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Abstract

Language learning is increasingly important in modern globalized world. The ways

of teaching languages and making the teaching materials are also changing. Natural

Language Processing as a discipline provide tools for automated handling of human

languages by a computer. The tools and methods from natural language processing

are useful for automating the needs of language learning. This thesis presents

a foundation for Japanese word segmentation and part-of-speech tagging and an

example of educational application: automated examples of high-quality example

sentences.

Japanese language has no spaces and even the task of segmenting the sentence into

words becomes non-trivial. This task is crucial for the Japanese Natural Processing

pipeline, is often performed together with part-of-speech tagging and is called

Morphological Analysis. High accuracy of analysis, especially of part-of-speech

tagging of grammar makes the analyzer very useful for educational applications.

Still, for the morphological analysis to be practical, it should not just have high

accuracy, but also be fast as well. It also helps if the analyzer is compact.

Learning vocabulary is a crucial part of language learning and require students

to perform a large amount of homework. Flashcard approaches are often used to

increase the efficiency of vocabulary learning. Still, the flashcards often do not

contain the context, not teaching the student how to use the world correctly.

We describe a Juman++ V2 improvement of morphological analyzer which achieves

very high analysis accuracy (> 99.5 segmentation F1 score on newspaper domain),

while being as fast as classical analyzers. Our description consists of algorith-

mic improvements and implementation details which allow Juman++ to efficiently

utilize modern out-of-order CPUs. Juman++ supports training with partially an-

notated data and provides active learning tooling for selecting sentences from a

non-annotated corpus which are difficult to analyze.

We also describe an experiment in implementing a fully neural model for mor-

phological analysis which does not model the dictionary data explicitly. Instead, it

learns the dictionary data implicitly, together with segmentation and part-of-speech

tagging decisions from large-scale training data, analyzed by a bootstrapping clas-

sical analyzer. The fully neural model achieves comparable or superior accuracy to
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Abstract

the bootstrapping analyzer, while having significantly smaller model size (20 times

less than the bootstrap one).

Finally, we describe an automatic high-quality example extraction system. The

system consists of a distributed search engine, which selects a large number of ex-

ample sentence candidates with rich syntactic structure around the target word and

a filtering step which selects a small set of sentences, which are independently good

and non-similar to each other. We performed a blind experiment with Japanese lan-

guage learners and a teacher of Japanese language who have preferred our proposed

system to two baselines.
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1 Introduction

1.1 Thesis Overview

With the current globalized world, language learning is very important. Most

people know more than one language and compulsory education in the majority of

countries includes a foreign language. In Europe, almost all students learn at least

one foreign language
1
. In many countries, foreign language learning is included

in compulsory primary education. Language learning is supported by teachers

and teaching materials, both interactive and non-interactive. Interactive teaching

materials build on various foundations and natural language processing (NLP)

techniques frequently appear as a recent development.

Language learning is a multifaceted and complex activity. Vocabulary learning is

probably a cornerstone of language learning, and it can not be fully performed purely

in the classroom setting. The students must practice on their own in addition to the

classroom to acquire large vocabularies. Based on these characteristics, vocabulary

learning is a perfect target for learning optimization techniques like flashcards. One

main theme of this thesis is the improvements for the flashcards with the help of

example sentences and the application of NLP technology to automate high-quality

example extraction.

We would like to focus on improving the learning of the Japanese language in

particular. One of defining traits of the Japanese language is the lack of natural

word segmentation — spaces. This makes NLP technology for Japanese different

from languages with spaces. The raw text first must be segmented into words. Such

segmentation can be defined manually by human annotators or defined automat-

ically by optimizing some, often information-theoretic, metric. In the latter case,

the segmentation usually diverges with human-defined one but can achieve better

accuracy in downstream applications. Language learning is, on the other hand,

word-based and it is crucial that the words are defined by humans.

Automated word segmentation is often accompanied by part-of-speech (POS)

tagging in Japanese and the whole joint process is called Morphological Analysis.

1https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Foreign_
language_learning_statistics

1

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Foreign_language_learning_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Foreign_language_learning_statistics


1 Introduction

外国人参政権が認められていない
↓

外国人参政権が認められていない

Figure 1.1: An example of Japanese sentence segmentation into morphemes

The part of speech information is very useful for educational applications. Because

the morphological analysis is the first step of the Japanese NLP pipeline, its accuracy

greatly affects the accuracy, and by extension the overall usability of the whole

system, so it is crucial to make that accuracy as high as possible. On the other hand,

applications can require a large number of text data, so the processing speed of the

morphological analysis is also very important. Another main theme of this thesis is

to propose approaches to make the Japanese morphological analysis accurate, fast,

and having compact models.

The structure of the thesis is the following. This chapter provides an introduction

to all topics covered by the thesis. While the motivation of this thesis lies in Japanese

language learning, the Morphological Analysis lies earlier in the NLP pipeline. Sec-

tion 1.2 gives the introduction to the problem of Japanese Morphological Analysis

with the detailed discussion following in Part 1.5. Section 1.3 from language learn-

ing, define the motivation and problem of high-quality example extraction and

outline the proposed solution, discussed in detail in Part 3.5. Section 1.4 defines the

contributions of this thesis with the supported publications. Section 1.5 discusses

the considerations of our work from the design standpoint.

1.2 Japanese Morphological Analysis

The Japanese language has a continous script: there are no delimiting spaces. How-

ever, the applications usually expect the text to be segmented into tokens. An

example of segmentation is shown in Figure 1.1. In most cases, there exist sev-

eral different ways to segment a given sentence. Still, most of these ways produce

nonsense segmentation from the language perspective.

There are two general types of approaches defining what these tokens are: su-

pervised and unsupervised. In the supervised approaches, the tokens are usually

defined to be morphemes, defined by segmentation standards and related human-

annotated corpora. In unsupervised approaches, there is no such apriori knowledge

for algorithms. The segmentation is decided mechanically by the algorithm, often

to minimize some information-theoretic measure. Our focus in this work lies in

supervised segmentation.

2



1.2 Japanese Morphological Analysis

1.2.1 Morphemes and Morphological Analysis Approach Types

Generally speaking, the definition of morpheme in Japanese morphological analysis

differs from the definition in European languages, and the term word is ill-defined

for Japanese (Murawaki 2019). In this thesis, we use the terms morpheme and word
interchangeably as a unit defined by a segmentation standard.

For Japanese, there are several popular standards like IPADic, Jumandic, and

UniDic. Because the way to segment text into morphemes is defined by humans,

it matches with the human expectation of what a word is. When an underlying

application will be interacting with users on a word level, tokens being human-

compatible is an essential requirement for segmentation.

Most Japanese analyzers use segmentation dictionaries that define corpus seg-

mentation standards. They usually have rich part-of-speech information attached

and are human-curated. One focus of segmentation dictionaries is to be consistent:

it should be possible to segment a sentence using the dictionary entries only in a

single correct way. Such dictionaries are often maintained together with annotated

corpora. On the other hand, Chinese-focused systems do not put much focus on

dictionaries. The dictionary is created by taking every unique word from the cor-

pus (Kruengkrai, Uchimoto, Jun’ichi Kazama, Y. Wang, Torisawa, and Isahara 2009;

Zheng, Hanyang Chen, and T. Xu 2013a), in contrast to Japanese where the corpora

are usually accompanied by a dictionary. Still, almost all approaches use rich fea-

ture templates or additional resources such as pre-trained character n-gram or word

embeddings, which increase the model size.

Unsupervised approaches (Mochihashi, Yamada, and Ueda 2009; Uchiumi, Tsuka-

hara, and Mochihashi 2015; Zhikov, Takamura, and Okumura 2010), on the other

hand, decide segmentation without external definitions. They do not require an-

notated corpora to work, but the resulting segmentation does not match with the

human expectation of a word. Nevertheless, unsupervised segmentation achieved

better accuracy on underlying tasks where user interaction is on a sentence or text-

level, like machine translation (Kudo and Richardson 2018).

There exist two main lines of approaches to supervised Japanese morphological

analysis: pointwise and search-based. Pointwise approaches make a segmentation

decision for each character, usually based on the information from its surround-

ings. Search-based approaches look for a maximum scored interpretation in some

structure over the input sentence.

3



1 Introduction

1.2.2 Specifics of Educational Applications

Japanese segmentation standards and corpora are developed with the focus on

monolingual NLP pipelines and have different sets of annotations. POS tag hierar-

chies are also different. For educational applications, those annotations can make

the annotation standard easier or harder to use.

Namely, IPADic does not handle the canonicalization of orthographic variations

which are very common in Japanese. Unidic and Jumandic, on the other hand,

include canonicalization as the dictionary metadata. For example, “あんまり” and

“あまり” are orthographic variants as a single word. Orthographic variants can

be written in different scripts (でかい and デカい) and can have different kanji

(檜 and 桧). Verbs can also have non-standard okurigana (着ける and 着る). The

combination of different reasons for orthographic variants results in a large number

of possibilities.

In the design of the POS tag hierarchy, Jumandic and Unidic follow different

philosophies. Unidic encodes ambiguity that is not resolvable at the morpheme

level in POS tags, leaving it unresolved in the corpus as well. Jumandic resolves this

ambiguity, both in POS tags and in the corpus, making ambiguity resolution the task

of the morphological analyzer. We argue that while the accuracy of morphological

analyzers is not perfect, it is enough for the practical usage of automatically inferred

POS tags.

Based on this comparison, we believe Jumandic segmentation and POS standard to

be the most acceptable for the example extraction. There are some problems, though.

Jumandic does not segment copula from the stem of na-adjectives, effectively treating

na-adjectives conjugatable similarly to other parts of speech. No other resource

follows this decision, so when using multiple resources one has to perform the

above-described segmentation in preprocessing. Jumandic-based corpora, also, do

not provide correct pronunciation annotations, making analyzers trained on that

corpora provide inconsistent pronunciation estimation. Still, for the basic analysis,

we prefer it to IPADic and Unidic standards.

1.2.3 Pointwise Approaches

Pointwise approaches make a segmentation decision independently for each po-

sition. They can be seen as a sequence tagging task. Such approaches are more

popular for the Chinese.

KyTea (Neubig, Nakata, and Mori 2011) is an example of this approach in Japanese.

It makes a binary decision for each character: whether to insert a boundary before

it or not. It also can be seen as a sequence tagging with {B, I} tagset – whether a

4



1.2 Japanese Morphological Analysis

character starts a new token or not. POS tagging is done after inferring segmentation.

The decisions are made by feature-based approaches, using characters, character n-

grams, character type information, and dictionary information as features. KyTea

can use word features obtained from a dictionary. It checks whether the character

sequence before and after the current character forms a word from the dictionary.

It also checks whether the current word is inside a word. Neural networks were

shown to be useful for the Japanese in this paradigm as well (Kitagawa and Komachi

2018). They use character embeddings, character type embeddings, character n-

gram embeddings, and tricks to incorporate dictionary information into the model.

However, they only consider the segmentation task and do not do any tagging.

Tolmachev, D. Kawahara, and Kurohashi (2019) have used a bootstrapping ap-

proach to create a purely neural-network pointwise analyzer that uses only character

unigrams as input data. The model seems to learn the dictionary information implic-

itly from a large-scale automatically annotated corpus. They have achieved slightly

better accuracy for both segmentation and POS tagging than the underlying ana-

lyzer used for tagging a large corpus while having a small model size. In such an

approach it is, however, difficult to make the analyzer recognize new words. The

word should be added to the underlying analyzer, and then the whole huge corpus

needs to be retagged before re-learning the neural network model.

Many studies on Chinese adopt the pointwise approach. Often, the segmentation

task is reformulated as sequence tagging (Xue 2003) with {B, I, E, S} tagset. Peng,

Feng, and McCallum (2004) showed that CRFs help further in this task. This tactic

was followed by many subsequent feature-based approaches (Tseng, P. Chang, An-

drew, Jurafsky, and Christopher D Manning 2005; L. Zhang, H. Wang, X. Sun, and

Mansur 2013; H. Zhao, C.-N. Huang, Mu Li, and Lu 2006), using character n-gram,

character type and word features.

Neural networks were applied to this paradigm as well. Zheng, Hanyang Chen,

and T. Xu (2013b) used a feed-forward network on character and categorical fea-

tures that were shown to be useful for computing a segmentation score from a fixed

window. Qi, Das, Collobert, and Weston (2014) used a similar architecture. They

predicted not only segmentation but POS tags and performed named entity recog-

nition as well. The character representation was pretrained on a language modeling

task. Shao, Hardmeier, Tiedemann, and Nivre (2017) used a bidirectional recurrent

network with GRU cells followed by a CRF layer for joint segmentation and POS

tagging. They used pretrained character n-gram embeddings together with sub-

character level information extracted by CNNs as features. Using a dictionary with

NN is also popular (J. Liu, F. Wu, C. Wu, Y. Huang, and Xie 2018; Q. Zhang, X. Liu,

and J. Fu 2018).
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外国

外

人参

参政 権人

政権
BOS EOS

国

Figure 1.2: Lattice for input sentence外国人参政権

1.2.4 Search-based Approaches

Search-based approaches induce a structure over a sentence and perform a search

over it. A most frequently used structure is a lattice (Jiang, Mi, and Q. Liu 2008;

Christopher D. Manning and Schütze 1999, p. 327), see also Figure 1.2. Lattice is

a directed acyclic graph that contains all possible segmentation tokens as nodes.

Token boundaries become the lattice edges, connecting nodes starting and ending

at the boundary. The search then finds the highest scoring path through the lattice.

Another branch of search-based approaches splits decisions into transitions (start-

ing a new token and appending a character to the token) and searches for the highest

scoring chain of transitions. This also can be seen as dynamically constructing a lat-

tice while performing the search in it at the same time.

Lattice-based approaches are dominant for the Japanese language. Most of the

time, the lattice is based on words that are present in a segmentation dictionary

and a rule-based component for handling out-of-dictionary words. An example of

a lattice is shown in Figure 1.2. Usually, there are no machine-learning components

in lattice creation, but the scoring can be machine-learning based. We believe that

the availability of high-quality consistent morphological analysis dictionaries is the

reason for that. Still, the work of Kaji and Kitsuregawa (2013) is a counterexample of

a lattice-based approach for Japanese, where the lattice is created using a machine-

learning approach.

Traditional lattice-based approaches for Japanese use mostly POS tags or other

latent information accessible from the dictionary to score paths through the lattice.

JUMAN (Kurohashi 1994) is one of the first analyzers, which uses a hidden Markov

model with manually-tuned weights for scoring. Lattice path scores are computed

using connection weights for each pair of part-of-speech tags. ChaSen (Matsumoto,

Takaoka, and Asahara 2008) is an improvement over JUMAN with adding automated

weight tuning for the hidden Markov model (Asahara and Matsumoto 2000).

The most known and used morphological analyzer for Japanese is MeCab. Its

ideas were reimplemented in a large number of analyzers like Kuromoji
2

and Su-

dachi (Takaoka, Hisamoto, N. Kawahara, Sakamoto, Uchida, and Matsumoto 2018).

It builds a lattice and uses conditional random fields for learning the scoring func-

2https://www.atilika.org/
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tion. MeCab is very fast: it can analyze almost 50k sentences per second while

having good accuracy. The speed is realized by precomputing feature weights into

a 2D array for bigram features and token weights for unigram and unknown node

features. Unfortunately, precomputing the 2D array limits the kind and maximum

variety of feature templates it is possible to use. For example, MeCab cannot use

fully lexicalized features, and its bigram feature templates usually capture relations

between POS tags. On the other hand, partial lexicalization, usually of auxiliary

words, is often used in bigram MeCab features. When the bigram features start to

contain a large number of diverse feature instances, the 2D array, and so the model

itself, becomes very large. For example, the UniDic model for modern Japanese

v2.3.0
3

(Den, Nakamura, Ogiso, and Ogura 2008) takes 5.5GB because it uses many

feature templates, which makes such an approach rather unwieldy.

Search-based models relying on POS-based features have problems when analyz-

ing sequence of tokens with the same POS tag. One famous example is “外国人参政

権”, which has the correct segmentation “外国人参政権”, but the often produced

segmentation is “外国人参政権”. In a model with non-lexicalized bigram features,

this is equivalent to making a decision whether P(外国|NN)P(人参|NN)P(政権|NN)
is lower than P(外国|NN)P(人|NN)P(参政|NN)P(権|NN), where NN is the POS tag

for common nouns. We believe that in general, if both sides contain words of similar

frequency, it is undecidable. However, even lexical bigram information can help to

solve most of such situations.

Another workaround to this problem is to register the whole sequence 外国人

参政権 to the dictionary as a single super-token and handle such super-tokens

in post-processing. JUMAN, ChaSen, and Sudachi support this approach. It can

also be viewed as partial lexicalization. Still, this requires a lot of careful curating

and super-token selection while not every possible situation is handleable in this

way. Such super-tokens must also be not context-dependent. Context-dependent

situations (e.g. “米原発” which can be segmented as “米原発” or “米原発”) require

surrounding information to produce the correct segmentation and can not be hard-

coded.

The neural network-based model was integrated with the lattice search. Juman++

(Morita, D. Kawahara, and Kurohashi 2015) uses dictionary-based lattice construc-

tion with the combination of two models for path scoring: the feature-based linear

model using soft-confidence weighted learning (J. Wang, P. Zhao, and Hoi 2016)

and a recurrent neural network (Mikolov 2012). It significantly reduced the number

of both segmentation and POS tagging errors. However, it was very slow, being

able to analyze only about 15 sentences per second, hence the original version was

3https://unidic.ninjal.ac.jp/
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impractical. The following improvement (Tolmachev, D. Kawahara, and Kurohashi

2018, 2020), also described in chapter 2 greatly increased analysis speed by doing

aggressive beam trimming and performing heavyweight NN evaluation only after

lightweight scoring by the linear model.

Direct lattice-based approaches are not very popular in Chinese, but some are

lattice-based in spirit. A line of work by Yue Zhang and Clark (2008, 2010) builds

the lattice dynamically from partial words, searching paths with a perceptron-based

scorer and customized beam search. The dictionary is built dynamically from the

training data as frequent word-tag pairs which help the system to prune unlikely

POS tags for word candidates.

Some studies use lattice-based approaches only for POS tagging. For example, Z.

Wang, Zong, and Xue (2013) uses a character-based segmenter to get n-best results,

compresses them to a lattice, and then applies a lattice-based POS tagger to get the

tagging results.

