
Studies on Fundamental Problems

in Event-Level Language Analysis

Hirokazu Kiyomaru

February 2022





Abstract

Natural language processing (NLP) is a research field that aims to make comput-

ers understand natural language. NLP has many crucial applications, including

machine translation, automatic summarization, and dialogue systems. In recent

years, the performance of many NLP applications has significantly improved with

the advent of end-to-end learning based on a deep neural network. In end-to-end

learning, a problem is solved by optimizing a deep neural network to transform

an input into the corresponding output. This simple learning framework works

surprisingly well, and the current state-of-the-art models are now performing as

well as, or better than, humans in some language understanding tasks. However,

some NLP tasks cannot be solved by end-to-end learning; the most representa-

tive and crucial example of such a task is exploratory text analysis. The goal

of exploratory text analysis is to find valuable information about one’s interests

from textual data. Because the criteria for determining the value of informa-

tion vary depending on the purpose, each analysis has an entirely different goal,

making end-to-end learning inapplicable. What can be done by NLP to support

exploratory text analysis is to organize text at a granularity that is understand-

able to humans. Such language analysis is collectively called structural language

analysis.

This thesis focuses on structural language analysis, particularly at the event

level. Events, which have long been one of the main interests of NLP, are in-

formative yet convenient information units. Event-level language analysis can be

divided into tasks that take events as input and those that take events as out-

put; the former can be further divided into tasks for predicting the properties of

events and those for recognizing the relations between events. We refer to the task
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of predicting event properties as event classification, the task of predicting rela-

tions between events as event-to-event relation analysis, and the task of predicting

events as event prediction.

This thesis investigates each of the three types of tasks listed above. First,

we study volitionality classification as an event classification task in which where

models are required to recognize volitionality, a fundamental event property that

indicates whether someone is volitionally involved in the event. Despite its im-

portance, volitionality classification has not been studied so actively. As a result,

there was no readily available volitionality classifier or no dataset for training vo-

litionality classifiers, making it difficult to employ volitionality classification for

downstream tasks. To solve this problem, we propose a minimally-supervised

method to learn volitionality classifiers.

Second, we study discourse relation analysis as an event-to-event relation anal-

ysis task: this is the task of recognizing the pragmatic relation between two events.

Since neural networks were introduced to solve this task, researchers have devoted

considerable effort to exploring good neural network architectures and effective

language resources that facilitate discourse relation analysis. However, recently, it

was recently found that general-purpose language models pretrained on raw text

achieve greatly improved performance, although they do not use the above tech-

niques. Consequently, we propose a novel self-supervised pretraining framework

to learn event representations that are effective in capturing discourse relations.

Finally, we tackle next event prediction as an event prediction task: this is the

task of predicting events that are likely to happen after a given event. Recently,

with the advance of deep learning techniques, this task has been formulated as

a generation task. Previous studies have employed simple sequence-to-sequence

methods to learn next event prediction. However, such methods are inherently

deterministic and hardly capture one-to-many relations. In order to consider one-

to-many relations, we propose the use of a probabilistic generation model to learn

event prediction.
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Chapter 1

Introduction

1.1 Background

Natural language is the basis of intellectual activity. Natural languages constitute

a fundamental tool for thinking, communication, and recording. All these activ-

ities play a central role in intellectual activity, and would be severely limited in

the absence of natural language.

Natural language processing (NLP) is a research field that aims to make com-

puters understand natural language. Because of the importance of natural lan-

guage, NLP has always been an important research field. Since the development

of the Internet, the amount of information transmitted and accumulated as tex-

tual data on a daily basis has increased dramatically. The unprecedented scale of

textual data further increases the importance of NLP.

NLP has several important applications. For example, machine translation

is the key application of NLP that breaks the language barrier and helps people

to communicate with foreigners. Automatic summarization reduces the effort

required to obtain an overview of the contents of a long text. Dialogue systems

provide manual-free interfaces for products and applications. Other practical

applications include information retrieval, question answering, and grammatical

error correction. This wide range of applications demonstrates how crucial natural

language is to our lives.

In recent years, the performance of many NLP applications has greatly im-

1



2 CHAPTER 1. INTRODUCTION

proved with the advent of end-to-end learning based on deep neural networks. In

end-to-end learning, a problem is solved by optimizing a deep neural network to

transform an input to the corresponding output. For example, in Japanese-to-

English translation, a deep neural network that is given a Japanese sentence and

generates its English translation is trained; in automatic summarization, a deep

neural network that is given a document and generates its summary is trained.

This simple framework works surprisingly well. Deep neural networks trained

by end-to-end learning have outperformed models based on carefully designed lin-

guistic features and a pipeline of fundamental language analysis, provided that

a sufficient amount of training data is available. With the development of high-

quality, large-scale datasets and the selection of appropriate neural network archi-

tectures, current state-of-the-art models now perform as well as, or better than,

humans in some language understanding tasks.

However, some NLP tasks cannot be solved by end-to-end learning; the most

representative and important example of such a task is exploratory text analysis,

typified by customer feedback analysis. The goal of exploratory text analysis is to

find valuable information about one ’s interests from textual data. Because the

criteria for determining the value of information vary depending on the purpose,

each analysis has an entirely different goal.

End-to-end learning is inherently inapplicable to exploratory text analysis be-

cause each analysis has a unique goal. Let us consider performing exploratory

text analysis by end-to-end learning. Because each analysis has a unique goal,

one would need to start by creating training data that includes the valuable in-

formation that one wishes to find from the analysis. This means that, if one were

to attempt to perform exploratory text analysis by end-to-end learning, the goal

would be achieved before end-to-end learning is performed.

What can be done by NLP to support exploratory text analysis is to organize

text at a granularity that is understandable to humans, for example, in terms

of words, phrases, clauses, and sentences; such language analysis is collectively

called structural language analysis. Structural language analysis provides basic

information that is typically required in language understanding. Therefore, most

language understanding problems can be solved by extracting the necessary infor-
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mation from the result of structural language analysis and implementing purpose-

specific processing. This flexibility works effectively in supporting exploratory text

analysis.

This thesis focuses on structural language analysis, particularly at the clause

level. A clause is a sub-sentential linguistic unit that consists of one main predicate

and its arguments. For example, the sentence in example (1) includes one clause,

whereas the sentence shown in example (2) includes two clauses.

(1) [I had dinner at a recently opened restaurant.]
1st clause

(2) [The ambience was nice,]
1st clause

but [the service was not so great.]
2nd clause

A clause generally represents a single event. In the following, we refer to a

clause-level information unit as an event, and structural language analysis per-

formed at the event level as event-level language analysis.

Events, which have long been one of the main interests of NLP, are informative

yet convenient information units. Compared with words and phrases, events are

much more informative, enabling high-level text analyses such as discourse relation

analysis. In addition, compared with larger linguistic units, such as sentences,

paragraphs, and documents, events are often more convenient in downstream

tasks. Consider the case where we wish to apply sentiment analysis to the sentence

in example (2). Because the first event (clause) is positive and the second event

(clause) is negative, the overall sentiment is hard to determine. In exploratory

text analysis such as customer feedback analysis, instead of treating example (2)

as a sentence of unknown sentiment polarity, it is often more convenient to treat

it as a sentence with one positive event and one negative event.

Event-level language analysis can be divided into tasks that take events as

input and those that take events as output; the former can be further divided into

tasks for predicting the properties of events and those for recognizing the relations

between events. In this thesis, we refer to the task of predicting event properties

as event classification, the task of predicting relations between events as event-

to-event relation analysis, and the task of predicting events as event prediction.

Figure 1.1 illustrates this categorization. All these tasks play an important role
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(a) An example of event classification, where models are given an event or an event

sequence and determine whether it has a particular property. In this example, the model

is required to predict the volitionality of the given event (volitionality classification).

(b) An example of event-to-event relation analysis, where models are given two events and

predict the relation between them. In this example, the model is to predict the pragmatic

relation between the given two events (discourse relation analysis).

(c) An example of event prediction, where models are generally conditioned by events

and predict events that have a certain relation to the given events. In this example, the

model is to predict an event that is likely to happen after the given event (next event

prediction).

Figure 1.1: A general categorization of event-level language analysis.

in exploratory text analysis. Event classification allows users to browse events

possessing a particular property. Event-to-event relation analysis transforms a

list of events to a structure linking events according to their relations, enabling

in-depth text analysis. Event prediction helps users to find insights by predicting

events that are not explicitly written in texts.

1.2 Outline of the Thesis

To conclude the introduction, we present the outline of this thesis. In the thesis,

we tackle three fundamental tasks in event-level language analysis: volitionality
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classification, discourse relation analysis, and next event prediction. Figure 1.1

shows an example of each task. Volitionality classification, discourse relation

analysis, and next-event prediction are crucial tasks of event classification, event-

to-event relation analysis, and event prediction, respectively.

In Chapter 2, we first give an overview of event-level language analysis. In

this chapter, we begin by providing an introduction to event representations and

event-to-event relations, as preliminaries to event-level language analysis. We

then present an overview of event-level language analysis, according to the cate-

gorization described in Chapter 1.

In Chapter 3, we present our work on volitionality classification. Volitionality

is a fundamental property of an event that indicates whether someone is volition-

ally involved in the event. Despite its importance and wide range of applications,

volitionality classification has not been studied as actively as it should be. As a

result, there was no readily available volitionality classifier or no dataset for train-

ing volitionality classifiers, making it difficult to employ volitionality classification

for downstream tasks. To solve this problem, we propose a minimally-supervised

method to learn volitionality classifiers.

In Chapter 4, we introduce our work on discourse relation analysis. In dis-

course relation analysis, models are required to recognize the pragmatic relation

between two events. The accuracy of discourse relation analysis has been dra-

matically improved since deep learning was introduced. Researchers have devoted

considerable effort to exploring good neural network architectures and effective

language resources that facilitate discourse relation analysis. However, recently, it

was recently found that general-purpose language models pretrained on raw text

greatly improve the performance, without using the above techniques. This means

that it is possible to learn event representations that capture discourse relations

from raw text, indicating a promising direction for improving discourse relation

analysis. For this reason, we propose a novel self-supervised framework to learn

event representations that are effective in capturing discourse relations.

In Chapter 5, we present our work on next event prediction. In next event

prediction, models are required to predict events that are likely to happen after

a given event. Although next event prediction was traditionally treated as a
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classification task, with the advance of deep learning techniques, it has recently

been formulated as a generation task. Previous studies have employed simple

sequence-to-sequence methods to learn event prediction; however, such methods

are inherently deterministic and hardly capture one-to-many relations. In order

to consider one-to-many relations, we propose the use of a probabilistic generation

model to learn event prediction. In addition, we present a new evaluation dataset

that we have constructed to fairly evaluate diversity-aware models.

In Chapter 6, we present the overall conclusion of this thesis. Here, we review

the entire thesis and discuss the future prospects of our research.



Chapter 2

Event-level Language Analysis

In this chapter, we give an overview of event-level language analysis. As prelimi-

naries to it, we first provide a detailed introduction to event representations and

event-to-event relations.

2.1 Event Representation

An event is a fundamental information unit representing a single action or state.

Events have been one of the main focuses of NLP as they are practically useful in

downstream tasks. Events have been represented in several ways, depending on

the purpose. In the following, we introduce three representative event representa-

tions: syntactic structural representation, semantic structural representation, and

textual representation.

2.1.1 Syntactic Structural Representation

Syntactic structural representation represents an event by a predicate-argument

structure (PAS) (Chambers and Jurafsky, 2008; Jans et al., 2012; Pichotta and

Mooney, 2014; Granroth-Wilding and Clark, 2016; Shibata et al., 2014). A PAS

is a good approximation of who did what to whom, consisting of a predicate and

its syntactic arguments, including the subject, direct object, indirect object, etc.

Figure 2.1 shows an event represented by a PAS.

7
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Figure 2.1: An example of syntactic structural representation.

A great advantage of employing syntactic structural representation is that

they can be used regardless of topic or domain of the text of interest, thanks to

the fact that syntactic dependency parsing targets any grammatically valid sen-

tences. Therefore, syntactic structural representations are traditionally employed

to extract events from a large amount of texts in which a variety of events ap-

pear (Chambers and Jurafsky, 2008; Jans et al., 2012; Pichotta and Mooney, 2014;

Granroth-Wilding and Clark, 2016; Shibata et al., 2014).

Another advantage is that the cost of event extraction is generally small.

Syntactic dependency parsing has long been studied, and thus there generally exist

readily available syntactic dependency parsers. Therefore, in event extraction,

one only needs to implement the process of formatting the output of a syntactic

dependency parser.

One crucial disadvantage of using syntactic structural representation is that

semantically identical events do not always have the same syntactic structure,

resulting in different representations. Let us consider the following events, for

example.

(3) a. I like apples.

b. Apples are my favorite.

These events are semantically identical, although there are slight differences in

nuance; however, since they have different syntactic structures, they are encoded

into different syntactic structural representations. In order to solve this problem,

one needs to consider an event representation based on semantic relations rather

than syntactic relations, motivating the use of semantic structural representation,



2.1. EVENT REPRESENTATION 9

introduced next.

Another disadvantage is that information that does not fit into the structure

(e.g., adverbs, word order, etc.) is discarded. Consider the following event, for

example.

(4) I tumbled deliberately.

As long as syntactic structural representation is employed, the adverb deliberately

will be lost from the event representation. Such dropped information may play

an essential role in event-level language analysis. For example, in this case, the

volitionality of the event will no longer be correctly recognized without the adverb

deliberately, because “I tumbled deliberately” is volitional while “I tumbled” is

non-volitional.

2.1.2 Semantic Structural Representation

Semantic structural representation is a structural representation based on the

semantic roles of the participants of events. The design of semantic structural

representation has arbitrariness in how finely it classifies the semantic relationship

between an event and its participants. If one employs a coarse relation set, a

variety of events can be represented with it, but the meaning of events is not

captured very precisely. On the contrary, if one employs a fine-grained relation

set, the meaning of events can be captured precisely, but one needs to restrict the

types of events to handle due to practical constraints on the annotation cost.

Abstract meaning representation (AMR) (Banarescu et al., 2013) is a semantic

structural representation based on a relatively coarse semantic relation set. AMR

represents a sentence as a rooted and labeled graph, where each node corresponds

to a concept in the sentence and is linked to the others with semantic role labels.

Figure 2.2 shows events represented as an AMR. Thanks to that AMRs abstract

away from syntax, the shown events are encoded into the same representation.

AMR concepts can be either English words (e.g., “boy”), PropBank’s frame-

sets (e.g., “buy-01”) (Kingsbury and Palmer, 2002), or special keywords, including

logical conjunctions (e.g., “and”). A node representing a PropBank frameset cor-

responds to a predicate in syntactic representation. A PropBank frameset is a



10 CHAPTER 2. EVENT-LEVEL LANGUAGE ANALYSIS

Figure 2.2: An example of abstract meaning representation (AMR). AMRs ab-

stract away from syntax, and thus the displayed events are encoded into the same

representation.

list of arguments required by an English verb with their semantic roles. Semantic

roles are numbered sequentially from :arg0 up to :arg5 and each of these is given

a verb-specific mnemonic label, although there is a general rule that :arg0 refers

to the subject, :arg1 refers to the direct object, :arg2 refers to the indirect object,

etc. For example, a PropBank frameset “buy-01” is expected to has five argu-

ments with the following semantic roles: :arg0 (buyer), :arg1 (thing bought), :arg2

(seller), :arg3 (price paid), and :arg4 (benefactive). AMR considers approximately

100 semantic relations, including the frame arguments:

• Frame arguments: :arg0, :arg1, :arg2, :arg3, :arg4, and :arg5.

• General semantic relations: :accompanier, :age, :beneficiary, :cause,

:compared-to, :concession, :condition, :consist-of, :degree, :destination, etc.

• Relations for quantities: :quant, :unit, and :scale.

• Relations for date-entities: :day, :month, :year, :weekday, :time, :time-

zone, :quarter, :dayperiod, :season, :year2, :decade, :century, :calendar, and

:era.

• Relations for lists: :op1, :op2, :op3, :op4, :op5, :op6, :op7, :op8, :op9, and

:op10.

In AMR, information that does not fit into the above relationships is discarded.

For example, AMR ignores inflectional morphology for tense and number. There-
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Figure 2.3: An example of semantic structural representation in the ACE.

fore, events with different details may have the same representation. Besides,

AMR relies heavily on PropBank, and as a result, it is heavily biased towards

English.

There also exist representations that focus on specific event types and instead

consider fine-grained semantic roles of event participants. The most representative

one is the ACE (Automatic Content Extraction) (Doddington et al., 2004), whose

annotation scheme is often employed in subsequently constructed datasets such

as TAC-KBP (Zhang et al., 2017). An event is represented as a structure with

the following information:

• Event mention: a phrase or a sentence in which the event is described.

• Event trigger: the word that most clearly describes the occurrence of the

event.

• Event type: the semantic class of the event.

• Event argument: the entity that serves as a participant or attribute with

a specific semantic role in the event.

• Argument role: the relationship between an argument and the event.

Figure 2.3 shows an example. The trigger word is attack. The event type is

Conflict/Attack. The arguments in this type include Attacker, Target,

Instrument, Time, etc. Such slots are defined for each event type. As can be
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seen in the argument of Target, the slot values are kept empty when they have

not been mentioned in the text.

In ACE, there are eight event types, including Conflict, and each of them

has its sub-types, such as Conflict/Attack. Each event type and sub-type has

its own set of participant roles. In return for limiting the types of events, the

participant roles are designed to be detailed and exhaustive.

The other notable semantic structural representations include ERE (Aguilar

et al., 2014) and FrameNet (Baker et al., 1998). ERE was created as a lightweight

alternative to ACE, aiming at making annotation easier and more consistent.

FrameNet prioritizes lexicographic and linguistic completeness over ease of anno-

tation, which results in a much finer-grained annotation scheme. Aguilar et al.

(2014) provide a detailed comparison of these semantic structural representations.

These are two major advantages of using semantic structural representation.

First, unlike syntactic structural representation, semantically identical events are

encoded into the same representation, though events with minor differences may

be encoded into the same representation. This facilitates statistical analyses of

events. Second, semantic structural representation is flexible in terms of that

semantic frames can be freely designed considering the information required for

downstream tasks.

On the other hand, the disadvantage lies in that the semantic structural rep-

resentations need to be designed carefully according to the downstream tasks and

domains. Existing annotation schemas, such as ACE, ERE, and FrameNet, do not

define the semantic frame of every event type, nor do they assume every down-

stream task. In order to employ a semantic structure representation for a task of

interest, one certainly needs to start by defining an appropriate typology of events

and the semantic frame of each event type. It requires a deep understanding and

insight into both the task and language.

