RC level (Figure 2.6). Interestingly, this module included GAS5, SNHG8, ZFAS1,
SNORD52, SNORD58C, SNORA24, and LOC100506548, which encode non-coding RNA
(ncRNA) genes. Given that GAS5 appears to function as a hub gene, these results suggest
that the genes downstream of GAS5 are regulated by different cellular systems in the
mock and SARS-CoV-2 infections at a local system level. In particular, GAS5, ZFAS1, and
SNHG8 were found to be dominant for SLC9B1 in SARS-CoV-2-infected samples compared
with the mock samples, suggesting that the regulatory system used was significantly different
between them (Figure 2.6). GAS5 is a single-stranded lncRNA, and one study demonstrated
that the mRNA expression of GAS5 was elevated in response to hepatitis C virus infection
and that GAS5 impaired virus replication by the interaction between truncated-GAS5 and
HCV NS3 protein in human cells [58]. Combined with this evidence, these results suggest
the possibility that this module 2 related to ncRNA may play a novel clear role in SARS-
CoV-2 infection.

Conversely, of the four individual networks, the two networks for mocks exhibited no
significant change in RC (Figure 2.5 and Figure 2.6). This is consistent with the prerequisite
experimental design, as the mock samples are supposed to exhibit the same behavior, which
further supports the validity of the developed method. Moreover, the RC-highlighted edges
displaying little to no changes showed that their local regulatory system, presented as a set
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Figure 2.5: Sample-specific individual networks in the SARS-CoV-2-perturbated network. The RC-introduced
individual networks are shown for the representative four samples from each group (mock for SARS-CoV-
2-infection (low MOI: 0.2), SARS-CoV-2-infection (low MOI: 0.2), mock for SARS-CoV-2-infection (high
MOI: 2), SARS-CoV-2-infection (high MOI: 2)). The depicted network is established in Figure 2.3 (the
SARS-CoV-2-perturbated network). The region of module 3 is shown in Figure 2.6. RCs are represented as
edge sizes to show individual differences.
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of pairwise parent-child relationships for one child, did not change between the individual
samples. Collectively, these data demonstrate that the RC method can capture the local
system differences in network signaling at an individual level.

mock (low infection) SARS-CoV-2 (low infection)

mock (high infection) SARS-CoV-2 (high infection)

Figure 2.6: Sample-specific individual networks around the GAS5-centralized module. The GAS5-centralized
module (module 3) in the SARS-CoV-2-perturbated network (presented in Figure 2.3) is displayed for four
representative samples from each group (mock for SARS-CoV-2-infection (low MOI: 0.2), SARS-CoV-2-
infected (low MOI: 0.2), mock for SARS-CoV-2-infection (high MOI: 2), and SARS-CoV-2-infected (high
MOI: 2)). RCs are represented as edge sizes to show individual differences. The node size represents the
extent of outdegree.

3.4 Identification of specific individual networks in patients with
COVID-19

Finally, I aimed to establish COVID-19 individual networks with a human biopsy dataset
(healthy: two samples; COVID-19-positive: two samples) on the basis of the estimated basal
network model. I expect that the in vivo biopsy dataset would provide a more clinically
relevant perspective compared with the in vitro experiments. Usually, network estimation is
impossible with such a small number of samples due to the difficulty in acquisition of a robust
network structure, yet my approach using the basal network model was capable of generating
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a context-specific network, even with a few samples of a different dataset (Figure 2.1). By
using the 𝐵-spline regression model of the Bayesian network acquired by the estimation of
the basal network, I first computed the ECv for the preprocessed biopsy dataset, despite the
absence of some genes compared with the dataset used for the basal network estimation.
To obtain DREs, I calculated ΔECv between healthy (regarded as control) and COVID-19-
positive samples according to Eq. (1.4), where 𝑆 is healthy (|𝑆 | = 2) and 𝑇 is COVID-19-
positive (|𝑇 | = 2) (see Methods). The ΔECvs were distributed over a broad range, and 4,242
DREs were observed at a threshold of 1 for ΔECv (Figure 2.7A). To extract more reliable
DREs induced by COVID-19, I set a threshold of 2.3, corresponding approximately to
log2FC where FC=5, which resulted in 638 DREs. These DREs were mapped as networks
and the largest connected component (167 DREs) was depicted with inclusion of the basal
edges, generating the COVID-19-perturbated network, which comprised 127 nodes and 412
edges (Figure 2.7B). This network is supposedly a representation of the distinctive cellular
system in patients with COVID-19. The pathway analysis of genes contained in this network
showed that they were involved in the immune and inflammatory response (Figure 2.7C),
thereby supporting the consistency of the established network with biological observations
in COVID-19.