One more variation on lattice-based approaches for Chinese is the work by Cai

and H. Zhao (2016). In this work, a segmentation dictionary is used to construct

a subnetwork, which combines character representations into word representations

used for computing sentence-wise segmentation scores. This can be seen as explicitly

learning dictionary information by a model. The resulting segmentation is still

created from the start to the end by growing words one by one while performing a

beam search. The follow up (Cai, H. Zhao, Z. Zhang, Xin, Y. Wu, and F. Huang 2017)

simplifies that model and shows that greedy search can be enough for estimating

segmentation when using neural networks. Still, this line of work does not consider

POS tagging.

Another branch of search-based approaches uses transitions. They treat input

data (most frequently – characters) as input queue and store a current, possibly

incomplete, token in a buffer. Models then usually infer whether they should create

a new token from a character in the input queue or append an input character to the

already existing token. Neural models are often used in this paradigm. Jianqiang

Ma and Hinrichs (2015) defines two actions: Append and Separate, which move

the first character of the queue to the buffer either appending it to the current

token or creating a new token, respectively. They use a simple neural model for

embedding representations. Meishan Zhang, Yue Zhang, and G. Fu (2016) use a

more complex LSTM-based model with a sequence of a word, character unigram,

bigram, and action representation features to score the next action. Yang, Yue Zhang,

and Dong (2017) use character window representation, compressed by an MLP from

character embeddings near the target character, partial word representation, and

word embeddings. Ji Ma, Ganchev, and Weiss (2018) use a stacked bi-LSTM model

8
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where the outputs of a backward direction are fed into the forward direction. The

inputs are pretrained character unigram and bigram embeddings. This work only

considers segmentation. Meishan Zhang, N. Yu, and G. Fu (2018) also, use a bi-

LSTM model, but it infers segmentation and POS tags as a subtype of a separate

action. It also used word-context embeddings (H. Zhou, Z. Yu, Yue Zhang, S. Huang,

DAI, and J. Chen 2017) that were shown to be helpful for transition-based methods.

Almost all of them use both word and character n-gram embeddings. This paradigm

was extended to do parsing jointly with morphological analysis (Hatori, Matsuzaki,

Miyao, and Jun’ichi Tsujii 2012; Kurita, D. Kawahara, and Kurohashi 2017).

1.2.5 Semi-supervised Approaches

Semi-supervised approaches to segmentation and POS tagging fall into several cat-

egories. The first one uses raw or automatically-annotated data to precompute

feature representations and then uses these feature representations for supervised

learning. For example, W. Sun and J. Xu (2011) and Y. Wang, Jun’ichi Kazama,

Tsuruoka, W. Chen, Yujie Zhang, and Torisawa (2011) use data from automatically

segmented texts as features. They precompute the features beforehand and train an

analyzer afterward. In addition to that, L. Zhang, H. Wang, X. Sun, and Mansur

(2013) uses a variation of smoothing for handling automatic annotation errors. A lot

of neural-based methods pre-train word and character n-gram embeddings. Yang,

Yue Zhang, and Dong (2017) pre-train a part of the model on different data sources,

including automatically segmented text, but the model itself is trained only on the

gold data.

Another approach is to use heterogeneous data (annotated in incompatible anno-

tation standards). In addition to corpus statistics from a raw corpus, H. Zhao and

Kit (2008) exploit heterogeneous annotations. Z. Li, Chao, Min Zhang, and W. Chen

(2015) use corpora with different annotation standards. They combine tags into

“bundles” (e.g. [NN, n]) and infer them at the same time while paying attention to

ambiguity. Hongshen Chen, Yue Zhang, and Q. Liu (2016) train a classifier that can

annotate several standards jointly.

Finally, it is possible to use raw or automatically-annotated data directly. A study

(Suzuki and Isozaki 2008) is an example of a feature-based algorithm that uses

raw data. Tri-training (Z.-H. Zhou and Ming Li 2005) is a generic way to use raw

data. They propose to train on automatically analyzed examples where two of three

diverse analyzers agree. Søgaard (2010) show that tri-training helps English POS-

tagging with SVM and MaxEnt-based approaches. H. Zhou, Z. Yu, Yue Zhang,

S. Huang, DAI, and J. Chen (2017) use self-training and tri-training for Chinese

word segmentation. They, however, also pre-train other features like word-context

9
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character embeddings, character unigrams, and bigrams.

1.3 Example Extraction for Language Learning

1.3.1 Vocabulary Learning

Learning vocabulary is a crucial step in learning foreign languages and mastering the

vocabulary of a foreign language requires substantial time and effort. Moreover, we

do not use plain words for communicating. Words are always surrounded by other

words and grammar, forming word usages. When learning vocabulary, learning

these word usages is as important as learning words themselves.

The word-learning process may be grouped into four parts. A learner must

accomplish the following for most of the words in the vocabulary to gain proficiency

in a language:

• understand the word itself,

• understand its usage in context,

• remember the word,

• remember its usage.

There are tools at our disposal for each of the abovementioned actions. We use dic-

tionaries to understand the words from definitions or translations. We must actively

read many books to fully understand the usage of words in different situations with

their subtle nuances. When learning a new language, we must constantly repeat

new words, otherwise, most of us simply forget them.

Example sentences, which demonstrate the usage of a word in context serve

as tools to facilitate each of the above actions. For example, dictionaries contain

example sentences as additional information to clarify the meaning and context of

a word.

There is one more very useful tool for language learning — flashcards and spaced

repetition systems (SRS) — which is discussed in the next section. This tool is

very successfully used for language learning because it helps learners remember the

words and meanings. For example, the most popular SRS — Anki — has at least

1 million active installations on Android alone, and its most popular usage is for

learning foreign languages. Two main problems form the drawbacks of the SRS:

1. It is very tedious to manually create suitable flashcards.

2. Flashcards often lack context.
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Figure 1.3: Forgetting curve. A probability to remember a fact exponentially de-

creases with time. The decrease speed becomes slower on each repeti-

tion.

Learning lexical information using an SRS is typically done using only words.

This does not give the learner information about how the word is used. Manually

adding examples to flashcards is not only tedious but also challenging in that suitable

example sentences are difficult to find. Moreover, even if examples are added, it is

almost impossible to manually add many examples. However, only a large number

of suitable example sentences can give the learner sufficient exposure to the different

usages of a word. Thus, it is preferable to automatically add examples to cards.

The main objective of the research defined in this thesis is to explore and evaluate

a way to automatically acquire a large number of high-quality example sentences

for the Japanese language. Future work entails using these example sentences in an

SRS for the Japanese language, so the goal is to obtain sentences suitable for use on

flashcards. Before discussing the traits of example sentences that are appropriate

for flashcards, we must briefly describe flashcards and the SRS.

1.3.2 Spaced Repetition Systems and Flashcards

Almost anyone who has tried to learn a foreign language is familiar with the feeling

of forgetting recently learned words. The process of forgetting has been researched

in the context of psychology with Ebbinghaus formulating principles of human

memory (Wozniak 1999). One of them is that the probability of retention of a fact is

proportional to e−t, where t is the time passed since the last repetition.

Repeating the fact temporarily resets retention to the maximum value, after which

the retention probability starts decaying again. If the retention was successful, the

decay rate slows down. Figure 1.3 depicts this process.

The spaced repetition method exploits the structure of the forgetting curve. The
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柿

A flashcard for word 柿
(answer card)

Question for the reading card

without examples. User is expected

to remember the writing.

かき
(japanese) persimmon

隣の客はよく柿食う客だ。

かき

Question for the reading card

using examples. User is expected

to remember the writing.

隣の客はよくかき食う客だ。

A client next table eats

persimmons often.

Figure 1.4: A flashcard for word “柿”

basic idea is that after the successful retention of a fact, its next repetition is scheduled

just before its high probability of forgetting. If the learner reviews the item before that

time, it will be remembered for a while. Effectively, intervals or the spacing between

repetitions increases exponentially each time the learner successfully remembers

the item, enabling the learner to simultaneously remember a large amount of data.

A computer program implementing spaced repetition is called an SRS. Most SRSs

use flashcards. A flashcard is a piece of knowledge formatted in a question–answer

way, as shown in Figure 1.4. The left image is an answer flashcard for the word

“柿”. For the Japanese language, the flashcard typically contains reading, writing,

meaning, and possibly example sentences that explain the usage patterns of the

word. The middle figure is a question flashcard which uses the word reading and

the learner is expected to remember the content of the answer card and self-rate how

difficult it was to remember the content of the answer card. Other types of cards,

e.g. writing-question or meaning-question, are often used as well with the answer

card staying the same.

The main problem with these systems is the large amount of work required to

create new flashcards. To learn words efficiently, the cards should be created by

the learner himself, for example when encountering unknown words in the text.

Existing software requires the user to fill in all of the information about the a word

from a dictionary before proceeding to learn it. Pre-made decks created by different

users are available in some software, but they do not create “emotional attachment”

(for example, a user can remember the circumstances under which he encountered

a certain word for the first time, and this helps him remember it) to words, and this

makes it more difficult to learn these words. It is easier for a user to remember the

words that he added to his learning system himself, and the system should support

this.
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Another Japanese-specific problem is a large number of homonyms. For example,

when trying to define the written word “かき” (as shown on the Figure 1.4, middle) it

is impossible to give a single correct answer because the question is underspecified. It

is thus difficult to learn such words. The software mentioned above does not address

this situation and delegates the responsibility of creating suitable flashcards to the

user, rendering these cases even more difficult and time-consuming.

An effective system should automate almost every aspect of adding new words

for learning, transferring all of the burdens of inputting the information from the

user to the system. Completing the meaning and reading information from the

dictionary is relatively easy but does not form a comprehensive solution. Words

are not just used by themselves; they are always used in context. By incorporating

example sentences in flashcards as questions and reference material as shown in

Figure 1.4, it is possible to solve the polysemy and homonymy problem of plain

flashcards. Example sentences give the learner context, which itself is a hint for

selecting a correct word (including the writing in the case of Japanese). At the same

time, reading a large number of example sentences helps the user remember usage

patterns, thereby improving the efficiency of word learning.

Unfortunately, there are no example databases with high quantities of example

sentences for a wide range of words, including rare and obscure ones. Examples

from dictionaries are often sentence fragments and are not very suitable as well.

This problem is addressed by automatically extracting example sentences suitable

for flashcards.

1.3.3 Example Extraction

Example sentences provide additional information about a word. However, words

are used in different contexts, with different grammar, and can have multiple mean-

ings. Thus, a set of example sentences describing a target word is more appropriate

than a single example sentence. In this thesis, target refers to the particular word

that the sentence aims to explain.

A sentence could include a target word, but still not provide a good example of

the word usage. The sentence could be too difficult for a learner, too long so while

reading it, the learner would forget an actual usage of the target word or just plain

non-grammatical. A good example sentence should give hints on the meaning of

the target word by the context. For example, when “ばりばり” is a target and a

learner does not know it, a sentence “首がばりばりになる”, will give learner hints

that “ばりばり” can be used with “首”, but will not give hints on its meaning.

Adding context, for instance, “働き過ぎると首がばりばりになる”, is significantly

better because it connects the meaning with overworking and being tired. Still,
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the last sentence would be a bad example for a word “働く” as a target, because

onomatopoeia are generally very difficult to learn, andばりばり is going to shadow

働くwith its difficulty.

The goal of the work described in this thesis is to extract high-quality example

sentences. We assume that a sentence has a high intrinsic value if it satisfies the

following requirements.

• Sentences should appropriately explain the usage of the target word.

• Sentences should be understandable by the learner.

• Sentences should be reasonably short. If the sentence is too long, the concrete

usage of the target word may be shadowed by other words.

• Sentences should be grammatically correct.

• Sentences should be closely related to the target word; The usage should be

representative.

• Sentences should be complete, not fragments.

• Sentences should not require deep additional knowledge or additional con-

text for understanding. In contrast to learners, native speakers usually have

cultural and language knowledge, allowing them to reconstruct contexts from

experience.

In addition to the above, the sentences in the set should be diverse, covering dis-

tinct meanings, including different grammatical constructions and words. We call

sentences high-quality compared with other sentences for the same target word if

1. each sentence has a high intrinsic value,

2. sentences are diverse.

In addition, these sentence sets should be created for as many target words as

possible, including rare ones, and cover the rarer usages of targets. Thus, an example

extraction system should consider the following three aspects of sentences: inherit

value, diversity, and coverage.

Example Sentences for Reference and Repetition

Another important aspect of example sentences is that those used for the flashcard

and repetition should be slightly different from those usually used for the reference
(i.e., standard usage in dictionaries). A list of example sentences for each sense of the

14



1.3 Example Extraction for Language Learning

target word would help the user understand the word itself and its usage. A learner

can distinguish the usage of a word in different contexts from different examples.

In contrast, an SRS displays flashcards without any relationship between them.

This means that the sentences in a series of flashcards are also unrelated. Hence,

these sentences should be easy to read and understand for learners, thereby increas-

ing the efficiency of the learning.

We focus on the extraction of the example sentences for usage in an SRS. However,

reference usage is still important and should be addressed by other developed tools.

1.3.4 Related Work

Several SRSs are available such as Anki
4
, open-source software which is probably

the most popular SRS available; Mnemosyne
5
, another open-source solution that

incorporates research on long-term human memory; and SuperMemo
6
, made by

the developer of the original SuperMemo algorithm, which is closed-source and

not free. Anki has a plugin that simplifies the process of creating flashcards for

the Japanese language. However, none of the above systems automatically provide

example sentences. In addition, all of the systems provide only static flashcards

without tools to change the content for each repetition. Showing different example

sentences on question cards on each repetition should improve the efficiency of

learning vocabulary.

Dictionaries often include example sentences in their articles about words. How-

ever, these examples are often very short. 広辞苑 has the following two examples for

the second sense of the word振るう: “采配を振るう” and “拳を振るう”. They are

extremely short and are more like collocations than examples. They do not provide

any useful context such as the situations for which this word can be used.

There exist dictionaries that consist mostly of example sentences such as Pro-

gressive (Tohno, Itabashi, and Althaus 2001) and Wisdom (Inoue and Akano 2007).

Example sentences in Progressive are usually full sentences while the example sen-

tences in Wisdom mostly have a fragment-like structure containing only the infor-

mation needed to understand the word in context. Both of these dictionaries also

contain English translations because they explain word usage mostly using the ex-

ample sentences and this is extremely useful for the language learners. Still, because

the sentences were manually assembled by human editors, their number is limited.

Another point to consider is that dictionary content is under copyright protection

and cannot be easily used for automated flashcard generation.

4http://ankisrs.net/
5http://mnemosyne-proj.org/
6http://www.supermemo.com/
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Freely available example sentence databases also exist. The Tatoeba Project
7

is a

wiki-style database of example sentences maintained by human volunteers. It con-

sists of example sentences for many languages. Thirteen languages have more than

100,000 sentences registered and 39 have more than 10,000. Of note, as of January

22, 2016, there were approximately 570,000 English sentences and 180,000 Japanese

sentences. The sentences are interrelated, facilitating translations in different lan-

guages in a many-to-many fashion. Still, most of these sentences focus on relatively

easy words and many of the sentences are very similar to each other.

Automated extraction of example sentences from a corpora has also been pro-

posed. GDEX (Kilgarriff, Husák, McAdam, Rundell, and Rychlý 2008) describes

semi-automated example extraction for the preparation of the electronic version of

a Macmillan English Dictionary. The authors select example sentences for English

learners and define a suitable example sentence as:

• typical, showing frequent and dispersed patterns of usage,

• informative, helping to educate the definition,

• readable, meaning intelligible to learners, avoiding difficult words, anaphora

and other structures that make it difficult to understand a sentence without

access to the wider context.

The authors used sentence length, word frequency, information about the presence

of pronouns and some other heuristics to judge the quality of sentences. Subse-

quently, the final example sentences for the dictionary were manually selected by

editors. The authors reported problems with garbage and list-like constructions

in the raw data that are not useful for example sentences. Still, their approach

decreased the time required to construct the dictionary.

There are numerous works that approach the problem of selecting example sen-

tences mostly as a word sense disambiguation (WSD) problem (de Melo and Weikum

2009; Kathuria and Shirai 2012; Shinnou and Sasaki 2008). Specifically, de Melo

and Weikum (2009) proposed the use of parallel corpora to extract disambiguated

sentences from an aligned subtitle database. However, they only examined Spanish-

English language pairs and the total number of sentences in their work was small

(117,000 sentence pairs). Aligned corpora usually are small or belong to a specific

domain, whereas example sentences should be from a variety of domains and cover

rare words.

Shinnou and Sasaki (2008) target example extraction for Japanese language. They

cluster initial sentences into a specified number of clusters. Then, by showing a pair

7http://tatoeba.org/eng/
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of central sentences to a human operator, they decide whether the clusters should

be merged. The authors only consider nouns and measure the similarity between

sentences using word overlap and a thesaurus. Their approach is semi-supervised

and requires user interaction for system decisions. Furthermore, it is not created for

language learners.

Kathuria and Shirai (2012) explore the use of disambiguated example sentences

in a reading assistant system for Japanese learners. They create a system that assists

reading by showing disambiguated example sentences that have the same sense as

the word in the text. The senses are defined by the EDICT dictionary (Breen 2004).

The authors perform WSD based on the similarity between sentences where the

similarity consists of collocation and a sema-syntactic part. The second aspect is

based on dependency parse information combined with Goi-bunrui-hyou (Natural

Institute for Japanese Language and Linguistics (ed.) 2004) prefix matches. Only

an aligned corpus is used to extract the example sentences, limiting the number of

potential example sentences.

1.4 Contributions

Our contributions are separated into two main parts. The first part contains im-

provements in Japanese Morphological Analysis, and the second part contains an

approach for automated high-quality example sentence extraction.

1.4.1 Morphological Analysis

Our first contribution for the morphological analysis is the improvement of Juman++

morphological analyzer based on the classical lattice search approach. The reim-

plementation: Juman++ V2
8

has more than 250 times faster analysis speed than the

base version V1 while improving on the analysis accuracy, both in segmentation and

part of speech tagging. We also provide a partial annotation tool for the Juman++ V2

which can help to quickly improve accuracy for new domains. The improvements

for Juman++ are published as (Tolmachev, D. Kawahara, and Kurohashi 2018) and

(Tolmachev, D. Kawahara, and Kurohashi 2020).