Along with this nature, one also certainly needs to construct annotated data

to train an event extractor. This is also a crucial drawback because it takes a

long time and much money to build annotated data with sufficient quantity and

quality.

For this reason, semantic structural representations are often employed in
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research that focuses on specific types of events and concentrates on an in-depth

analysis within the scope.

2.1.3 Span Representation

Span Representation is a natural language text that consists of one main predicate

and its arguments, corresponding to a clause (Hu et al., 2017; Nguyen et al.,

2017; Prasad et al., 2018; Kawahara et al., 2014; Inui et al., 2003; Sap et al.,

2019; Saito et al., 2019). In terms of that span representation is constructed

according to the syntactic structure of a text, it is close to syntactic structural

representation. The crucial difference from syntactic structural representation is

that span representation does not have an internal structure.

There are three major advantages of adopting span representation. First, as

well as syntactic structural representation, events can be extracted using a read-

ily available syntactic dependency parser. Because many languages have a readily

available syntactic dependency parser, one does not need to build a new anno-

tated dataset nor train an event extractor for event extraction. Second, span

representation is robust to parsing errors compared to structural representation.

This is because the dependency inside a text span does not necessarily need to

be correctly parsed. This reduces the error propagation caused by event extrac-

tion. Third, span representation is more informative than syntactic structural

representation. As span representation does not have an internal structure, it can

naturally include any modifiers such as adverbs and preserve word order, which

have been discarded in syntactic structural representation. This allows a more

high-level semantic analysis of events.

The main drawback lies in the difficulty of applying statistical methods. We

mentioned that, in syntactic structure representation, semantically identical events

are not always given the same representation. This problem is even more severe

in span representation. For example, if one tries to count the frequency of events,

almost every event will be unique due to the high flexibility of the representation,

resulting in meaningless results. This problem was fatal when semantic analysis of

texts was immature, and we had to rely heavily on superficial and structural infor-

mation. This is the reason why structural representations have been traditionally
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employed.

However, with the development of text analysis techniques, this drawback is

being overcome. The key idea is to represent events in a continuous vector space in

which semantically similar events are encoded in neighborhoods. In particular, an

increasing number of techniques have been recently developed to provide powerful

vector representations of raw text, and the use of span representation has the

advantage of directly benefiting from such techniques. Accordingly, there is a

growing body of work employing span representation.

2.2 Event-to-event Relation

A text is usually organized with multiple events. In order to understand the

meaning of the text, it is necessary to understand not only the meaning of each

event but also the relations between the events. Roughly speaking, event-to-

event relations can be categorized into syntactic and semantic relations. This

section introduces event-to-event relations that play an important role in event-

level language analysis.

2.2.1 Syntactic Relation

A syntactic relation is a relation between two events (clauses) with a syntactic

dependency. Syntactic relations are essential to combine events to construct a

larger information unit. Information that a single event can convey is limited. By

using syntactic relations, one can create larger information units with a granularity

appropriate for downstream tasks. For example, in exploratory text analysis,

syntactic relations are effectively used to present the details of an event by showing

its syntactically dependent events.

Coordination

A coordination relation is a syntactic relation where two events serve as equivalent

grammatical elements. Example (5) shows two events in a coordination relation.

(5) [I am majoring in computer science,]
1st event

and [he is majoring in chemistry.]
2nd event
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Subordination

A subordination relation is a syntactic relation where one event modifies the other.

In linguistics, the head event is called the main clause, and the modifier event is

called the dependent clause.

Example (6) shows two events in an adverbial subordination relation.

(6) [When I was in school,]
Dependent clause

[I liked to draw.]
Main clause

Example (7) shows two events in an adjectival subordination relation. The de-

pendent clause in example (7) is also called the relative clause.

(7) [I broke the computer]
Main clause

[that I bought yesterday.]
Dependent clause

Example (8) shows two events in a subordination relation where the dependent

clause is used as the complement of the direct object of the verb in the main clause,

expected. The dependent clause in example (8) is also called the complement

clause.

(8) [He never expected]
Main clause

[that I could pass the exam.]
Dependent clause

2.2.2 Semantic Relation

A semantic relation is a relation between two events with a semantic connection.

There is a wide range of semantic relations considered important in language

understanding. We introduce discourse, temporal, and causal relations as actively

studied semantic relations.

Discourse Relation

Discourse relation is a pragmatic relation between events1. Discourse relations

provide a high-level linguistic structure of a text that helps understand the logi-

1In the context of discourse relation analysis, the processing unit is called the elementary

discourse unit (EDU). While the definition of EDUs varies depending on the corpus, an EDU

generally corresponds to a clause, i.e., an event.
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cal flow. Therefore, it is beneficial for tasks that require contextual text under-

standing, such as document-level machine translation, automatic summarization,

information retrieval, etc.

One of the representative corpora with discourse relation labels is the Penn

Discourse Treebank (PDTB) (Prasad et al., 2008, 2018). In the PDTB, discourse

relation labels are basically assigned to adjacent two events. The PDTB uses 54

discourse relation labels that are organized in a hierarchy consisting of three levels.

Table 2.1 lists the discourse relation labels. Level-1 is the top level that contains

four major semantic classes. Level-2 further categorizes the major semantic classes

into finer-grained classes. Level-3 is the most fine-grained level that considers the

direction of asymmetric discourse relations. Examples (9), (10), and (11) show

events with their discourse relation labels.

(9) [Pressed on the matter,]
1st event (Arg1)

[he is more specific.]
2nd event (Arg2)

Label: temporal/asynchronous/succession2

(10) [Walk down the center of the path,]
1st event (Arg1)

or otherwise, [you might trip and fall.]
2nd event (Arg2)

Label: contingency/negative-condition/arg1-as-negCond

(11) [That the debt is equity]
1st event (Arg1)

and therefore, [it isn’t deductible.]
2nd event (Arg2)

Label: contingency/cause/result

Another representative corpus with discourse relation labels is the RST Dis-

course Treebank (RST-DT) (Carlson et al., 2002). The annotation framework is

based on the Rhetoric Structure Theory (RST) proposed by Mann and Thompson

(1988). In the RST-DT, discourse relation labels are annotated to represent the

entire document as a tree structure. The leaf nodes of an RST tree are events.

Neighboring nodes are connected according to their discourse relation and form

a new node representing a larger discourse unit. By recursively connecting ad-

jacent nodes, an RST tree is eventually obtained. When connecting two nodes,

the nodes are categorized into either nucleus or satellite nodes, indicating their

relative importance. Nucleus nodes describe important information, while satel-

2The labels indicate, from left to right, the level-1, level-2, and level-3 labels, respectively.
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Level-1 Level-2 Level-3

temporal synchronous -

asynchronous precedence
precedence

contingency cause reason
result
negResult

cause+belief reason+belief
result+belief

cause+SpeechAct reason+SpeechAct
result+SpeechAct

condition arg1-as-cond
arg2-as-cond

condition+SpeechAct -

negative-condition arg1-as-negCond
arg2-as-negCond

negative-condition+SpeechAct -

purpose arg1-as-goal
arg2-as-goal

comparison concession arg1-as-denier
arg2-as-denier

concession+SpeechAct arg2-as-denier+SpeechAct

contrast -

similarity -

expansion conjunction -

disjunction -

equivalence -

exception arg1-as-excpt
arg2-as-excpt

instantiation arg1-as-instance
arg2-as-instance

level-of-detail arg1-as-detail
arg2-as-detail

manner arg1-as-manner
arg2-as-manner

substitution arg1-as-subst
arg2-as-subst

Table 2.1: Discourse relations and their hierarchy in the PDTB 3.0.
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lite units contain supplementary information for a nucleus node. The discourse

relations used in the RST-DT can be divided into relations connecting a nucleus

node and a satellite node (called mononuclear relations) and those connecting two

nucleus nodes (called multinuclear relations).

Table 2.2 lists the discourse relation labels used in the RST-DT. The RST-

DT contains 78 relation types, including 53 mononuclear and 25 multinuclear

relations. The first column lists mononuclear relations where the satellite node

characterizes the relation. The second column lists mononuclear relations in which

the nucleus node characterizes the relation. The third column lists multinuclear

relations. Corresponding mononuclear and multinuclear relations are shown across

a single row.

Although both PDTB and RST-DT are English corpus, in languages other

than English, many annotated corpora follow the manner of PDTB mainly due to

the simplicity. For example, Kawahara et al. (2014), Kishimoto et al. (2018), and

Kishimoto et al. (2020) constructed a Japanese web corpus with discourse relation

labels in the PDTB style. Zhou and Xue (2012) created a PDTB-style Chinese

annotated corpus. Zeyrek et al. (2018) built TED-Multilingual Discourse Bank,

which is a PDTB-style corpus of TED talks transcripts in six languages, including

English, German, Polish, European Portuguese, Russian and Turkish. There also

exist non-English corpora that follow the manner of the RST-DT. For example,

da Cunha et al. (2011) constructed a Spanish corpus following the RST-DT style.

Stede and Neumann (2014) created an RST-DT-style German corpus.

Temporal Relation

Temporal relation describes the order in which events occur. Temporal relation is

a kind of discourse relation, as can be seen in Table 2.1 and Table 2.2; however,

because of the importance, research focused on temporal relationships has long

been conducted, forming a research field.

Temporal relation has been considered crucial information to perform ques-

tion answering, information extraction, and automatic summarization (Chambers

et al., 2007). Suppose we have a collection of reviews about a product, half pos-

itive and half negative. This does not necessarily mean that the opinions about
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Mononuclear (satellite) Mononuclear (nucleus) Multinuclear

analogy Analogy
antithesis Contrast
attribution
attribution-n
background

cause Cause-Result
circumstance
comparison Comparison
comment

Comment-Topic
concession
conclusion Conclusion
condition
consequence-s consequence-n Consequence
contingency

Contrast (see antithesis)
definition

Disjunction
elaboration-additional
elaboration-set-member
elaboration-part-whole
elaboration-process-step
elaboration-object-attribute
elaboration-generalspecific
enablement
evaluation-s evaluation-n Evaluation
evidence
example
explanation-argumentative
hypothetical
interpretation-s interpretation-n Interpretation

Inverted-Sequence
List

manner
means
otherwise Otherwise
preference
problem-solution-s problem-solution-n Problem-Solution

Proportion
purpose
question-answer-s question-answer-n Question-Answer
reason Reason
restatement

result Cause-Result
rhetorical-question

Same-Unit
Sequence

statement-response-s statement-response-n Statement-Response
summary-s summary-n

temporal-before
temporal-same-time temporal-same-time Temporal-Same-Time

temporal-after
TextualOrganization
Topic-Comment

topic-drift Topic-Drift
topic-shift Topic-Shift

Table 2.2: Discourse relations used in the RST-DT.



20 CHAPTER 2. EVENT-LEVEL LANGUAGE ANALYSIS

Figure 2.4: Example questions in MCScript.

the product are divided; it may be that the opinions used to be mostly negative,

but now they are mostly positive. In order to properly perform question answer-

ing, information extraction, and automatic summarization on the reviews, it is

essential to take temporal information into account.

Research in this line has been greatly advanced by the creation of the Time-

Bank corpus (Pustejovsky et al., 2003), which is one of the most popular cor-

pora in use today. The TimeBank corpus is based on TimeML (Pustejovsky

et al., 2003), an annotation scheme for time expressions as well as the temporal

relations between events. Well-studied categories of temporal relations include

Before, After, Includes, Included, Simultaneous, and Vague.

Knowledge organizing stereotypical event sequences is called scripts (Schank

and Abelson, 1975). Scripts have been considered an important class of common-

sense knowledge because it is the basis of inferring events that are not explicitly

described in texts. For example, if we observe the event “Bob gets on the bus,”

we are likely to expect events such as “Bob takes a seat” or “Bob pays the bus

fare” to happen subsequently. Such commonsense knowledge is so obvious that

it is rarely explicitly mentioned in texts. This phenomenon is called reporting

bias (Gordon and Van Durme, 2013) and is considered to be one of the factors

that make text understanding difficult.

There are several language resources to learn script knowledge. DeScript (Wan-

zare et al., 2016) is a collection of stereotypical event sequences. DeScript is

constructed by crowdsourcing. Crowdworkers are given a scenario and write a

stereotypical event sequence in the scenario. DeScript contains 40 scenarios and

100 event sequences for each of the scenarios. MCScript (Ostermann et al., 2018,
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2019) is a benchmark dataset of narrative texts and questions about them that

requires script knowledge to answer. Figure 2.4 shows two example questions.

MCScript contains approximately 20,000 questions on approximately 3,500 texts.

Causal Relation

Causal relation is an important class of semantic relations, describing the cause-

effect relation between two events. Causal relation plays an important role in

connecting events logically and meaningfully. While causal relation is also a kind

of discourse relation, due to its importance, there are many studies focusing on

causal relation.

Researchers have developed several language resources with causal relation

annotations. The Causal TimeBank (Mirza et al., 2014) is a corpus annotated with

the following causal relations: Cause, Enable and Prevent. ATOMIC (Sap

et al., 2019) is a large-scale language resource consisting of event pairs in a causal

relation. Figure 2.5 shows an example3. ATOMIC categorizes causal relations

into nine types to distinguish causes and effects, agents and themes, voluntary

and involuntary events, and actions and mental states.

There exist benchmark datasets to investigate the ability of computational

models being able to recognize causal relations. The Choice Of Plausible Alterna-

tives (COPA) (Roemmele et al., 2011) is a collection of English questions to ask

commonsense causal reasoning. Each question in COPA is composed of a premise

and two alternatives. Models are required to select the alternative that more plau-

sibly has a causal relation with the premise. The Kyoto University Commonsense

Inference (KUCI) (Omura et al., 2020) is a Japanese dataset that is similar to

COPA; each question consists of a context and four choices, where the task is to

select the choice that has the strongest causal relation with the context. In KUCI,

to make challenging questions, false choices are chosen so that they are close to

the correct choice in some respects.

3The figure was generated by the official online browser, available at https://

mosaickg-graph-viz.apps.allenai.org/kg_atomic2020.
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Figure 2.5: An example of ATOMIC, showing categorized events that happen if

a person X boards the bus.

2.3 Event-Level Language Analysis

There is a large body of work on event-level language analysis. Event-level lan-

guage analysis begins with extracting events from texts. This task is called event

extraction. Language analysis tasks performed at the event level can be divided
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into event classification, event-to-event relation analysis, and event prediction.

Figure 1.1 illustrates the categorization. We describe event-level language analy-

sis tasks according to this categorization in the following.

2.3.1 Event Extraction

Event extraction is the task of extracting events from a given text. Event extrac-

tion is the essential first step to performing event-level language analysis.

The formulation of event extraction depends on how events are represented.

When employing a syntactic event representation (i.e., syntactic structural rep-

resentation or span representation), event extraction is performed by syntactic

dependency parsing. In this case, no special analysis is required for event extrac-

tion, although it is necessary to implement a process to transform the results of

syntactic parsing into event representations. For example, aiming at obtaining an

event chain, Chambers and Jurafsky (2008) and Jans et al. (2012) obtained events

by extracting tuples (v, d) where each v is a verb that has a particular entity as its

dependency d. Pichotta and Mooney (2014), Granroth-Wilding and Clark (2016),

Ding and Riloff (2018) and many others extracted events as predicate-argument

structures (PASs) consisting of a verb and its subject, direct object, and indirect

object. Del Corro and Gemulla (2013) extracted events as a span representation,

i.e., clauses. In Japanese, Shibata et al. (2014) extracted events as PASs. Saito

et al. (2019) and Omura et al. (2020) employed a span representation.

When employing a semantic event representation, event extraction is formu-

lated as an information extraction task. In this case, event extraction is typically

performed by a model trained on an annotated corpus, such as the ACE cor-

pus (ace, 2005; Doddington et al., 2004) and the TAC-KBP corpus (Zhang et al.,

2017). Event extraction is performed in two steps: trigger extraction and argu-

ment extraction. In trigger extraction, a model identifies the trigger word of an

event and recognize the event type to determine the semantic frame. In argument

extraction, another model finds the arguments of the event and recognizes the

role of each argument. Traditionally, these two tasks are performed in a sequen-

tial pipeline manner (Ji and Grishman, 2008; Liao and Grishman, 2010; Hong

et al., 2011; Chen et al., 2015). The well-known drawback of pipeline methods is
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the error propagation problem. To alleviate this problem, recent studies propose

to perform trigger extraction and argument extraction jointly (Li et al., 2013;

Nguyen et al., 2016). Another interesting approach is to formulate event extrac-

tion as a question answering (or reading comprehension) problem, aiming to make

the best use of the knowledge embedded in general-purpose pretrained language

models, which have been used with great success in recent years (Liu et al., 2020;

Du and Cardie, 2020).

2.3.2 Event Classification

Event classification is the task of determining if an event has a particular property.

Events have a wide variety of properties, and their recognition is the basis for

performing downstream tasks.

The most actively addressed tasks are event type classification (Naughton

et al., 2008; Haneczok et al., 2021) and sentiment analysis (Saito et al., 2019;

Zhuang et al., 2020). Event type classification is the task of classifying an event

into one of the pre-defined types. In the case of using semantic a structural rep-

resentation, event type classification is necessary to be solved for event extraction

because the event type decides the semantic structure, as can be seen in Figure 2.3.

Event-level sentiment analysis is the task of recognizing whether a given event

typically affects humans positively or negatively. Because an event consists of a

verb and its arguments and can construct a simple sentence, the techniques for

sentence-level sentiment analysis can also be applicable in many cases. The most

straightforward way to solve sentiment analysis is to train a classifier on an an-

notated corpus. In sentence-level sentiment analysis, a large annotated corpus,

the Stanford Sentiment Treebank (SST) (Socher et al., 2013), is commonly used

to train a sentiment analysis classifier. However, human annotation is expen-

sive, especially when one wishes to learn a deep NLP model, which is promising

to achieve high performance but requires a huge amount of training data. This

prevents us from obtaining a classifier that performs well in a low-resource lan-

guage or a specific domain. Therefore, several studies propose weakly-supervised

methods. In weakly-supervised methods, training data is automatically collected

using heuristics, and a model is trained on it. For example, Kaji and Kitsure-
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gawa (2006) propose a method of building a collection of sentences with sentiment

polarity labels. They automatically gather sentences describing positive or nega-

tive opinions, utilizing HTML layout structures in addition to linguistic patterns.

Saito et al. (2019) propose to obtain labeled events by exploiting discourse re-

lations that propagate sentiment polarity from seed predicates that report one’s

emotions.