To determine the signatures of the acquired DREs in the COVID-19-perturbated net-
work, I measured the ECv similarity for a set of the 167 DREs across the other experimental
samples. This result showed that the ECv profiles in COVID-19 were similar to the sam-
ple with HPIV3 rather than SARS-CoV-2 in the in vitro experiments (Figure 2.8A), thus
suggesting that there is a physiological gap between in vitro and in vivo. I further explored
the extent to which the 167 COVID-19-related DREs overlapped with the Venn diagram
illustrated in Figure 2.2B. I observed that a moderate number of DREs were shared by
the cell models of SARS-CoV-2 perturbation (Figure 2.8B), then these overlapped edges
were mapped onto the COVID-19-perturbated network (Figure 2.8C). Unlike the network
observations shown in Figure 2.3, I found that both the ISG-related webs (module 1) and
subsequent cytokine signaling (module 3) involved in inflammatory cascades were con-
currently present in the COVID-19-perturbated network, indicating that these two modules
continued to be mutually activated in COVID-19.
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Figure 2.7: The COVID-19-perturbated network analysis. (A) The histograms of ΔECv for the biopsy dataset.
The X-axis corresponds to the threshold for the ΔECv. The Y-axis stands for the number of edges with log
scale. (B) The COVID-19-perturbated network is shown. The network is composed of 127 nodes and
412 edges (including 245 basal edges). The colored solid edges represent DREs perturbated by COVID-19
(yellow). The dotted edges represent the basal edges (gray). The nodes (green) represent the known drug
target genes (Table 2.2). The node size represents the extent of outdegree. (C) The top 10 terms of canonical
pathway analysis for the genes in the COVID-19-perturbated network.
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Figure 2.8: Analyses for generating the COVID-19-perturbated network. (A) The similarity heatmap is
shown and samples for comparisons are labeled as indicated. Similarity is calculated with cosine distance
method for ECvs of the 167 DREs. (B) The Venn diagram shows the numbers of the ΔECv-extracted
DREs (ΔECv threshold 2.3) induced by COVID-19 perturbation for the biopsy dataset (yellow) overlapped
with the two DREs through the Venn diagram analysis in Figure 2.2B. (C) The COVID-19 patient-specific
network in combination with the Venn diagram analysis (Figure 2.8B). The network is composed of 127 nodes
and 412 edges (including 245 basal edges). The colored solid edges represent DREs; SARS-CoV-2 (high
MOI: 2) ∩ COVID-19-perturbated (magenta), SARS-CoV-2 (low MOI: 0.2) ∩ COVID-19-perturbated (blue),
SARS-CoV-2 (high MOI: 2) ∩ SARS-CoV-2 (low MOI: 0.2) ∩ COVID-19-perturbated (purple), COVID-19-
perturbated exclusive edges (yellow). The dotted edges represent the basal edges (gray). The nodes (green)
represent the known drug target genes (Table 2.2). The node size represents the extent of outdegree.
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To uncover the differences in the local regulatory system, I next examined the profiles of
the COVID-19-perturbated network at an individual level using the RC method (Figure 2.1).
As the two COVID-19 samples were originally derived from a single patient who tested
positive for COVID-19, RCs were calculated for three individuals (healthy 1, healthy 2,
and COVID-19 patient). The depiction of the RC as the edge sizes eventually led to the
establishment of the COVID-19 patient-specific network, which was likely to show how
the cellular system changed in the patients with COVID-19 compared with the healthy
controls (Figure 2.9A). The panel of three individual networks dramatically exhibited a
great magnitude of differences, showing that the cellular regulatory systems were quite
distinctive among individuals (Figure 2.9A-C). As this approach captures differences in
the system between COVID-19 and healthy individuals as a network, genes that are not
normally considered to be up/down-regulated in healthy people will also be included in
the network. In comparison with the SARS-CoV-2-perturbated network established by the
well-organized in vitro experiments using cell lines (Figure 2.5), this broad range of RC
fluctuation for each in vitro sample likely reflects further differences among individuals.
The representative regions where local regulatory systems are different among individuals
are illustrated in Figure 2.10. In the zoom 1 region, PELI1 is a parent gene for both TNF and
RGS16; these two signals were dominant in the healthy individuals, but not in the patient
with COVID-19. In contrast, the zoom 2 and 3 regions showed that local signals were
clearly different, not only between the healthy patients and the patient with COVID-19, but
also even between two healthy individuals.
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Figure 2.9: Establishment of the individual-specific networks in the COVID-19-perturbated network. The
RC-introduced individual networks are shown for three individuals (patient with COVID-19, healthy 1, and
healthy 2). The depicted network is established in Figure 2.7 and Figure 2.8 (the COVID-19-perturbated
network). (A) The COVID-19 patient-specific network. (B, C) The healthy-specific networks. The network
comprises 127 nodes and 412 edges (including 245 basal edges). The colored solid edges represent DREs;
SARS-CoV-2 (high MOI: 2) ∩ COVID-19-perturbated (magenta), SARS-CoV-2 (low MOI: 0.2) ∩ COVID-
19-perturbated (blue), SARS-CoV-2 (high MOI: 2) ∩ SARS-CoV-2 (low MOI: 0.2) ∩ COVID-19-perturbated
(purple), COVID-19-perturbated exclusive edges (yellow). The dotted edges represent the basal edges (gray).
The nodes (green) represent the known drug target genes (Table 2.2). The node size stands for the extent of
outdegree. RCs are represented as edge sizes to show individual differences.

4 Discussion

Here, I have presented the host cellular gene networks perturbated by SARS-CoV-2 both
in vitro and in vivo by using the proposed framework for gene network analysis. As
the networks I established to be associated with SARS-CoV-2 were generated through
RNA-seq data, these networks explained how genes were systematically regulated at the
transcriptome level. Although this approach depends on the initial network estimation with
an experimental dataset and may therefore risk the inclusion of false relationships or the
exclusion of true relationships, I have succeeded in capturing the biologically explainable
immune response systems in human cells induced by SARS-CoV-2 at the level of signaling
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Figure 2.10: Differences in local regulatory systems among the three individuals. Zoomed regions indicated in
Figure 2.9A for three individuals (the patient with COVID-19, healthy 1, and healthy 2). RCs are represented
as edge sizes to show individual differences.

networks.

Sensing of viruses causes an immune defense system in host cells, which induces acute
IFN signaling activation followed by the expression of IFNs. These IFNs amplify the
JAK/STAT signaling to promote the expression of various ISGs and accelerate subsequent
cytokine signaling [57]. As illustrated in Figure 2.3, the mutually interacting module of
ISGs (module 1) followed by the IFN and JAK/STAT signaling was shown to be an early re-
sponse to SARS-CoV-2 infection. During the process of cells exposed to high SARS-CoV-2
viral loads, the signaling appears to move to the next stage, represented by inflammatory
signaling, including the involvement of various cytokines (Figure 2.3). The recently re-
ported drug, dexamethasone, could be effective for patients with severe COVID-19 via
suppression of these orchestrated inflammatory signaling cascades [59]. In the network
(Figure 2.3), IL6 was located as a hub gene to regulate downstream cascades, including
chemokines and colony-stimulating factors, which have been reported to be increased in
patients with COVID-19 [53]. The web of chemokines, such as CXCL1, CXCL2, and
CXCL3, may represent how the SARS-CoV-2-infected cells present a signal to induce
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Table 2.2: The gene list for known drug targets. The representative drug for each gene is
listed.

Gene Drug Gene Drug
ABL2 dasatinib IDO1 epacadostat

ACVR2A bimagrumab IFNGR2 interferon gamma-1b
ACVRL1 panulisib IL1A MABp1
ADH1C fomepizole IL1B canakinumab
ATP1A2 digoxin IL23A guselkumab
BIRC3 birinapant IL3RA DT388IL3
CA9 acetazolamide IL6 tocilizumab

CACNA1A bepridil INHBA STM 343
CD274 atezolizumab MDM4 ALRN-6924
CFB IONIS-FB-LRx MMP9 marimastat

CHRM4 acetylcholine NTN1 NP137
CSF1R bosutinib PDGFB pegpleranib

CXCL10 MDX-1100 RGS16 AGS-16M18
DDC levodopa RORC AZD0284

ENTPD1 TTX-030 RPS6KA2 PMD-026
FCGR2A IgG TIPARP RBN-2397
FGFR4 erdafitinib TLR9 agatolimod
FNDC1 AGS-8M4 TNF adalimumab
FOSL1 MORAb-202 TNFRSF9 ADG106