Our second contribution is a very straightforward fully-neural morphological an-

alyzer which uses only character unigrams as its input (Tolmachev, D. Kawahara, and

Kurohashi 2019)
9
. Such an analyzer, when trained only on human-annotated gold

data has low accuracy. However, when trained on a large amount of automati-

cally tagged silver data, the analyzer rivals and even outperforms, albeit slightly, the

8
The analyzer is available at https://github.com/ku-nlp/jumanpp

9
The source code is avaliable at https://github.com/eiennohito/rakkyo
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bootstrapping analyzer. We conclude that there is no need for rich input represen-

tation. Neural networks learn the information to combine characters into words by

themselves when given enough data.

Ignoring explicit dictionary information and rich input representations makes

it possible to make analyzers that are highly accurate and very compact at the

same time. We also perform ablation experiments which show that the encoder

component of such an analyzer is more important than character embeddings.

1.4.2 Example Extraction

The second large contribution is an automated example sentence extraction system

for Japanese language learners. The system description is published as (Tolmachev

and Kurohashi 2017a) and (Tolmachev, Kurohashi, and D. Kawahara 2022). The

system consists of two parts: search and extraction. The current implementation

of the system is for Japanese, but generally, it is unsupervised and requires only a

dependency parser and mono-lingual text to bootstrap.

The first component of the system, search, is a high-performance distributed

dependency and grammar-aware search engine. This component description was

published as (Tolmachev, Morita, and Kurohashi 2016). Its design and implemen-

tation make it possible to process a vast corpus relatively quickly, thereby handling

rare words and the coverage problem. Automatically handling grammar and de-

pendency information facilitates the quick selection of sentences with patterns that

are useful for understanding a target word. For example, verbs are more easily

understood if dependent objects or subjects are included in the sentence. The search

system allows the specification of such restrictions in the query and is described in

more detail in Chapter 4.2.

The second part, extraction, takes a relatively large list of search results and selects

only a small subset of sentences that are most useful for a learner. The proposed

method uses the determinantal point process (DPP), a mathematical method for

modeling diverse datasets. It uses two sets of features: similarity and quality. The

similarity features are vectors and are used to measure the relationships between

two sentences. They consist of three parts: lexical, syntactic, and semantic sim-

ilarity. The quality features are per-item and are used to represent the intrinsic

sentence value. They consist of semantic and syntactic centrality, difficulty, and

low-level “goodness”. The extraction part is described in Chapter 4 and published

as (Tolmachev and Kurohashi 2017a).

The example sentences extracted by the system were evaluated by language learn-

ers. Specifically, the examples were selected for the purpose of flashcard usage

(Tolmachev and Kurohashi 2017b). Learners were asked to compare the sentences
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produced by the system to two baseline selection algorithms. The experimental

setup and results are described in 4.5.

1.5 Design Considerations

Engineering and system design is built on trade-offs. Usually, we have to decide

between several properties of the resulting solution, like cost, time to implement,

and overall quality. Low-level blocks of the overall system place strong restrictions

on the weight of such trade-offs. Generally, improving low-level building blocks

help to diminish trade-offs. In the case of morphological analysis, we can choose

between accuracy, affecting the overall robustness and reliability of the system. On

the other hand, the low analysis speed decreases the system response time and can

make it impossible to process a large number of data without using an extreme

amount of computational resources. Our improvements in the Juman++ soften the

trade-off weights and make it possible to construct overall better systems that utilize

NLP for Japanese. Experiments on fully-neural morphological analysis make the

dictionary size smaller. It can allow, for example, embedding the analyzer into the

client-side of a web application, making new types of applications possible.

In regard to language learning, our ultimate goal is to make language students

learn not just words, but their correct usage at the same time as well. We do this by

providing high-quality example sentences which cover diverse word usage, in lexi-

cal, syntactic, and semantic aspects. Exposing students to the word usage contextual

information should naturally train them to recognize natural word usage from un-

natural one. Usually, this happens by being exposed to the language and culture,

for example by reading. Moreover, the automatic nature of example extraction can

be further tailored for specific user needs.
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2 Juman++ Morphological Analyzer

2.1 Introduction

Languages with a continuous script, like Japanese and Chinese, do not have natural

word boundaries in most cases. Natural language processing for such languages

requires segmenting text into words. Segmentation is commonly done jointly with

part of speech (POS) tagging and the whole process is usually referred to as Mor-

phological Analysis (MA).

Modern morphological analyzers achieve high accuracy (a tokenwise segmenta-

tion F1 score of > .99 for Japanese) on established domains like newspaper texts.

However, when using them on out-of-domain or open domain data (like web texts),

the accuracy decreases, and it is difficult to improve that accuracy without creating

costly annotations by trained experts.

To increase the overall analysis accuracy, Morita, D. Kawahara, and Kurohashi

(2015) have proposed using a combination of a feature-rich linear model with a

recurrent neural network-based language model (RNNLM) for morphological anal-

ysis and implemented it as the initial version of Juman++. The combined model

considers semantic plausibility of segmentation, and because of this has drastically

reduced the number of intolerable analysis errors, achieving the state-of-the-art

analysis accuracy on Jumandic (the JUMAN dictionary and segmentation standard,

Kurohashi and D. Kawahara (2012)) based corpora. In this thesis, we refer to it as

Juman++ V1 or simply V1. Unfortunately, its execution speed was extremely slow,

and that limits the practical usage of Juman++ V1.

We have developed a morphological analysis toolkit (Tolmachev, D. Kawahara,

and Kurohashi 2018) consisting of three components: a morphological analyzer

and two support tools which help with the development of analysis models. The

analyzer is a complete rewrite of core ideas of Juman++ V1, released as Juman++

V2
1

(Tolmachev and Kurohashi 2018). In this thesis we refer to it as Juman++ V2,

V2, or simply Juman++. Our reimplementation is more than 250 times faster than

V1, reaching the speed of traditional analyzers, at the same time achieving better

accuracy than V1.

1
The analyzer is available at https://github.com/ku-nlp/jumanpp

21

https://github.com/ku-nlp/jumanpp


2 Juman++ Morphological Analyzer

Juman++ follows the dictionary-based morphological analyzer design. During

the analysis, it looks up word candidates using a dictionary and unknown word

handlers, and then builds a lattice by connecting adjacent word candidates. The

path through the lattice with the highest score becomes the analysis result.

The main goal of Juman++ is to achieve a reasonable analysis speed while being

flexible and powerful at the same time. MeCab (Kudo 2018; Kudo, Yamamoto, and

Matsumoto 2004) achieves its high analysis speed by precomputing lattice node

connection features into a 2D table, referring only to the precomputed table at the

analysis time. This makes it impossible for MeCab to use fully lexicalized bigram

feature templates with a large number of instances. This design decision also makes

it impossible for MeCab to use surface-based connection features. We must remark

that partial lexicalization of bigram features is supported by MeCab and is frequently

used, mostly for auxiliary words.

Juman++, on the other hand, supports such features for the sake of analysis

accuracy. We achieve a reasonable analysis speed by designing the architecture of the

analyzer, in a way that the modern CPUs could efficiently execute the compiled code.

In order to achieve a high analysis speed, each stage of the analysis was designed

for efficiency. For example, the dictionary structure and feature representation are

designed without string-based operations in computations. For in-memory lattice

representation, we focus on improving CPU cache efficiency. Feature-based path

scoring is done by generating a model-specific C++ code which is organized to

mask memory latency by asynchronously prefetching the model weights. We also

perform the aggressive beam trimming and deduplicate the paths through the RNN

which would have the same representation.

This chapter presents an insight into Juman++ internal architecture, design, and

rationale for making those design decisions. We discuss the internal data structures

and inner workings of Juman++ V2. When compared to MeCab, which performs

a single 2D array access and summation with a combined unigram score (2 op-

erations), Juman++ does significantly more computations: it evaluates about 60

features for each lattice node while performing the beam search while being only 5

times slower. We believe that the information on how to perform a large number of

computations efficiently in machine learning-based software will be useful for the

further development of natural language processing tools.

The chapter is structured as follows. In section 2.2 we discuss the problem of mor-

phological analysis and present approaches. Section 2.3 discusses the internals of

Juman++ and explains our decisions. In Juman++ we heavily exploit the capabilities

of modern CPUs, some of which are described in Appendix 2.9. Section 2.4 discusses

the training of Juman++ models. Section 2.5 evaluates and compares Juman++ to
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different morphological analyzers in three categories: model size, analysis speed,

and analysis accuracy. Finally, section 2.7 gives the discussion on the remaining

problems of morphological analysis and Juman++.

2.2 Morphological Analysis Overview

2.3 Juman++ Internals

The logical subcomponents that contributed to the Juman++ speedup are the fol-

lowing:

1. linear model score computation,

2. beam search,

3. RNN model.

While the last two subcomponents are rather small and self-contained, the first one

is complex and forms the core of Juman++ design decisions: dictionary structure,

feature computation hashing, code generation, and low-level implementation details

like prefetching and struct-of-arrays layout (described in the Appendix 2.9.2) for the

lattice. In this section we walk through the components in the order an input

sentence goes through the analysis, starting with a general overview.

We provide the estimates of individual contributions to the overall speedup. Un-

fortunately, the rigorous experiment and comparison can not be performed because

the components are highly intertwined, and swapping one component for another

means doing a large-scale rewrite. Additionally, the development of Juman++ V2

did not happen in the order of the paper and it is difficult to use the revision history

as a means for comparison.

2.3.1 Juman++ Analysis Overview

For an input sentence, the detailed description of Juman++ analysis steps is the

following:

1. Lookup dictionary-based lattice node candidates. This step uses the dictionary

to emit triples of (token start, token end, entry pointer) for every dictionary

candidate that can exist in the input string.

2. Create unknown word node candidates. This stage also creates triples like the

first stage.

23
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3. Build the lattice. This stage reads token information from the dictionary,

computes token-specific features and part of the score which depends only on

unigram features.

4. Find top k highest scoring paths through the lattice using beam search. This

stage computes the feature-based score for nodes.

5. Perform RNN reranking of the top k paths.

6. Output the analysis result.

The full morphological analysis score s for a sentence is a sum of per-node scores

and is defined as

s ≐
∑︂

nodes in lattice path

sl + α(sr + β), (2.1)

where sl is a linear model score for a lattice node, sr is an RNN model score — non-

normalized log-probabilities, α and β are scale and bias RNN hyperparamters. For

computational efficiency, we use self-normalizing RNNLM which makes it possible

to leave out the computation of the probability normalizer over the whole vocabu-

lary. Still, the RNN scores are in a different range from that of the linear model. The

RNN bias and scale parameters make the scores compatible with the linear model

score. We also compute the RNN score only for paths with the top k linear model

scores because the computational cost of applying RNN to the whole lattice is pro-

hibitively high. The RNN itself is an optional component, its absence is equivalent

to setting the scale α = 0.

The linear score itself is defined as

sl ≐
∑︂
i

ϕiwi, (2.2)

where ϕ is an n-gram feature count vector and w is linear model weight vector.

N-gram features are composed of tokenwise features using the templates defined

in the spec. The presence of high-order n-gram features necessitates the usage of

beam search to find the top-scoring path through the lattice. We must note that the

current implementation of Juman++ does not use the RNN model during the beam

search.

The training of Juman++ includes optimizing values of w and searching for RNN-

related hyperparameters. Juman++ can use both fully and partially annotated data

for training of w.

Most of the computations at the analysis time happen during the path scoring.

We adopt the struct-of-array layout of lattice-related data structures to improve the

CPU cache efficiency of the entire process.
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Raw 
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RNN
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Figure 2.1: Juman++ model file construction process

2.3.2 Juman++ Model

Juman++ by itself is only a toolkit for building morphological analyzers. The rules

on how to perform the analysis are contained in a model, which is built from the

following components:

1. Analysis specification (Spec),

2. Analysis dictionary,

3. Training corpus,

4. RNN model (optional).

Spec is a configuration for Juman++ instance, similar to feature templates used

in other analyzers. It configures dictionary structure, feature templates, unknown

word handling, and training loss. The documentation for the language and the

configuration capabilities are available at Juman++ repository
2
. The dictionary

contains the basic vocabulary the MA is going to recognize. For the analysis to

work fast we need to compile the dictionary to the format which will enable fast

lookup of dictionary information. We also have to train linear and RNN models

to have the analysis result correct. The combination of these components forms a

Juman++ analysis model. The model components and their interaction are shown

in Figure 2.1.

2.3.3 Spec and Dictionary

In this subsection we give a brief overview of the dictionary specification, then

we describe the dictionary compilation process logic, followed by the important

implementation details.

2https://github.com/ku-nlp/jumanpp/blob/master/docs/spec.md
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Figure 2.2: Dictionary compilation. The actual information is black, explanations

are gray. String and list lengths are blue. From the raw dictionary and

spec field descriptions, we create compiled dictionary components: trie

index, entry pointers, field pointers, and string storages. Trie index leaf

nodes (non-leaf nodes are dashed here) point to a list of entry pointers

(index keys can be duplicates). Each entry pointer refers to a row in

the field pointer table, corresponding to a row in the raw dictionary.

Field pointers refer to deduplicated column entries of the raw dictionary,

packed in column-specific string storage.

Dictionary Specification

The first section of a spec defines which fields of a raw dictionary would be used

for analysis and available for output. Based on that definition, we compile a raw

dictionary into a representation that enables effective dictionary access at analysis

time. An example of dictionary compilation is shown in Figure 2.2. Dictionary

compilation has the following goals:

1. During the lattice construction phase we need to look up the dictionary entries

corresponding to surface string fragments. This process should be fast and not

dependent on the dictionary size. Often, a trie-based approach is adopted for

this objective.

2. Handling strings as a sequence of characters or bytes is slow. On the other

hand, feature computation for the lattice path scoring should be as fast as it

can get. We would like to move as much computation as possible from the

analysis step to the dictionary construction step. Our compiled dictionary

design should allow us to treat all string entries in the dictionary as integers

for the ease of further processing.
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3. Reducing the compiled dictionary size would also be beneficial.

4. On-disk dictionary representation should be memory-mappable and should

not require time-consuming processing logic at startup.

Raw dictionary is a RFC 4180 (Shafranovich 2005) CSV file. Each row corresponds

to a single dictionary entry and columns correspond to the dictionary fields. Ju-

man++ can use only a subset of columns from the raw dictionary. Namely, each of

spec field descriptions selects a single column from the dictionary.

Dictionary fields are typed. The handling of field data and its compiled represen-

tation depends on the field type. Juman++ supports four field types:

• Integers. 32-bit signed integer. While it is possible to use integers in a spec

directly, this field type is used internally for storing values computed at dictio-

nary compilation time.

• Strings. Strings are treated as categorical features: the strings themselves are

replaced by integer pointers to the deduplicated values Most dictionary fields

are usually strings.

• String lists. Dictionary entries can contain non-tabular information and this

field type is useful for storing such information. The handling of individual

strings is the same as the previous type, we also deduplicate the lists them-

selves.

• String key-value pair lists. Similar to the string list, but each entry holds two

values.

Dictionary Compilation

For the compiled dictionary storage we adopt column database paradigm. We dedu-

plicate string field contents and pack them, prefixed by their length, into string
storage. Because the contents of such storage could be uniquely identified by their

position inside the storage, we replace dictionary entries by 32-bit integer field point-
ers into respective string storages. This process is shown in Figure 2.2. For clarity,

the figure treats the size of everything as 1. The actual implementation takes into

account variable-length UTF-8 string encoding and the integers are encoded using

the variable-length LEB128 format (described later).

A spec must contain exactly one string field which would be used as a lookup key

into the dictionary itself. Juman++ will build a double array trie index using the

values of that field. There could be multiple entries with the same key. We handle

that by pointing the trie index to the length-prefixed list of entry pointers.
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2 Juman++ Morphological Analyzer

Table 2.1: An LEB128 encoding example. The processing flows from the top to the

bottom.

Decimal 105 624485

Binary 1100101 10011000011101100101
Split into 7-bit groups 1100101 0100110 0001110 1100101
Prepend 1 to non-last groups 01100101 00100110 10001110 11100101
In hexadecimal 0x65 0x26 0x8E 0xE5
On disk 0x65 0xE5 0x8E 0x26

By default, we use different string storages for different fields. However, Juman++

allows sharing string storages as well. For example, surface forms, readings, and

dictionary forms usually contain the same entries. Sharing them greatly helps to

reduce the size of the compiled dictionary.

Byte-level Storage and Alignment

Before this point, we were talking about the logical representation of the complied

dictionary. However, the disk representation works with bytes and bits. Juman++

uses several techniques from search engines to store the dictionary on disk. Namely,

we adopt variable length LEB128
3

(little endian base-128) integer encoding (an ex-

ample is shown in Table 2.1) for storing all integers (both pointers and lengths) in

the compiled dictionary. With it, small-valued integers take a smaller number of

bytes to store regardless of their original size. Reading small numbers in this repre-

sentation is less computationally expensive as well. Furthermore, integers that are

less than 127 are stored in a single byte having the same representation as the lower

8 bits of the original 32-bit integer.

We exploit these facts about LEB128, which ultimately decreases compiled dictio-

nary size and increases analysis speed. For example, we sort string storage contents

by their frequency in the CSV file, in decreasing order. Because of this, more fre-

quent strings will get closer to the beginning of the containing storage, meaning that

they will have smaller pointer values, so they will effectively take less space in the

field pointer table and could be decoded into the regular integers faster.

Juman++ also allows customizing alignment of string storage. By default, length-

prefixed stored strings can start at any position. With the alignment of z, those

starts can only be multiple of 2
z
. Default alignment means z = 0. For aligned fields,

the lower z bits of field pointers will always be zero and can be ignored. Thus, we

bit-shift the pointers to the right by z and store only upper 32 − z bits as on-disk

field pointer representation. An example of applying alignment to a string storage

3https://en.wikipedia.org/wiki/LEB128
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Figure 2.3: String storage alignment example. Dots are additional bytes used by

UTF-8 encoding for the respective symbols. Storage with alignment=3

can be indexed using the numbers in brackets.

is shown in Figure 2.3. Aligning string storage makes all respective field pointers

smaller, reaping the benefits of LEB128. Moreover, if a field contains only a limited

and small set of values (e.g. POS tags), then choosing big enough alignment will

guarantee that pointers for that field are always going to be stored in a single byte.