A task that has not received much attention despite its importance is volition-

ality classification (Inui et al., 2003; Abe et al., 2008,). Volitionality classification

focuses on volitionality, an event property that indicates whether someone is voli-

tionally involved in the event. Volitionality is a fundamental event property, and

thus the recognition has a wide range of applications. For example, in customer

feedback, volitional classification is helpful to extract the voluntary actions of cus-

tomers. There is a handful of work on volitionality classification. Abe et al. (2008)

and Abe et al. (2008) manually build a lexicon of verbs with volitionality labels

and classify volitionality by looking it up. Inui et al. (2003) learn an SVM with

hand-crafted linguistic features of events on a small amount of manually labeled

data.

While the above tasks focus on fundamental event properties, there are a

variety of tasks that focus on the specialized properties of an event to achieve

a specific goal. For example, Lareau et al. (2011) consider an event property

indicating whether the event is worth reporting and work on its automatic detec-

tion. Agarwal and Rambow (2010) consider a property of social events, indicating

whether only one or both parties are aware of the social contact. Recently, fake

news detection has been gaining attention, and is often formulated as an event

classification task (Oshikawa et al., 2020).

2.3.3 Event-to-event Relation Analysis

Event-to-event relation analysis is the task of identifying the relation between two

events. By event-to-event relation analysis, a list of events is transformed into a

graph where events are linked according to their relations, enabling in-depth text

analysis.

As described in Section 2.2, event-to-event relations can be divided into syn-
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tactic and semantic relations. The analysis of syntactic relations has been studied

at the level of syntactic parsing rather than event-level language analysis.

Discourse relation analysis is one of the semantic relation analysis tasks that

has long been addressed. Discourse relation analysis is the task of recognizing

the pragmatic relation between two events. The difficulty greatly depends on the

presence or absence of discourse markers, which are words explicitly indicating

discourse relations, such as because and however. Early studies developed a list

of discourse markers for each discourse relation and recognized discourse relations

based on the list. This method can achieve high precision; however, it is helpless

in recognizing discourse relations between events without discourse markers.

Therefore, recent studies focus on the analysis of discourse relations that are

not explicitly indicated by discourse markers; this task is called implicit discourse

relation analysis. As described in 2.2, there exist labeled corpora for discourse

relation analysis. Recent studies generally solve implicit discourse relation anal-

ysis by learning a neural network on the corpora. In order to improve the per-

formance, researchers have considered good neural network architectures (Chen

et al., 2016; Liu and Li, 2016; Bai and Zhao, 2018), incorporation of external

knowledge (Kishimoto et al., 2018), knowledge transfer from explicit discourse

relations (Rutherford et al., 2017; Qin et al., 2017), etc. However, the current

best method is to fine-tune a general-purpose language model pretrained on a

large-scale raw corpus in a self-supervised manner (Kim et al., 2020; Devlin et al.,

2019), which does not rely on the above techniques. This suggests that by design-

ing an appropriate self-supervised task, it is feasible to learn event representations

capturing discourse relations from raw text, indicating a promising direction to

improve discourse relation analysis.

Event ordering is also an actively studied task. The goal of event ordering

is to order events based on the time they occurred. As with discourse relations,

for temporal relations, there are linguistic expressions that specify the order in

which events occur, such as after and before. However, not all temporal rela-

tions can be recognized by such expressions, and thus a deep semantic analysis

of events is required to solve the task. Most studies use the standard benchmark

TimeBank (Pustejovsky et al., 2003) to train and test models.
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Causal relation analysis has been an important task of event-to-event relation

analysis. There are several benchmark datasets that require commonsense knowl-

edge about causal relations to solve, such as COPA (Roemmele et al., 2011) and

KUCI (Omura et al., 2020). Researchers have worked on improving the perfor-

mance on these tasks in various ways. While early studies relied on statistical

and linguistic features obtained from superficial information Gordon et al. (2012),

recent studies use pretrained general-purpose language models (Wang et al., 2019;

Sap et al., 2019; Omura et al., 2020).

2.3.4 Event Prediction

Event prediction is the task of predicting events that are in a particular relation-

ship to a given event. Humans often omit facts that can be inferred from com-

monsense, making it difficult for computers to understand language. Accordingly,

event prediction is an important task that contributes to language understanding

by computers. Besides, event prediction based on large-scale knowledge can be

effective in providing insights to humans. For example, by learning what happens

next after an event, it would be possible to predict the future impact of an event

that one is interested in.

Event prediction is mainly studied for modeling causally or temporally ordered

event sequences. Models are given an event sequence and try to restore a missing

portion of it.

Event prediction can be categorized into two tasks: classification and genera-

tion. In the classification task, a model is required to choose one from a pre-defined

set of candidates for a missing event. A popular strategy is to rank candidates by

similarity with the remaining part of the event sequence (Chambers and Jurafsky,

2008; Jans et al., 2012; Granroth-Wilding and Clark, 2016). In the generation

task, a model directly generates a missing event, usually in the form of a word

sequence (Pichotta and Mooney, 2016; Hu et al., 2017; Nguyen et al., 2017; Du

et al., 2019). For example, Nguyen et al. (2017) worked on the task of generating

an event that is likely to happen after a given event, called next event prediction.

They proposed to solve the task using a recurrent neural network-based model

with the attention mechanism (Bahdanau et al., 2014).
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2.4 Applications of Event-Level Language Analysis

There is a variety of real-world applications and high-level NLP tasks that event-

level text analysis can contribute.

The most representative real-world application is customer feedback analysis.

Customer feedback is one of the exploratory text analysis tasks and does not have

a specific purpose. There, the role of NLP is to organize text at a granularity that

is understandable to humans, helping humans find insights from the text.

CausalityGraph (Kiyomaru et al., 2020), developed by us, is an example of cus-

tomer feedback systems. Figure 2.6 shows an example of text analysis by Causal-

ityGraph. CausalityGraph organizes information by analyzing the causality of

events and categorizing events into causes, results, and solutions. In Causality-

Graph, first, events are extracted by syntactic dependency parsing. Then, event

pairs in a causal relation are obtained using the result of discourse relation anal-

ysis. Finally, causal relations are further categorized into a cause-result relation

and a cause-solution relation according to the properties of events.

Other real-world applications include experience mining (Inui et al., 2008).

Experience mining extracts rich semantic structures called experiences, which

roughly correspond to events, from a raw corpus. Extracted experiences are ex-

ploited for information search and knowledge discovery. While CausalityGraph

aims to grasp the relation between events, experience mining focuses on capturing

the relation between the components within an experience (i.e., an event).

Event-level text analysis contributes not only to the development of real-world

applications but also to high-level NLP tasks. For example, event-level text anal-

ysis is beneficial for text summarization. The approaches for text summarization

are divided into two types: abstractive and extractive. The abstractive approach

focuses on generating a summary word-by-word after encoding the document. On

the other hand, the extractive approach assembles a summary by selecting text

spans from the document. The abstractive approach is more flexible and generally

produces less redundant summaries, while the extractive approach enjoys better

factuality (Cao et al., 2018). In the extractive approach, most studies employ

sentences as the processing units. However, some recent studies employ events
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Figure 2.6: An example of an analysis by CausalityGraph. Given a query (“本
数が少ない (there are few trains),” in this example), CausalityGraph displays its

causes, results, and solutions. Each colored block represents a cluster containing

one or more events. The first line in a block shows the representative event with

the index number. The second or later lines show the other events in the cluster, if

any. The number with a colored background shown at the right side indicates the

number of events in the cluster. The button at the right-most position is linked

to the analysis where the query is the events in the cluster, enabling an in-depth

analysis of causality. By selecting a block, its language analysis is displayed in

the form of a graph, where nodes and edges correspond to events and discourse

relations, respectively.

as the processing units to reduce redundant or uninformative phrases (Li et al.,

2016; Xu et al., 2020; Huang and Kurohashi, 2021).

Event-level language analysis also works effectively in the evaluation of lan-



30 CHAPTER 2. EVENT-LEVEL LANGUAGE ANALYSIS

guage generation. Language generation is an elemental technology for many NLP

tasks, including machine translation, text summarization, and dialogue response

generation. The widely used metrics calculate the superficial correspondence be-

tween machine-generated and human-generated texts. However, even if word se-

quences are similar, there may be fatal differences in the facts. To consider such

errors, researchers have proposed to extract events from text and check whether

their structures and properties are consistent or not. Giménez and Màrquez (2008)

and Lo et al. (2012) focused on using semantic parsing to extract event structures

and evaluate the generated texts at the level. Joty et al. (2017) proposed to com-

pare discourse structures of events for the evaluation. Now that it is becoming

possible to generate texts as fluent as humans, it is likely that such evaluation

methods attract more and more attention.

2.5 Summary of This Chapter

In this chapter, we first introduced widely used event representations as prelimi-

naries to event-level language processing. One representative event representation

is structural representation. Structural representation is suitable for statistical

analyses. On the other hand, because information that does not fit into structure

is discarded, structure needs to be designed carefully according to the purpose.

Another representative event representation is span representation. Span repre-

sentation is a textual representation corresponding to a clause and does not have

an explicit internal structure. Thanks to the recent advances in technology to

embed semantically similar texts in a neighborhood in a continuous vector space,

span representation is now used as an informative event representation suitable

to apply high-level language analysis.

We then provided an overview of event-level language analysis. There is a

large body of work on event-level language analysis. We categorized event-level

language analysis into event extraction, event classification, event-to-event rela-

tion analysis, and event prediction, and introduced representative works on each

of them. In this thesis, we present our works on event classification, event-to-event

relation analysis, and event prediction. While we focus on a specific task of each
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class, our proposed methods are potentially effective in performing tasks in the

same class.

Finally, we presented several applications that build on event-level language

analysis. Even in an end-to-end learning era, there exist applications where event-

level language analysis is effectively used. In such applications, all of event classi-

fication, event-to-event relation analysis, and event prediction play an important

role.



Chapter 3

Volitioanlity Classification

Volitionality and subject animacy are fundamental and closely related proper-

ties of events. Their classification, however, is challenging because it requires

contextual text understanding and a huge amount of labeled data. This paper

proposes a novel method that jointly learns volitionality and subject animacy at

a low cost, heuristically labeling events in a raw corpus. Volitionality labels are

assigned using a small lexicon of volitional and non-volitional adverbs such as

deliberately and accidentally; subject animacy labels are assigned using a list of

animate and inanimate nouns obtained from ontological knowledge. Since our

labeling method assigns labels only to a biased set of events, a classifier is trained

with regularization to take into account the property. This paper explores the

following two approaches: bias reduction and adversarial representation learning.

In bias reduction, the words used for labeling are regarded as bias that should not

be over-exploited to make predictions, and their estimated contribution towards

predictions is penalized. In adversarial representation learning, the classifier is

given unlabeled events as well and makes their latent representations closer to

labeled events’ ones in an adversarial manner while learning classification on la-

beled events. We conduct experiments with crowdsourced gold data in Japanese

and English and show that our method effectively learns volitionality and subject

animacy without manually labeled data.

32
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3.1 Introduction

Volitionality is a fundamental property of events, which indicates whether an event

represents an action that someone is volitionally involved in. In this study, we

particularly focus on whether the entity represented by the subject is volitionally

involved in the event or not. For example, eating and writing are usually volitional;

crying and getting injured are non-volitional. Event volitionality classification has

been used for causal knowledge categorization (Lee and Jun, 2008; Inui et al., 2003;

Abe et al., 2008,) and has various potential applications such as conditional event

prediction (Du et al., 2019), script induction (Chambers and Jurafsky, 2008), and

customer feedback analysis (Liu et al., 2017).

On the other hand, animacy is a fundamental property of nouns, which in-

dicates whether the entity described by a noun is capable of human-like voli-

tion (Bowman and Chopra, 2012). In this study, because we focus on whether

or not the entity represented by the subject is volitionally involved in the event,

the fact that the subject of an event is an animate noun is a necessary condition

for an event to be volitional. Focusing on this close relationship, we consider the

event property of subject animacy. It is expected that the joint learning of subject

animacy classification will help models learn event volitionality.

The challenge of identifying volitionality and animacy lies in limited language

resources and contextual dependence. The volitionality of an event is largely

decided by its predicate. However, existing language resources such as Concept-

Net (Speer et al., 2017) do not provide an exhaustive list of volitional predicates.

Even with a rich language resource, however, due to its context-dependent

nature, volitionality cannot be entirely identified. Let us consider the following

Japanese examples.

(12) a. shawa-o abiru (V)

shower-ACC1 take

b. hinan-o abiru (NV)

criticism-ACC get

1ACC is the accusative case marker.
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Examples (12-a) and (12-b) have the same predicate “abiru (take/get),” but the

former is volitional, while the latter is non-volitional.2

Similarly, example (13-a) is non-volitional, but example (13-b) is volitional

because of the adverb “fukaku (deeply).”

(13) a. iki-o suru (NV)

breath-ACC take

b. fukaku iki-o suru (V)

deeply breath-ACC take

Coupled with the unbounded combinatorial nature of language, such contextual

dependence entails the demand for learning from a huge amount of labeled data.

As for animacy, although there exist some available language resources list-

ing animate/inanimate nouns, they are far from exhaustive. Besides, identifying

animacy also requires contextual text understanding. For example, although ex-

amples (14-a) and (14-b) have the same subject “shirobai (white motorcycle),”

the former describes an inanimate entity, a motorcycle, while the latter describes

an animate entity, a police officer, as metonymy.3

(14) a. shirobai-ga tometearu (IA)

white motorcycle-NOM4 be parked

b. shirobai-ga oikaketekuru (A)

white motorcycle-NOM chase

This paper proposes a minimally supervised method to jointly learn volition-

ality and subject animacy. Figure 3.1 shows the overview of the proposed method.

We first assign labels to events in a raw corpus in a heuristic manner. Volitionality

labels are assigned using a small lexicon of volitional and non-volitional adverbs,

collectively called the volitionality indicating words. For example, example (15) is

2We use “V” and “NV” to indicate that an event is volitional and non-volitional from the

viewpoint of the subject, respectively.
3We use “A” and “IA” to indicate that the subject of an event is animate and inanimate,

respectively.
4NOM is the nominative case marker.
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Figure 3.1: Overview of our method. We construct labeled and unlabeled datasets

for volitionality and subject animacy classification by heuristically labeling events

in a raw corpus using the volitionality/animacy indicating words. Our model

jointly learns volitionality and subject animacy on them with regularization.

regarded as volitional because the volitional adverb “aete (deliberately)” modifies

the predicate.

(15) aete shinjitsu-o hanasu (V)

deliberately truth-ACC tell

Example (16) is regarded as non-volitional because the non-volitional adverb

“ukkari (accidentally)” modifies the predicate.

(16) ukkari keitai-o otosu (NV)

accidentally mobile-ACC drop
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Subject animacy labels are assigned using a list of animate/inanimate nouns,

collectively called the animacy indicating words, obtained from ontological knowl-

edge. By using this labeling method, a large number of labeled events can be

collected at a low cost.

As examples (15) and (16) suggest, we can consider that volitionality is pre-

served after removing the volitionality indicating words in most cases. The same

can be said for subject animacy.

However, this is not always true. For example, example (17-a) is volitional,

but example (17-b) is non-volitional. Here, the volitionality indicating word “aete

(deliberately)” plays an essential role.

(17) a. aete kokeru (V)

deliberately tumble

b. kokeru (NV)

tumble

Such cases also exist in subject animacy classification. While the subject of exam-

ple (18-a) “shogeki (impact)” is inanimate, the omitted subject of example (18-b)

is normally assumed to be animate.

(18) a. shogeki-ga hashiru (IA)

impact-NOM run

b. hashiru (A)

run

To obtain classifiers that generalizes to events that do not volitionality/animacy

indicating words, it is important to basically learn to predict labels from the text

that co-occurs with the words without relying on the words, but not to learn to

predict labels from the text that co-occurs with the words for examples where

excluding the words changes the label. In this study, we expect that the clas-

sifier learns the former principle by introducing a regularization that suppresses

classification based only on the words, while learning classification on generalized

event representations produced by general-purpose language models, so that cases



3.2. RELATED WORK 37

in which the use of the words is essential for prediction will be learned from data.

In this paper, we explore the following two approaches: bias reduction and

adversarial representation learning. In bias reduction, the volitionality/animacy

indicating words are regarded as bias and should not be over-exploited to make

predictions. During training, the classifier learns to reduce the contribution of the

volitionality/animacy indicating words towards predictions (Kennedy et al., 2020;

Jin et al., 2020). In adversarial representation learning, the classifier is given

unlabeled events as well and learns to make their latent representations closer

to labeled events’ ones using an adversarial learning framework while learning

classification on labeled events (Ganin and Lempitsky; Ganin et al., 2016).

We conduct experiments with crowdsourced gold data in Japanese and English

and verify the effectiveness of the proposed method to learn volitionality and

subject animacy without manually labeled data.

3.2 Related Work

Our work mainly builds on event volitionality classification, bias reduction, and

unsupervised domain adaptation.

3.2.1 Event Volitionality Classification

Previous work on event volitionality classification can be categorized into a tar-

geted setting and a non-targeted setting. In the targeted setting, a model is given

the predicate and its argument of an event and predicts whether the argument is

volitionally involved in the action or state the predicate represents. This setting

has been tackled as a sub-task of semantic proto-role labeling (Reisinger et al.,

2015; White et al., 2016; Teichert et al., 2017).

In the non-targeted setting, which we tackle in this paper, a model is given

an event and predicts whether the subject is volitionally involved in the event.

To this end, Abe et al. (2008) and Abe et al. (2008) manually built a lexicon

of verbs with volitionality labels and classified event volitionality by looking it

up. This method is constrained by its inability to take context into account; as

examples (12-a) and (12-b) suggest, volitionality depends on context.
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Inui et al. (2003) proposed a data-driven approach; they learned an SVM with

hand-crafted linguistic features of events on a small amount of manually labeled

data. However, the non-compositionality of event volitionality prevents us from

learning from a small dataset. We use a massive amount of heuristically labeled

events to learn a wide range of language phenomena and world knowledge related

to volitionality.

3.2.2 Bias Reduction

Bias reduction is a technique to prevent a model from exploiting a specific bias

to make predictions. While bias reduction has been actively studied in the field

of fairness in machine learning (Bolukbasi et al., 2016; Zhao et al., 2017, 2019;

Kennedy et al., 2020), we use this technique to prevent our model from over-

exploiting the volitionality/animacy indicating words. Specifically, we employ

two bias reduction methods proposed in Kennedy et al. (2020): word removal

and explanation regularization based on sampling and occlusion (Jin et al., 2020).

These methods were originally proposed to learn a hate speech classifier robust

to group identifiers such as “gay.” The details of these methods are deferred to

Section 3.4.3.

3.2.3 Unsupervised Domain Adaptation

It is reasonable to employ semi-supervised learning techniques to solve our prob-

lem because our training data includes both labeled and unlabeled events. In the

context of semi-supervised learning, given that our primary focus is on classify-

ing unlabeled events to which our heuristics cannot assign labels, it is natural to

view our problem as an unsupervised domain adaptation problem (Ramponi and

Plank, 2020).