GABRR2 diazepam TYMP tipiracil
ICAM1 tyroserleutide UGCG eliglustat

VDR alfacalcidol

leukocyte chemotaxis and infiltration. The localization of ICAM1 in the vicinity of IL6
and chemokines is supportive of this, as ICAM1 is known to be a scaffold for the accu-
mulation of leukocytes at inflammatory sites and its expression is regulated by cytokines,
including IL6 [60, 61]. This tendency was also observed in the network comparison anal-
yses across the four respiratory viruses, including SARS-CoV-2 (Figure 2.4C). These data
showed that IL6 was not exclusive to SARS-CoV-2, but a universal factor in response to
respiratory viral infection, with the exception of the influenza A virus. Given that several
studies have reported that tocilizumab, an inhibitor of the IL6 receptor, is a potential drug
that can suppress the cytokine storm observed in many critical patients with COVID-19
[62, 63], the accumulated evidence strongly suggests that IL6 is a central regulator of the
inflammatory cascade, even from a network perspective. Additionally, the networks showed
that CSF2 was regulated by various factors, including IL6, which strengthened previous
reports suggesting that CSF2 might be a promising therapeutic target in combination with
IL6 [64, 65]. Moreover, other immune defense signaling pathways such as complement
and macrophage were identified (Figure 2.2C). In contrast, coagulation cascade reported
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abnormalities in patients with COVID-19 [66] was not identified, probably because this
aberration of coagulation may have occurred at the physiological system level rather than
at the cellular level. This developed method only captures the system at the cellular level,
and it is not yet possible to see the response of the entire biological system (e.g. between
organs). This would be a limitation of the current approach.

Several recent studies have shown that ACE2 plays a key role in the process of SARS-
CoV-2 infection. SARS-CoV-2 enters into host cells via ACE2 [67], and ACE2 was found
to be an ISG in human airway epithelial cells [68]. Considering that the SARS-CoV-2-
perturbated network includes several ISGs (Figure 2.3), it can be reasoned that some clues
regarding ACE2 may be present in this network. In this context, I found that ACE2 was
closely located to this network and was downstream of TNFRSF9, ATF3, and ARRDC3
via ACHE (Figure 2.11); these are potential candidates for further investigation of the
relationship between ACE2 and ISGs. Among them, ATF3 would be the most promising
as it was found to be a direct transcriptional target for ACE2 [69]. Thus, the established
networks provide promising information to elucidate SARS-CoV-2 profiles from a broad
biological perspective.

The second noteworthy outcome in this study was that I succeeded in the character-
ization of sample-specific individual networks by introducing the new edge-quantitative
technique of RC. In particular, although it is impossible to estimate a network with a small
number of samples, such as the four biopsy samples used in this case, the basal network
model that was already obtained through the analysis of the in vitro dataset with both RC
and ECv methods led to establishment of the COVID-19 patient-specific individual net-
work. This process represents the method of extrapolation between in vitro and in vivo
experiments. Each sample exhibits a unique regulatory profile, especially in actual indi-
viduals (such as those obtained from biopsy) rather than well-controlled in vitro samples
(Figure 2.5 and Figure 2.9). These results probably reflect a more realistic clinical situation
and increase the importance of the most effective utilization of a biopsy dataset. In the
current outbreak of COVID-19, we need to look into both biological and clinical aspects
to explore COVID-19 therapy. The individual networks regarding COVID-19 show the
extent to which individuals possess their own network, which ultimately links to the ne-
cessity of a personalized treatment. Therefore, my efforts are a potential contribution to
the emerging field of personalized medicine. The biopsy dataset used was not sufficient
to allow interpretation of the comprehensive information through individual networks in
patients with COVID-19, as it contained fewer COVID-19 samples. In addition, since the
lung samples were obtained postmortem patients with COVID-19, I could not determine
at what time point in disease progression the identified regulatory system is in this study
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Figure 2.11: The schematic network illustration of ACE2 involvement in immune defense system of host
cells. The network (188 nodes and 420 edges) was generated by the ΔECv-extracted edges (black) shared
with A549, NHBE and Calu-3 cells in response to SARS-CoV-2 infection. The nodes (green) represent the
known drug target genes. The edges (magenta), and nodes (marked magenta) represent potential regulatory
signalings to ACE2 via ACHE. The dotted edges represent the basal edges (gray).

(Figure 2.9 and Figure 2.10). More clinical samples with time series and disease severity
information from patients with COVID-19 can lead to the determination of key regulatory
systems at a clinical level. As data regarding SARS-CoV-2 has been currently accumulated
by the efforts of researchers, I hope that this panel of network analyses will be of help to
the SARS-CoV-2 research field and to establishment further treatments for COVID-19.
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Chapter 3

Large-scale gene network analysis for
identification of drug-induced liver injury
signature in human hepatocyte

1 Introduction

Liver has the ability to metabolize and detoxify many xenobiotics, but liver injury occurs
when the threshold of its processing capacity is exceeded or when toxic intermediate
metabolites are produced [70]. In clinical situations, various drugs have been reported to
induce liver injury, which is one of the side effects of drugs called drug-induced liver injury
(DILI) [71]. While some drugs, such as acetaminophen, cause DILI in a dose-dependent
manner, many of DILI-concerned drugs infrequently cause severe liver injury in a small
percentage of patients, which sometimes lead to the need for liver transplantation or even
death [72]. Since this side effect is very difficult to detect in clinical trials due to the
small number of incidences, it is one of the major causes of withdrawal of drugs from the
market and is also a critical risk for the pharmaceutical industry [73, 74]. Thus, DILI is an
important issue in both the medical and drug discovery fields. However, a solution to avoid
this risk has not yet been fully established.

A major reason for this is that the mechanisms of DILI are largely unknown, and
hence there are no specific predictive markers for DILI [75, 76]. To address this problem,
large-scale toxicogenomics data [77, 78, 79] and adverse reaction data [80, 81] has been
accumulated in recent years, and many studies were carried out from various perspectives
including chemical structure properties [82], genetics [83], and gene expression [84, 85, 86].
Among them, the network-based approach from the perspective of systems biology has
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Figure 3.1: Overview of the study. The basal network (bottom left, gray) consists of 10,554 nodes and 113,054
edges. The extracted subnetworks were used as input data for the VGAE (bottom right). The plots in latent
variable visualization correspond to the subnetworks (top right).

recently attracted great interest as a promising method for exploring molecular mechanisms
involved in DILI [87]. The mainstream approach is to integrate gene expression profiles
and network analysis, which can be divided into two types: one is to use the weighted
correlation network analysis (WGCNA) [88] to construct networks based on the correlation
of expression between genes after identifying differentially expressed genes (DEGs) [89,
90, 91], and the other is to combine gene expression data with existing signaling pathway
information [92, 93]. However, these methods do not consider the whole cellular system.
This is because these methods require a predetermined selection of a certain number of genes
or rely on existing pathway knowledge such as Reactome and KEGG [94, 95], which might
miss relations that are not included in the prior knowledge but are important for cellular
system regulations. Furthermore, for example, different types of drugs are considered to
trigger different intracellular networks, but these existing methods have not been able to
lead these diverse states of the network.