Alignment is a trade-off between using storage for actual strings or field pointers.

At the same time, making the field pointer table smaller decreases the amount of

memory to read during the analysis, increasing the probability of cache hits, result-

ing in ∼ 15% improved analysis speed compared to zero alignment in our Jumandic

experiments. Juman++ includes a development tool that estimates changes in string

storage size versus field pointer table size when changing the alignment for a chosen

string storage to help users with making the correct decision.

When storing sequences of integers to the disk when their ordering does not

matter (or they are already sorted), we store them in delta encoding. Instead of

storing a sequence a1,a2,a3, ..., ∀j > i : aj ≥ ai we store the differences between the

successive elements: a1,a2−a1,a3−a2, .... Differences ai+1−ai have smaller values

than values ai themselves, once more reaping the benefits of LEB128 encoding. We

apply the delta encoding on top of LEB128 for entry pointer lists (which are already

sorted), string list-typed fields, and key parts of key-value list-typed fields (which

we sort).

Representation Limitations

Our compiled dictionary representation uses signed 32-bit integers as pointers and

because of that suffers from some limitations. Namely, in the current design, indi-

vidual sizes of entry pointers, field pointers, or string storage tables cannot exceed

2
31 − 1 bytes.

However, this does not mean that the dictionary size cannot be more than 2
31 − 1

bytes. For string fields, Juman++ cannot handle more than 2
31 − 1 bytes of unique
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field 1 surface string trie_index
field 2 pos string

feature next_char = codepoint 1
feature aux_word = match [pos] with "AUX" then [surface, pos] else [pos]

ngram [pos] # No1
ngram [pos, next_char][pos] # No2
ngram [aux_word][pos, next_char] # No3
ngram [pos][surface, pos][pos] # No4

Figure 2.4: An example of Juman++ spec with feature definitions

string values for each field. In the case of Jumandic, shared string storage for surface,

the base form, and reading fields contain 1.7M entries, taking 40 MB of space, less

than 2% of the total limit. Because the size scales with unique entries, in practice

the limit is not significant.

The field pointer table scales proportionally to the number of entries in the dic-

tionary and can become a limit for truly enormous dictionaries. For reference,

Jumandic contains 1.8M entries and its field pointer table takes only 32 MB, giv-

ing approximately 18 bytes per entry. It is difficult to give exact numbers on the

maximum possible number of dictionary entries, but we believe that the current

implementation can handle dictionaries with up to 100M entries. It is possible to

align the field pointer table as well to step over the current restrictions, though field

pointer table alignment is not implemented currently.

2.3.4 Features

Feature computation is a cornerstone for the analysis speed of Juman++. We use

hashing for combining the values from the data into the final feature values. By

arranging the computation order, we achieve a large reduction of duplicated calcu-

lations. Finally, we describe our reasons and gains from using code generation for

feature computation and scoring.

Feature Layers

In Juman++ we ideologically distinguish features into three layers. The features of

the top layers are computed using the values of the previous layer.

• Primitive, e.g. field values or other token-specific information. pos and

next_char from Figure 2.4 are primitive features. They are represented by

an unsigned 32-bit value.
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• Tokenwise, namely a combination of one or more primitive features inside a

single token. [pos, next_char], [pos] and [aux_word] are tokenwise fea-

tures. They are represented by an unsigned 64-bit value.

• N-gram, which is a combination of tokenwise features over different tokens.

Primitive features are defined for the current token and come from two classes.

The first one comes directly from the dictionary: they are values of integer and

string-typed dictionary fields. For example, a part-of-speech or a surface string

representation would be such a primitive feature. Primitive values of the second

type either come from the analyzer input (e.g. characters near the current word) or

are computed from the dictionary values (e.g. length of a surface field). The full list of

supported primitive features is available in spec format description documentation.

Juman++ has also support for partial lexicalization. See the aux_word feature

definition in Figure 2.4. Match primitive feature is similar to an if statement. The

feature itself is expanded in one of two lists, depending on the condition. The

condition can match a list of fields to a list of values and is computed at dictionary
compile time to save the computations at analysis time. Conditions for multiple

match features are packed as distinct bits to an automatically generated integer-

typed dictionary field.

Tokenwise features combine primitive features within a single token. We dis-

tinguish them because n-gram features can contain several identical combinations

of primitive features. For example, Figure 2.4, n-grams 1, 2, 3 share the [pos,

next_char] feature combination. We compute a 64-bit integer representation for

each such combination. The value tft of a tokenwise feature t is computed as

tft = hash(t,n, seedtok,pf1,pf2, ...,pfn),

where n is the total count of primitive feature components of this tokenwise feature,

seedtok is a hash seed value for tokenwise features and pfi are respective primitive

feature values. The hash function is discussed later.

N-gram features combine tokenwise features between several n-gram components

into a 64-bit integer. The formula is similar to the one for tokenwise features.

nfj = hash(j,n, seedngram, tf0, tf−1, ..., tf−n+1),

where j is an index of n-gram feature, n is the order of the n-gram, seedngram is

seed value, tfk is a value of tokenwise feature in the current path relative to the

current position. tf0 would be the value for the current token, tf−1 would point to

the previous token, and so on. This enables us to get rid of identical computations.
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procedure JppHash(state, input)

v← state ⊕ input

v← v · 0x6eed0e9da4d94a4f

t← RotLeft(v, 32)

v← v ⊕ t

return v

end procedure

Figure 2.5: Juman++ hashing algorithm. It operates on 64-bit unsigned integers. ⊕
denotes a XOR operation.

ある か
か

あるか
動詞：＊

動詞：＊

助詞：接続

助詞：接続形容：い
ないBOS EOS

Figure 2.6: Nodes used for the computation of a trigram features of the upper path

at the nodeない

Hashing

Because Juman++ uses hashing for computing features, we have created a hash

function for the task. Usually, the hash functions are designed for hashing strings,

operating on sequences of bytes, but it is not the case for Juman++. Instead, it

operates on 64-bit integer values, producing a 64-bit result. The basic design of the

function is that it takes its current state and a parameter and produces the next state.

Hashing multiple values is done by applying the hashing function in sequence:

hash(seed,a,b, c, ...) = JppHash(JppHash(JppHash(JppHash(seed,a),b), c), ...).

We adopt a lightweight hash function based on PCG (O’Neill 2014) algorithm

for generating pseudorandom numbers, which itself is based on linear congruential

generators. The function is shown on Figure 2.5. The total computations consist of

two XOR operations, one 64-bit multiplication and the right shift. The bit left rotate

and the second XOR operations improve the randomness of lowest bits, which are

used for accessing feature weights. Please refer to the PCG paper for the details and

reasoning for this step.

Computation Order

As can be seen, tokenwise feature components of n-grams are consumed from the

end to the beginning. This allows us to cut the total number of computations

by performing identical parts of computations only once and achieve better cache

locality. Figure 2.6 shows an example of a lattice. The nodeない has two inbound
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paths, let us denote their last trigrams asある-か-ない and BOS-あるか-ない.

While the overall scores for these paths should be different, they share some fea-

tures. Namely, unigram features for ない are identical and that part of the score

should be identical as well. Additionally, the parts of bigram and trigram hash states

are identical too. Let’s consider trigram features. hash(j, 3, seedngram, tfない, tfか, tfある)
and hash(j, 3, seedngram, tfない, tfあるか, tfBOS) share prefixes until tfない and thus

will result in identical computations when computed naively. In contrast to that,

we break the computation of n-gram features into steps, memorizing intermediate

hash function state and sharing it between n-gram features with identical prefixes.

The order in which we perform feature and score computation at first glance is

the following:

1. Compute primitive features.

2. Compute tokenwise features.

3. Compute 1-gram features and respective parts of 2,3-grams.

4. Compute score components which are provided by 1-gram features

5. Finish computing 2-gram features, respective score components and respective

pars of 3-gram features

6. Finish computing 3-gram features and scores

We compute scores for all nodes starting at a particular character boundary at the

same time. Because of the struct-of-arrays layout for lattice structures, feature values

for nodes of a boundary are stored in a single array. When performing computations

in the specified order, we minimize the number of jumps between boundaries and

have very high data locality in computations.

Code Generation

Juman++ has two versions of feature computations: dynamic, focusing on the clarity

and correctness of the implementation and static, focusing on the execution speed.

The dynamic implementation models the feature computation process using the

object-oriented paradigm. Each of the feature kinds (primitive, tokenwise and

ngrams) is modeled as an interface with corresponding implementations using the

C++ inheritance and polymorphism. Because the polymorphism uses the virtual

function dispatch, this results in a long sequence of indirect function calls, with each

function being very short. A long sequence of indirect calls from a single call site,

even non-changing between iterations, strains the branch predictor and can become
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a sequence of branch mispredictions resulting in a large overhead over the actual

feature computation costs.

To achieve high performance, we provide static feature computation: a way to

generate C++ code
4

which implements feature value and score computations inline,

as defined by a spec. The code generation pursues the following main goals:

1. Enable the compiler to perform the feature-specific optimizations.

2. Exploit asynchronous and out-of-order nature of modern CPUs to mask the

cost of random feature accesses.

3. Remove the overhead caused by indirect function calls.

While emitting the C++ code for feature computation and scoring automatically

solves the third goal, the ways to achieve the first two and effects from them are

discussed in more depth.

Enabling compiler optimizations

Our computation of tokenwise and n-gram features contain constants as the initial

arguments to the hashing process. In the case of static feature computation, it opens

the possibility for the compiler to perform the constant folding optimization, re-

ducing the number of computations we need to perform at the runtime. An early

V2 prototype performed the feature computations in the opposite order: constants

after the values from the lattice nodes. By ordering the constants first we observed

a significant decrease in analysis speed because of constant folding optimizations.

While the constant folding was probably the most easily observable effect of com-

piler optimizations, inlining the logic also allows the compiler to perform other

optimizations, for example, reordering code to improve register utilization.

Interleave Feature Computations and Memory Access

Because we use hashing for computing features, the model weight access pattern

becomes random. Random access means that every data access is a cache miss with

high probability. Fortunately, modern CPUs provide ways to prefetch data from

memory to cache. User-controlled prefetching works by issuing special instructions,

which are a no-op on the architectural level (so the computation result is the same),

but communicate a hint to the CPU that the pointed memory is going to be accessed

soon. Code-generation allows us to effectively exploit prefetching to effectively

remove cache misses, or reduce their effect, during the score computation. We

4
An example of generated code for Jumandic can be seen at https://git.io/fjvpy
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for node n at boundary do
sn−1← 0

for feature f in active ngram features do
compute value of f(n)
sn−1← sn−1 +wf(n−1)
prefetch wf(n)

end for
end for

Figure 2.7: Skeleton of code-generated kernels

1,3 3 1,2,3; 2,3 2 2,1 1

used in tri-grams⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

used in bi-grams

Figure 2.8: Ordering of stored tokenwise features

also take into account the out-of-order execution capabilities of modern CPUs by

splitting the overall logic into multiple dependency chains.

We generate code using the skeleton shown in Figure 2.7. The main idea is to

create a temporal delay between the computation of the actual feature value f(n)
and its usage for accumulating the weight contribution to the linear model score sn.

We accumulate the weight for the previous lattice node inside the boundary n − 1,

while computing the features for the current node n. Our implementation stores

n-gram feature values in two buffers: one for the previous lattice node and one for

the current one. Reordering code and utilizing prefetching gave about 2× speedup

over the prototype without these features.

We also localize the tokenwise feature access when computing n-gram features.

Namely, the tokenwise features are stored with the order shown in Figure 2.8. The

numbers denote the rank of n-gram features that use the tokenwise features. Because

the computation of bi-gram and tri-gram features happen separately, this ordering

results in reduced CPU cache pressure.

In the case of unigrams, we additionally combine and interleave the first four steps

of feature and score computation (primitive, tokenwise, n-gram feature components

and scoring, see 2.3.4). This results in a larger temporal delay between the n-gram

feature weight prefetch operation and the actual weight access and reduces the time

an access operation needs to wait for the weight in the CPU reorder buffer. The

generated code can be seen in the example at https://git.io/fjvpy from the line

944. The generated code for the first feature with annotations is shown in Figure 2.9.

Finally, interleaving opens a door for reducing the number of tokenwise features

we need to store. In a spec there usually exist tokenwise features that are used
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// pattern feature #8 (with unigram), usage=3
/* usage is a bitmap, this feature used by 1-gram (1) and 2-gram (2) */
constexpr jumanpp::core::features::impl::CopyPrimFeatureImpl pfobj_surface_{0};
/* constexpr forces the object to be constructed at the compile time. It is either
completely optimized away or stored in the constant section of the binary. */

::jumanpp::u64 pf_surface_0 = pfobj_surface_.access(ctx, nodeInfo, entry);
/* primitive feature access */
auto fe_pat_hash_8 = ::jumanpp::util::hashing::FastHash1{}
.mix(8ULL).mix(1ULL).mix(34359656763621376ULL);

/* Prefix of tokenwise feature: index, number of components and seed value */
fe_pat_hash_8 = fe_pat_hash_8.mix(pf_surface_0);
/* Mixing in primitive feature to the hash state */
::jumanpp::u64 fe_pat_8 = fe_pat_hash_8.result();
/* Finalizing tokenwise feature */
constexpr ::jumanpp::core::features::impl::UnigramFeature fng_uni_0_{0, 0, 8};
/* Instantiating the 1-gram (surface) feature.
Number in the name of the n-gram feature corresponds to the order in the spec. */

auto value_fng_uni_0_ = fng_uni_0_.maskedValueFor(fe_pat_8, mask);
/* Instantiating n-gram feature */
float score_part_0 = weights.at(buf2.at(0)); // perceptron op
/* Computing linear model score component. The weight should be prefetched. */
weights.prefetch<::jumanpp::util::PrefetchHint::PREFETCH_HINT_T0>(value_fng_uni_0_);
/* Prefetching operation */
buf1.at(0) = value_fng_uni_0_;
/* Storing the computed n-gram feature value to a temporary buffer. */
patterns.at(8) = fe_pat_8;
/* storing the tokenwise feature value because it is used by 2-grams */

Figure 2.9: Annotated code of interleaved computation. Annotations are in /*
comment blocks */.

only by unigram features. In the Jumandic-based model, about 30% of tokenwise

features are like that. Such tokenwise features will not be used by other nodes in

n-gram features, so we can skip storing them for the current node (when using

code-generated scoring and feature computation logic). Their values never leave

CPU registers, so this reduces overall CPU data cache pressure and analysis memory

usage.

Our computations perform the score computations in the floating point with-

out quantizing the weights like MeCab. Because weight access is explicitly asyn-

chronous in Juman++, the registers
5

which are used for weights would be stored for

a long time in the CPU reorder buffer. At the same time, feature hashing has rather

high register pressure and high throughput because of high cache utilization, we

would like those registers to be quickly reused. Modern CPU architectures often

have two sets of physical registers: for integers and for floating points. Using the

5
We are talking about microarchitectural physical registers instead of architectural logical registers

in this paragraph. For example, Intel Skylake microarchitecture has 180 integer physical registers

and 168 floating point registers, but only 16 logical integer scalar registers and 16 vector regis-

ters (they can be both integer and floating point). See https://en.wikichip.org/wiki/intel/
microarchitectures/skylake_(client) for details.
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floating point arithmetic for weights allows the CPU to efficiently re-utilize integer

registers during the hashing while keeping the weights in the floating point registers.

2.3.5 Unknown Word Handling

Dictionary-based morphological analyzers cannot contain every possible word in

their dictionary. Instead, they devise means to handle unknown words. Usually,

unknown words are handled with rules, e.g. grouping characters of the same type

and using those entries as regular lattice nodes. The lattice search algorithm would

then treat the unknown nodes in the same manner as the dictionary nodes for scoring

purposes.

Juman++ follows the rule-based approach. The exact rules are defined in the spec

using rule constructors. We implement five types of constructors:

1. A single character of a specified type. This type of rule is used for symbols

that do not correspond to any word. It is a good idea to have a catch-all rule of

this type in the model because otherwise, Juman++ could fail to build a lattice

for some input strings.

2. A character sequence sharing the same character type. This is the most used

type of rule for defining “regular” unknown words.

3. A number. This constructor handles numbers, written with Kanji in literal (一

万五千三百五十二) and numeric (一五三五二) styles and digits (15324). Kanji

numbers in numeric styles can be separated into groups of three digits with

the centered dot (一五・三五二) and digit numbers can be separated with

commas (15,324).

4. An onomatopoeia pattern (Sasano, Kurohashi, and Okumura 2013). We de-

fine the patterns as ABAB, ABCABC, and ABCDABCD where A, B, C, D are

characters of the same and specified character class.

5. A normalized dictionary entry. Following Sasano, Kurohashi, and Okumura

(2013), we also add nodes which can be produced from the dictionary by

inserting repeated characters (痛い→痛いいい), prolongation (はい→は〜い)

or small “tsu” (かたい→かったい).

Primitive Feature Handling

To be able to score unknown nodes in the same manner as dictionary nodes, un-

known word handlers need to provide the same primitive features as there exist for

dictionary-based lattice nodes. The first four constructors use dictionary patterns:
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Figure 2.10: A step of path search at a character boundary. Top: full beam, middle:

left trim (bl = 2), bottom: right trim (ml = 1, mr = 1). Trimmed

connections are dashed.

special dictionary entries that are not indexed for surface lookup. The primitive

features for unknown nodes, created by these handlers, are initialized from dic-

tionary patterns and then a subset of primitive features, configured in the Spec, is

replaced by a hash value of a surface string corresponding to the unknown lattice

node. In the Jumandic we replace surface, the base form, and reading with the

actual surface string of the unknown handler. In the case of normalization, we use

the dictionary entry which acts as the normalization result as the pattern, keeping

the rest of handling the same.

Handlers also can communicate with the scoring procedure by setting values of

placeholder primitive features. For example, the character sequence handler would

set 1 to the placeholder in the case if the current unknown word contains a dictionary

word as a prefix.
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2.3.6 Beam Search and Trimming

Searching for the top-scored path in the lattice is done on a character boundary

basis. For each boundary, there are left lattice nodes, which contain words ending

at the current boundary and right nodes, which contain words starting from the

current boundary. Left nodes also contain paths ending at those nodes. A search

step grows those paths, adding connections that cross the boundary between left

and right nodes. The process is illustrated on Figure 2.10.