Unsupervised domain adaptation is a technique to learn a model that better

performs on a target domain, using labeled data from a source domain and unla-

beled data from the target domain. We employ this technique regarding labeled

events and unlabeled events as source domain data and target domain data, re-

spectively. Specifically, we adopt adversarial domain adaptation (ADA) that has

been used successfully in NLP tasks, including text classification such as sentiment



3.3. PROBLEM SETTING 39

analysis (Ganin et al., 2016; Ganin and Lempitsky; Shah et al., 2018; Shen et al.,

2018). In ADA, a model learns a latent feature space to reduce the discrepancy

between the source and target distributions while learning a task using the source

domain data, using an adversarial learning framework. The detail is deferred to

Section 3.4.3.

3.3 Problem Setting

This section describes the representation, scope, and annotation of events we

target in the present paper.

3.3.1 Representation

We represent an event as a clause, that is, a text that contains one main predi-

cate. Compared to structured representations such as predicate-argument struc-

tures (Gildea and Jurafsky, 2000), clauses can more flexibly represent the meaning

of events. Besides, by representing events by clauses, we can obtain powerful event

representations using strong pretrained text encoders like BERT (Devlin et al.,

2019).

3.3.2 Scope

This paper focuses on events whose volitionality cannot be identified by simple

linguistic features: POS tags and voice. We use POS tags to filter out events

whose predicates are either an adjective or copula because they always represent

a state and thus never represent a volitional action, as shown in examples (19)

and (20).

(19) sora-ga kireida (NV)

sky-NOM be beautiful

(20) kare-wa gakuseida (NV)

he-NOM be student

As for voice, we filter out events in the passive or potential voice because they
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are not volitional from the viewpoint of their subjects, as shown in examples (21)

and (22).

(21) sensei-ni shikarareru (NV)

teacher-DAT5 be scolded

(22) watashi-wa hashireru (NV)

I-NOM can run

Besides, we filter out events with modality, linguistic expressions representing

the writer’s opinions or attitudes towards an event. Example (23) contains the

modality of Certainty expressed by “hazuda (should).”

(23) kare-wa kuru hazuda

he-NOM come should

Because our focus is on recognizing the volitionality of an event itself, we exclude

such an event from the scope.

3.3.3 Annotation

An event is given volitionality and subject animacy labels.

Volitionality An event is considered volitional if the subject is volitionally in-

volved in the event. Otherwise, it is considered non-volitional.

Subject Animacy The subject of an event is considered animate if the entity

described by it can take volitional actions. Otherwise, it is considered inanimate.

Since we consider a model that is given an event and predicts its subject animacy,

we tie an animacy label to an event rather than the subject.

5DAT is the dative case marker.
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3.4 Proposed Method

Our goal is to train a model that is given an event x and predicts its volitionality

yvol and subject animacy yani. Both yvol and yani take the value of 1 if positive

(volitional/animate) and 0 if negative (non-volitional/inanimate). First, labeled

events are collected from a raw corpus with our heuristic labeling method. Then,

considering the property of the labeled events discussed in Section 3.1, our model

jointly learns volitionality and subject animacy with regularization.

3.4.1 Constructing Training Dataset

We construct four types of datasets: events with volitionality labels Dl
vol, events

without volitionality labels Du
vol, events with subject animacy labels Dl

ani, and

events without subject animacy labels Du
ani.

First, events that satisfy the conditions described in Section 3.3.2 are extracted

from a raw corpus, using an off-the-shelf syntactic dependency parser and POS

tagger. Each of the events is then given its volitionality and subject animacy

labels by our heuristic labeling method. According to the given label, the event

is added to the corresponding dataset.

To assign the volitionality label, we prepare a small lexicon of volitional and

non-volitional adverbs. If an adverb in the lexicon modifies the predicate of the

event, the event is given the corresponding label and added to Dl
vol. Otherwise,

the event is added to Du
vol without being given a label.

To assign the subject animacy label, we first find the subject of the event

using a semantic dependency parser. If the subject is found, its animacy is then

examined by looking up the animacy indicating words obtained from ontological

knowledge and using the result of named entity recognition. If the animacy is

identified, the event is associated with the corresponding label and pushed into

Dl
ani. If the subject is not found — which is not rare in pro-drop languages,

including Japanese — or its animacy is not identified, the event is added to Du
ani

without being given a label.
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3.4.2 Model

Our model consists of the following three neural networks: a text encoder E, a

volitionality classifier Cvol, and a subject animacy classifier Cani. The text encoder

transforms an event x into a distributed representation. The volitionality classifier

is given the representation and predicts the probability of x being volitional.

Likewise, the subject animacy classifier predicts the probability that the subject

of x is animate.

3.4.3 Training with Regularization

Our model jointly learns volitionality classification and subject animacy classi-

fication with regularization. As their training is done in a unified manner, we

introduce placeholders for convenience. We refer to a labeled dataset as Dl, an

unlabeled dataset as Du, the label assigned to events in Dl as y, and the classifier

to predict y as C. When learning volitionality, these placeholders are accompanied

by the suffix “vol”; as for subject animacy, they are accompanied by the suffix

“ani.”

Our model learns classification using the labeled dataset. Formally, the objec-

tive is written as follows:

Lcls = E(x,y)∼DlBCE(y, C(E(x))), (3.1)

where BCE is binary cross-entropy.

We explore the following regularization methods.

Word Removal (WR) Wr is a bias reduction method that decreases reliance

on a word to make predictions by removing the word from training data. We

use this method to reduce reliance on the volitionality/animacy indicating words.

The objective is written as follows:

LWR = E(x,y)∼DlBCE(y, C(E(x\w))), (3.2)

where w is the volitionality/animacy indicating word in x and x\w is x from which

w is removed.



3.4. PROPOSED METHOD 43

Explanation regularization by sampling and occlusion (SOC) SOC is a

bias reduction method that penalizes the context-independent contribution of a

word towards predictions (Kennedy et al., 2020). In order to estimate a context-

independent contribution, SOC calculates the difference of model output after

masking out the word, marginalized over all the possible context of the word. We

use this method to reduce reliance on the volitionality/animacy indicating words.

Formally, the objective is written as follows:

LSOC = Ex∼Dl [ϕ(x)]2, (3.3)

ϕ(x) =
1

|S|
∑
x′∈S

[C(E(x′)) − C(E(x′\w))]2, (3.4)

where w is the volitionality/animacy indicating word in x, S is a set of events

created by sampling the context of w according to a pretrained language model,

and x′\w is x′ that w is replaced with a padding token.

Adversarial Domain Adaptation (ADA) Ada is an unsupervised domain

adaptation technique (Ganin et al., 2016; Ganin and Lempitsky). In Ada, a

model learns to make the features of unlabeled data from a target domain closer

to the features of labeled data from a source domain while learning a task using

the labeled data. This training is done in an adversarial manner. During training,

an additional neural network called discriminator D is trained. The discriminator

is given the output of the encoder and predicts 1 if the input is source domain

data and 0 otherwise. The encoder learns to fool the discriminator. We use Ada

considering the labeled dataset as source domain data and the unlabeled dataset

as target domain data. Formally, the objective is written as follows:

LADA =Ex∼DlBCE(0, D(E(x))

+ Ex∼DuBCE(1, D(E(x))). (3.5)

This training is done efficiently by employing a gradient reversal layer (Ganin

et al., 2016; Ganin and Lempitsky).

Consistency (CON) Con learns the consistency of volitionality classification

and subject animacy classification on the unlabeled datasets. Recall that animacy
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Volitional Non-volitional

aete (5,293) omowazu (18,115)

isoide (4,187) tsui (15,897)

jikkuri (4,017) jidoutekini (14,212)

shinchoni (3,743) futo (12,050)

wazawaza (3,262) tsuitsui (10,054)

Table 3.1: The five most frequent Japanese volitionality indicating words in our

lexicon. The numbers in parentheses indicate frequency.

is a necessary condition for volitionality. Therefore, it is implausible to predict

that an event is volitional while predicting that its subject is inanimate. Con

learns this relationship by:

LCON = Ex∼Du
vol+Du

ani
max(0, Cvol(E(x)) − Cani(E(x))). (3.6)

These regularization objectives are combined with the classification objective

with a weight. Our training objective is finally written as follows:

L = Lcls + αLWR|SOC|ADA + βLCON, (3.7)

where α and β are weights selected as hyper-parameters and LWR|SOC|ADA is

either LWR, LSOC, or LADA.6

3.5 Experiments

We conducted experiments on Japanese and English.

3.5.1 Training Dataset

We constructed training datasets following the procedure described in Section 3.4.1.

6It is possible to combine Wr, Soc, and Ada, in theory. We did not try that due to the

computational cost.
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Volitional Non-volitional

carefully (13,594) unfortunately (13,070)

thoroughly (12,468) automatically (12,824)

actively (10,379) accidentally (5,272)

deliberately (3,366) unexpectedly (3,106)

intentionally (2,713) luckily (1,894)

Table 3.2: The five most frequent English volitionality indicating words in our

lexicon. The numbers in parentheses indicate frequency.

Japanese We used 30M documents in CC-100 as a raw corpus (Conneau et al.,

2020; Wenzek et al., 2020). Events were parsed and extracted using KNP, a widely

used Japanese parser (Kawahara and Kurohashi, 2006). For volitionality labeling,

we manually constructed a lexicon of 15 volitional and 15 non-volitional adverbs.

Table 3.1 shows the most frequently matched adverbs. Refer to Appendix A for

the full list. For animacy labeling, we used the dictionary on which KNP builds7

as ontological knowledge. It contained approximately 30K nouns with animacy

labels. We also used the named entity recognizer built into KNP to recognize

animacy. We did not delete duplicate events to preserve frequency information.

English We again used 30M documents in CC-100 as a raw corpus. Events

were parsed and extracted using spacy8. For volitionality labeling, we manually

constructed a lexicon of 10 volitional and 10 non-volitional adverbs. Table 3.2

shows the most frequently matched adverbs. Appendix A includes the full list. For

animacy labeling, we obtained animate/inanimate nouns from ConceptNet (Speer

et al., 2017). Specifically, we used the hyponyms of “person” and “organization”

as animate nouns, and the hyponyms of “object,” “item,” “thing,” “artifact,” and

“location” as inanimate nouns. As a result, we obtained 2,604 animate nouns and

430 inanimate nouns. Besides, we used the named entity recognizer built into

spacy for animacy recognition.

7https://github.com/ku-nlp/JumanDIC
8https://spacy.io
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3.5.2 Evaluation Dataset

We constructed an evaluation dataset for each of Dl
vol, Du

vol, Dl
ani, and Du

ani. We

first randomly extracted 1,200 unique events from each of the datasets. We then

assigned the ground truth to them by crowdsourcing.

As for volitionality labeling, crowdworkers were given an event and assigned

one of the following labels:

• The subject is volitionally involved in the event.

• The subject is not volitionally involved in the event.

• Unable to say either.

• Unable to understand.

As for animacy labeling, crowdworkers were given an event and assigned one of

the following labels:

• The subject is a person(s) or organization(s).

• The subject is neither a person(s) nor organization(s).

• Unable to say either.

• Unable to understand.

Each event was annotated by five crowdworkers. One crowdworker annotated

ten events.

For Japanese, we used Yahoo! Crowdsourcing9 as a crowdsourcing platform.

Figure 3.2 and Figure 3.3 show the user interfaces. For quality control, we used

the function provided in the platform to reject workers who made a mistake on an

easy question that we manually prepared in advance. The total cost was 24,000

JPY.

For English, we used Amazon Mechanical Turk (MTurk). Figure 3.4 and

Figure 3.5 show the user interfaces. For quality control, we followed common best

practices (Berinsky et al., 2012); workers had to have over a 95% acceptance rate,

live in the US, and have done more than 1,000 tasks. The total cost was 288 USD.

9https://crowdsourcing.yahoo.co.jp/
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Figure 3.2: The user-interface to annotate volitionality labels to Japanese events.

Table 3.3 shows the inter-annotator agreement rates. Events with an agree-

ment rate of 80% or more were extracted, and half were used for validation and the

other half were used for testing. Table 3.4 summarizes the constructed datasets.

3.5.3 Implementation Detail

The encoder was pretrained BERTBASE (Devlin et al., 2019). We used the output

of the classification token ([CLS]) as event representations. The classifiers were a

three-layered fully-connected neural network with the ReLU nonlinearity followed

by the sigmoid function. The discriminator used in Ada had the same architecture

as the classifiers. Soc was used with a sample size of three. α was selected from

{0.0, 0.01, 0.1, 1.0} for each of Wr, Soc, and Ada. β was selected from {0.0,

0.01, 0.1, 1.0}. We trained the model for three epochs with a batc/h size of 256.

We used the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 3e-5,
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Figure 3.3: The user-interface to annotate subject animacy labels to Japanese

events.

Figure 3.4: The user-interface to annotate volitionality labels to English events.
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Figure 3.5: The user-interface to annotate subject animacy labels to English

events.

Dl
vol Du

vol Dl
ani Du

ani

Japanese 78.2 76.9 77.2 74.3

English 62.4 62.8 66.8 67.1

Table 3.3: The inter-annotator agreement rate for each dataset, calculated by

averaging the ratios of majority answers.

linear warmup of the learning rate over the first 10% steps, and linear decay of the

learning rate. We evaluated the performance on the development dataset of Du
vol,

which was our primary concern, at every 100 steps, and adopted the checkpoint

that achieved the best performance. The evaluation metric was the AUC of the

ROC curve. Models were trained three times with different random seeds. We

used Pytorch for implementation.

3.5.4 Results

Table 3.5 and Table 3.6 show the result. In both Japanese and English, joint

learning combined with regularization achieved the best performance on both



50 CHAPTER 3. VOLITIOANLITY CLASSIFICATION

Split Label Japanese English

Dl
vol Train Volitional 31,812 47,926

Non-volitional 81,002 40,564

Dev Volitional 149 67

Non-volitional 233 92

Test Volitional 149 68

Non-volitional 233 93

Du
vol Train Unlabeled 112,814+ 88,490+

Dev Volitional 206 62

Non-volitional 164 104

Test Volitional 206 63

Non-volitional 164 104

Dl
ani Train Animate 29,344+ 71,257+

Inanimate 83,470+ 17,233+

Dev Animate 175 170

Inanimate 199 59

Test Animate 176 170

Inanimate 200 60

Du
ani Train Unlabeled 112,814+ 88,490+

Dev Animate 246 78

Inanimate 93 152

Test Animate 246 78

Inanimate 93 153

Table 3.4: Statistics of our dataset. The number with + means that the events

were randomly sampled from a larger set according to the size of smallest dataset,

Dl
vol.

volitionality and subject animacy classification on the unlabeled datasets and

most of the labeled datasets. Specifically, when joint learning was employed,

Soc was constantly effective to learn volitionality classification. Without joint
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Vol. Ani. Dl
vol Du

vol Dl
ani Du

ani

NONE VAN + CON 65.3±2.6 77.3±0.9 92.0±0.7 81.4±0.8

WR + CON 73.5±1.4 85.1±1.0 94.3±0.6 86.4±0.2

SOC + CON 73.7±2.9 82.3±1.7 93.9±0.2 84.5±1.3

ADA + CON 69.7±1.0 81.5±0.7 92.7±0.7 81.9±4.2

VAN NONE + CON 91.7±1.0 89.5±1.1 72.6±2.4 70.7±2.7

VAN 91.8±1.3 90.6±0.1 91.3±0.3 81.7±1.7

+ CON 92.1±0.5 89.6±1.9 87.7±3.3 83.0±1.2

WR 93.9±0.6 92.5±1.2 94.0±0.0 86.4±0.4

+ CON 92.1±0.9 92.8±1.0 96.0±0.5 88.5±0.3

SOC 90.7±0.7 94.7±0.7 92.8±1.1 85.4±0.7

+ CON 91.5±1.0 93.5±0.6 89.6±1.5 83.7±0.8

ADA 92.3±0.4 89.9±2.7 87.2±3.3 82.2±2.0

+ CON 92.2±0.4 90.9±3.1 87.7±3.1 82.0±2.1

WR NONE + CON 91.5±1.5 91.2±0.8 57.3±10.6 57.6±10.7

VAN 92.4±0.8 91.9±0.1 88.8±7.6 83.9±1.4

+ CON 93.2±0.8 93.2±1.3 84.7±5.8 82.2±1.4

WR 91.8±0.7 93.2±0.9 94.3±1.2 87.1±1.4

+ CON 93.4±1.3 93.0±1.0 93.6±1.5 86.3±1.1

SOC 91.3±0.6 95.1±0.2 90.8±1.8 84.8±0.9

+ CON 92.1±0.4 94.9±0.4 88.9±3.8 83.6±2.4

ADA 92.4±0.5 92.3±1.3 83.6±3.4 81.9±0.3

+ CON 93.9±1.0 93.1±0.8 85.1±5.5 81.7±1.0

SOC NONE + CO 94.4±0.6 92.9±0.1 67.3±2.2 67.1±0.7

VAN 94.6±0.4 94.0±0.5 92.3±1.8 86.1±0.8

+ CON 94.6±0.4 94.7±0.5 90.0±1.0 84.5±0.4

WR 94.3±0.1 96.7±0.7 95.3±1.0 89.9±0.6

+ CON 94.5±0.3 96.7±0.4 90.1±0.9 84.5±0.6

SOC 94.5±0.3 95.2±0.3 91.3±1.3 86.0±0.8

+ CON 94.4±0.4 96.0±0.5 90.0±0.4 84.6±0.8

ADA 94.6±0.5 95.9±0.1 92.1±2.0 85.3±0.9

+ CON 95.0±0.8 95.1±1.2 90.4±1.0 84.6±0.8

ADA NONE + CON 96.3±0.6 93.6±0.9 73.6±2.1 73.4±1.6

VAN 90.7±0.4 91.8±0.5 90.8±0.7 82.4±1.7

+ CON 92.1±0.5 89.5±2.4 86.9±4.3 82.8±1.5

WR 92.0±1.3 94.6±0.4 94.9±1.3 86.8±1.1

+ CON 93.1±1.0 94.5±1.0 95.9±0.3 87.6±0.8

SOC 91.2±0.6 94.6±0.9 91.2±2.4 84.3±0.5

+ CON 91.6±0.6 93.6±0.2 88.7±1.0 83.3±0.2

ADA 91.9±0.3 90.8±1.1 87.3±2.7 83.1±0.9

+ CON 92.2±0.4 91.3±1.4 87.5±2.9 83.4±0.8

Table 3.5: The result of volitionality classification and subject animacy classifi-