In order to overcome these drawbacks of existing studies, this study explored condition-
specific networks involved in hepatotoxicity by establishing a unique gene network analysis
approach using large-scale gene expression data in a network information-driven manner.
This approach could be expected to make a contribution to the elucidation of condition-
specific mechanisms through the gene networks. The overall picture of the study is illustrated
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in Figure 3.1. Firstly, a Bayesian network estimation method was used on gene expression
data from 2605 samples of human hepatocytes exposed to 158 drugs at multiple time points
and doses to reflect the whole cellular system as a gene network, which systematically
responds to more than 10,000 available genes. From this huge network, 762 condition-
specific subnetworks that are systematically perturbated by the exposure of DILI-concerned
drugs were extracted according to the combinations of drug, exposure time, and dose using
the developed method in Chapter 1 [52]. Then, in order to comprehensively characterize
these subnetworks, a novel network classification method was developed using graph neural
networks (GNNs), which is a type of deep learning technology for graph-structured data
[96]. Eventually, I identified the subnetworks involved in hepatotoxicity, and further showed
the connection between the subnetworks and human DILI. These results reveal for the first
time that networks play a key role as biomarkers of DILI.

2 Methods

2.1 The gene network estimation

The network estimation was performed using the NNSR algorithm [17] following previously
established protocols described in Chapter 1 and 2 [52, 97]. The NNSR algorithm allows
us to estimate a network with all the available number of genes over 10000, which generates
the universal gene regulatory network (the basal network) underlying cellular systems. The
difference from these previous studies is that this one had a much larger sample size. The
evaluation of the network estimation protocol in the latest supercomputer system Fugaku
was performed using the multiple simulation datasets following the same protocol as in the
previous study [17]. The four datasets used in the simulation experiments consist of 10540
nodes, with 500, 1000, 2000, and 3000 samples, respectively. As these simulation datasets
were generated from the original network, to evaluate the network estimation performance,
the networks estimated from them were subjected to structural comparisons with the true
network. In the precision recall curve, recall is defined as TP/(TP + FN), and precision
as TP/(TP + FP), where TP is the number of correctly estimated edges (true positive),
FN is the number of edges that were not estimated but included in the true network (false
negative), and FP is the number of incorrectly estimated edges (false positive). The network
estimation was performed three times independently for each dataset. The average of recall
and precision over each run was used in the precision recall curve since the results of the
three runs were almost identical. The area under the precision-recall curve was calculated
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with the network threshold between 0.2 and 0.7. The iteration number 𝑇 for the network
estimation was fixed at 100,000 for every dataset.

2.2 Extraction of sample-specific subnetworks from a basal network

The subnetwork extraction was performed using the ΔECv method described in Chapter
1 [52]. Briefly, edge contribution value (ECv), defined in Eq. (1.3) in Chapter 1, is a
quantitative measure of how strongly the estimated edge was used in the network for all
estimated edges in each sample. This method enables us to extract the changes in the
cellular system between arbitrary samples by calculating the differences in their ECvs as a
subnetwork from the basal network. In this study, I defined ΔECv as follows,

ΔECv𝑐,𝑡
𝑑
(𝑢 → 𝑣) =

��ECv𝑐,𝑡
𝑑
(𝑢 → 𝑣) − ECv𝑐,𝑡control(𝑢 → 𝑣)

�� ,
where ECv𝑐,𝑡

𝑑
(𝑢 → 𝑣) is the ECv of the estimated edge from 𝑢 to 𝑣 with respect to drug

𝑐 ∈ {158 drugs}, time 𝑡 ∈ {2hr, 8hr, 24hr}, and dose 𝑑 ∈ {Control,Low,Middle,High}.
Here, 𝑢 and 𝑣 are genes in the network, and the ECv was averaged when the replicate for the
same condition is available. The ΔECv threshold was set to extract differentially regulated
edges (DREs) from the basal network [97]. Here, a single subnetwork was defined as a set
of DREs for a certain combination of drug, time and dose following the ΔECv definition. In
this study, ΔECv ≥ 0.5 was employed to capture system changes even at weak perturbation
levels, such as low dose or short exposure time of 2 hr.

2.3 The VGAE architecture

I present a unique approach to predict the features of a dimension-free graph using Varia-
tional Autoencoder (VAE) framework [98]. I design an autoencoder that encodes a graph
into a latent variable 𝒛 ∈ R𝑚 and decodes the graph from 𝒛. Therefore, the goal of this
autoencoder is to optimize the parameters that can reconstruct the input graph via latent
variables by end-to-end learning (Figure 3.2). An input graph is denoted as 𝑮 = (𝑽, 𝑬)
where𝑽 is a set of nodes and 𝑬 is a set of edges. A graph 𝑮 having 𝑛 nodes are represented
in a matrix form as 𝑛 × 𝑛 adjacency matrix 𝑨 and the element 𝐴𝑖 𝑗 of 𝑨 at 𝑖-th row and 𝑗-th
column is defined as 1 if edge exists between 𝑖-th node and 𝑗-th node, otherwise 0. A node
feature matrix is denoted as 𝑿 ∈ R𝑛× 𝑓 where 𝑓 is a dimension of features. The input node
features are given arbitrarily.
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Figure 3.2: Illustration of the VGAE architecture.

I first consider an encoder of this VGAE using Graph Isomorphism Network (GIN).
The GIN is one of the architectures in GNNs to learn graph-structured data using adjacency
matrix 𝑨 and node feature matrix 𝑿 [99]. Here, the encoder is defined as,

𝑞(𝒛 |𝑿, 𝑨) := N(𝝁, diag(𝝈2)),

𝝁 = GIN(𝐾)
𝝁 (𝑿, 𝑨), log𝝈 = GIN(𝐾)

𝝈 (𝑿, 𝑨).
(3.1)

The function GIN(𝐾)
∗ (·) consists of two layers, the 𝐾-th layer GIN and a linear transforma-

tion. Let 𝑵𝑖 denote a set of adjacent nodes of the 𝑖-th node, and 𝒙𝑖 is a 𝑖-th row vector of 𝑿.
The 𝐾-th layer GIN is defined using a multi-layer perceptron (MLP) as follow,

𝒙 (𝑘+1)
𝑖

= MLP(𝑘+1)
(
𝒙 (𝑘)
𝑖

+
∑︁
𝑢∈𝑁𝑖

𝒙 (𝑘)𝑢

)
, 𝑘 = 0, . . . , 𝐾 − 1,

𝒙 (0)
𝑖

= 𝒙𝑖

where 𝒙 (𝑘)
𝑖

is a 𝑖-th node feature vector in 𝑿 (𝑘) and 𝐾 is the maximum number of GIN
layers. This node feature matrix 𝑿 is converted into a graph feature vector using a readout
function defined as Readout(𝑿) :=

∑𝑛
𝑖 𝒙𝑖 by a row-wise aggregation of all node vector for

each GIN layer. The graph feature vector 𝒉 is computed with a concatenation across all
GIN layers as followed,

𝒉 = [Readout(𝑿 (1)),Readout(𝑿 (2)), . . . ,Readout(𝑿 (𝐾))] .