Because Juman++ uses trigram features, the usually employed Viterbi search will

have O(n3) computational complexity on each segmentation boundary, which will

completely overturn all benefits we gain from optimization. We employ the beam

search instead. V1 uses node-local beams of width bf, meaning that it keeps bf

paths with the top scores are kept for each lattice node. This configuration will be

referred to as full beam.

Full beam considers every combination of left (ending on the boundary) and right
(starts from the boundary) nodes on each character boundary. For each left node, it

also considers the paths in the respective beam. This setup conservatively assumes

that it is impossible to compare the scores of paths which end at different nodes,

and has a high computational cost. Still, in our experiments, most of the sentences

contain several boundaries where there exist around 20-30 of both left and right

nodes. In the full beam setup the computational complexity scales as the product

of a number of left and right nodes at a character boundary. Moreover, the majority

of the combinations are useless and can never be the correct analysis result.

To increase the analysis speed we have implemented more aggressive beam trim-

ming. The first improvement is straightforward: instead of using all paths from

all the left nodes, we form a global beam of width bl for the boundary. The path

scoring process can use the formed global beam instead of all the local beams. In this

setting, the path scores become comparable for the identical sequences of surface

characters.

Using the global beam for the left side of the boundary greatly helps to reduce the

number of computations during the scoring. The number of right nodes can still be

large. We further decrease the number of computations by ranking the right nodes

and performing the full computations only to the perspective nodes. Namely, we

rank the right nodes by evaluating their scores in the connection to top ml paths

from the left global beam. Then we evaluate the scores for the remaining paths, but

we use only top-ranked mr right nodes.

The full algorithm for this setting (which we refer to as trimmed beam) is:

1. Form the global beam of width bl from the local beams of left nodes (trimmed

beam: left)
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2. Rank the right nodes using the top ml(< bl) path candidates from the global

beam (trimmed beam: rank)

3. Compute the remaining path candidates over the boundary using the remain-

ing bl −ml paths of the global beam and top mr best right nodes (trimmed

beam: right)

4. Form the local beams of width bf for the right nodes using the results of steps

2 and 3

In our experiments, the trimmed beam configuration showed the same accuracy

while having a significantly faster analysis speed. Moreover, it was sufficient to rank

the right nodes using only mr = 1 left paths. The accuracy results are discussed

in detail in subsection 2.5.4. We also discuss the setting of analyzing out-of-corpus

data, which had a larger number of situations when the trimmed beam result was

different from the full beam.

2.3.7 RNN Language Model

An RNN language model helps the analyzer to be more accurate by adding addi-

tional lexicalization learned from a large-scale corpus. Juman++ uses a recurrent

neural network-based language model (Mikolov 2012) to estimate semantic plau-

sibility of different segmentation possibilities. Still, a complete lattice search with

RNN is computationally expensive and is one of the reasons for the slow analysis

speed of V1. Instead, V2 uses the RNN model only to rerank analysis candidates

which remain in the beam of the EOS node after beam search with the linear model.

Juman++ can evaluate RNN not only on the surface string but on any combination

of dictionary string fields. We will denote such a combination as RNN key. For the

Jumandic RNN key, we use a combination of word base form (without conjugations)

with a rough part-of-speech tag.

Remember that Juman++ lattice nodes are unique for a combination of primitive

features participating in n-gram computations. The RNN model is evaluated only

on a subset of those primitive features, which mean that paths traversing through the

distinct lattice nodes may have identical RNN key. Naively evaluating all paths lead

to unnecessary computations, which decreases overall analysis speed. Because of

this, we deduplicate possible RNN paths before performing the actual computations.

This greatly reduces the number of computations for the RNN language model.

For out-of-dictionary keys of the RNN model, we use a length-based unknown

word penalty instead of the raw RNN scores. Namely, the score is defined as

sr = ub + l · ul, (2.3)
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where ub is a constant part of an unknown RNN score hyperparameter, l is a count

of Unicode codepoints in the surface of the node with an out-of-dictionary RNN key

and ul is a length part of an unknown RNN score hyperparameter.

Because the RNN model is independent of the analysis dictionary, the RNN

representation lookup differs from the segmentation dictionary lookup. We build

two separate indices for the RNN. The first one contains the concatenated field

pointers in LEB128 encoding as the key and embedding id as the value. It is used

to handle normal lattice nodes which are completely built from the dictionary. The

second one uses the normal strings for the fields which unknown word handlers

replace by surface and field pointers for the remaining fields. It is used to handle

lattice nodes, which are contained in the language model but not in the segmentation

dictionary.

2.4 Training

The training of the linear and RNN models for Juman++ is done independently.

The parameters for mixing them are optimized after training both, using a hyper-

parameter search. We also use the hyperparameter search to optimize the training

procedure for the linear model.

Juman++ uses a slightly peculiar data scheduling regime for the training. The full

training process is divided into epochs, each of which iterates several times over the

training data. The training data is also shuffled before the start of each epoch. The

first iteration of each epoch uses the full beam for the analysis and the following

iterations use the trimmed beam search. This scheduling improves the analysis

stability for out-of-domain data.

Additionally, to reduce the model pollution with features corresponding to bad

nodes, the first epoch uses only fully-annotated examples. The partially annotated

examples are added to the training only from the second epoch when the model

learns to rank perspective nodes higher than bad ones.

2.4.1 Linear Model

Juman++ can train the linear model using both fully-annotated and partially-annotated

data. Data in the fully-annotated format define a sentence as a sequence of lattice

nodes. Each node must contain all dictionary fields used in n-gram features.

Partially annotated data contain sentences as sequences of characters with addi-

tional annotations. Annotations can be of three types: segment, no-segment, and

word. Segment annotation forces a boundary between two Unicode codepoints.

No-segment annotation is an opposite – it forces an absence of a boundary between
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two codepoints. Word annotation has two segment annotations at the beginning

and the end of the word, no-segment annotations between them, and optional tags

that correspond to required values of dictionary fields for matching nodes.

Juman++ uses the Soft Confident Weighted (J. Wang, P. Zhao, and Hoi 2016) online

learning algorithm to optimize model weights. For the fully-annotated examples

the application is straightforward: we use the combination of all n-gram features

in the path as sentence features. We update the model for the sentences where the

correct analysis, as specified by the training example, falls off the beam.

We have also tried two early update strategies known to be useful for structured

learning: maximum violation and beam falloff when the model is updated only for

the subset of parameters starting from the beginning of the sentence and ending at

the point of maximum violation (difference between top beam score and gold score)

or where the correct analysis falls off the beam. In our experiments, however, the

partial update strategies showed worse accuracy than the full update strategy.

In the case of partially annotated examples, we only update features contained in

partial violations: codepoint boundaries where the top-scored lattice node does not

adhere to the partial annotation rules. As the correct node, we try to find several

node candidates that satisfy the partial annotation rules, deduplicating features from

them so that the features shared by multiple lattice nodes won’t be overweighted.

2.4.2 RNN training

In the current implementation of Juman++, the RNN model is trained completely

independently of the linear model. We use the faster-rnnlm software
6

for the RNN

model training. It is first trained on a large scale automatically analyzed data and

then fine-tuned on the human-segmented data. The resulting model is then used

for the hyperparameter tuning.

2.4.3 Hyperparameters Tuning

For the training of Jumandic-based Juman++ models we optimize the following

hyperparameters:

• Soft Confident Weighted learning hyperparameters

• Number of training epochs and in-epoch iterations

• RNN mixing parameters

• RNN unknown word hyperparameters

6https://github.com/yandex/faster-rnnlm
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Table 2.2: Dictionary and model size comparison

Analyzer Dictionary size (MB) Model size (MB)

Raw Dictionary 256 -

MeCab
∗
311 7.7

KyTea - 200

V1 445 135

V2 158 16

We use the Gaussian process-based Spearmint (Snoek, Larochelle, and Adams 2012)

package for the hyperparameter tuning. The search is performed on the average

of F1 scores for segmentation and POS-tagging over the 10-fold cross-validation on

the training data. We have optimized hyperparameters in two groups: linear model

training-related parameters and RNN-related parameters.

2.5 Experiments

The overall performance of a morphological analyzer consists of different factors.

We compare the following performance components:

• Dictionary or model size,

• Analysis speed,

• Analysis accuracy.

For comparison, we use JUMAN, MeCab, and KyTea as our baselines.

In all the experiments we use the Jumandic segmentation dictionary with Kyoto

University (KU) and Kyoto University Web Document Leads (KWDLC) corpora.

JUMAN uses the Jumandic without expanded conjugation forms as it is, for other

analyzers, we expand all possible conjugation forms with conjugation rules.

2.5.1 Dictionary Size

The compiled dictionary and model sizes for the different morphological analyzers

are shown in the table 2.2. All dictionaries except KyTea’s were built using the same

conjugation-expanded Jumandic. For KyTea we used only deduplicated entries

consisting of surface, POS, and sub-POS fields. V1 and V2 models do not include

the RNN model size. We can see that the dictionary size of MeCab is larger than

the raw dictionary file; however, that is the size of a trie index. Please note that its

index size is a consequence of MeCab being very popular and backward compatible

with its models. It is extremely easy to swap its current implementation of a double
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Table 2.3: Juman++ Jumandic model size breakdown

Parts Size, bytes Model % Dict %

Double Array Trie Index 33.12 M 8.11% 27.49%

Entry Pointers 7.92 M 1.94% 6.57%

Field Pointers 30.81 M 7.55% 25.57%

String storages

surface, baseform, reading 38.35 M 9.40% 31.83%

pos 205 - -

subpos 702 - -

conjform 2704 - -

conjtype 860 - -

canonic 2.87 M 0.70% 2.39%

features 5.17 M 1.27% 4.29%

features (list pointers) 2.23 M 0.55% 1.85%

Linear model 16.00 M 3.92% N/A

RNN 271.71 M 66.56% N/A

array trie with the API-compatible implementation darts-clone
7

which will reduce

the index size in half. Juman++ V2 uses this implementation. V1 dictionary size

is significantly larger than of other analyzers because it was using data structures

that are optimized for shared memory interprocess communication for the on-disk

storage of the compiled dictionary. KyTea stores the string feature representations

and its models become relatively large because of that. For the KyTea model trained

on the concatenation of KU and KWDLC corpora, the model size is even larger than

the V2 model without an RNN.

We also analyze the size of a V2 Jumandic model in more detail. Table 2.3

contains a breakdown of a V2 Jumandic model
8
. The table shows that the dictionary

information itself is represented very compactly. About half of the dictionary space

is taken by the double array index. Using a more compact representation of the trie

index can make the models even smaller, still, the total model size is dominated by

the RNN, thus the resulting size reduction of the whole model will not be significant.

The Jumandic model shares the string storages for surface form, reading, and a

base conjugation form which makes the string storage with the most diverse entries.

On the other hand, the content of POS-related fields is not diverse, as can be seen

by the sizes of their string storages. The on-disk size of field pointers depends on

the size of the respective string storage, and together with the field alignment, it is

possible to achieve the size of one byte per POS-related field.

7https://github.com/s-yata/darts-clone
8
This information is accessible as a result of jumanpp --model-info command for an arbitrary spec.
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Table 2.4: Morphological analysis speed comparison

Analyzer Speed (sents/s) Ratio

JUMAN 8,802 1.00

MeCab 52,410 0.17

KyTea (Jumandic) 4,892 1.79

KyTea (Unidic) 1,995 4.41

V1 noRNN 27 328.82

V1 RNN 16 535.72

V2 noRNN 7,422 1.18

V2 RNN 4,803 1.83

2.5.2 Analysis Speed

We used a computer with Intel i7-6850K CPU, 64 GB of RAM, and Ubuntu 16.04

Linux for the analysis speed comparison. For the speed benchmarking we have

downclocked the CPU frequency to 3 GHz (from the 3.6 GHz base frequency), dis-

abled the Turbo Boost technology, and used the performance CPU scaling governor

which runs the CPU at the fixed frequency. The models were trained from scratch

using the same Juman++ dictionary, the Kyoto University
9

(KU) and KWDLC
10

cor-

pora for all morphological analyzers except JUMAN, which is not trainable. For

KyTea we also report the throughput of Unidic-based models which also perform

the reading estimation, and are available for download from the KyTea website. A

Jumandic-based model for KyTea does not use the reading estimation feature of

KyTea and it was learned using the default parameters. V1 uses the full beam of

width j = 5. V2 uses trimmed beam with parameters j = 5, k = 6, l = 1, m = 5. All

analyzers were using only a single thread.

Table 2.4 shows the analysis speed of the considered morphological analyzers

and speed ratio as compared to JUMAN. The speed was measured by analyzing 50k

sentences from a web corpus. We use the median time of five launches with identical

parameters for computing the analysis speed. V2 noRNN is only 20% slower than

JUMAN while having a considerably complex model. V2 RNN has 1.8 times the

execution speed of JUMAN and is more than 250 times faster than V1.

2.5.3 Analysis Accuracy

Figure 2.11 shows F1 scores with 95% confidence intervals for both the KU and

KWDLC corpora. Data in the tabular format is in Appendix 2.8. A concatenation of

training sections of both corpora was used to train a combined model; the reported

9http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?Kyoto University Text Corpus
10http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KWDLC
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Figure 2.11: F1 scores and 95% confidence intervals for accuracy of morphological

analyzers on Jumandic-based corpora. Seg is segmentation; +Pos is

correctly guessing the POS-tags after segmentation.

scores are for the test sections. MeCab and V2 have hyperparameters optimized

using Spearmint (Snoek, Larochelle, and Adams 2012). The confidence intervals

are computed using bootstrap resampling with 10,000 iterations. Note that if sides

of two confidence intervals overlap by half, it means the statistical significance of

p = 0.036, and non-overlapping intervals mean statistical significance at least of

p = 0.006 (Cumming and Finch 2005).

V2 RNN achieves a higher F1 score than the previous SOTA of V1 RNN. Even

the scores of V2 noRNN are higher in some cases than those of V1 RNN. Note that

the scores of V1 noRNN are one of the lowest, and thus we hypothesize that the

number of training iterations of the V1 linear model was not sufficient. However, it

was difficult to increase it because of a very slow analysis speed.

With V2, we could find an optimal number of iterations for learning the linear

model with the best accuracy. The other reason for the improved accuracy for V2 is

that it uses surface character and character type features.

2.5.4 Effects of Beam Trimming

We evaluate the effects of beam trimming on analysis accuracy by making an analysis

experiment with different trimmed beam settings. We train multiple Juman++

models using different trimmed beam settings and compare their accuracy to each

other and the full beam setting. For the experiment, we use 10-fold cross-validation

on the train section instead of the usual test-train split.

Figure 2.12 shows the average of the POS F1 score of different trimmed beam
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Figure 2.12: Cross-validation test F1 score average on KU corpus for POS tags when

using different timmed beam parameters bl = mr = ρ, ml = 1. Dotted

line at the top is F1 score in the full beam setting.

settings. Generally, when using the larger or equal beam size in test time than in

the training time, the accuracy is not distinguishable from the full beam setting. We

should note that training the model in the setting ρ = 1 (equivalent to Viterbi search

on bigrams) fails to utilize the high-order features efficiently and achieves lower

accuracy.

We also noticed that there exist sentences when the full and trimmed search

configurations do not agree on the top-scoring path when analyzing random web

sentences. To get a better picture, we analyzed a large number of sentences from a

raw Japanese corpus, crawled from the web. On average, 0.38% of sentences had

different analysis results, a relatively small number. Of those sentences, the full

beam analysis was correct only in around 50% of the cases. The rest of the sentences

had both analysis variants incorrect either because the dictionary did not support

the language phenomena (20%) or lack of coverage by the training data (10%); the

trimmed beam analysis was the correct one (10%); and other situations that were

difficult to decide or impossible to analyze correctly like typos.

We compared the accuracy of the trimmed beam search to the full configuration

in the in-domain setting. For this experiment, we trained the model using 1 pass

of full beam search followed by 4 passes of trimmed beam search for the optimal

number of iterations for different trimmed beam parameters. Figure 2.12 shows

the F1 score average on 10-fold cross-validation over the KU corpus. It can be seen

that the accuracy of the models does not fall even if using very small global beam

sizes. Nevertheless, we noticed that there exist sentences when the full and trimmed

search configurations do not agree on the top-scoring path when analyzing random

web sentences and produce diffs.

To get a better picture, we analyzed a large number of sentences from a raw

Japanese corpus, crawled from the web. On average, 0.38% (1969/510595) of sen-

tences were diffs, a relatively small number. In contrary to our expectations, the full
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beam analysis was correct only in around 50% of the cases. The rest of sentences

had both of analysis variants incorrect either because the dictionary did not support

the language phenomena (20%) or lack of coverage by the training data (10%); the

trimmed beam analysis was the correct one (10%); and other situations that were

difficult to decide or impossible to analyze correctly like typos.

Based on these insights, we believe that the diffs can be treated as a result of

selection by the Query-by-Committee active learning algorithm with two committee

members (Settles and Craven 2008; Seung, Opper, and Sompolinsky 1992). We think

that diffs actually reveal problems not only with a training corpus (the goal of active

learning) but also with an analysis dictionary as well. Note that we are using exactly

the same model in both beam modes and the only difference is beam configuration.

So, a diff can form only if trimmed beam ranking was not learned correctly either

because the model capacity was not enough, features were not strong enough, or

the situation was not present in the training data.

When the beam size at training is very small, the model does not learn to rank for

the trimmed case well enough, lowering the accuracy on larger beam sizes. Increas-

ing the beam size above three makes the trimmed beam score indistinguishable with

the full beam. On the other hand, the model loses accuracy on smaller beam sizes

at test time, because the trimmed ranking fails in those situations. Thus we believe

that the model capacity and the feature set should be enough to capture the ranking

and the diffs are caused mostly by the lack of training data. The fact that the diffs

include situations when it is impossible to produce the correct analysis at all, namely

lack of dictionary words and typos, confirms our belief.

On the other hand, we also believe that the corrections of places pointed by

diffs are not going to significantly improve benchmark scores exactly because of

the same reason. The benchmark corpus will usually be relatively in-domain and

not contain dictionary or grammar problems, because they would be fixed when

creating the corpus. So we hope that this method would be useful to improve real
world morphological analysis accuracy and for domain adaptation.