cation in Japanese. The bold scores indicate the highest ones over models, and

the underlined scores indicate the highest ones over models trained without joint

learning.
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Vol. Ani. Dl
vol Du

vol Dl
ani Du

ani

NONE VAN + CON 64.0±0.9 69.3±0.7 83.5±1.0 82.4±1.3

WR + CON 65.1±0.6 70.7±0.2 84.2±0.4 81.7±0.4

SOC + CON 63.5±2.0 70.0±0.6 84.3±1.6 82.7±1.7

ADA + CON 62.9±3.6 69.6±1.2 84.6±1.2 83.4±2.0

VAN NONE + CON 73.7±1.8 66.2±0.9 67.2±3.6 66.0±1.9

VAN 74.4±0.5 70.7±3.1 82.3±2.1 81.5±1.0

+ CON 74.0±1.6 69.8±3.0 84.3±1.6 81.9±1.3

WR 72.4±4.3 69.7±0.2 83.6±0.7 81.6±0.1

+ CON 71.9±2.6 70.8±0.6 84.1±0.8 81.9±0.6

SOC 72.8±1.9 72.0±0.4 83.5±2.9 78.6±2.9

+ CON 72.8±1.4 69.5±1.1 84.9±0.4 82.3±0.3

ADA 74.4±0.7 72.8±2.2 84.1±1.3 82.8±1.4

+ CON 72.0±1.3 70.9±2.0 82.2±1.7 82.3±1.3

WR NONE + CON 69.8±0.8 70.0±0.3 55.5±0.5 67.4±1.1

VAN 73.0±1.0 73.1±2.3 82.6±2.1 84.0±0.5

+ CON 72.3±0.5 72.4±1.2 82.3±0.9 83.7±0.5

WR 72.4±0.8 75.5±1.0 82.5±2.2 83.6±0.2

+ CON 72.6±0.8 71.9±1.4 82.0±0.8 84.5±1.0

SOC 72.9±1.4 75.2±1.4 81.2±2.4 82.8±0.7

+ CON 72.3±1.1 75.5±1.8 80.7±2.2 83.5±1.8

ADA 72.3±0.7 75.6±0.6 82.3±2.1 83.6±0.2

+ CON 72.3±0.8 72.7±0.7 81.4±1.3 83.9±0.4

SOC NONE + CON 73.3±0.4 72.2±1.3 66.2±1.8 73.0±1.3

VAN 73.9±0.5 75.4±0.8 83.2±1.9 83.3±0.2

+ CON 73.7±0.3 75.8±0.5 85.4±0.3 85.1±0.3

WR 73.2±0.3 74.0±1.9 84.0±0.1 83.0±0.4

+ CON 73.6±0.2 75.7±0.2 84.6±0.9 84.7±0.4

SOC 73.8±0.1 76.7±1.4 86.2±0.4 81.4±1.2

+ CON 73.6±0.3 77.1±1.1 85.4±0.8 84.4±0.4

ADA 73.1±0.4 74.0±1.8 83.9±0.4 83.1±0.2

+ CON 73.5±0.3 75.4±0.3 84.7±0.8 84.7±0.5

ADA NONE + CON 74.9±1.3 70.0±3.4 62.2±3.2 64.4±1.9

VAN 70.5±2.3 70.5±1.3 84.9±0.6 80.4±1.4

+ CON 72.3±4.4 69.9±1.9 84.9±0.7 81.0±2.6

WR 71.7±0.8 70.6±0.6 83.3±0.7 82.2±1.3

+ CON 69.7±2.4 71.5±1.1 85.2±1.0 80.4±2.5

SOC 69.1±3.4 73.2±1.6 84.0±3.0 78.2±1.6

+ CON 69.4±1.7 68.3±0.8 85.1±0.8 82.0±1.7

ADA 71.5±0.2 67.6±2.6 84.0±0.6 77.0±2.3

+ CON 71.5±2.9 71.0±2.8 84.9±0.7 81.0±2.1

Table 3.6: The result of volitionality classification and subject animacy classifi-

cation in English. The bold scores indicate the highest ones over models, and

the underlined scores indicate the highest ones over models trained without joint

learning.
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learning, the models trained with Ada often performed best.

As for subject animacy classification, the effective method depended on lan-

guage. This is likely because Japanese is a pro-drop language while English is

not. In Japanese, the most effective method was Wr. Learning subject animacy

of events produced by Wr can be interpreted as learning animacy of omitted sub-

jects. Events with omitted subjects were not given a subject animacy label by our

labeling method and thus were in Du
ani. The models trained with Wr successfully

generalized to such events. In English, on the other hand, because subjects are

not omitted, Wr was not as effective as in Japanese.

We observed that the overall scores on the English datasets were lower than the

Japanese ones. The reason was the quality of the evaluation datasets. As Table 3.3

suggests, the English evaluation datasets were constructed by crowdworkers with

a lower agreement rate. Investigating the output manually, we found that the

performance was underestimated due to labeling mistakes in the gold data.

3.6 Analysis

3.6.1 Qualitative Analysis

We investigated what is learned by our method, using the model that best per-

formed on Du
vol. While we had three models trained with the same setting with

different random seeds, we used one that achieved the second-best validation per-

formance for analysis.

Japanese The best performing model learned volitionality with Soc, subject

animacy with Wr, and prediction consistency with Con. We found that the

model was aware of context. Example (12-a) and (12-b) were successfully clas-

sified as volitional and non-volitional, respectively, though these events had the

same predicate. Example (13-a) and (13-b) were again correctly classified as non-

volitional and volitional, respectively, considering the meaning of the adverb. We

observed that subject animacy was also recognized considering context; the sub-

jects of example (14-a) and (14-b) were successfully classified as inanimate and

animate, respectively. This result suggests the effectiveness of our method to
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learn volitionality and subject animacy considering context. It would be interest-

ing to quantitatively evaluate such context-awareness by constructing a dataset

like Winograd Schema Challenge (Levesque et al., 2012).

However, we found that there still existed verbs that our model struggled with

recognizing the volitionality. One notable verb was “iru (exist/stay).” While the

verb “iru (exist/stay)” basically represents a state, it can represent a volitional

action when the subject is animate. We speculate that the difficulty of recognizing

the animacy of omitted subjects also contributed to this problem. A plausible

solution is to consider the preceding and following events during training. If the

meaning of an event is different, the distribution of its surrounding events should

be too. Learning such contextual differences could lead to better performance.

English The best performing model learned volitionality with Soc, subject an-

imacy with Soc, and prediction consistency with Con. We again found that the

model successfully performed classification considering context. For example, the

following examples with the same predicate “made” were correctly classified.

(24) a. I made pancakes. (V)

b. I made a mistake. (NV)

The following examples were also successfully classified, capturing the meaning of

the adverbial phrase “for him.”

(25) a. I tumbled. (NV)

b. I tumbled for him. (V)

3.6.2 Effect of the Choice of Volitionality Indicating Words

The proposed method requires manual preparation of volitionality indicating

words in order to assign volitionality labels to events. As an analysis, using

the Japanese dataset, we investigated the effect of the number of volitionality

indicating words on the performance on Du
vol. Specifically, we explored the per-

formance when using the top 1, 2, 4, 8, and 15 volitionality indicating words.

The number of labeled data obtained from a raw corpus of the same size in-
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Top 1 Top 2 Top 4 Top 8 Top 15 Top 15*

Baseline 74.3±3.7 83.9±0.5 85.9±5.9 87.3±2.0 88.0±0.8 89.5±1.1

Ours 93.2±0.2 93.3±0.2 94.2±0.6 95.1±0.7 95.5±0.6 96.7±0.4

Table 3.7: Classification performance on Japanese Du
vol when using different num-

bers of volitionality indicating words. The evaluation metric is AUC. The mean

and variance of three runs with different random seeds are described. Top15* is

the result when all data are used without down-sampling, which is deribed from

Table 3.5.

creases as the number of volitionality indicating words increases. However, in

order to examine the effect of the number of volitionality indicating words on

performance, we down-sampled the obtained labeled data to match the number

of the labeled data obtained when using the top 1 frequency adverb, which was

23,408 (the sum of 5,293 events matching “aete (deliberately)” and 18,115 events

matching “omowazu (unexpectedly)”). As models, we used two settings: a naive

setting (Baseline) in which only labeled data for volitionality is trained without

regularization, and a setting (Ours) in which volitionality is trained with SOC,

subject animacy with WR, and prediction consistency with CON, which achieved

the highest accuracy in Du
vol in the setting using all data. The training settings

are the same as those described in Section 3.5.3.

Table 3.7 shows the results. We observed that in both models, the performance

of Du
vol is improved by increasing the number of volitionality indicating words.

This can be attributed to the fact that increasing the number of volitionality

indicating words increases the diversity of the labeled data and allows us to learn

inferences that generalize to many events. Besides, surprisingly, the proposed

method achieved a high classification performance of 93.2 points AUC even when

only “aete (deliberately)” and “omowazu (unexpectedly),” which were the most

frequent adverbs among the selected adverbs, were used for labeling. This suggests

that “aete (deliberately)” and “omowazu (unexpectedly)” are adverbs that appear

in a variety of contexts, and that volitionality classification can be fairly learned

from events containing these adverbs alone.



56 CHAPTER 3. VOLITIOANLITY CLASSIFICATION

Label Japanese English

Dl
vol Volitional 88% 94%

Non-volitional 92% 80%

Dl
ani Animate 81% 96%

Inanimate 72% 76%

Table 3.8: The ratio of events being given a correct label.

3.6.3 Quality of Labeled Data

Because we had heuristically and automatically assigned labels to events, our

labeled datasets should contain wrongly labeled events. However, if the datasets

were full of errors, it is likely to fail to learn classification.

Given the fact that we could learn a classifier with fairly good performance,

we report the quality of our labeled data as a reference for applying our method to

other languages. We randomly extracted 100 unique positive and negative events

from each of Dl
vol and Dl

ani, and manually examined whether they were given a

correct label or not. We considered that events incomprehensible for some reason

(e.g., parsing error) were not given a correct label.

Table 3.8 shows the result. We found that most events were labeled correctly.

Japanese negatively-labeled events in Dl
ani had relatively low accuracy. This was

primarily because of the failure in subject recognition. In English, negatively-

labeled events in Dl
ani had relatively low accuracy. While there were several rea-

sons, one of them was that, although we regarded nouns representing a location

as inanimate, they sometimes represented an organization (e.g., country name).

3.7 Summary of This Chapter

This paper focused on the close relationship between volitionality and animacy

and proposed a method to jointly learn them with regularization in a minimally-

supervised manner. Experiments in Japanese and English showed the effective-

ness of the proposed method to learn volitionality and subject animacy without



3.7. SUMMARY OF THIS CHAPTER 57

manually labeled data.

While volitionality is a fundamental property of events and has many applica-

tions, there is a handful of studies that employ volitionality classification. This is

because there is no off-the-shelf volitionality classifier and no method to construct

a volitionality classifier at a low cost. In this sense, our method has the potential

to promote future research.

While we focused on volitionality, the general idea behind our method is po-

tentially applicable to learn other event properties such as sentiment polarity. It is

an interesting direction to apply the proposed method to other event classification

tasks.



Chapter 4

Discourse Relation Analysis

Discourse relation analysis is the task of predicting the pragmatic relation be-

tween two events. After neural networks are introduced to this task, researchers

have considered better neural network architectures, incorporation of external

knowledge, knowledge transfer from explicit discourse relations, etc. However,

the current state-of-the-art method is to fine-tune a general-purpose language

model pretrained on a large-scale raw corpus in a self-supervised manner, which

does not use the above techniques. This means that, by designing an appropriate

self-supervised task, it is possible to learn event representations capturing dis-

course relations from raw text. Given that, we propose a novel method to learn

contextualized and generalized sentence representations based on contrastive self-

supervised learning, which can be used at the event level. In the proposed method,

a model is given a text consisting of multiple sentences. One sentence is randomly

selected as a target sentence. The model is trained to maximize the similarity

between the representation of the target sentence with its context and that of

the masked target sentence with the same context. Simultaneously, the model

minimizes the similarity between the latter representation and the representation

of a random sentence with the same context. We apply our method to discourse

relation analysis in English and Japanese and show that it outperforms strong

baseline methods based on BERT, XLNet, and RoBERTa.

58
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4.1 Introduction

Discourse relation analysis is the task of predicting the pragmatic relation between

two events. Discourse relation analysis provides a high-level linguistic structure,

which helps many crucial downstream tasks, including automatic summariza-

tion (Louis et al., 2010; Huang and Kurohashi, 2021), sentiment analysis (So-

masundaran et al., 2009), and machine translation (Meyer et al., 2015). Given

the wide range of applications, discourse relation analysis has long been considered

an important language analysis task.

The difficulty of discourse relation analysis varies greatly depending on the

presence or absence of discourse markers, which are words that explicitly indicate

a discourse relation, such as because and however. Early studies developed a list

of discourse markers for each discourse relation and recognized discourse relations

based on the list. This method can achieve high precision, however, it is helpless

in recognizing discourse relations where discourse markers do not exist.

Therefore, recent research focuses on the analysis of discourse relations without

discourse markers, which requires deep semantic understanding; this task is called

implicit discourse relation analysis. After neural networks are introduced to this

task, in order to improve the performance, researchers have considered better

neural network architectures (Chen et al., 2016; Liu and Li, 2016; Bai and Zhao,

2018), incorporation of external knowledge (Kishimoto et al., 2018), knowledge

transfer from explicit discourse relations (Rutherford et al., 2017; Qin et al., 2017),

etc. However, the current best method is to fine-tune a general-purpose language

model pretrained on a large-scale raw corpus in a self-supervised manner (Kim

et al., 2020; Devlin et al., 2019), which does not employ above techniques. This

means that, by designing an appropriate self-supervised task, it is possible to learn

event representations capturing discourse relations from raw text.

Consequently, we work on exploring self-supervised learning frameworks to

obtain an event representation that is effective for performing discourse relation

analysis. In NLP, there is a rich body of work on sentence representation learning.

An event is an information unit corresponding to a simple sentence, or a clause.

Therefore, we consider event representation learning as a problem of sentence
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representation learning.

Sentence representation have been one of the main interests of natural language

processing. While early studies employed symbol-based representations such as

bag-of-words, recent studies use distributed representations due to its ability to

capture the various and complex properties of sentences (Conneau et al., 2017;

Arora et al., 2017; Kiros et al., 2015).

One typical way to obtain distributed sentence representations is to learn a

task that is somehow related to sentence meaning. For example, sentence rep-

resentations trained to solve natural language inference (Bowman et al., 2015;

Williams et al., 2018) are known to be helpful for many language understanding

tasks such as sentiment analysis and semantic textual similarity (Conneau et al.,

2017; Wieting and Gimpel, 2018; Cer et al., 2018; Reimers and Gurevych, 2019).

However, there is an arbitrariness in the choice of tasks used for training.

Furthermore, there is a size limitation on manually annotated data, which makes

it hard to learn a wide range of language expressions.

A solution to these problems is self-supervised learning, which has been used

with great success (Mikolov et al., 2013; Peters et al., 2018; Devlin et al., 2019).

For example, inspired by skip-grams (Mikolov et al., 2013), proposed to train

a sequence-to-sequence model to generate sentences before and after a sentence,

and use the trained encoder to compute sentence representations. Inspired by

masked language modeling in BERT, Zhang et al. (2019) and Huang et al. (2020)

presented methods to learn contextualized sentence representations through the

task of restoring a masked sentence from its context.

In self-supervised sentence representation learning, sentence generation is typ-

ically used as its objective. Such an objective aims to learn a sentence represen-

tation specific enough to restore the sentence, including minor details. On the

other hand, in case we would like to handle the meaning of a larger block such as

paragraphs and documents (which is often called context analysis) and consider

sentences as a basic unit, a more abstract and generalized sentence representation

would be helpful.

We propose a method to learn contextualized and generalized sentence rep-

resentations by contrastive self-supervised learning (van den Oord et al., 2019;
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Figure 4.1: Overview of our contrastive method to learn sentence representations.

The encoder takes a text consisting of multiple sentences. Each [CLS] token

represents the following sentence. We maximize the similarity between sanc and

spos, where sanc is the representation of the k-th sentence computed from the

context, and spos is the representation of the k-th sentence computed by observing

the content. Simultaneously, we minimize the similarity between sanc and sneg,

where sneg is the representation of a random sentence with the same context.

Chen et al., 2020). Figure 4.1 shows the overview of our method. In the proposed

method, a model is given a text consisting of multiple sentences and computes

their contextualized sentence representations. During training, one sentence is

randomly selected as a target sentence. The model is trained to maximize the

similarity between the representation of the target sentence with its context, to

which we refer as spos, and the representation of the masked target sentence with

the same context, to which we refer as sanc. Simultaneously, the model is trained

to minimize the similarity between the latter representation sanc and the repre-

sentation of a random sentence with the same context as the target sentence, to

which we refer as sneg.

From the viewpoint of optimizing sanc, this can be seen as a task to capture

a generalized meaning that contextually valid sentences commonly have, utilizing

spos and sneg as clues. From the viewpoint of optimizing spos, this can be seen as

a task to generalize the meaning of a sentence to the level of sanc.

We show the effectiveness of the proposed method using discourse relation
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analysis as an example task of context analysis. Our experiments on English and

Japanese datasets show that our method outperforms strong baseline methods

based on BERT (Devlin et al., 2019), XLNet (Yang et al., 2019), and RoBERTa (Liu

et al., 2019).

4.2 Related Work

As related works, we describe discourse relation analysis, sentence representations,

and contrastive learning.

4.2.1 Discourse Relation Analysis

Discourse relation analysis is the task of predicting the pragmatic relation between

two events. Discourse relations provide a high-level linguistic structure, which

helps many crucial downstream tasks, including automatic summarization (Louis

et al., 2010; Huang and Kurohashi, 2021), sentiment analysis (Somasundaran

et al., 2009), and machine translation (Meyer et al., 2015). Given the wide range

of applications, discourse relation analysis has long been considered an important

language analysis task.

The difficulty of discourse relation analysis varies greatly depending on the

presence or absence of discourse markers, which are words that explicitly indicate

a discourse relation, such as because and however. Early studies developed a list

of discourse markers for each discourse relation and recognized discourse relations

based on the list. This method can achieve high precision, however, it is helpless

in recognizing discourse relations where discourse markers do not exist.

Recent research focuses on implicit discourse relation analysis, where models

cannot exploit discourse markers. After neural networks are introduced to this

task, in order to improve the performance, researchers have considered better

neural network architectures (Chen et al., 2016; Liu and Li, 2016; Bai and Zhao,

2018), incorporation of external knowledge (Kishimoto et al., 2018), knowledge

transfer from explicit discourse relations (Rutherford et al., 2017; Qin et al., 2017),

etc. The current best method is to fine-tune a general-purpose language model

pretrained on a large-scale raw corpus in a self-supervised manner (Kim et al.,
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2020; Devlin et al., 2019), which does not employ above techniques.