The 𝒉 is applied to a linear transformation defined as (𝑾∗𝒉+𝒃∗) to change feature dimension,
where the 𝑾∗ is a weight matrix and the 𝒃 is a bias vector. Therefore, the map to estimate
averages and variances of the encoder (3.1) is given by GIN∗(𝑿, 𝑨) = 𝑾∗𝒉 + 𝒃∗.
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I next consider a decoder as follow,

𝑝(𝑨|𝒛) :=
𝑛∏

𝑖, 𝑗=1
Bernoulli(𝐴𝑖 𝑗 |𝜋𝑖 𝑗 ),

where 𝜋𝑖 𝑗 = sigmoid(𝒛T
𝑖
𝒛 𝑗 ). Here, 𝒛𝑖 are the 𝑖-th row vector in a matrix �̃�, which is the

𝑛 × 𝑚 matrix generated with row-wise replication of the vector 𝒛 to reconstruct the node
feature matrix from the graph feature vector.

For learning, the variational lower bound 𝐿 is optimized by computing the reconstruction
loss of the adjacency matrix and Kullback-Leibler (KL) divergence as follow:

𝐿 := E𝑞(𝒛 |𝑿,𝑨) [log 𝑝(𝑨|𝒛)] − 𝛽KL[𝑞(𝒛 |𝑿, 𝑨) | |𝑝(𝒛)] .

The 𝛽 is a hyper parameter to control learning performance following the previous study
[100]. The function of KL[𝑞(·) | |𝑝(·)] represents the KL divergence, which measures the
distribution difference of 𝑞(·) from 𝑝(·). This KL divergence can be calculated when 𝑝(𝒛)
is supposed to the follow Gaussian distribution with N(𝒛 |0, 𝑰) as follow,

KL[𝑞(·) | |𝑝(·)] = −1
2

𝑚∑︁
𝑟=1

(
1 + 2 log𝜎𝑟 − `2

𝑟 − 𝜎2
𝑟

)
,

where 𝑚 is the dimension of 𝒛 [98]. For the reconstruction loss, since the distribution of
each element of the adjacency matrix is supposed to follow Bernoulli distribution, this can
be calculated by the binary cross entropy. Considering the case where a graph is sparse,
the number of edges present in the graph (positive) is much less than the number of edges
in the complete graph. Here, edges of a complete graph that is not connected in the sparse
graph is called negative. Due to this imbalance in the number of positive and negative
edges, it is not realistic to consider all these edges for the reconstruction loss calculation
in terms of computer memory resources. To speed up the learning process, the same
number of negative edges were randomly sampled as the number of positive edges from
the set of negative elements when computing the reconstruction loss [101]. Therefore, the
reconstruction loss for both 𝐴𝑖 𝑗 = 1 and 𝐴𝑖 𝑗 = 0 is calculated as follow,

E𝑞(𝒛 |𝑿,𝑨)
[
log 𝑝(𝑨|𝒛)

]
=

∑︁
(𝑖, 𝑗)∈𝑬+∪𝑬−

(
𝐴𝑖 𝑗 log �̂�𝑖 𝑗 + (1 − 𝐴𝑖 𝑗 ) log (1 − �̂�𝑖 𝑗 )

)
,

where 𝑬− is a set of sampled negative edges and 𝑬+ is a set of positive edges �̂� is a
reconstructed adjacency matrix. For training, the 𝒛 is sampled using the reparameterization

53



trick defined as 𝒛 = 𝝁+𝝈 · 𝝐 where 𝝐 is a𝑚 dimensional standard normal distribution [102].

Thus, the VGAE constructed by the encoder and decoder estimates the latent variables
that lie behind the graph structure data. The basic framework of this VGAE is based on the
previous study [102]. However, unlike the original model, the outstanding characteristics
of this VGAE is to be designed to acquire the latent features of a graph at the graph level
rather than the node level. In the experiments, three GIN layers were used. The MLP in one
GIN layer consisted of two linear layers with a rectified linear unit (ReLU) as the activation
function. The dimension size of vector 𝒙 was 32 for the first and second GIN layers, and
was 16 for the third GIN layer. The batch normalization was used at the first MLP layer
for each GIN layer [103]. During the reconstruction of the adjacency matrix, an additional
linear layer was applied before the sigmoid function in order to change the dimension size
𝑚 to be the same as the input dimension size 𝑓 . The adam optimizer was applied with
the learning rate at 0.001 [104]. For the both datasets, batch size was 64; latent dimension
size 𝑚 was 16; 𝛽 was 0.001. The epoch size was 10 and 5 for the model network dataset
and the toxicogenomics network dataset, respectively. For the model network dataset, the
node degree encoded as a one hot vector was used for the input node features, and the
input dimension was 59. For the toxicogenomics network dataset, gene expression levels
normalized as minimum 0 and maximum 1 across all the samples were used for the input
node features, and the input dimension was 1304. The 5-fold cross validation was performed
and one of the models was used for the following analyses. The VGAE is implemented
using the python package PyTorch Geometric [105].

2.4 Toxicogenomics microarray dataset

The toxicogenomics microarray data were downloaded from the Open TG-GATEs (Tox-
icogenomics Project-Genomics Assisted Toxicity Evaluation System) website (https:
//toxico.nibiohn.go.jp/) ("Toxicogenomics Project and Toxicogenomics Informat-
ics Project under CC Attribution-Share Alike 2.1 Japan") [78]. In human hepatocyte
experiments, there are four levels of dose (Control, Low, Middle, and High) and three time
points (2 hr, 8 hr, and 24 hr) for one drug, with a maximum of two replicates for each. There
are 158 drugs in total. Thus, there are at most 24 microarray samples per drug. Here, not all
drugs have all these 24 combinations, which means that missing microarray samples exist
for some drugs. All the available 2605 microarray samples were processed by MAS5 [106]
and concatenated for all the samples, which generated a gene-by-sample expression data
matrix. The probe name was converted into the gene name and the expression values of
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probes with the same gene name were averaged. The genes including the missing expression
value more than 25% of the total samples were removed, and the missing expression values
for the remaining genes were complemented with 0, eventually resulting in the expression
dataset with 10554 genes and 2605 samples. This dataset was transformed with log (base
is 2), which was used as the input dataset for the basal network estimation.