2.6 Partial Annotation Tool

Because the diffs must be reviewed by human annotators to be useful as training

data, we have developed a partial annotation tool based on a simple idea: to allow

annotators to select a correct analysis from two candidates. The output of the tool

can be used as partially annotated training data.
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Analysis 
variant 1

Context

Context

Analysis 
variant 2

Special Tags

Figure 2.13: Annotation tool: diff view. UI explanations are in blue. Variant 1 is

selected.

2.6.1 Tool Description

The tool is a web application, implemented in Scala. As an input, it uses sentences

with some parts being diffs, which are produced by a tool bundled with the Juman++

V2 distribution. For each sentence, annotators are asked to select a correct variant,

correct an analysis if both are not correct, or report if it is impossible to select a

correct analysis or there is a problem with the sentence itself.

A sentence diff view is shown in Figure 2.13. The annotation targets are diffs: we

want annotators to choose a correct analysis from the possible variants, which are

displayed side-by-side. A sentence can contain more than one annotation target in

general and each variant can contain more than one morpheme. Non-diff parts form

contexts and are displayed in grey. The tool shows diffs in an unspecified order. In

the shown example, the left variant is selected as the correct one. The area in the

middle of the target section contains a button which activates an interactive analysis

mode and buttons for assigning special tags in the case when the mistake in the

target part is due to a typo or a phenomenon that we do not want to support in the

automatic analysis, such as netspeak.

In the case when both analyses are incorrect, an annotator can use the interactive

analysis mode, shown in Figure 2.14, which performs constrained morphological

analysis. Constraint nodes are shown in blue. A full beam analysis becomes initial

constraints.

The interactive analysis mode uses lattice information from the Juman++ to pro-
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Figure 2.14: Annotation tool: interactive analysis. Constraint nodes background is

blue. Other analysis variants for the last constraint node are displayed

after the gray indent. The “CL” button removes a constraint.

vide morpheme candidates for constraints. It is possible to show either all mor-

phemes containing a focused character or morphemes spanning exactly selected

characters. The corrected analysis replaces the closest diff variant which was not

selected by any annotator yet, or creates a new variant if replacing is not possible.

Finally, if there are no variants, annotators can select a character span and report

that it is impossible to choose a correct morpheme in this sentence for that span.
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2.6.2 Annotation Experiment

We performed a small scale annotation experiment using the developed annotation

tool. For the experiment, we trained a model on the concatenation of the training and

test data from both benchmark corpora and the copy of data augmented by removing

“ga”, “ha” and “wo” case markers, which are often omitted in the spoken language

so that the model would be more robust to case marker omission. Using this model

we have collected sentences which contained diffs, as described in subsection 2.5.4.

We asked two annotators to work for three hours each.

During the allocated time, the two annotators could review 111 and 112 sentences

each. Both the annotators started annotating rather slowly, while gradually increas-

ing their annotation speed. An inter-annotator agreement was 0.819. The annotators

have selected at least one of analysis candidates in most (82%) cases; the rest were

special tags.

We also checked sentences where the annotators did not agree on the correct

analysis, but both the annotations were analysis results (9 in total). Each of them

was difficult to decide even for us. We believe that the relatively large number of

sentences which caused annotators to spend a long time on annotation is caused by

the fact that the diff extractor selects difficult cases.

2.7 Discussion

While Juman++ achieves very high accuracy, there still exist some errors. We would

like to discuss the most frequently occurring types.

Segmentation errors are the most visible ones for the users of MA. Juman++ often

incorrectly segments katakana words. For example, ギネスビール, ストップウ

オッチorシベリアンハスキー are written in the corpus as single words. In these

cases, the whole word is composed of the subcomponents and it is difficult to say

that Juman++ segmentation is critically incorrect. However, there are also cases of

over-segmentation likeブルドーザー andショベルカーwhen the combined word

is not composed of its parts and the segmentation does not make sense.

Another frequent case is an ambiguity in segmentation caused by a different

part of speech. In Jumandic segmentation standard usages of na-adjectives when

modifying verbs are not segmented (優位に動く), but are segmented whenに is a

case marker (優位に立つ). This problem also manifests when the word is katakana.

For example, Juman++ incorrectly treatsリベラル as an adjective in the sentence民

主党リベラルによる高福祉. There exist very tricky cases like準々決勝で伊達に

敗れ in a sentence about a sporting event. It is possible to decide the 100% correct

segmentation only after checking the fact that a person named伊達 participated in
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the event.

There exist compound words which can be segmented in different ways: 不快

感or不快感;工学部or工学部. While a non-corpus segmentation is registered as a

segmentation error, this is more a problem of the segmentation standard than of an

analyzer.

Lastly, there is a large number of over-segmented named entities like 新民連

or デルタ航空, especially in texts of the web domain. Sequences of characters of

the same type are not as problematic as the entities of the second kind, containing

characters of multiple classes (e.g. kanji and katakana or katakana and romaji).

They could not be solved in the current paradigm of unknown word handling well.

Nevertheless, we would like to argue that the named entities frequently consist of

several morphemes. Here we have a conflict of how easy it is to use the results of

the morphological analysis in other applications (handling sequences of tokens is

more difficult than handling single tokens) versus the closeness to the uniformity of

the tokenization. Unfortunately, the Jumandic does not make a clear decision at this

point so conflicting situations arise in the segmentation.

Non-local Dependencies

One group of remaining accuracy problems is when the correct decision requires

non-local information. The most frequent, albeit important such problem is the

ambiguity between で being either a conjugation of copula だ or the instrumental

case marker. For example, in the sentence “この湯豆腐と、あえ物、ごま豆腐、

おひたしなどの精進料理で、体のしんまでポッカポカ。” で is the case marker,

but the decision requires to take the overall sentence into the account. Moreover,

punctuation does not help to make this decision.

Analyzers that make the local decisions are poorly fit to solve this problem. One

possible approach would be to retain the ambiguity in the morphological analysis

result and try to resolve this problem at the syntactic parsing level. It is, still, difficult

to decide what kind of ambiguity to keep and what to pass. There was an attempt

to leave this ambiguity on the morphologic analysis level and try to resolve it as a

syntactic parsing problem (D. Kawahara, Hayashibe, Morita, and Kurohashi 2017),

but there was not much success. Accessing the global information about the sentence

is key to solving this problem, so neural approaches could be helpful, but it was not

thoughtfully studied yet.
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Linear Weights Precomputation

While the current version of Juman++ does not precompute parts of linear model

weights corresponding to unigram and bigram features to speed up computations,

similar to MeCab, it is possible. Still, not every feature can be precomputed, mostly

because Juman++ allows us to use surface-based features which depend on the input

string at the analysis time. Taking that into consideration, the design should give

the user the ability to control the size of the precomputed weight table. Ultimately,

this leads to significantly increased complexity of scoring and statically generated

code. Also, the statically generated scoring procedure is going to depend on the

decisions made at the precomputation time, compared to the current state when it

depends only on the spec. Because of these considerations, the current version of

Juman++ does not contain the functionality to precompute linear model weights.

It is, however, incorrect to think that Juman++ does not perform any type of

precomputations. Converting the dictionary into a form that is easy to process is

a form of precomputation. We additionally resolve conditional statements at the

dictionary compile time.

Using SIMD and Vector Instructions

While Juman++ exploits out-of-order capabilities of modern CPUs, we do not exploit

the SIMD parallelism in the linear model. RNN implementation uses Eigen library

(Guennebaud, Jacob, et al. 2010) and is vectorized.

We did some experiments with vectorizing the feature and score computation;

however, the scalar version was faster when using SSE/128-bit vectors and on the

same level of performance for AVX2/256-bit vectors. We did not experiment with

AVX-512 because of the lack of easily accessible AVX-512 hardware at the active

development time of Juman++. One of the problems with them is the high latency

of gather-type instructions needed for random access of model weights and the lack

of gather-prefetch instructions. It would be interesting to explore this direction in

the future.

Portability

The techniques proposed here can be divided into two parts: architecture-dependent

and architecture-independent. Everything related to the dictionary structure is

architecture-independent. Other parts make assumptions about the underlying

hardware, but most modern and widely used hardware satisfies our assumptions.

Linear congruent generators, which our hash function is based on, have better

statistical properties when they have larger state space, and our implementation uses
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64-bit integers because the most widely used architectures are 64-bit and provide a

large number of 64-bit integer registers with fast operations on such numbers. The

algorithms should work with the 32-bit intermediate hash state, but we did not test

it.

The rest of the improvements assume that the executing CPU will have out-of-

order execution. Having a complex memory subsystem that supports prefetching

and multiple asynchronous and simultaneous memory accesses usually stems from

the out-of-order nature. Fortunately, nearly every modern CPU aimed at perfor-

mance, in both server, desktop, or mobile form-factors, has out-of-order execution.

As far as we know, only extremely low-power or simple microcontrollers and CPUs

with special needs (e.g. ARM Cortex R series which have fixed latency for all in-

structions) are in-order. We believe that Juman++, in general, would be a bad match

for tiny embedded systems not only because of applied optimization methods but

also because such CPUs usually are not packaged with a large amount of RAM.

Software prefetching, however, sometimes is supported on in-order CPUs as well,

and can be used to improve the execution speed in such situations.

Juman++ and its techniques target the common characteristics of out-of-order

CPUs, like asynchronous memory access, without being optimized for a specific

microarchitecture. There is nothing prohibiting optimizations of Juman++ to work

on ARMv8+/PowerPC CPUs in addition to x86_64 without difficult porting. Finally,

we must remark that approaches to computer architecture like VLIW which put the

decisions over instruction-level parallelism on the programmer and compiler could

also be exploited similarly.

Low Accuracy on Sentence Level

While there exists an impression that the morphological analysis has extremely high

accuracy (e.g. 99.5% F1 score for segmentation of newspaper texts), there exist some

caveats. The evaluation is done on a token level and for Japanese, there exists a large

number of easy tokens, mostly related to the grammar. Even JUMAN, as an example

of an analyzer that uses an HMM model for analysis with mostly bi-gram features,

gets the segmentation score above 98% F1. We should note that greedy matching

prefix dictionary strings do not perform well in the segmentation task and achieve

only a 79% F1 score. For suffixes (analyzing the end to the beginning) it is even

worse with 68%.

On the other hand, when it comes to the sentence level the accuracy is not that

high. For the KU corpus, it is 93% (127/1783 contain segmentation errors) and

for the KUDLC it is 88% (265/2195). Moreover, for more complicated and noisy

domains like user-generated texts in social media, it is even lower.
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Being Robust to Input Errors

Most of the current morphological analyzers treat the input in a way so it does not

contain errors. Unfortunately, real word texts contain typos and other linguistic

phenomena. Some of them, like IME misconversions, are mostly Japanese-specific.

Lattice-based analyzers can’t handle such situations well. For example, when

the misconversion contains actual dictionary words, the analyzer would use those,

producing nonsense analysis. Still, humans are pretty robust against such errors

and can infer the original meaning of the sentence pretty easily. There exist prior

work in this direction (Saito, Sadamitsu, Asano, and Matsuo 2014), but it is one of

the open problems for the morphological analysis.

Approaches With and Without Dictionary

The current state of morphological analysis accuracy is happened because of the

high quality of segmentation dictionaries for Japanese. Also, from the user’s point

of view, it is easy to tune the analyzer for their task or domain by adding new words

to the dictionary. Because the MeCab-based analyzers use primarily POS-based

features for scoring, adding new words could be done without retraining the whole

model. This, however, makes their models relatively large for large dictionaries.

Juman++ , in theory, allows adding new words to the analysis dictionary. If we

add new content to the end of string storages we will not change values of present

field pointers, so the feature hash values will stay the same. The field pointer table

itself can be completely rebuilt without retraining the linear and RNN models. This

functionality, however, is not implemented presently because of time constraints.

Tolmachev, D. Kawahara, and Kurohashi (2019) bootstrapped a neural network-

based morphological analyzer based on a large-scale corpus analyzed by a traditional

dictionary-based analyzer. Their approach did not model the dictionary explicitly,

predicting segmentation and POS from the encoded unigram representations. Their

approach, nevertheless, matched and in some cases surpassed the bootstrapping

analyzer, having a very compact model. This approach seems to learn a word model,
preferring to output some tokens which make sense to humans, but have different

segmentation in the corpus, e.g. 食材 which is segmented into two characters in

the corpus. The downside to their approach is that adding new words to the model

requires reanalyzing a huge corpus and then retraining the model, making the

process very cumbersome.
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Table 2.5: F1 scores and 95% confidence intervals for accuracy of morphological an-

alyzers on Jumandic-based corpora. Seg is segmentation; +Pos is correctly

guessing the POS-tags after segmentation.

Kyoto University KWDLC

Analyzer Seg +Pos +Sub Seg +Pos +Sub

JUMAN 98.41
98.58

98.24
97.20

97.40

96.99
95.48

95.73

95.23
98.10

98.30

97.90
97.01

97.24

96.78
95.76

96.02

95.50

KyTea 99.10
99.22

98.99
98.21

98.36

98.05
96.98

97.18

96.77
97.96

98.16

97.76
96.82

97.05

96.59
95.08

95.36

94.80

MeCab 99.14
99.26

99.01
98.58

98.71

98.43
97.62

97.79

97.44
98.28

98.47

98.08
97.61

97.82

97.39
96.23

96.49

95.98

V1 noRNN 98.94
99.06

98.81
98.42

98.57

98.28
97.06

97.25

96.87
97.66

97.87

97.43
96.95

97.18

96.70
95.51

95.80

95.22

V1 RNN 99.37
99.47

99.27
98.95

99.07

98.83
97.57

97.74

97.40
98.41

98.58

98.22
97.87

98.07

97.67
96.45

96.70

96.20

V2 noRNN 99.44
99.53

99.35
98.98

99.10

98.86
97.80

97.96

97.64
98.44

98.62

98.25
97.79

97.99

97.59
96.42

96.67

96.17

V2 RNN 99.51
99.59

99.42
99.05

99.16

98.94
97.83

97.99

97.67
98.67

98.83

98.49
98.02

98.21

97.83
96.62

96.86

96.37

2.8 Accuracy Comparison Tabular Data

See Table 2.5. Each table entry consists of three numbers. The left number is the

F1 score on the test data. Top right and bottom right numbers are upper and lower

confidence interval bounds, respectively.

2.9 Some Notes on Computer Architecture

Modern computers are complex. While the speed of CPUs was increasing very

fast, memory latency did not increase that much. Because of this, modern CPUs

have multi-level cache hierarchy with different access speeds. The CPUs also ex-

ecute multiple instructions at the same time. When utilizing ineffective hardware

utilization does not change the correctness of a program, it can drastically change

the execution speed. We use some tricks that explicitly target the details of modern

CPUs in the implementation of Juman++. This section provides some simplified de-

tails on modern computer architecture which are required to explain our decisions

for Juman++. Juman++ for the lattice adopts struct-of-arrays data layout, which is

described in this section.

2.9.1 CPUs and Memory

Modern computers have complex memory hierarchy and different memory access

patterns can have different execution speeds. Figure 2.6
11

shows approximate access

11https://gist.github.com/jboner/2841832
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Table 2.6: Approximate latencies of the modern hardware

Category Latency Comment

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14× L1 cache

Main memory reference 100 ns 20× L2 cache, 200× L1 cache

Read 1 MB sequentially from RAM 250,000 ns

Read 1 MB sequentially from SSD 1,000,000 ns 4×memory

Disk seek 10,000,000 ns

Read 1 MB sequentially from disk 20,000,000 ns

latencies of different parts of modern hardware. While the absolute numbers are

not precise, the orders of magnitude are correct.

It is easy to see that cache accesses are much faster than accesses to main memory,

nevertheless the external storage. However, cache sizes are very limited. Modern

Intel CPUs have 32 KB of L1 data cache per execution core, organized by 4096 512-bit

cache lines. L2 cache is 256KB per core and is shared for code and data. L3 cache is

usually shared by all the CPUs and the number is around 1.5MB per core for server

CPUs.

When a CPU executes an instruction accessing the memory, the data is first read

from the L1 cache, if it does not contain the requested data then the request is

forwarded to the L2, and then similarly to the L3. Only if the data is not contained

in the L3, the access is forwarded to the main memory. The computation continues

only after the data is fetched through all the cache levels. Data is evicted from caches

based on a least frequently used heuristics. This means that accessing the same or

close data will hit the cache, but random accesses will miss.

Also, it is possible to prefetch the data. By issuing a special instruction, we give

the CPU a hint that a piece of data will be accessed soon, so it should get it from

the memory and put it into the cache. Prefetching can be used to hide the latency of

the main memory. In addition to manual prefetching, CPUs also detect frequently-

used access patterns and automatically prefetch the data into the cache. Automatic

prefetching is more effective because it does not require to dispatch additional

instructions, but it can not detect random access patterns.

Modern high-performance CPUs are also out-of-order. They do not execute in-

structions sequentially (in-order), and they can execute multiple instructions each

cycle. Instead, they convert instructions into a directed acyclical graph-like structure

and traverse it in parallel. Inputs to an instruction become its dependencies in the

graph. Converted instructions are placed into a reorder buffer. When all the inputs

to the instruction in the buffer are ready, it is executed. For example, Intel Haswell
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Figure 2.15: Illustration of stuct-of-arrays and arrray-of-structs layouts of a 4-field

object in a 4 element array. Gray is an accessed field. When using array-

of-structs layout, accessing f3 of all objects uses all four cache lines,

however in stuct-of-arrays layout accesses are localized in a single cache

line.

microarchitecture has a reorder buffer of size 192
12

, meaning that there could be 192

instructions at the given time “in flight” and it can execute up to 4 instructions each

cycle.

2.9.2 Memory Layouts and Cache Efficiency

Almost every programming language provides a means to pack the data into struc-
tures as a way to produce abstractions. They work by joining the data, possibly of

a different kind, together. Struct data is usually laid sequentially after each other

by language compilers and runtimes as well. When working with multiple similar

data, it is often put into arrays: homogenous sequences of the data. This data layout

is called array-of-structs (AoS).

Structs are an important building block of abstractions and are irreplaceable for

building complex software. Still, structs can be large and when performing the array

processing, programs tend to operate only on a subset of each struct. On the other

hand, CPU caching works in cache line granularity. A CPU fetches data from the

memory in the relatively large packets of fixed size (on the x86 architecture it is 512

bits — 64 bytes). If an application uses large structs (e.g. larger than a cache line)

and touches only a single 32-bit sized integer field from each of them, this means

that the effective cache utilization is very low (only 6.25% is used, the rest is wasted

by the non-touched data) and there is a large number of main memory accesses,

which are much slower than cache accesses.