4.2.2 Distributed Sentence Representations

Sentence representations have been a primary concern of NLP as the basis of

sentence-level semantic analysis. While early studies employed symbol-based rep-

resentations such as bag-of-words, recent studies employ distributed vector repre-

sentations in order to capture various and complex property of sentences flexibly.

Most of the existing studies focus on encoding a single sentence into a dis-

tributed representation. Approaches proposed in this line of research can be

divided into two approaches. One approach is to compute sentence representa-

tions from the representations of the constituent words. The most straightfor-

ward method is to average the word embeddings of the constituent words of a

sentence (Wieting et al., 2016). As a more sophisticated way, Arora et al. (2017)

propose to compute weighted average of word embeddings according to the word

frequency and then remove the projections of the average vectors on their first

singular vector. Mu et al. (2018) propose to first modify pre-trained word embed-

dings by removing the mean vector and projecting the representations away from

the most dominating directions, and then compute a sentence representation by

averaging modified word embeddings.

The other approach is to learn sentence representations directly through solv-

ing a task that requires sentence-level semantic understanding. For example,

natural language inference (NLI) is known to be effective to learn sentence repre-

sentations that are helpful to solve many language understanding tasks. Conneau

et al. (2017), Cer et al. (2018), and Reimers and Gurevych (2019) trained a single

sentence encoder on a NLI dataset, while they employed different neural architec-

tures for sentence encoders.

However, there is an arbitrariness in the choice of tasks used for training.

Besides, there is a size limitation on manually annotated data, which makes it

hard to learn a wide range of language expressions.

Self-supervised learning is one of the solutions to this problem. Self-supervised

methods train models by supervision obtained from data itself, and thus can

effectively exploit a huge amount of existing unlabeled data. Skip-gram (Zhu
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et al., 2015) is a self-supervised method to learn sentence representations. Skip-

gram learns to encode a sentence into a vector representation so that the following

and preceding sentences can be generated from it. FastSent (Hill et al., 2016) is a

light-weight alternative to Skip-gram; instead of generating sentences, it predicts

the bag-of-words.

Recent advances in NLP have made it possible to understand meaning with

consideration of context, prompting research on learning contextualized sentence

expressions. HIBERT (Zhang et al., 2019) is a self-supervised method that learns

sentence representations so that a masked sentence can be reconstructed from the

sentence representations of its contextual sentences. INSET (Huang et al., 2020)

is also a similar self-supervised method; it exploits pre-trained general-purpose

language models for initializing sentence encoders.

In self-supervised sentence representation learning, sentence generation is typ-

ically used as its objective. Such an objective aims to learn a sentence represen-

tation specific enough to restore the sentence, including minor details. On the

other hand, in case we would like to handle the meaning of a larger block such as

paragraphs and documents (which is often called context analysis) and consider

sentences as a basic unit, a more abstract and generalized sentence representa-

tion would be helpful. This motivates the proposed method of learning sentence

expressions using a non-generative, contrastive objective function.

4.2.3 Contrastive Learning

Contrastive learning is a general framework for representation learning, and has

been used in many fields including computer vision, audio processing, and nat-

ural language processing. The main idea is to encode similar data into similar

representations while encoding different data into different representations. What

is considered similar depends on the purpose. For example, Chen et al. (2020)

propose a contrastive learning framework for visual representations that consid-

ers random transformations of the same image (e.g., cropping, flipping, distortion

and rotation) similar. Image encoders are trained to encode such images into a

similar representation.

In the context of sentence representation learning, there are several studies
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that use contrastive learning. Iter et al. (2020) propose to encode neighboring

sentence into a similar representations. Yan et al. (2021) propose to perform

data augumentation, such as adversarial attack and token shuffling, and make

generated sentences closer to each other. Gao et al. (2021) propose to encode the

same sentences with different dropout masks into the same representation.

These methods consider a model that is given a single sentence or a sentence

pair, however, in this study, we consider a model that is given a document or

paragraph consisting of multiple sentences. To our knowledge, we are the first to

incorporate contrastive learning to obtain contextualized sentence representations.

4.3 Learning Contextualized Sentence Representations

Figure 4.1 illustrates the overview of our method. The encoder takes an input text

consisting of T (> 1) sentences and computes their contextualized sentence rep-

resentations. The encoder is trained by optimizing our contrastive self-supervised

objective.

4.3.1 Encoder

The encoder is a Transformer (Vaswani et al., 2017), which is initialized with

BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019). The Transformer

computes token representations using a mechanism called self-attention, which is

an attention mechanism relating different positions of a single sequence in order to

compute a representation of the same sequence. Given sufficiently large training

data, the Transformer outperforms the other text encoders such as LSTMs and

CNNs in many language tasks.

Following Liu and Lapata (2019), we insert the [CLS] and SEP special tokens

at the beginning and the end of each sentence, respectively. The representation

of the [CLS] token is used as the sentence representation of its following sentence.

Although a [CLS] special token is to represent its following sentence, we do not

apply an attention mask to restrict the [CLS] special token from accessing to

the tokens in the other sentences. In other words, sentence representations are

computed by considering all the tokens in the given document via the self-attention
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mechanism of the Transformer.

4.3.2 Contrastive Objective

We propose a contrastive objective to learn contextualized sentence representa-

tions, aiming to capture the generalized meaning of each sentence in the given

text. Figure 4.1 shows the overview.

We first randomly select one sentence from the input text as a target sentence.

In Figure 4.1, the k-th sentence (1 ≤ k ≤ T ) is selected as a target sentence. We

refer to the representation of the target sentence as spos. We then mask the target

sentence with the [SENT-MASK] special token. We refer to the representation of

the masked sentence as sanc. We finally replace the target sentence with a random

sentence. We refer to the representation of the random sentence as sneg. We use

the same encoder to compute these sentence representations.

Our contrastive objective is to maximize the similarity between spos and sanc

while minimizing the similarity between sneg and sanc. We use the dot product

as the similarity measure. When using N random sentences per input text, the

contrastive loss L is formally written as follows:

LCON = − log
exp(⟨spos, sanc⟩)∑
s∈S exp(⟨s, sanc)⟩

, (4.1)

where ⟨·, ·⟩ is the dot product and S = {spos, s1neg, · · · , sNneg}.

In order to optimize sanc, the encoder needs to make sanc closer to spos than

sneg. This can be interpreted as training to capture a generalized meaning that

contextually valid sentences commonly have. On the other hand, in order to

optimize spos, the encoder needs to make it closer to sanc. This can be interpreted

as training to discard minor details that cannot be estimated from the context

and capture the generalized meaning. Our contrastive learning optimizes these

objectives simultaneously.

The encoder is trained by jointly optimizing the contrastive loss and the

masked language modeling loss (Devlin et al., 2019). Masked language model-

ing is the fundamental training objective of BERT and its variants (Devlin et al.,

2019; Liu et al., 2019). We learn masked language modeling expecting that sen-
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Figure 4.2: Overview of the generative method to learn sentence representations.

When learning the generative objective, one of the sentences is masked with the

[SENT-MASK] special token. In this figure, k-th sentence is masked. The en-

coder computes sanc, which is the masked sentence representation. The decoder

is trained to generate the masked sentence from sanc.
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Figure 4.3: Overview of the detective method to learn sentence representations.

tence representations are learned while keeping the parameter structure acquired

through pretraining.

4.3.3 Generative Objective

For comparison, we train the encoder through the task of generating a masked

sentence from its context. Figure 4.2 illustrates the overview.

We first mask a sentence with the [SENT-MASK] special token. In Figure 4.2,

k-th sentence is masked. The encoder computes the representation of the masked

sentence. Following the contrastive method, we refer to the representation as

sanc. Then, given the representation, a decoder generates the masked sentence
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in an auto-regressive manner. The decoder’s architecture is almost the same as

the encoder, but it has an additional layer on the top to predict a probability

distribution over words in the vocabulary. We use teacher forcing and compute

the generative loss by summing cross-entropy at each generation step.

Again, the encoder and decoder are trained by optimizing the generative loss

and the standard masked language modeling loss jointly.

4.3.4 Detective Objective

As an alternative non-generative objective, we train the encoder through the task

of detecting an inserted random sentence. Figure 4.3 shows the overview.

In this method, we additionally train a linear classifier that is a given sentence

representation and determines whether the sentence is a replaced one or not.

The detective objective can be interpreted as a method that replaces sanc in the

contrastive objective with a context-agnostic trainable parameters.

Again, the encoder and decoder are trained by optimizing the generative loss

and the standard masked language modeling loss jointly.

4.3.5 Implementation Details

English

We used an English Wikipedia dump and BookCorpus (Zhu et al., 2015)1 to

create input texts. We first split texts into sentences using spacy (Honnibal et al.,

2020). We then extracted as many consecutive sentences as possible so that the

length does not exceed the maximum input length of 128. When a sentence was

so long that an input text including the sentence cannot be created while meeting

the length constraint, we gave up using the sentence. The number of sentences

in an input text T was 4.91 on average. After creating input texts, we assigned

random sentences to each of them. Random sentences are extracted from the

same document. We assigned three random sentences per input text, i.e., N = 3.

1Because the original BookCorpus is no longer available, we used a replica created by a

publicly available crawler (https://github.com/soskek/bookcorpus).



4.4. DISCOURSE RELATION ANALYSIS 69

In order to learn masked language modeling, we masked 15% of tokens. We

dynamically selected masked tokens following Liu et al. (2019).

We initialized the encoder’s parameters using the weights of RoBERTaBASE (Liu

et al., 2019). The other parameters were initialized randomly. We trained the

model for 10,000 steps with a batch size of 512. We used the Adam opti-

mizer (Kingma and Ba, 2015) with a learning rate of 2e-5, β1 = 0.9, β2 = 0.999,

linear warmup of the learning rate over the first 1,000 steps, and linear decay of

the learning rate.

Japanese

We used a Japanese Wikipedia dump to create input texts. We split the texts

into clauses using KNP, a widely used Japanese syntactic parser (Kawahara and

Kurohashi, 2006). We created input texts and assign random sentences to them

in the same way as in Section 4.3.5. The number of sentences (clauses) in an input

text T was 6.42 on average.

We initialized the encoder’s parameters with BERTBASE, pretrained on a

Japanese Wikipedia dump2. The other details were the same as in Section 4.3.5.

4.4 Discourse Relation Analysis

We show the effectiveness of the proposed method using discourse relation analysis

as a concrete example of context analysis. Discourse relation analysis is a task

to predict the logical relation between two arguments. An argument roughly

corresponds to a sentence or a clause. We conduct experiments on English and

Japanese datasets.

4.4.1 Datasets

Penn Discourse Tree Bank (PDTB) 3.0

PDTB 3.0 is a corpus of English newspaper with discourse relation labels (Prasad

et al., 2018). We focus on implicit discourse relation analysis, where no explicit

2Available at https://alaginrc.nict.go.jp/nict-bert/index.html.
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discourse marker exists. Following Kim et al. (2020), we use the Level-2 labels

with more than 100 examples and use 12-fold cross-validation.

Kyoto University Web Document Leads Corpus (KWDLC)

KWDLC is a Japanese corpus consisting of leading three sentences of web doc-

uments with discourse relation labels (Kawahara et al., 2014; Kishimoto et al.,

2018, 2020). As KWDLC does not discriminate between implicit discourse rela-

tions and explicit discourse relations, we target both. KWDLC has seven types

of discourse relations, including NoRelation. The evaluation protocol is 5-fold

cross-validation. Following Kim et al. (2020), each fold is split at the document

level rather than the individual example level.

4.4.2 Model

We train two types of models; one uses the context of arguments, and the other

does not.

When a model uses context, the model is given the paragraph that contains

arguments of interest. Figure 4.4 shows the overview. In this setting, first, the

paragraph is split into sentences. Arguments are treated as a single sentence, and

their context is split in the way described in Section 4.3.5. Then, an encoder com-

putes the representation of each sentence in the same manner as in Section 4.3.1.

Given the concatenation of the arguments’ representations, a relation classifier

predicts the discourse relation. As a relation classifier, we employ a multi-layer

perceptron with one hidden layer and ReLU activation.

When a model does not use context, the model is given arguments of interest

only. Figure 4.5 shows the overview. In this setting, we use the sentence pair

classification method proposed by Devlin et al. (2019).

Our proposed method is introduced to a model which uses context by initial-

izing its encoder’s parameters using our sentence encoder. In experiments, we

report a difference in performance depending on models used for initialization.
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Figure 4.4: Overview of the model that uses context. When two arguments are

k-th and l-th sentences, their sentence representations are concatenated and fed

into the discourse relation classifier.
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Figure 4.5: Overview of the model that does not use context. Following Devlin

et al. (2019), two arguments are concatenated with the special [CLS] and [SEP]

tokens and fed into the encoder. The discourse relation is decided from the rep-

resentation of the [CLS] token.

4.4.3 Implementation Details

Input texts are truncated to the maximum input length of 512, which is long

enough to hold almost all inputs. We train models for up to 20 epochs. At the

end of each epoch, we compute the performance for the development data and

adopt the model with the best performance. If the performance does not improve

for five epochs, we stop the training. We use the Adam optimizer with a learning

rate of 2e-5, β1 = 0.9, β2 = 0.999. We update all the parameters in models, i.e.,

pretrained sentence encoders are fine-tuned to solve discourse relation analysis.

4.4.4 Results

Table 4.1 shows the result for PDTB 3.0. The evaluation metric is accuracy. The

highest performance was achieved by the proposed method. To our knowledge,

this is the state-of-the-art performance among models with the same parameter

size as BERTBASE. The model that optimized the generative objective was inferior
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Context Encoder Acc

Unused BERTBASE (Kim et al., 2020) 57.60

XLNetBASE (Kim et al., 2020) 60.78

RoBERTaBASE 61.68±1.63

Used BERTBASE 56.83±1.43

RoBERTaBASE 62.25±1.47

RoBERTaBASE+Gen 62.19±1.33

RoBERTaBASE+Det 62.59 ± 1.47

RoBERTaBASE+Con (ours) 63.30±1.42

Table 4.1: Results of implicit discourse relation analysis on PDTB 3.0 using the

Level-2 label set (Kim et al., 2020). Gen, Det and Con indicate that the encoder

is pretrained by optimizing the generative, detective and contrastive objectives,

respectively. The scores are the mean and standard deviation over folds.

not only to the proposed method but also to the vanilla RoBERTa model with

context. The model optimized with the detective objective was slightly better

than the vanilla RoBERTa model, but inferior to the proposed method.

Table 4.2 shows the result for KWDLC. The evaluation metrics are accuracy

and micro-averaged precision, recall, and F13. The highest performance was again

achieved by the proposed method. The decrease in performance by optimizing the

generative objective is consistent with the experimental results on PDTB 3.0.

4.4.5 Qualitative Analysis

We show several examples of discourse relation analysis in KWDLC.

(26) [Arg1 ninshin-no shindan-o uketara ] [kodomo ikusei-ka-ni todokedete-kudasai.]

[Arg2 shussho-todoke-ya kenshin-nado kongo-no boshi-no kenko-kanri-de

hitsuyo-na boshi-kenko-techo-nado-o o-watashi-shimasu.]

3As examples with the discourse relation of NoRelation accounts for more than 80% of the

dataset, precision, recall, and F1 are calculated without examples with NoRelation to make

performance difference intelligible.
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Context Encoder Acc Prec Rec F1

Unused BERT 80.68±1.59 45.90±4.06 41.42±8.35 43.37±6.28

Used BERT 84.36±2.05 62.55±10.26 39.13±7.38 47.67±6.68

BERT+Gen 84.16±1.60 57.84±8.51 40.13±0.42 47.21±2.68

BERT+Det 83.89±1.73 61.53±4.52 40.37±6.27 47.43±3.15

BERT+Con (ours) 85.02±1.85 63.51±5.90 41.04±4.24 49.74±4.11

Table 4.2: Results of discourse relation analysis on KWDLC. The scores are the

mean and standard deviation over folds.

[Arg1 If you are diagnosed as pregnant,] [contact the childcare division.]

[Arg2 You will be given the maternity health record book and other doc-

uments necessary for future health care.]

Label: NoRelation

Sentences (clauses) are enclosed in [ and ]. The first argument is marked by

“Arg1,” and the second argument is marked by “Arg2.” Without context, mod-

els wrongly predicted the discourse relation of Condition. This prediction is

reasonable as the models did not know that another sentence exists between the

arguments. Considering context reduces such false positive predictions, which led

to improving the performance of models using context. In PDTB 3.0, as implicit

discourse relation labels are assigned only to adjacent two arguments, the perfor-

mance improvement brought by considering context was relatively small compared

to the one in KWDLC.

However, even with context, the models that did not learn our contrastive ob-

jective erroneously predicted the discourse relation of Condition. We conjecture

that this is because the models relied on the discourse marker of Condition,

“tara (if).” Only the model that learned our contrastive objective was able to

predict the correct discourse relation, NoRelation.

We show another improved example.

(27) [Arg1 Niigata-ken-ni aru kokuei koen echigo kyuryo koen-e, ippaku-de asobi-
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ni dekakeyo-to] [Arg2 omoitachi-mashita.]

[Arg1 I want to go to a government-managed park in Niigata Prefecture

for an overnight visit,] [Arg2 I came up with that.]

Label: NoRelation

The models except ours wrongly predicted the discourse relation of Purpose

between Arg1 and Arg2. This is probably because the Japanese postpositional

particle to can be a discourse marker of Purpose. For example, if Arg2 were

“nizukuri-o hajimeta (I started packing),” the prediction would be correct. How-

ever, in this case, the postpositional particle to is used to construct a sentential

complement. That is, Arg1 is the object of Arg2. It is not possible to distinguish

between the two usages from its surface form. Our model correctly predicted the

discourse relation of NoRelation, which implies that our method was able to

understand that Arg1 is a sentential complement.

We show yet another improved example of implicit discourse relation analysis

in KWDLC.

(28) [Arg1 izen-kara keikaku-shiteita homupeji-o kaisetsu-suru-koto-ga-deki,] [Arg2

ureshii kagiri-dearu.]

[Arg1 I was able to launch the website that I had planned for a while,]

[Arg2 I’m happy.]

Label: Cause/Reason

While most models predicted the discourse relation of NoRelation between

Arg1 and Arg2, the proposed model correctly recognized the discourse relation

of Cause/Reason. We speculate that the models other than ours failed to

understand Arg1 at the level of “a happy event occurred.”

Finally, we show an example that no models were able to correctly predict the

discourse relation.