2.5 Model network dataset

The Barabási-Albert (BA) model [107], the Watt-Strogatz (WS) model [108] and Erdös-
Rényi (ER) model [109] were used as the model networks for the VGAE evaluation. All
the networks for the BA model contain 100 nodes and 475 edges. All the networks for the
WS model contain 100 nodes and 500 edges. All the networks for the ER model contain
100 nodes and approximately 500 edges. Three model networks (BA, WS and ER) were
generated using the python package networkx [110].

2.6 Graph visualization and classification analysis

The latent variables acquired by the VGAE were transformed into two dimensions to
visualize by using t-SNE [111]. The hierarchical clustering was performed with Euclidean
distance and Ward method.

2.7 Cytotoxicity analysis

Cytotoxicity data was also downloaded from the Open TG-GATEs website [78]. The
cytotoxicity was measured as the relative DNA content at a certain dose (Low, Middle and
High) sample compared to the control sample corresponding to the exposure time (2 hr, 8
hr and 24 hr) for each drug. There were samples with missing values. The relative cell
viability was calculated as follow,

Relative viability(%) = DNA𝑐
𝑑 (%) − 100(%),

where dose 𝑑 ∈ {Low,Middle,High} and drug 𝑐.
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2.8 Network visualization

The network visualization was performed using Cytoscape (version 3.8.2) [32].

2.9 Pathway analysis

Pathway analyses were performed using R packages ReactomePA and clusterProfiler [112,
113] based on the Reactome knowledge database [94]. The significant top 10 pathway terms
were listed for each cluster. The set of gene nodes that comprise the subnetworks included
in the cluster was used for input.

2.10 Computational environments

All the computations for the network estimation and the ECv calculations in this study
were performed by the Fugaku supercomputer system at RIKEN Center for Computational
Science, where the computation nodes were equipped with Fujitsu A64FX CPUs and 32GiB
memory per node.

3 Results

3.1 Establishment of the basal gene network using the large-scale
toxicogenomics data

In order to establish the basal network, I performed the Bayesian network estimation
using a large-scale toxicogenomics microarray dataset including 2605 samples, which was
measured by exposing hepatocytes to many drugs at different doses and times in vitro. The
Bayesian network estimation method is supposed to generate a more robust and expressive
model by using a larger number of samples [17]. However, existing studies have never
evaluated a performance of the network estimation with more than approximately 1000
samples [114]. Prior to the network estimation using the toxicogenomics dataset, to ask
whether the network estimation is feasible on a large-scale sample size, I first performed
simulation experiments using test datasets following the previous study (see Methods) [17].
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Figure 3.3: The precision-recall curve for different sample sizes of simulation datasets. The sample sizes are
500 (blue), 1000 (orange), 2000 (green) and 3000 (red).

Briefly, the four types of datasets were generated with 500, 1000, 2000 and 3000 sample
sizes, and then the network estimation was performed on each dataset. The performance
of the network estimation was evaluated by checking whether the structure of the original
network can be reproduced. The area under the precision-recall curve (PRAUC) was 0.387,
0.360, 0.395, 0.399 for sample sizes 500, 1000, 2000, and 3000, respectively (Figure 3.3).
The PRAUC tended to become larger as the sample size increases, which is consistent
with the previous study [17]. This result suggests that the estimated network structure
approaches the true structure as the number of samples increases. Furthermore, this shows
that it is feasible to estimate a network up to 3000 sample sizes in a realistic time using
the supercomputer. To construct the basal gene network for the toxicogenomics dataset, the
network estimation was performed with 384 CPU nodes along with 8 processes per node,
resulting in a network of 10,554 nodes and 113,054 edges in 17 hours 18 minutes.
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3.2 Identification of condition-specific subnetworks from the basal
network according to the combination of drug, time, and dose

2 hr 8 hr 24 hr

Control

Low

Middle

High

ΔECv ΔECv ΔECv

Time

Dose

A

C

Combination
Time Dose DREs (+) DREs (–) total
2 hr Low 35 18 53
2 hr Middle 31 22 53
2 hr High 38 15 53
8 hr Low 49 33 82
8 hr Middle 127 26 153
8 hr High 142 11 153
24 hr Low 58 23 81
24 hr Middle 133 24 157
24 hr High 149 7 156

total 762 179 941

B

D

Figure 3.4: Subnetwork extraction analysis. (A) Illustration of ΔECv calculation. (B) The list of the number
of combinations obtained from ΔECv calculation for all the possible combinations of drugs, doses and times.
DREs(+) indicates that at least one edge was extracted, DREs(-) that not even one edge was extracted. (C) The
extraction rate of subnetworks calculated as #(DREs(+) samples)/#(total samples) from Figure 3.4B result.
(D) Edge distribution of the subnetworks extracted by ΔECv calculation.

To examine changes in the network state, I extracted a subnetwork defined as a set of
differentially regulated edges (DREs) from the basal network for each combination of drug,
time and dose using ΔECv method [52, 97]. Since primary hepatocytes were exposed to a
drug with different doses until given three time points in this dataset, the ΔECv calculation
was defined as the difference between certain dose samples and the control samples at the
corresponding single time point (Figure 3.4A). This calculation was performed for every
available combination. As a result, there were 941 sample combinations, of which 762
combinations were able to extract at least one DREs, while 179 combinations were unable
to extract a single DRE (Figure 3.4B). Namely, in these 179 combinations, no observable
perturbations were captured at theΔECv threshold used. The subnetwork extraction rate was
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proportional to the dose and time, which shows that the cellular perturbations are more likely
caused under the severe conditions, such as high dose or long exposure time (Figure 3.4C).
In contrast, there were some populations in which no perturbation was observed even under
these conditions (Figure 3.4B). To grasp the magnitude of the extracted 762 subnetworks,
the distribution of the number of edges was examined for each subnetwork. The network
size was found to increase in proportion to the dose and time, indicating that the level of
the perturbated intracellular system induced by the exposure of DILI-concerned drugs also
increases depending on the dose and time (Figure 3.4D).

3.3 Establishment of the Variational Graph Autoencoder
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Figure 3.5: The visualization of latent features for the three model networks by the VGAE. The number of
networks is 1,000 each for BA (green), WS (yellow), and ER (gray).

This wide variety of 762 subnetworks suggested that they contain essential clues for
interpreting the drug-induced cellular perturbations. To comprehensively analyze these
subnetworks based on the network information, I developed the multiple graph-level Vari-
ational Graph Autoencoder (VGAE), which was designed to acquire the latent features of
a network as a vector representation (Figure 3.2). To begin with, in order to test the va-
lidity of the established VGAE, the VGAE performance was evaluated using three types of
artificially-generated networks: the BA model (scale-free network) [107], the WS model

59



(small-world network) [108] and ER model (random network) [109]. Since these three
types of networks are known to have different network structures, I expected that if the
VGAE worked, it would be able to distinguish between each network. The networks were
prepared in 1000 pieces for each model network. Then, these networks acquired the latent
features through the VGAE, which were visualized in two dimensional space using t-SNE
[111]. The result showed that these networks are categorized into three groups for each
model network (Figure 3.5). This demonstrates that the latent features acquired by the
VGAE represent the characteristic network information.