Of course, this is an example of a pathological case and in the real world, the

cache efficiency is not as bad. Still, high-performance code often adopts struct-of-
arrays (SoA) data layout instead of usual array-of-structs. With this layout, the fields

are packed together in an array for each field of the structure. Each struct becomes

decomposed over several arrays. The difference between AoS and SoA layouts for a

12https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)#Execution_
engine
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2.9 Some Notes on Computer Architecture

struct of 4 fields in a 4 element array is illustrated in Figure 2.15. With AoS layout

the access patterns which touches only a subset of the fields at a time utilize the

CPU caches much effectively. Moreover, hardware prefetchers of modern CPUs

efficiently support SoA access patterns.
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3 Fully-Neural Morphological Analysis

3.1 Introduction

Although some NLP applications, like neural machine translation, started to use

unsupervised segmentation methods (Kudo and Richardson 2018), resulting seg-

mentation often has decisions which are not natural to humans. Supervised seg-

mentation based on a human-defined standard is essential for applications which are

designed for interaction on a word-level granularity, for example, full-text search.

Segmentation is commonly done jointly with part of speech (POS) tagging and

usually referred to as Morphological Analysis.

Modern Japanese Morphological Analyzers (MA) are very accurate, having a >99

segmentation tokenwise F1 score on news domain and a >98.5 F1 on web domain

(Tolmachev, D. Kawahara, and Kurohashi 2018). They often use segmentation

dictionaries which define possible words. Also, their models are generally large and

unwieldy, spanning hundreds of megabytes in case of traditional symbolic feature-

based approaches. Neural models with word or n-gram embeddings are even larger,

easily reaching gigabytes. This makes it difficult to deploy MA in space-constrained

environments such as mobile applications and browsers.

It has been shown that simple or straightforward models can match or outper-

form complex models when using a large number of training data. For example,

a straightforward backoff technique rivals a complicated smoothing technique for

language models (Brants, Popat, P. Xu, Och, and Dean 2007). Pretraining a bidi-

rectional language model on a large dataset helps to solve a variety of NLP tasks

(Devlin, M.-W. Chang, Lee, and Toutanova 2019). Our approach is inspired by this

line of work.

We propose a very straightforward fully-neural morphological analyzer which

uses only character unigrams as its input
1
. Such an analyzer, when trained only on

human-annotated gold data has low accuracy. However, when trained on a large

amount of automatically tagged silver data, the analyzer rivals and even outperforms,

albeit slightly, the bootstrapping analyzer. We conclude that there is no need for rich

input representation. Neural networks learn the information to combine characters

1
The source code is avaliable at https://github.com/eiennohito/rakkyo
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3 Fully-Neural Morphological Analysis

あ

...

る か な い か

Encoder

... ...
...

... ... ...

...Dense

Softmax

Seg

B I E

t1 t2 tN

Figure 3.1: Proposed model. We encode character unigram embeddings into shared

representations for each character. The shared representation is projected

into a tag-specific representations from which we independently infer

segmentation and per-character tags.

into words by themselves when given enough data.

Ignoring explicit dictionary information and rich input representations makes

it possible to make analyzers that are highly accurate and very compact at the

same time. We also perform ablation experiments which show that the encoder

component of such an analyzer is more important than character embeddings.

3.2 Proposed Approach

In order for MA to be practical, it should be not only accurate, but also fast and have

relatively compact models. The speed of search-based approaches is dependent

on how computationally heavy a weighting function is. Heavyweight models, like

neural networks, require a large number of computations, and we think that it will

be very difficult to create a practical search-based fully NN morphological analyzer

with analysis speed comparable to traditional analyzers.

We do not want to use any explicit information about how to combine characters

to form a word, like dictionaries, which takes space and is not trivial to incorporate

into a character-based model. We also want our model to be fast, at least comparable

with the speed of traditional analyzers. To this end, we follow a pointwise approach

and force the neural network to learn the dictionary information from a corpus.

We use a straightforward architecture shown in Figure 3.1. We embed each

character, and then apply an encoder, which produces an encoded representation for
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3.2 Proposed Approach

あ B 動 * 子ラ 基本
る E 動 * 子ラ 基本
か B 助 接助 * * 

な B 形 * イ形 基本
い E 形 * イ形 基本
か B 助 終助 * * 

EOS

Seg 4-layered POS

Figure 3.2: An example of full sentence annotation

each character. Encoded character representations are independently transformed

into tag representations. For each tag, the encoded representation is projected with

a fully-connected layer with SeLU non-linearity (Klambauer, Unterthiner, Mayr,

and Hochreiter 2017). Finally, we multiply the tag representation by tag-specific

embeddings and apply softmax non-linearity to get normalized tag probabilities.

3.2.1 Encoder Architectures

We use two architectures for the encoder: a stacked bidirectional recurrent ar-

chitecture with LSTM cells (Hochreiter and Schmidhuber (1997), bi-LSTM) and a

Transofrmer-inspired mutihead self-attention network (Vaswani, Shazeer, Parmar,

Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017), SAN). We concatenate both

directions of bi-LSTM outputs before passing them to the next layer without residual

connections. We also apply layer normalization (J. L. Ba, Kiros, and Hinton 2016)

to the concatenated outputs. We do not use dropout in encoders when using silver

data for training.

3.2.2 Data Encoding

Our model infers a tag for every input character. While this decision is natural for

segmentation, POS tags are not usually tagged in this way.

For segmentation, we adopt {B, I, E} scheme. For POS tagging we broadcast

tags to every character which is contained in a token. We use corpora with the

JUMAN-based segmentation standard (Jumandic), which has 4-layered POS tags:

rough POS, fine POS, conjugation type and conjugation form. We treat each tag

layer independently in our model, as shown in Figure 3.2.

We also consider a partial annotation scheme, where some tags are unknown.

An example of partial sentence annotation is shown in Figure 3.3. Unknown tags are

displayed by “?” symbols. We create partially annotated silver data by marking as
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3 Fully-Neural Morphological Analysis

あ B 動 * ? ?
る ? 動 * ? ?
か ? ? ? ? ? 

な B ? ? イ形 基本
い E ? ? イ形 基本
か B 助 終助 * * 

EOS

Figure 3.3: An example of partial sentence annotation

unknown all tags which are ambiguous in a top-k analysis result. When computing

the training loss, we treat unknown tags as padding: corresponding values are

masked out of loss computation.

Loss Following Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and

Polosukhin (2017), we smooth softmax labels. They use the technique described by

Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna (2016), which uniformly distributes

some small factor ϵ like 0.1 to incorrect labels. However, we do not induce a uniform

smoothing. Instead, we want to prevent the model from being overconfident in its

decisions without inducing uniformity. We slightly modify the cross-entropy loss

as follows.

Remember that softmax probabilities are computed from non-normalized log-

probabilities li as qi = eli/Z, where Z =
∑︁

j e
lj

. The cross-entropy loss will be

L = −
∑︂
i

pi logqi,

where pi are gold probabilities. In our case the vector p is one-hot, meaning that

pc = 1 and other values are zero. This gives a sparse cross-entropy

L = − logqc = logZ − lc,

which is often implemented in deep learning frameworks. It has a minimum when

logZ is equal to lc, but it makes the model overconfident. Instead, we want to stop

when qc = 1 − ϵ, or in other words elc/Z = 1 − ϵ. This gives us our modified loss:

L = max(logZ − lc + log(1 − ϵ), 0).

It can be efficiently implemented using the sparse cross-entropy operation. In our

experiments we use ϵ = 0.2.

Our final loss is a weighted sum of individual tag softmax losses. We use a weight
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3.3 Experiments

Train Test

Corpus Sents Tokens Sents Tokens

KU 37k 930k 1783 46k

Leads 14k 217k 2195 36k

Table 3.1: Benchmark corpora sizes

coefficient of 10 for segmentation and 2 for the first POS tag layer.

3.3 Experiments

We conduct experiments on Japanese morphological analysis. For training we use

two data sources. The first is usual human-annotated gold training data. The

second is silver data from the results of automatic analysis. We use Juman++ V2 –

the current state-of-the-art analyzer for the JUMAN segmentation standard as the

bootstrap analyzer.

We use two gold corpora. The first is the Kyoto University Text Corpus (Kurohashi

and Nagao (2003), referred to as KU), containing newspaper data. The second is

the Kyoto University Web Document Leads Corpus (Hangyo, D. Kawahara, and

Kurohashi (2012), referred to as Leads) which consists of web documents. Corpus

statistics are shown in Table 3.1. We denote models which use gold training data by

G.

We take raw data to generate our silver annotated data from a crawled web corpus

of 9.8B unique sentences. We sample 3B sentences randomly from it and analyze

them using the Juman++ baseline model. From it we sample 500M sentences, which

become our training silver data, prioritizing sentences which contain at least one not

very frequent word. We prepare both top-scored (denoted as T) and non-ambigous

in beam (denoted as B) variants of the silver data. Our silver data is in-domain for

Leads and out-of-domain for KU.

3.3.1 Baselines

We use four baselines: JUMAN, MeCab, KyTea and Juman++ (V2). For MeCab,

KyTea and Juman++ we train a model using the same dictionary and merged training

sections of KU and Leads, which is evaluated on each corpus independently.

3.3.2 Neural Models

The hyper-parameters of the bi-LSTM-based model are displayed in Table 3.2. We

use all unique characters present in our huge web corpus (18,581) as input. We
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3 Fully-Neural Morphological Analysis

Parameter bi-LSTM SAN

Char embedding size 128 128

Tag embedding size 32 32

# Layers 4 6

Hidden Size 128×2 32

# Heads - 4

Projection Inner Dim - 512

# Emedding Parameters 2.38M 2.38M

# Total Parameters 3.88M 3.59M

Table 3.2: Hyperparameters for neural models

select sizes of both neural models restricting the total number of parameters to

be less than 4M. For optimization we use the Adam optimizer (Kingma and J. Ba

2014) with hyperparameters and learning rate scheduling described by Vaswani,

Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017). We train

all models on Nvidia GPUs. On a single GeForce 1080Ti the bi-LSTM model can

consume about 4,500 sentences per second and the SAN-based model about 6,500

sentences per second for training. We denote bi-LSTM-based models by L and

SAN-based models by S in experimental results.

3.3.3 Treatment of Gold Data

Existing methods are already highly accurate on this task, and it is difficult to perform

hyperparameter and architecture selection reliably with a small development set.

Because of that, we split our data in an unusual way. Generally, we use the silver

data (B or T) as a train set, the human-annotated original training data (G) as a dev

set and the original test set as a test set. Our hyperparameter selection decisions

were based entirely on this setting. We do not perform additional hyperparameter

search for a combination of silver and gold data for training.

The exception is cases when we use only gold data for training. For that, we cheat

and optimize our hyperparameters, including dropout, which we use only for this

setting, on test scores. Nontheless, the best scores on this setting are significantly

lower than the worst baseline.

Experimental Results Results of our experiments are shown in Table 3.3. For each

analyzer, we show six values. Seg is a tokenwise F1 measure on segmentation. +P1
requires the 1st layer of POS tags (coarse-grained POS tags) also to match gold data.

For the sake of simplicity, we use only POS tags co-located with “B” Seg tags for

the evaluation. +P2 is analogous for the 2nd layer of POS tags. For all results in

this table, we train NN-based models for a single epoch, which means the training
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3.3 Experiments

KU, News Leads, Web

Analyzer Seg +P1 +P2 Seg +P1 +P2

Baselines

JUMAN 98.41 97.18 95.45 98.09 96.96 95.71

MeCab 99.10 98.56 97.59 98.25 97.60 96.22

KyTea 99.13 98.25 97.01 97.98 96.85 95.11

Juman++ 99.52 99.10 97.86 98.61 98.07 96.70

bi-LSTM

L:G 97.46 96.56 94.78 96.33 95.43 93.46

L:B 99.22 98.82 97.50 98.57 98.01 96.61

L:T 99.33 98.90 97.59 98.68 98.16 96.71

L:BG 99.43 99.05 98.06 98.59 98.04 96.76

L:TG 99.43 99.05 98.01 98.71 98.19 96.80

Self-attention

S:G 98.28 97.67 95.66 97.23 96.36 93.91

S:B 99.19 98.75 97.34 98.56 97.99 96.59

S:T 99.23 98.78 97.36 98.66 98.15 96.75

S:BG 99.30 98.90 97.83 98.60 98.03 96.70

S:TG 99.37 98.97 97.93 98.70 98.15 96.83

Pre-training scenario

S:B→G(a) 99.24 98.85 97.75 98.58 98.03 96.64

S:B→G(b) 99.15 98.65 97.55 98.39 97.78 96.36

S:B→G(c) 99.27 98.82 97.75 98.50 97.91 96.43

S:B→G(d) 99.26 98.82 97.76 98.52 97.94 96.48

Table 3.3: Test F1 score comparison on benchmark corpora. Legend: bi-[L]STM,

[S]AN, [G]old data, [T]op-only and [B]eam-non-ambigous silver data.

procedure sees each silver sentence only once. We use one gold example for ten silver

examples for mixed-data settings, looping over the gold data until the silver data is

extinguished.

Training neural models only on gold data quickly results in overfitting which can

be seen in L:G and S:G results. These scores are significantly lower than that of our

worst baseline: JUMAN.

Models trained on only non-ambiguous silver data (*:B) are comparable to the

best baseline on Leads (in-domain), although they cannot reach the accuracy of

Juman++ on KU. Using top-only silver data (*:T) further improves accuracy. Both of

our models in this setting slightly outperform previous Leads SOTA and have more

or less the same accuracy. On KU, the LSTM-based model seems to be slightly better

than the SAN-based one. In the context of semi-supervised learning, tri-training

emphasizes using data when there exists a disagreement between the analyzers.

Instead, we throw away difficult cases for beam-based data, denoising it in a sense,

but NN seem to handle that kind of noise relatively well.
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3 Fully-Neural Morphological Analysis

Size, MB

Analyzer Dictionary Model Total

JUMAN 288 1 289

MeCab 312 8 320

KyTea:G - 569 569

KyTea:TG - 3218 3218

Juman++ 157 288 434

bi-LSTM 1 14 15

SAN 1 13 14

Table 3.4: MA model sizes for Jumandic

Adding the gold data to the silver data (*:BG, *:TG) allows both models to im-

prove their accuracy further. Results on Leads are comparable for both L:TG and

S:TG and higher than the previous SOTA, giving segmentation error reduction of

8% in comparison to Juman++. On KU, the LSTM-based models seem to perform

better without a significant difference on the TG and BG settings, while still under-

performing the Juman++ baseline except +P2 case, where both models are stronger

than Juman++.

3.3.4 Pre-training Scenario

We also check the fine-tuning approach when we first learn the representations on

a large corpus and then refine the model on a gold corpus. S:B→G(a-d) are four

such runs of a SAN-based model with different hyperparameters. All four runs are

initialized with the same S:B model and trained on the gold data only. We found

it difficult to find good hyperparameters for fine-tuning. The models were prone

to overfit very fast. Mixing gold and silver data resulted in stable training without

hyperparameter search.

3.3.5 Model Sizes

We compare the model sizes of analyzers in Table 3.4. In case of dictionary-based

analyzers the dictionary takes most of the space. We count sizes of compiled models

for all analyzers. KyTea, as another example of pointwise MA, uses string-based

features and treats its features uniformly, hence dictionary size is not applicable to

it. A KyTea:TG variant that uses additional 2M silver sentences takes almost 6x

the space of the original model, reaching 3GB. When using neural networks, on the

other hand, it is possible to control model sizes more easily. Moreover, our proposed

models take significantly less space while having comparable accuracy.
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3.4 Discussion

Analyzer KU Leads

KyTea-D:G 98.45 97.04

KyTea-D:T 98.51 98.10

KyTea-D:TG 99.18 98.31

KyTea:G 99.13 97.98

KyTea:TG 99.33 98.42

Table 3.5: KyTea test Seg F1 comparison. -D models do not use the dictionary. T

models use silver data (2M sentences, created like in the main experiment)

Dictionary-based analyzers store other information, like readings and lemma

forms, in addition to token surface forms and POS, but removing that information

would not make model sizes comparable with NN-based ones. For NN-based ana-

lyzers, we count a dictionary as 1 MB because they need a character-to-id mapping

to work. However, the list of characters contains non-frequently used characters,

some of which could be treated as UNKs without any accuracy loss. We also treat

weights as 4-byte floating points, and so it would be possible to further decrease the

NN model size, for example by using less precise storage formats.

3.4 Discussion

3.4.1 Dictionaries

Dictionary information is usually added to character-based models either using a

binary feature vector (e.g. a dictionary contains a trigram to the left of the decision

point) or word embeddings. We believe that a dictionary can be replaced with a

large training corpus which includes most of the entries from that dictionary. A

neural model with only the unigram character input can solve word segmentation

and POS tagging only if it builds some knowledge about the dictionary internally.

Our main experimental results (Table 3.3.3) show that it seems to be the case and

there is no need to model the dictionary explicitly.

Table 3.5 shows an effect of using dictionaries and silver data on KyTea, an instance

of symbolic feature-based analyzer. Models tagged with T use additional 2M silver

training data analyzed by Juman++. KyTea has better accuracy in settings when it

uses the dictionary. The dictionary even helps in the setting with additional silver

data. Unfortunately, the model size increases as well, limiting the amount of silver

data we can use, and the accuracy cannot rival neural approaches.
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3 Fully-Neural Morphological Analysis

500M 1B
# Training Sentences

99.30
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99.60
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S:B

Figure 3.4: Dev Seg F1 curves for L:B and S:B

3.4.2 How much data do we need?

For our main experiments, we train all models for a single epoch on our silver

dataset. Figure 3.4 shows KU train (our dev set) Seg F1 curves for L:B and S:B

for three epochs. We ran each experiment four times with different random seeds.

The learning curves become less sloppy when reaching 500M sentences but do not

become flat there. The training does not seem to completely converge even after 3

epochs. We still use one full epoch (500M) for our main experiments. The curves

are pretty noisy, but it seems that the model is robust with respect to initialization.

3.4.3 SAN Ablation Experiments

The proposed MA achieves high accuracy while having very compact models. The

inputs do not contain any information on how to combine characters into words

and we assume that the model learns it from the data. To get the model size

even smaller, we check which model parts contribute more to the resulting analysis

accuracy, meaning that they contain the dictionary knowledge.