(29) [kyo-wa shinsaku baggu & semioda-no katto-nado-o shi-mashita.] [Arg1

juni-gatsu-no sakusei-bun-o mou hajimete-imasu.] [nenmatsu girigirini-

natte-simatte] [Arg2 batabata-suru-no-ga iya-nanode.]



4.5. SENTENCE RETRIEVAL 75

[Today, I cut the new bags and semi-custom ordered ones.] [Arg1 I’ve al-

ready started work for December.] [At the end of the year,] [Arg2 I don’t

want to be in a rush.]

Label: Cause/Reason

No models were not able to capture the discourse relation of Cause/Reason

between Arg1 and Arg2. This is possibly due to the fact that our sentence rep-

resentations were trained on Wikipedia texts and hardly capture the discourse

relations in diaries like this. We observed many errors when texts were very dif-

ferent from those in Wikipedia, such as essay, diary, and advertisement. We expect

that such errors can be mitigated by using texts obtained from wide domains for

pretraining sentence representations.

4.5 Sentence Retrieval

To investigate what is learned by our contrastive objective, we did sentence re-

trieval based on the similarity between sentence representations. For targets,

we randomly sampled 500,000 sentences with context from input texts used for

training. For a query, we used a sentence with its context in a Wikipedia article.

Computing the sentence representations for the targets and query, we searched

the closest sentences based on their cosine similarity.

Table 4.3 shows an example. In addition to the top-ranked sentences, we

also picked up some highly-ranked sentences. The top two sentences were very

similar to the query sentence regarding the topic, meaning, and context. While

the sentences of lower rank had different topics from the query sentence, they all

described a positive aspect of an entity and had a similar context in terms of that

an entity is introduced in their preceding sentences.

We confirmed that almost the same results were obtained in Japanese. Ta-

ble 4.4 shows an example of sentence retrieval in Japanese. Again, we observed

that the top-ranked sentence was very similar to the query sentence regarding the

topic, meaning, and context, and the sentences of lower rank were similar to the

query sentence at a generalized level and had a similar context.

In order to investigate the degree of generalization of sentence expressions
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Query: [The Beatles were an English rock band formed in Liverpool in 1960.] [The

group, whose best-known line-up comprised John Lennon, Paul

McCartney, George Harrison and Ringo Starr, are regarded as

the most influential band of all time.]

Retrieved: 1) [Britney Jean Spears (born December 2, 1981) is an American singer,

songwriter, dancer, and actress.] [She is credited with influencing the

revival of teen pop during the late 1990s and early 2000s, for

which she is referred to as the “Princess of Pop”. ] ...

2) [Dynasty was an American band, based in Los Angeles, California, created

by producer and SOLAR Records label head Dick Griffey, and record producer

Leon Sylvers III.] [The band was known for their dance/pop numbers

during the late 1970s and 1980s.] ...

3) [Lu Ban (–444BC) was a Chinese structural engineer, inventor, and carpenter

during the Zhou Dynasty.] [He is revered as the Chinese god (patron) of

builders and contractors.] ...

10) [Stacey Park Milbern (May 19, 1987 – May 19, 2020) was an American

disability rights activist.] [She helped create the disability justice

movement and advocated for fair treatment of people with

disabilities.] ...

20) [The National Action Party (, PAN) is a conservative political party in

Mexico founded in 1938.] [The party is one of the four main political

parties in Mexico, and, since the 1980s, has had success winning local,

state, and national elections.] ...

Table 4.3: Results of sentence retrieval based on the cosine similarity between

sentence representations computed by our method. [·] indicates a sentence. The

query and retrieved sentences are marked in bold, and their contexts are shown

together. The numbers indicate the rank of sentence retrieval.
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Query: [ビートルズは、1960年代から 1970年にかけて活動したイギリス・
リヴァプール出身のロックバンド。] [20世紀を代表する音楽グループである。]

Retrieved: 1) [ドゥービー・ブラザーズはアメリカ合衆国のロックバンド。] [１９７１年の
デビュー以来、解散時期を挟みながらも現在まで第一線で活動し続ける人気
グループ。] [１９６０年代後半から１９７０年代まで、アメリカ音楽界で大きな
ムーヴメントとなったウェストコースト・ロックを代表するバンドのひとつ。]

2) [民族革命運動党は、ボリビアの政党。] [２０世紀のボリビアの歴史で
最も重要な役割を果たした政党。]

10) [株式会社タミヤは、静岡県静岡市に本社を置く模型・プラモデル
メーカー。] [世界有数の総合模型メーカーである。]

Table 4.4: Results of sentence retrieval in Japanese. The numbers indicate the

rank of sentence retrieval. [·] indicates a sentence. The query and retrieved

sentences are marked in bold, and their contexts are shown together.

learned by the proposed method qualitatively, it is essential to construct a cor-

pus with a variety of annotations at the sentence level (e.g., emotion polarity,

volitionality, discourse function, etc.). We leave this for future work.

4.6 Summary of This Chapter

We proposed a method to learn contextualized and generalized sentence represen-

tations using contrastive self-supervised training. Experiments showed that the

proposed method improves the performance of discourse relation analysis both in

English and Japanese. Besides, through qualitative analysis, we found that our

sentence representations are context-sensitive and capture a generalized meaning.

The proposed method can be potentially used for various applications other

than discourse relation analysis. For example, extractive summarization and com-

mon sense inference are promising applications of the proposed method. An im-

portant future work is to investigate the effectiveness of the proposed method for

these tasks.

Another future direction is to investigate the degree of generalization of sen-

tence expressions learned by the proposed method. Because the proposed method

is a self-supervised method, the level of abstraction of the sentence representations
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trained by the proposed method is not obvious. Through qualitative evaluation,

we confirmed that the proposed method captures the generalized meaning of sen-

tences and takes the context into account. For a more detailed analysis, a corpus

with a variety of annotations at the sentence level (e.g., emotion polarity, voli-

tionality, discourse function, etc.) would be effective. Such a corpus will help to

clarify what kind of meaning the proposed method learns from the sentences.



Chapter 5

Next Event Prediction

Typical event sequences are an important class of commonsense knowledge. For-

malizing the task as the generation of a next event conditioned on a current event,

previous work in event prediction employs sequence-to-sequence (seq2seq) models.

However, what can happen after a given event is usually diverse, a fact that can

hardly be captured by deterministic models. In this paper, we propose to incor-

porate a conditional variational autoencoder (CVAE) into seq2seq for its ability

to represent diverse next events as a probabilistic distribution. We further extend

the CVAE-based seq2seq with a reconstruction mechanism to prevent the model

from concentrating on highly typical events. To facilitate fair and systematic eval-

uation of the diversity-aware models, we also extend existing evaluation datasets

by tying each current event to multiple next events. Experiments show that the

CVAE-based models drastically outperform deterministic models in terms of pre-

cision and that the reconstruction mechanism improves the recall of CVAE-based

models without sacrificing precision.

5.1 Introduction

Typical event sequences are an important class of commonsense knowledge that

enables deep text understanding (Schank and Abelson, 1975; LoBue and Yates,

2011). Following previous work (Nguyen et al., 2017), we work on the task of

generating a next event conditioned on a current event, which we call event pre-

79
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diction. For example, we want a computer to recognize that the event “board

bus” is typically followed by another event “pay bus fare” and to generate the

latter word sequence given the former.

Early studies memorized event sequences extracted from a corpus and in-

evitably suffered from low generalization capability and a scalability problem. A

promising approach to modeling wide-coverage knowledge is to generalize events

by representing them in a continuous space (Granroth-Wilding and Clark, 2016;

Nguyen et al., 2017; Hu et al., 2017). Nguyen et al. (2017) generate a next event

using the sequence-to-sequence (seq2seq) framework, which was first proposed for

machine translation (Bahdanau et al., 2014) and subsequently applied to various

NLP tasks including text summarization (Rush et al., 2015; Chopra et al., 2016)

and dialog generation (Sordoni et al., 2015; Serban et al., 2016).

One limitation of the simple seq2seq models, which are deterministic in nature,

is their inability to take into account an important characteristic of events: What

can happen after a current event is usually diverse. For the example of “board

bus” mentioned above, “get off bus” as well as “pay bus fare” is a valid next

event. The inherent diversity makes it difficult to train deterministic models, and

during testing, they can hardly generate multiple next events that are both valid

and diverse.

To address this problem, we first propose to incorporate a conditional varia-

tional autoencoder (CVAE) into seq2seq models (Kingma et al., 2014; Sohn et al.,

2015). As a probabilistic model, the CVAE draws a latent variable, representing

the next event, from a probabilistic distribution, and this distribution encodes the

diversity of next events.

Through experiments, we found that, as indicated by high precision, the CVAE

made learning from diverse training data more effective. However, the outputs of

the CVAE-based seq2seq model concentrated on a small number of highly typi-

cal events (i.e., low recall), possibly due to the mode-seeking property of varia-

tional inference (Bishop, 2006, pp. 466–470). This tendency is also reminiscent of

seq2seq models’ preference to generic outputs (Sordoni et al., 2015; Serban et al.,

2016).

We alleviate this problem by extending the CVAE-based seq2seq model with
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a reconstruction mechanism (Tu et al., 2017). During training, the reconstruction

mechanism forces the model to reconstruct the input from the hidden states of

the decoder. This has an effect of restraining the model from outputting highly

typical next events because they make the reconstruction more difficult.

We evaluate the proposed models using two event pair datasets provided by

Nguyen et al. (2017). One problem with these datasets is that each current event

in the test sets is tied to only one next event. For a fair evaluation of diversity-

aware models, we extend the test sets so that each given event has multiple next

events.

Experiments show that the CVAE-based seq2seq models consistently outper-

formed the simple seq2seq models in terms of precision (i.e., validity) without

hurting recall (i.e., diversity) while forcing the simple seq2seq models to generate

diverse outputs yielded low precision. The reconstruction mechanism consistently

improved recall of the CVAE-based models while keeping or even increasing pre-

cision. We also confirmed that the original test sets failed to detect the clear

differences between the models.

5.2 Related Work

5.2.1 Event Prediction

There is a growing body of work on learning typical event sequences (Chambers

and Jurafsky, 2008; Jans et al., 2012; Pichotta and Mooney, 2014; Granroth-

Wilding and Clark, 2016; Pichotta and Mooney, 2016; Hu et al., 2017; Nguyen

et al., 2017). While early studies explicitly store event sequences in a symbolic

manner, a recent approach to this task is to train neural network models that

implicitly represent event sequence knowledge as continuous model parameters.

In both cases, models are usually evaluated by how well they restore a missing

portion of an event sequence. We collectively refer to this task as event prediction.

Event prediction can be categorized into two tasks: classification and gener-

ation. In the classification task, a model is to choose one from a pre-defined set

of candidates for a missing event. A popular strategy is to rank candidates by

similarity with the remaining part of the event sequence. Similarity measures in-



82 CHAPTER 5. NEXT EVENT PREDICTION

clude point-wise mutual information (Chambers and Jurafsky, 2008), conditional

bi-gram probability (Jans et al., 2012), and cosine similarities based on latent

semantic indexing and word embeddings (Granroth-Wilding and Clark, 2016).

However, for its reliance on pre-defined candidates, the classification approach is

constrained by its limited flexibility.

In the generation task, a model is to directly generate a missing event, usually

in the form of a word sequence (Pichotta and Mooney, 2016; Hu et al., 2017;

Nguyen et al., 2017), although one previous study adopted a predicate-argument

structure-based event representation (Weber et al., 2018). Nguyen et al. (2017)

worked on the task of generating a next event given a single event, which we follow

in this paper. They adopted the seq2seq framework (Sutskever et al., 2014) and

investigated how recurrent neural network (RNN) variants, the number of RNN

layers, and the presence or absence of the attention mechanism (Bahdanau et al.,

2014) affected the performance. Hu et al. (2017) gave a sequence of events to

the model to generate the next one. Accordingly, they worked on hierarchically

encoding the given event sequence using word-level and event-level RNNs.

All of these models are deterministic in nature and do not take into account the

fact that there could be more than one valid next event. For example, both “get

off bus” and “pay bus fare” seem to be appropriate next events of “board bus.”

The inherent diversity makes it difficult to train deterministic models. During

testing, they can hardly generate multiple next events that are both valid and

diverse.

5.2.2 Conditional Variational Autoencoders

Variational autoencoders (VAEs) are a neural network-based framework to learn

probabilistic generation (Kingma and Welling, 2013; Rezende et al., 2014). The

basic idea of VAEs is to reconstruct an input y via a latent representation z in a

way similar to autoencoders (AEs). While AEs learn the process as deterministic

transformation, VAEs adopt probabilistic generation: a VAE encodes y into the

probability distribution of z, instead of a point in a low-dimensional vector space.

It then reconstructs the input y from z drawn from the posterior distribution. z

is assumed to have a prior distribution, for which a multivariate Gaussian distri-
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bution is often used. As straightforward extensions of VAEs, conditional VAEs

(CVAEs) let probabilistic distributions be conditioned on a common observed

variable x (Kingma et al., 2014; Sohn et al., 2015). In our case, x is a current

event while y is a next event to predict.

Bowman et al. (Bowman et al., 2016) applied VAEs to text generation. They

constructed VAEs using RNNs as its components and found that VAEs with an

RNN-based decoder failed to encode meaningful information to z. To alleviate

this problem, they proposed simple but effective heuristics: KL cost annealing

and word dropout. We also employ these techniques.

If a VAE-based text generation model is conditioned on text, it can be seen

as a CVAE-based seq2seq model (Zhao et al., 2017; Serban et al., 2017; Zhang

et al., 2016). Since a CVAE learns probabilistic generation, it is suitable for tasks

where the output is not uniquely determined according to the input. One of the

representative applications of CVAE-based text generation is dialogue response

generation, or the task of generating possible replies to a human utterance (Zhao

et al., 2017; Serban et al., 2017). Applying CVAEs to next event prediction is a

natural choice because the task is also characterized by output diversity.

5.2.3 Diversity-Promoting Objective Functions

In dialogue response generation, seq2seq is known to suffer from the generic re-

sponse problem: The model often ends up blindly generating uninformative re-

sponses such as “I don’t know.” A popular approach to this problem is to rerank

the candidate outputs, which are usually produced by beam search, according to

the mutual information with the conversational context (Li et al., 2016).

We notice that the reconstruction mechanism (Tu et al., 2017) serves the

same purpose in a more straightforward manner, albeit stemming from a different

motivation. The reconstruction mechanism forces the model to reconstruct the

input from the hidden states of the decoder. Although it was originally proposed

for machine translation to prevent over-translation and under-translation, it could

counteract the event prediction model’s tendency to concentrate on highly typical

outputs.
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Figure 5.1: The neural network architecture of our event prediction model that

uses a CVAE and a reconstruction mechanism. ⊕ denotes vector concatenation.

5.3 Problem Setting

Given a current event x, we are to generate a variety of events, each of which,

y, often happens after x. x and y are represented by word sequences like “board

bus” and “get off bus”. Our goal is to learn from training data an event prediction

model pθ(y|x), where θ is the set of model parameters.

5.4 Conditional VAE with Reconstruction

Figure 5.1 illustrates an overview of our model. To capture the diversity of next

events, we use a conditional variational autoencoder (CVAE) based seq2seq model.

The CVAE naturally represents diverse next events as a probability distribution.

Additionally, we extend the CVAE with a reconstruction mechanism (Tu et al.,

2017) to alleviate the model’s tendency to concentrate on a small number of highly

typical events.
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5.4.1 Objective Function

We introduce a probabilistic latent variable z and assume that y depends on both

x and z. The conditional log likelihood of y given x is written as:

log p(y|x) = log

∫
z
pθ(y, z|x)dz (5.1)

= log

∫
z
pθ(y|z, x)pθ(z|x)dz. (5.2)

We refer to pθ(z|x) and pθ(y|z, x) as the prior network and the decoder, respec-

tively. Eq. 5.2 involves an intractable marginalization over the latent variable z.

The CVAE circumvents this problem by maximizing the evidence lower bound

(ELBO) of Eq. 5.2. To approximate the true posterior distribution pθ(z|y, x), we

introduce a recognition network qϕ(z|y, x), where ϕ is the set of model parameters.

The ELBO is then written as:

LCVAE(θ, ϕ; y, x) = −KL(qϕ(z|y, x) ∥ pθ(z|x))

+ Eqϕ(z|y,x)[log pθ(y|z, x)] (5.3)

≤ log p(y|x), (5.4)

where KL indicates the KL divergence. We extend the CVAE with a reconstruc-

tion mechanism pψ(x|y), where ψ is the set of model parameters. During training,

it forces the model to reconstruct x from y drawn from the posterior distribution.

Adding the corresponding term, we obtain the following objective function:

L(θ,ϕ, ψ; y, x) = LCVAE(θ, ϕ; y, x)

+ λEqϕ(z|y,x)[log pψ(x|y)pθ(y|z, x)], (5.5)

where λ is the weight for the reconstruction term. Because outputting highly

typical next events makes the reconstruction more difficult, the reconstruction

mechanism counteracts the model’s tendency to do so.

5.4.2 Neural Network Architecture

We first assign distributed representations to words in x and y using the same

encoder. The encoder is a bi-directional LSTM (Hochreiter and Schmidhuber,
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1997) with two layers. We concatenate the representations of the first and last

words to obtain hx and hy, the representations of x and y, respectively.

We assume that z is distributed according to a multivariate Gaussian distribu-

tion with a diagonal covariance matrix. During training, the recognition network

provides the posterior distribution qϕ(z|y, x) ∼ N (µ,σ2I):[
µ

log(σ2)

]
= W 1

[
hy

hx

]
+ b1. (5.6)

During testing, the prior network gives the prior distribution pθ(z|x) ∼ N (µ′,σ′2I):[
µ′

log(σ′2)

]
= W 2h

x + b2. (5.7)

We employ the reparametrization trick (Kingma and Welling, 2013) to sample

z from the posterior distribution so that the error signal can propagate to the

earlier part of the networks.

We use a single-layer LSTM as the decoder. When the decoder predicts yi, the

i-th word of y, it receives its previous hidden state, the word embedding of yi−1,

the latent variable z, and the context representation calculated by an attention

mechanism (Bahdanau et al., 2014).

We use a single-layer LSTM as the reconstructor. When the reconstructor

predicts xj , the j-th word of x, the inputs are its previous hidden state, the

word embedding of xj−1, and the context representation calculated by an atten-

tion mechanism. The parameters of the reconstructor’s attention mechanism are

different from those used in the decoder.

As indicated by Eqs. 5.3 and 5.5, we sum up three terms to get the loss: the

cross entropy loss of the decoder, the cross entropy loss of the reconstructor, and

the KL divergence between the posterior and prior. Since these loss terms are

differentiable with respect to the model parameters θ, ϕ and ψ, we can optimize

them in an end-to-end fashion.