3.4 The VGAE identifies multiple clusters characterized by network
size, level of exogenous perturbations, and cytotoxicity.

A B

C D

Cluster Subnetwork Node Edge
1 46 6106 10595
2 70 5418 7732
3 108 2697 3004
4 99 3644 4844
5 47 268 172
6 124 553 350
7 116 398 251
8 152 334 219

Figure 3.6: Characterization of the subnetworks in latent space with the VGAE. (A, B) The visualization of
latent features in subnetworks mapped with doses (A) and times (B). (C) The clustering of the 762 subnetworks
based on their latent features. (D) The list of the subnetwork information for clusters. The nodes and edges
represent the set of nodes and edges that comprise the subnetworks contained in each cluster.
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Figure 3.7: The cluster characterization analyses. (A, B) The distribution of nodes (A) and edges (B) for
clusters. (C, D) The ratio of the subnetworks comprising each cluster for doses (C) and times (D). (E) The
cytotoxicity assay for cluster 1 (n=21), cluster 2 (n=42), cluster 3 (n=72), cluster 4 (n=70), cluster 5 (n=40),
cluster 6 (n=103), cluster 7 (n=89), cluster 8 (n=124), and cluster 9 (n=155, negative control). Turkey test
was performed for statistical test; **p<0.01; *p<0.05. Error bar, mean ± standard deviation.
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Given that the VGAE result on the artificially-generated networks, I reasoned that the
extracted 762 subnetworks (Figure 3.4) could also be analyzed using the VGAE based on
their network features. These subnetworks were subjected to the VGAE and the acquired
latent features were visualized. The labels for three doses and times were mapped onto
it, showing that the subnetworks labeled with high dose or long exposure are likely to be
enriched especially in the left area compared to other subnetworks (Figure 3.6A, B). To
further investigate the subnetwork distribution in this two dimensional space, clustering
was performed on the subnetworks, which resulted in eight clusters (Figure 3.6C). The
summary of each cluster is shown in Figure 3.6D. Here, cluster 9 was additionally defined
for the population from which no subnetworks could be extracted in the ΔECv calculation
(Figure 3.4B), and thus this cluster 9 comprised of the 179 combinations was intended as a
negative control group.

To identify the characteristics of the clusters, I examined the network size of the
subnetworks included in each cluster. The clusters were then found to be separated by the
difference in the size of nodes and edges (Figure 3.7A, B). The network size increased
from cluster 8 to cluster 1. The composition ratios of the labels for each of three doses
and times were also examined (Figure 3.7C, D). This analysis showed that the percentage
of subnetworks subjected to strong levels of exogenous perturbation, such as high dose or
long exposure, gradually rises from cluster 9 to cluster 1. By contrast, that of subnetworks
subjected to weak levels of exogenous perturbation, such as low dose or short exposure,
decreases from cluster 9 to cluster 1. Next, to determine whether there is a link between
cluster and cell viability, I assessed the extent to which cytotoxicity occurs across clusters.
The cytotoxicity tended to enhance from cluster 9 to cluster 1, of which clusters 1 and
2 exhibited significantly higher cytotoxicity than the other clusters (Figure 3.7E). Taken
together, these analyses revealed that the identified clusters are associated with gradual
changes in the network size, the level of the exogenous perturbation, and the cytotoxicity.

3.5 The clusters represent a sequential cascade involved in drug
metabolism

To confirm the biological significance of the clusters, pathway analysis was performed
(Figure 3.8). The pathways related to early drug metabolism, such as cytochrome P450
reaction, glucuronidation, and phase I and II reactions, were strongly enriched in cluster 5, 6,
7, and 8. In parallel with the weakening of these initial signaling pathways, immune response
pathways, such as interferon signalings and complement signaling, gradually appeared in
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Figure 3.8: Pathway analysis for each cluster. The top 10 terms are shown for each cluster.

clusters 1, 2, 3, and 4. Moreover, p53-related signaling pathway appeared especially in
clusters 1 and 2. Since p53 pathway and immune response pathways are known to be involved
in apoptosis and cell phagocytosis induced by immune cells, respectively, these factors imply
the signs of cytotoxicity [70, 115]. This could support the cytotoxicity observed in cluster
1 and 2 (Figure 3.7E). Collectively, these results suggest that the transition of cluster 8 to 1
corresponds to a sequential cascade from early drug metabolism to hepatotoxicity [70, 116].

3.6 Drugs with a high DILI risk show characteristic distribution
patterns across the clusters.

The cluster characterization analyses suggested that clusters 5, 6, 7, and 8 represent networks
in which the initial metabolic process has begun, clusters 3 and 4 represent networks in
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Figure 3.9: (A) The clusters were divided into the three zones of progressive (cluster 1 and 2), intermediate
(cluster 3 and 4) and initial (cluster 5, 6, 7 and 8). (B-D) The network transition patterns with representative
drugs are shown. Chlorpromazine for pattern 1 (B), labetalol for pattern 2 (C), acetaminophen for pattern 3
(D). The green dotted line shows the transition of the three doses at 24 hr time point, and the magenta dotted
line shows the transition of the three time points at high dose.

which the drug metabolism response has gradually progressed from the state of clusters 5,
6, 7, and 8 but has not yet reached cytotoxicity, and clusters 1 and 2 represent networks
in which the state of clusters 3 and 4 has been further progressed to cytotoxicity. To
simplify the classification of clusters based on these observations, clusters 5, 6, 7, and 8
were assigned as the “initial” zone, clusters 3 and 4 as the “intermediate” zone, and clusters
1 and 2 as the “progressive” zone (Figure 3.9A). Considering that the subnetworks were
located somewhere in these three zones according to the level of drug-induced perturbation,
the transition profiles for each drug were examined. In order to compare the transitions
in response to the dose- and time-series perturbation, 52 drugs were selected for which
all microarray samples were available under all the three conditions of doses and times.
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The network transitions of the drugs were found to show three patterns: drugs that stay in
the initial zone exclusively (pattern 1) (Figure 3.9B), drugs that transition through the two
initial and intermediate zones (pattern 2) (Figure 3.9C), and drugs that transition through
all three zones (pattern 3) (Figure 3.9D). The drugs in patterns 2 and 3 tended to shift
from initial to progressive zone in a dose- and time-dependent manner, while the drugs in
pattern 1 did not shift significantly regardless of doses and times (Figure 3.9B-D). The Venn
diagram analysis showed that the number of drugs in patterns 1, 2, and 3 were 10, 23, and
17, respectively (Figure 3.10A). To examine the association between these characterized
drugs and human DILI, they were inquired against a benchmark dataset of DILI risk, which
categorizes the FDA-approved drugs into several groups (Most-, Less-, Ambiguous-, and
No-DILI concern) according to the grade of DILI [117]. The drugs with high DILI risk
were found to be enriched in patterns 2 and 3 compared to pattern 1 (Figure 3.10B).

4 Discussion

By analyzing the status of many networks according to the combination of drug, dose
and time, this study revealed the relationship between those networks and hepatotoxicity.
Networks are believed to be essential for understanding living organisms, but analyzing
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biological networks is challenging due to their huge size and complexity [56]. With
the recent development of GNNs technology, which aims to learn network features from
network structures, there has been increasing attention to the application of this technology
in biological networks [118]. However, the interpretation of GNNs’ results usually remains
elusive. This study shows that it is possible to interpret what GNNs have learned with
respect to the hepatotoxicity, the network sizes and the perturbation levels, which further
characterizes drugs. These data indicate that the VGAE is interpretable and could be used
to analyze biological networks, which is also supported by another recent study [119].

In the application of GNNs to biological networks, a single network has been largely
used so far. The main reason for this is that there is not a large amount of network data
representing different biological states. Therefore, the concept of using GNNs to analyze
many networks has not yet been realized in biology. This study has presented one possible
solution for this, which can be brought by the emergence of the following three things:
1) the development of methods for extracting sample-specific networks; 2) the advance of
artificial intelligence techniques with GNNs; 3) the progress of computational resources.
On the other hand, the issue with this approach is that it does not directly deal with a huge
scale network such as the basal network due to the limitations of current GNNs technology.
The solution to this issue would provide further network information for understanding the
cellular mechanisms.

Furthermore, this study shows that the human DILI risk could be extrapolated from in
vitro hepatotoxicity using network latent features, because the drugs showing pattern 2 or 3
are strongly associated with DILI (Figure 3.10B). While human DILI is generally known to
occur after several weeks of taking drugs [120, 71], the data used in this study were derived
from a time series of in vitro hepatocyte experiments up to 24 hours [78]. This indicates
that the observations in this study represent relatively early cellular responses compared to
the occurrence of human DILI. Nevertheless, the results exhibit the potential to identify
drugs with the DILI risk by capturing dose- and time-dependent network transitions in a
short experimental scheme. Given that early prediction of DILI is needed for long-term
drug administration [121, 122], this approach might be useful to assess the DILI risk in
advance. For example, although diazepam is still considered an Ambiguous-DILI concern
in the DILI benchmark dataset [117], this study indicates that it might have a high DILI risk
(Figure 3.10A). The possibility of misclassification remains, but the use of diazepam would
require careful attention. Additionally, if data are obtained for a new drug under the same
conditions as those used in this study, it will be possible to evaluate the DILI risk using this
model. Since DILI is caused not only by internal factors in the liver but also by complex
factors in the whole body, it is not sufficient to investigate the intracellular mechanisms in
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vitro hepatocytes. Further analysis and establishment of methods at the organ and body
level are necessary. In this study, the link between condition-specific gene networks and
hepatotoxicity was confirmed, allowing us to take a new approach in terms of individual
networks based on toxicogenomics data. A comprehensive integration of conventional
methods, network-based methods, and wet experiments would further drive the elucidation
of the DILI mechanism.
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Summary

In this study, by integrating gene expression information from multiple samples with differ-
ent conditions and constructing a single network representing the cellular system, I proposed
a new data-driven approach to extract and classify networks that are perturbated specifically
among arbitrary samples, which realizes a sample specific network analysis. The approach
was then applied to cancer, infectious disease, and hepatotoxicity data in the three chapters.

In Chapter 1, I developed a novel method to analyze differences between samples based
on networks representing underlying relationships between genes using Bayesian Network.
This method quantifies sample specific networks using the proposed Edge Contribution
value (ECv) based on the estimated system, which realizes condition-specific subnetwork
extraction. To validate the method, I applied it to a dataset of TGF𝛽-treated lung cancer
cells that are related to the process of metastasis and thus prognosis in cancer biology. I
successfully extracted and established the network implicated in the epithelial-mesenchymal
transition process, which is consistent with the previous biological findings on TGF𝛽.
Furthermore, I found that the sample specific ECv patterns of this network can characterize
the survival of lung cancer patients. These results show that this method allows us to
analyze sample specific networks based on cellular system changes and to discover new
relationships between genes.

In Chapter 2, the network analysis method developed in Chapter 1 was applied to the
COVID-19. To elucidate how SARS-CoV-2 behaves in human host cells, I examined the
dynamic changes in gene-to-gene regulatory networks in response to SARS-CoV-2 infec-
tion, revealing that interferon signaling gradually switched to the subsequent inflammatory
cytokine signaling cascades as the intracellular virus increased. Furthermore, I succeeded
in capturing a COVID-19 patient-specific network in which transduction of these signals
was concurrently induced, which is consistent with the pathological progression of COVID-
19 to some extent. This enabled us to explore the local regulatory systems influenced by
SARS-CoV-2 in host cells more precisely at an individual level. This panel of network
analyses has provided new insights into SARS-CoV-2 research from the perspective of
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cellular systems.

In Chapter 3, a large-scale gene network analysis was carried out for DILI using a
large gene expression dataset of 2605 samples from exposure of human hepatocytes to
158 drugs at multiple time points and dose levels with a hybrid approach of the method
developed in Chapter 1 and GNN techniques. Firstly, by employing the latest supercomputer,
I succeeded in estimating a gene network with a largest number of sample sizes ever
from these microarray data. Secondly, a multitude of condition-specific networks were
determined from the estimated network according to the combination of drugs, times, and
doses using the method presented in Chapter 1. Lastly, to comprehensively analyze the state
of these 762 condition-specific networks, I newly developed a network classification method
using GNN techniques, which reveals that the networks can be classified into several groups
according to the cellular perturbation levels. The characterization of these groups led to
identify features of the network that could be potentially responsible for hepatotoxicity.
These results show that networks play an important role in the prediction and mechanism
elucidation of DILI.

In conclusion, from the viewpoint of understanding living organisms as systems through
molecular networks, I developed and evaluated a new network analysis approach and proved
the validity of it. This study has solved the bottleneck that made it impossible to profile
sample-specific networks with a new method, thus providing a new avenue for network
analysis. Furthermore, by combining this method with the emerging GNN techniques, I have
presented a comprehensive analysis strategy for multiple networks that can be obtained from
the developed method, which further extends the scope of network analysis. The methods
and findings obtained in this study suggest the possibility of data-driven approaches in
biology, medicine, and pharmacology in the future, and will lead to new discoveries of
biomolecular mechanisms, which are expected to contribute to the mutual integration and
bridging of wet and dry research.
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