5.4.3 Optimization Techniques

Encoding meaningful information in z using CVAEs with an RNN decoder is

known to be hard (Bowman et al., 2016). We employ two common techniques to
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alleviate the issue: (1) KL cost annealing (gradually increasing the weight of the

KL term) and (2) word dropout (replacing target words with unknown words with

a certain probability). For KL cost annealing, we increase the weight of the KL

term using the sigmoid function. For word dropout, we start with no dropout,

and gradually increase the dropout rate by 0.05 every epoch until it reaches a

predefined value.

5.5 Datasets

We used the following two datasets provided by Nguyen et al. (2017).

Wikihow: Wikihow1 organizes on a large scale descriptions of how to accomplish

tasks. Each task is described by sub-tasks with detailed descriptions. Nguyen

et al. (2017) created an event pair dataset by extracting adjacent sub-task de-

scriptions.

Descript: The original DESCRIPT corpus is a collection of event sequence de-

scriptions created through crowdsourcing (Wanzare et al., 2017). Nguyen et al.

(2017) built a new corpus of event pairs by extracting the contiguous two event

descriptions in the DESCRIPT corpus. Descript is of higher quality but smaller

than Wikihow.

5.5.1 Construction of New Test Sets

One problem with these datasets is that each current event in their test sets is

tied to only one next event. As discussed by Nguyen et al. (2017), test sets for

event prediction should have reflected the fact that there could be more than one

valid next event.

Inspired by Zhao et al. (2017), we addressed this problem by extending the

test sets through an information retrieval technique and crowdsourcing. Figure 5.2

illustrates the overall workflow. For each of the two test sets, we first randomly

chose 200 target event pairs. Our goal was to add multiple next events to each

of the current events. For each event pair, we focused on the current event and

retrieved 20 similar current events in the training set. As a similarity measure, we

1https://www.wikihow.com
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Figure 5.2: The workflow of test data construction.

used cosine similarity based on the averaged word2vec2 embeddings of constituent

words. We then used the corresponding 20 next events of the retrieved event pairs

as candidates for the next events of the target current event.

We asked crowdworkers to check if a given event pair was appropriate. Note

that our crowdsourcing covered not only the automatically retrieved event pairs

but also the original event pairs. To remove a potential bias caused by wording,

we presented a current event and a candidate next event as A and B, respectively.

Each event pair was given one of the following five labels:

l1: Strange expression.

l2: No relation.

l3: A and B are related, but one does not happen after the other.

l4: A happens after B.

l5: B happens after A.

Event pairs with label l5 were desirable. We distributed each event pair to five

workers and aggregated the five judgments by taking the majority. We used the

Amazon Mechanical Turk platform and employed crowdworkers living in the US

or Canada whose average work approval rates were higher than 95%. Figure 5.3

2https://code.google.com/archive/p/word2vec/
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Figure 5.3: The user interface that crowdworkers used to annotate labels about

the relation between events.

presents the user interface that crowdworkers used to annotate labels. The total

cost was 240USD.

Table 5.1 shows the ratio of event pairs with each label. We selected event

pairs with label l5 to build new test sets. The sizes of the resultant datasets

are listed in Table 5.2. One current event in Wikihow and Descript had 4.9 and

11.0 next events on average, respectively. Note that the number of unique current

events in our test sets was not equal to 200 because some current events happened

to have no next event with label l5.

5.5.2 The Quality of Original Datasets

As shown in Table 5.1, only 84.1% of the original event pairs of Descript were given

label l5. Even worse, the majority of the original event pairs of Wikihow were

given labels other than l5. We had two possible explanations for this. First, be-
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l1 l2 l3 l4 l5

Wikihow (orig.) 7.3% 20.2% 30.6% 6.5% 35.5%

Wikihow (cand.) 6.9% 37.4% 25.4% 10.0% 20.3%

Descript (orig.) 0.0% 4.5% 8.0% 3.5% 84.1%

Descript (cand.) 1.7% 19.7% 12.0% 13.3% 53.2%

Table 5.1: The result of crowdsourcing. Each number indicates the ratio of events

with the corresponding label. The labels were selected by taking the majority. In

no majority cases, we gave priority to the labels with smaller subscripts.

Train Dev Test New Test

Wikihow 1,287,360 26,820 26,820 858 (174)

Descript 23,320 2,915 2,915 2,203 (199)

Table 5.2: Statistics of the datasets. The training, development and test sets are

the original ones provided by Nguyen et al. (2017). For each dataset, we built

new test sets with multiple next events. The numbers of unique current events

are in parentheses.

cause Wikihow was an open-domain dataset, it contained descriptions with which

crowdworkers were not necessarily familiar (e.g., creating a website). Second, the

event pairs were sometimes hard to interpret because they were extracted from

adjacent descriptions out of context. The results suggest that further studies in

this area should use Wikihow with caution.

5.6 Experiments

5.6.1 Model Setup

We initialized word embeddings by pre-trained word2vec embeddings. Specifi-

cally, we used the embeddings with 300 dimensions trained on the Google News

corpus. The encoder, decoder, and reconstructor had hidden vectors with size
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256. The prior network and the recognition network consisted of a linear map

to 256-dimensional space. The latent variable z had a size of 256. We used the

Adam optimizer (Kingma and Ba, 2015) for updating model parameters. The

learning rate was selected from {0.0001, 0.001, 0.01}. For CVAEs, we selected the

word dropout ratio from {0.0, 0.1, 0.3}. To investigate the effect of the weight

parameter for the reconstruction loss, we trained and compared models with dif-

ferent λ ∈ {0.1, 0.5, 1.0}. Hyper-parameter tuning was done based on the original

development sets.

5.6.2 Baselines

We compared eight seq2seq models: deterministic models (S2S) (Nguyen et al.,

2017) and CVAE-based models (CVAE) with and without the attention mech-

anism (A) and the reconstruction mechanism (R). The hyper-parameters were

the same as those reported in Section 5.6.1. The models without the attention

mechanism calculated the context representation by concatenating the forward

and backward last hidden states of the encoder.

To stochastically generate next events using deterministic models, we sampled

words at each decoding step from the vocabulary distribution.3 For CVAE-based

models, we sampled the latent variable z and then decoded y greedily.

5.6.3 Quantitative Evaluation

Following Zhao et al. (2017), we evaluated precision and recall. For a given current

event x, there were Mx reference next events rj , j ∈ [1,Mx]. A model generated

N hypothesis events hi, i ∈ [1, N ]. The precision and recall were as follows:

precision(x) =

∑N
i=1 maxj∈[1,Mx] BLEU(rj , hi)

N

recall(x) =

∑Mx
j=1 maxi∈[1,N ] BLEU(rj , hi)

Mx

3We did not employ a beam search algorithm because it was not easy to compare the results

with those of the probabilistic models. Beam search yields a specified number of distinct events

while the probabilistic models can generate duplicate events.
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where BLEU is the sentence-level variant of a well-known metric that measures the

geometric mean of modified n-gram precision with the penalty of brevity (Papineni

et al., 2002). The final score was averaged over the entire test set. We refer to

the precision and recall as P@N and R@N, respectively. F@N is the harmonic

mean of P@N and R@N. We report the scores with N = 5 and 10, in accordance

with the average number of next events in our new test sets.

For comparison, we also followed the experimental procedure in Nguyen et al.

(2017), where event prediction models deterministically output a single next event

using greedy decoding. For CVAEs, we did this by setting z at the mean of the

predicted Gaussian prior. The outputs were evaluated by BLEU. We refer to the

criterion as greedy-BLEU. We used the original test sets for this experiment.

Table 5.3 and Table 5.4 list the evaluation results. In terms of precision (i.e.,

validity), the CVAE-based models consistently outperformed the deterministic

models with large margins. The deterministic models achieved better recall (i.e.,

diversity) than the CVAE-based models, but this came with a cost of drastically

low precision. The results may be somewhat surprising because our focus is on

generating diverse next events. However, generating valid next events is a precon-

dition of success, and we found that the CVAE-based models were able to satisfy

the two requirements while the deterministic models were not.

For both deterministic and probabilistic models, the attention mechanism

exhibited tendencies to improve precision and recall on Wikihow but to lower

the scores on Descript. Our results were consistent with those of Nguyen et

al. (Nguyen et al., 2017). We conjecture that Descript was so small that the

attention mechanism led to overfitting.

For CVAEs, the reconstruction mechanism mostly improved recall without

hurting precision, regardless of the presence or absence of the attention mech-

anism. Note that the best F-scores were consistently achieved by CVAEs with

reconstruction. Such consistent improvements were not observed for the determin-

istic models. The reconstruction mechanism had evidently no effect on mitigating

the difficulty of deterministic models in learning from diverse data.

In terms of greedy-BLEU, our deterministic models were competitive with the

previously reported models of Nguyen et al. (Nguyen et al., 2017), though our
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models were optimized based on the loss while the previous models were tuned

according to greedy-BLEU. Curiously enough, greedy-BLEU indicated no big dif-

ference between the deterministic and probabilistic models, while our new test

sets yielded large gaps between them in terms of precision and recall. As we will

see in the next section, these differences were not spurious and did demonstrate

the limitation of a single pair-based evaluation.

5.6.4 Qualitative Analysis

Table 5.5 shows next events generated by the deterministic and probabilistic mod-

els trained on Wikihow. The deterministic model generated events without any

duplication, leading to a high recall. However, most of the generated events, such

as “choose high speed goals”, look irrelevant to the current event. This suggests

that, as indicated by low precision, the deterministic model fails to generate valid

next events when being forced to diversify the outputs.

The CVAE without the reconstruction mechanism appears to have generated

next events that were generally valid and, at a first glance, diverse. However, a

closer look reveals that they expressed a small number of highly typical events and

that their semantic diversity was not large. For example, “consider the risks of

psychotherapy” was semantically identical with “consider the risk factors” in this

context. Compared with the vanilla CVAE, the CVAEs with reconstruction suc-

cessfully generated semantically diverse next events. We would like to emphasize

that the diversity was improved without sacrificing precision.

Table 5.6 shows an example from Descript. As with Wikihow, the deterministic

model generated next events that were diverse but mostly invalid. The vanilla

CVAE also lacked semantic diversity as with the case of Wikihow. The CVAE

with reconstruction (λ = 0.1) alleviated the problem and was able to produce

next events that were both valid and diverse. However, care must be taken in

tuning λ, as the model with λ = 1.0 ended up concentrating on a small number

of next events, which was indicated by low recall. With a too large λ, the model

was strongly biased toward next events that had one-to-one correspondences with

current events. Note that we could tune λ if we had new development sets with

multiple next events, in addition to new test sets.
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Finally, we have to acknowledge that there is still room for improvement in the

new test sets. Although we successfully collected valid and diverse next events,

the data construction procedure provided no guarantee of typicality. For the

reference next events of “board bus” (Table 5.6), “pay for the bus” and its variants

dominate, but we are unsure if they are truly more typical than “place your

luggage overhead or beneath seat.” One way to take typicality into account is to

ask a large number of crowdworkers to type next events given the current event,

rather than to check the validity of a given event pair. Although we did not do

this for the high cost and difficulty in quality control, it is worth exploring in the

future.

5.7 Discussion: Using a Pre-trained Language Model

In recent years, language models pre-trained on large texts have achieved high

performance on many tasks. Some of those language models are designed to be

able to perform generative tasks Lewis et al. (2020); Raffel et al. (2020).

In order to investigate whether such models can effectively solve next event

prediction, we fine-tune BART Lewis et al. (2020), a popular pre-trained language

model that is applicable to generative tasks. BART is trained through corrupting

a text with a noising function and reconstructing the original text in a seq2seq

manner.

Table 5.7 shows the results. In Wikihow, BART consistently outperformed our

CVAE-based method. This is probably due to the fact that Wikihow is an open-

domain dataset, and BART was able to successfully transfer the knowledge gained

through pre-training on open-domain text. In Descript, BART was again superior

to our method in overall performance, although our method outperformed BART

in precision.

Interestingly enough, on the evaluation metric of the previous study (greedy-

BLEU), BART was as good as, or rather worse than, the previous study. This

result demonstrates the limitation of the evaluation method which relies on a

single next event, and supports the effectiveness of the proposed new dataset and

evaluation method for next event prediction.



5.8. SUMMARY OF THIS CHAPTER 99

P@5 R@5 F@5 P@10 R@10 F@10 greedy-BLEU

CVAE+AR 5.3±0.3 2.9±0.3 3.7±0.3 5.2±0.2 3.0±0.2 3.8±0.2 2.5±0.0

BART 6.2±0.2 4.2±0.2 5.0±0.2 6.1±0.2 5.0±0.1 5.5±0.1 3.2±0.0

(a) Results on Wikihow.

P@5 R@5 F@5 P@10 R@10 F@10 greedy-BLEU

CVAE+AR 18.6±1.4 5.5±0.4 8.4±0.6 18.5±1.6 5.9±0.3 9.0±0.5 5.6±0.4

BART 16.4±0.6 6.4±0.4 9.2±0.5 16.7±0.7 7.5±0.2 10.3±0.1 4.5±0.0

(b) Results on Descript.

Table 5.7: Results of next event prediction using BART (Lewis et al., 2020). The

scores of compared methods are cited from Table 5.3 and Table 5.4.

5.8 Summary of This Chapter

We tackled the task of generating next events given a current event. Aiming to

capture the diversity of next events, we proposed to use a CVAE-based seq2seq

model with a reconstruction mechanism. To fairly evaluate diversity-aware mod-

els, we built new test sets with multiple next events. The CVAE-based models

drastically outperformed deterministic models in terms of precision and that the

reconstruction mechanism improved the recall of CVAE-based models without

sacrificing precision. Although we focused on event pairs in the present work, the

use of longer sequence of events would be a promising direction for future work.



Chapter 6

Conclusion

6.1 Overview

In this thesis, we tackled three fundamental tasks in event-level language analysis:

volitionality classification, discourse relation analysis, and next event prediction.

We considered the characteristics of each task and proposed an effective method

for each of them. As for volitionality classification, we devised heuristics that

assigns labels to events in a raw corpus with high accuracy, and proposed a frame-

work to learn classifiers from such heuristically labeled events effectively. As for

discourse relation analysis, we proposed a self-supervised learning framework to

obtain generalized event representations that are effective in recognizing discourse

relations. As for next event prediction, we proposed to employ a probabilistic gen-

erative model based on CVAEs, taking into account the diversity of subsequent

events.

We describe the relationship between these tasks and methods, and discuss

the future prospects in the following.

6.2 The Relation between the Proposed Methods

This thesis tackled event classification, event-to-event relation analysis, and event

prediction and proposed effective solutions to them. The proposed methods can

be combined at an application level. To demonstrate that, we have developed a

100
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system to analyze causality between events extracted from a huge amount of texts,

called CausalityGraph (Kiyomaru et al., 2020). In CausalityGraph, discourse

relation analysis is used to extract event pairs with causality. Event volitionality

classification is used to categorize extracted event pairs. Event prediction has not

been introduced yet, but can be used to generalize extracted event pairs and show

plausible causal relations that are not explicitly written in the information source.

At the same time, we can expect a synergistic effect by combining these meth-

ods. For example, when solving discourse relation analysis, the performance could

be improved by considering commonsense knowledge by learning event predic-

tion or by explicitly considering the fundamental properties of events by learning

event classification tasks, such as volitionality classification. The method of learn-

ing contextualized event representations proposed for discourse relation analysis

would be effective for event classification and event prediction for events in con-

text.

6.3 Future Prospects

6.3.1 Unified Event-level Language Analysis

It is interesting to learn event-level language analysis tasks jointly. As mentioned

above, joint learning of event-level analysis tasks is expected to have a synergistic

effect and improve the performance of each task. Until a few years ago, it was com-

mon to employ neural networks with different architectures for each task, which

made it difficult to learn tasks with different inputs or outputs jointly. However,

with the advent of general-purpose language models based on the Transformer

architecture, such joint learning is becoming possible.

6.3.2 Exploratory Language Analysis by Language Modeling

In this thesis, we described that end-to-end learning is inherently inapplicable to

exploratory language analysis, which motivated us to work on event-level language

analysis.

However, recently, it has been shown that large language models trained on

large texts can perform various tasks, even though they are not trained to solve
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such tasks explicitly. The notable example is GPT-3 (Brown et al., 2020). When

GPT-3 is given a context “Where was the 1994 Olympics held?,” for example,

it outputs the correct location “Tokyo” as the continuation. Is it possible to

solve exploratory text analysis by asking GPT-3 what one wishes to know? Is

event-level language analysis still necessary?

We argue that event-level language analysis is still necessary, even if models

such as GPT-3 can provide plausible answers. In general, what we wish to ob-

tain through exploratory text analysis is what we do not know and thus cannot

determine whether it is correct. Unfortunately, the output of language models is

not always correct. In order to verify the output, there is no choice but to look

through a certain amount of information. Structural language analysis will still

be useful as a technology to support the verification process.

6.3.3 Application Development

Application development using the proposed methods is important future work.

Now that we have powerful tools for language understanding, it is more important

than ever to think about what we need to solve using such tools. Application

development is a mirror of important problems. The problems that are found

through application development are those that have a clear value to be solved.

While improving the performance on benchmark datasets is important, the pursuit

of real-world value is essential in guiding the research in the right direction.



Appendix A

Volitionality Indicating Words

The following is a list of volitional and non-volitional adverbs that we prepared

in Section 3.5. The number in parentheses indicates the number of events labeled

with the adverb when we used 30M documents in CC-100 as information source.

Japanese Volitional Adverbs: aete (5,293), isoide (4,187), jikkuri (4,017),

shinchoni (3,743), nonbiri (3,262), wazawaza (3,222), sassato (1,945), shuchushite

(1,194), itotekini (920), wazato (880), ishikitekini (786), nennirini (766), kirakuni

(591), chakkari (510), and chuibukaku (496).

Japanese Non-volitional Adverbs: omowazu (18,115), tsui (15,897),

jidotekini (14,212), futo (12,050), tsuitsui (10,054), jidode (5,058), kizuitara

(1,414), ukkari (1,333), saiwainimo (950), kouunnnimo (571), omoigakezu (546),

ainiku (422), kouunnnakotoni (285), fukounimo (63), and fukounakotoni (32).

English Volitional Adverbs: carefully (13,594), thoroughly (12,468), actively

(10,379), deliberately (3,366), intentionally (2,713), consciously (1,846), purposely

(1,391), hurriedly (942), attentively (839), and proactively (388).

English Non-volitional Adverbs: unfortunately (13,070), automatically

(12,824), accidentally (5,272), unexpectedly (3,106), luckily (1,894), instinctively

(1,321), unconsciously (1,059), inadvertently (999), unintentionally (635), and

carelessly (384).
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