We perform ablation experiments on the SAN model by varying its hyperparam-

eters and checking how it affects the accuracy of the resulting analyzer. The LSTM

model could not converge in this setting. We used 2.5M of silver training data for

these experiments.

Figure 3.5 shows the segmentation F1 score when varying input embedding,

shared representation and SAN hidden dimension sizes. JUMAN score, as a lowest

acceptable baseline, is shown in red. The embedding size seems to have a lower

impact on accuracy than the shared representation and the SAN hidden dimension

size. Namely, the (128-16) model with the embedding size of 16 has higher accuracy
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Figure 3.5: Effect of embedding size on Seg F1
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Figure 3.6: Effect of SAN hidden dimension on Seg F1. Bottom is a scaled-up part of

the whole graph.

than the (128-4) model with the embedding size of 128. Accordingly, we believe

that the encoder contributes much stronger to learning the dictionary than character

embeddings.

One more interesting observation is that the models are still better than JUMAN,

while having much less parameters than our base model. We explore more extreme

settings of the SAN hidden state, shown in Figure 3.6. We fix embedding and

shared representation dimensions to 128 and vary the SAN hidden and projection

dimensions. The lower subgraph is a scale-up version of top graph. The point at

SAN hidden size equal to 0 means that we directly use unigram embeddings to

predict segmentation without any encoder.

The SAN projection size is consistent with accuracy, especially on smaller SAN

hidden sizes. An interesting observation here is that the SAN model seems to work
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3 Fully-Neural Morphological Analysis

System Segmentation Correct Segmentation Transliteration Meaning

こう|ゆう|曲って こうゆう|曲|って ko:yu: kyoku tte this song is

なんて|すん|ごい なんて|すんごい nante sungoi how awesome

んな|わけな|いって んな|わけ|ない|って nna wake nai tte no way!

あっ|ちゃんと|遊び|たい あっ|ちゃん|と|遊び|たい see main text

Table 3.6: n-grams with inconsistent POS tags which are also Juman++ errors

even with hidden dimension of 2. When the hidden dimension size reaches 4, the

extremely small model accuracy is higher than the JUMAN baseline. This shows

that it is possible to create an extremely small MA with acceptable accuracy.

Label Uncertainty and Error Analysis Because our neural models infer all tags

independently, they can be inconsistent, for example, a word can have different POS

tags on different characters. We looked into frequent 3-grams where the central

word has inconsistent tags (POS tags are not the same for all characters, or they

do not form a correct 4-layered tag). Most of these trigrams occur in ambiguous

situations.

We have picked several examples which are actually errors in Juman++ segmen-

tation as well. They are shown in Table 3.6. In Japanese, words often have several

orthographic forms. The most common variant is usage of hiragana (phonetic script)

instead of kanji (ideographic characters). Verbs can have different possible endings,

e.g. 曲がる and 曲る (magaru – to turn or bend) are two orthographic variants of

a single verb. There are also colloquial variants; namely the verb 言う is usually

read asいう (iu – to say), but can also be written asゆう because the pronunciation

is close. These phenomena are relatively common in web and user-generated texts,

but corpus and segmentation dictionary coverage of them is not very good.

The first two examples contain alternative colloquial spellings of words こうい

う (ko:iu – such) and すごい (sugoi – awesome). In the first example the system

incorrectly recognizes曲|って (kyoku tte) as曲って (magatte) – a conjugation of曲

る. The fourth example (a chanto asobitai/ac-chan to asobitai - ah! [I] want to play

properly/[I] want to play with ac-chan <person name>) is actually ambiguous and

can have two meanings. The second one is more probable though. The fact that

frequent words with uncertain POS tags are Juman++ errors as well implies that

insufficient gold data causes the uncertainty.

We also compare differences between Juman++ and our models to get an insight

on general problems with proposed methods. Neural models make many errors

in hiragana words. For example, both neural models make errors in the sentence

弱者|が|とうた|さ|れて (jyakusya ga to:ta sarete - weaklings lose to natural se-

lection). LSTM makes a segmentation mistake (と|うたさ) and SAN does a POS
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tagging mistake, while Juman++ produces the correct answer. It knows thatとうた

is a special type of noun that is often followed byされて from POS tags. Hiragana-

based spellings of most content words are somewhat rare in Japanese, and NN

models do not have enough training data for these spellings. It could be possible

to improve the situation by using data augmentation techniques. Another frequent

problem is segmentation and tagging of proper nouns. We believe that this problem

could be solved by data augmentation, but we leave this as future work.

3.5 Conclusion and Future Work

We presented a novel way to train small neural models for Japanese Morphological

analysis by directly feeding the network a large number of silver training data.

Our method achieves new SOTA on web domain when combining the silver data

with gold one. This is an empirical evidence that there is no need for feature

engineering for neural morphological analysis at all. A neural network can learn

implicit dictionary information itself and it does not need to be large. We also show

that training by mixing the data together works better than fine-tuning and is more

stable.

Our work can be extended in the future in different ways. We will consider how to

make the model to recognize new words, which is an important feature for a practical

analyzer. Using tri-training also seems to be a natural extension for this work. It

is easy to provide diverse models, required for tri-training, by using different types

of encoder and varying network parameters. Furthermore, our tagging approach

should be universal and work with other tasks like named entity recognition. A

method to incorporate tags with a large number of possible values (like readings

and lemmas) without introducing embeddings for them, hence keeping the models

small, could also be a useful extension.
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4 High-Quality Example Extraction

4.1 Outline

Compressed
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Parsed

Corpus
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children:
　　犬

parent: 白い[過]
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Raw Query
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Tree IDs
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私の犬はとても白かった

Lucene
Query

Search Core

Figure 4.1: Search system outline. We build search index and storage from parsed

corpus. Searching converts the query into internal representation and

uses that to traverse the index. Search returns parsed trees.

This chapter explains the example extraction system for Japanese language learn-

ing. Recalling the criteria defined in section 1.3.3, we call sentences high-quality
if

1. each sentence has a high intrinsic value,

2. sentences are diverse.

We propose an example extraction system architecture consisting of two main com-

ponents.

The first component is a dependency and grammar-aware search engine. It in-

dexes a large corpus of dependency-parsed sentences and can perform a search with

partially POS-erased subtrees as queries. We describe the search engine in chapter

4.2. The example search system workflow is shown in Figure 4.1. We use a target
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Figure 4.2: Example sentence extraction outline. The objective is to select “best”

and non-similar example sentences from the input list. The target word

is marked red.

word with part of speech tags of usual dependencies for the target word as a query.

Fetching sentences with rich syntactic structure near the target word allows us to

select better sentences than a simple word-based system would allow us to. The

list is created for a target word using the search system described in the 4.2 in a

way to filter out really bad sentences and select useful patterns of target word usage

based on POS information of the target. Details of pre-selection are described in the

Section 4.2.4. The search part produces about 10,000 example sentences candidates

which are passed into the second stage.

The output of the pre-selection stage is further processed to extract a small num-

ber of sentences that are going to be used for the actual learning process. Those

example sentences should satisfy requirements described in subsection 1.3.3. The

selection of example sentences has a complex objective function: sentences should

be globally non-similar, covering distinct and rare senses. However, at the same

time sentences should have high intrinsic value (how good an individual sentence

is without considering other sentences), for example, a sentence difficulty should be

acceptable for a learner. The outline of example extraction is shown in Figure 4.2.

For the extraction of examples from the candidate sentence list we adopt an

approach based on Determinantal Point Process (DPP) (Kulesza and Taskar 2012).

DPP is a probabilistic method for modeling diverse datasets. The proposed feature

representation of the DPP method consists of two parts: diversity and quality. This

decomposition seems very suitable for the example extraction problem. DPP as a

mathematical framework is discussed in Section 4.3.

The feature representation for a sentence is computed from similarity and quality

parts. The similarity part defines how two sentences are close to each other. The

quality part reflects the intrinsic value of a sentence. Detailed discussion on the
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feature representation is provided in Section 4.4.

4.2 Dependency and Grammar Aware Search Engine

4.2.1 Introduction

General search systems like Google or Microsoft Bing are designed for searching

documents relevant to a specific query. Such documents are usually long pieces of

text, for example web pages. Language learners and teachers use such systems for

acquiring example usages or contexts for words they learn. However, general search

systems are not well-suited for this task. Firstly, users doing such searches are not

looking for documents, they are looking for sentences. Additionally, conventional

search engines ignore grammatical information when indexing text, although this

data is extremely useful for finding example usages of words.

Searching sentences for educational and linguistic usage often requires more fea-

tures than just querying on terms as general systems do. Sentence level search

should support queries not only on the lexical level, but on lexical dependencies,

part of speech (POS) tags, conjugation forms, and grammatic words like case mark-

ers (が,を) or auxiliary verbs (いる afterテ form) as well. Usually, users want to find

usages of a word in some context.

Understanding onomatopoeia is difficult for many Japanese language learners.

Example sentences like “肌がピリピリする” are mostly for learners because they

give no idea about whatピリピリ is. Having sentences like “肌がピリピリ痛く感じ

る” are substantially better in this case. It can be said that a system should give users

the ability to choose “a form” of context for the word. Additionally, a system should

be able to work with a huge amount of data, because context patterns are usually

sparse. At the same time, to be useful the system should give replies quickly.

We have implemented a distributed high-performance sentence level search sys-

tem for the Japanese language that can process queries with not only lexical informa-

tion but grammatic words and lexical dependency information as well. The system

achieves less than 300 ms query times for 90% of queries when 700M sentences are

indexed.

The proposed system architecture consists of two main parts: compressed database

and search core.

Search core is based on Apache Lucene
1

with additional components for depen-

dency and POS tag support for indexing and querying. Furthermore, to support

fast queries on huge corpora, the system is implemented in a distributed master-

1https://lucene.apache.org/core/
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slave-like manner. Distribution was done using the actor programming model and

Akka library
2
.

Related work

Sentence search tools are related the most to corpus management and exploration

tools. However, there are not many tools that use structural information. Jakubíček,

Kilgarriff, McCarthy, and Rychlý (2010) implements a syntactic corpus search sys-

tem. This system focused on searching using constituency instead of dependency

syntactic structures. Also, the system was not a search engine and query times on

sentences structure were in orders of tens of minutes which renders working with

huge corpora impossible.

For the Japanese language, dependencies are used in search as well (Shinzato, Shi-

bata, D. Kawahara, and Kurohashi 2011; Takeuchi and Junichi Tsujii 2005). TSUB-

AKI search system (Shinzato, Shibata, D. Kawahara, and Kurohashi 2011) uses

dependency trees for indexing and querying and it is distributed. However, it is

a document-level search system and does not allow doing queries using POS in-

formation. A system proposed by Takeuchi and Tsujii (Takeuchi and Junichi Tsujii

2005) uses dependency information, however does not allow to use of grammatical

and dependency information. It has more focus on handling paraphrases. Recent

versions of Chaki (茶器) corpus management tool
3

support queries using depen-

dencies, lexical, and part of speech information, however, it is not a search engine –

it was not designed for a scale of several hundred million sentences.

Query Language & Examples

The Japanese language has no natural word boundaries symbols and the definition

of a morpheme varies from one analyzer to another. In this sense, writing queries

using sub-bunsetsu units is going to be difficult and error-prone, therefore another

approach was taken. Search system query language is designed by adding special

symbols to plain Japanese. The list of special symbols is [-,→*~]. Minus (-) has its

usual meaning as in a typical search system: absence of a term in search results.

A query is divided into parts by commas. Each part is completely independent of

others. Usually, the whole query is a disjunction of its parts. General search systems

like Google use whitespace instead of commas.

Dependency between two terms is specified by an arrow symbol: “A→B”, mean-

ing B as a parent of A. Arrows can be chained “A→B→C”, however in this case, both

2http://akka.io/
3https://osdn.jp/projects/chaki/
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A and B would be treated as sibling children of C. Sentence head can be specified as

“A→EOS”, where EOS is literal.

A star after a word means that you want to ignore its conjugation information.

For example, “食べる*” would match any conjugation form of食べる and even食

べない, however query “食べる” would match only current (dictionary) form of the

term. Only the last conjugation is going to be ignored: “食べたい*” will match食

べたくない, but won’t match 食べない. Ignoring conjugations inside words is not

supported yet. For non-conjugatable POS this symbol is a no-op.

A tilde (~) before a content word means to replace it with its own POS tag. This

means “~食べて” is going to match aテ form of any verb. For grammatic words, this

replacement is not supported presently.

Here is some example queries the system supports. A query “~物が→ぴりぴり

→~動く*,-する*” finds usages of onomatopoeiaぴりぴり in context, but usages with

する are difficult to understand and are therefore ignored. Search results include

sentences like “寒さより肌がピリピリと痛く感じます。”, “頬がピリピリ凍る、京

都の冬です。”, and “全身の神経がピリピリ緊張する。” which are good examples

for theピリピリ.

In the query “~書いた→ため,-ため→EOS” the objective is to find out usages of

ため after past forms of verbs so that it is not a head of the sentence. Search results

are sentences like陰謀を暴いたために脅迫された.

For a query “いい加減→~やらない”, the objective was to find unusual imperative-

like usages of verbs with いい加減 as a modifier. Results contained sentences like

“その妄想いい加減やめない？” or “良い子はいい加減止めない？” which are

exactly the usages we seek.

These types of queries are impossible to search with a regular search engine.

4.2.2 System overview

The proposed system consists of two main architectural parts, as shown in Figure 4.3:

a compressed tree database and a search core. The tree database stores dependency

parse trees in compressed form. They are used to build replies to search queries.

The search core is built on Apache Lucene with a custom tokenizer and querying.

Instead of content word morphemes, tokens are created from parse trees in a way

to make it possible to issue queries on conjugation forms of POS with grammatic

words attached.

Current implementation uses KNP
4

dependency parser trees as input. KNP

groups morphemes to bunsetsu units which are useful units for human interpreta-

tion. The search core uses KNP bunsetsu as a core unit for further processing.

4http://nlp.ist.i.kyoto-u.ac.jp/EN/?KNP
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Figure 4.3: System structure and querying workflow

Compressed Database

The system operates on dependency trees as input. Those trees should be extractable

to create replies, and because the output of dependency parsers is rather verbose, the

data should be stored on a disk in a compressed form. However, usual compression

tools do not support random access to compressed files. Building a specialized

compressed database overcomes this limitation.

The compressed database consists of an index stored as a B-tree using MapDB
5

and data files. The database index is a mapping from a tree id to a tree compressed

pointer and tree size pair. Data files consist of 64-kilobyte blocks. Each block

is archived independently of others and saved to disk. There are no inter-block

dependencies, meaning that blocks can be read in arbitrary order. To extract a tree

from a data file, the system needs to read a block from a disk, decompress it, and

get a tree from that block. The information about the block and the position inside

the block can be stored in a single compressed pointer.

Compressed pointer is a trick taken from the bioinformatics BAM/BGZF
6

storage

format used for storing DNA sequences in compressed files. The compressed pointer

consists of two parts: the beginning of a compressed block in a data file and an offset

5http://www.mapdb.org/
6http://samtools.github.io/hts-specs/SAMv1.pdf
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Figure 4.4: Bunsetsu to token conversion for indexing sentence “私はゆっくりと

白いご飯を食べた”. Tokens contain lexical information (black), POS

tags (green) and conjugation forms (magenta). Dependency information

is common for a set of tokens spawned from a single bunsetsu. This

information consists of bunsetsu number, dependency number, POS of

parent and set of children POS.

of needed data inside the decompressed block. Block sizes are fixed to 64k and the

64-bit pointer can be formed by making the lower 16 bits to store the uncompressed

offset and the remaining 48 bits to store the block start address in the compressed

file.

Search: Indexing

Speed of search engines comes from a special structure – inverse index – that is

created from original documents. The index is created from tokens which are

produced by analyzing input. For the proposed system tokens are created from

bunsetsu of input trees. Each bunsetsu is numbered and has a dependency number
(number of a parent). Both of these numbers with POS information of bunsetsu

children and parent are transferred to tokens. Tokens are created for each occurrence

of the bunsetsu in the tree. When stored to the index they are inverted and become

token postings – information about documents that contain a certain token.

Search systems work by fully matching query tokens with indexed ones and

processing posting information linked to the tokens. The main objective behind

the token design was to combine lexical and grammatic information in a single

place, meaning that it could be both stored in the index and at the same time easily

constructed from a search query. Adding dependency information to these tokens

enables the implementation of a system to meet all the requirements stated in the

introduction.

Tokens are generated from a bunsetsu in two steps. The first step generates

a seed token from the bunsetsu. Token content is a concatenation of bunsetsu
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morphemes. Morphemes with conjugatable POS are represented by a lemma form

with the conjugation tag. For example, the verb “帰った” would be represented as

“帰る[過]”. Non-conjugatable POS morphemes are represented by themselves.

The next step generates rewritten tokens from the seed tokens until no more new

tokens can be created using the rule-based rewriting process. Rewriting is done

by replacing content word lexical information with part of speech information or

removing some parts of tokens. For example, case markers of nouns are removed

for some rules.

This representation allows to easily match the same forms of different words while

getting the benefits of the reverse index in terms of performance. A list of created

tokens for raw sentence “私はゆっくりと白いご飯を食べた” is shown on Fig. 4.4.

Querying for a single POS tag is not very useful – it is going to match any document

for most POS tags. In addition to that storing such tokens in the index will consume

much of the index space. However, searching in a case when POS is a child or parent

of something is useful. Storing the information about parent and children POS for

each bunsetsu allows answering POS dependency queries efficiently. By limiting

such information only to nouns, verbs, adverbs, and adjectives it is possible to store

the POS dependencies packed – using only one additional byte per posting.

Search: Querying

Input search queries undergo two transformations. The first transformation is to

analyze the input query with a morphological analyzer and build an internal query

representation. This representation is transferred to actual working nodes, where

internal query representation is finally transformed to low-level Lucene queries.

Analysis of input queries is performed in two steps. The first step removes special

symbols from the query replacing some of them with commas. This is done so

that special symbols do not interfere with the morphological analyzer. This step

is followed by morphological analysis using JUMAN. Results of the morphological

analysis are merged with the information from special symbols forming internal
query representation. Internal representation consists of one or more parts, sepa-

rated in a raw query by commas. Each part consists of a parent with zero or more

children.

There are five Lucene queries used. Two are built-in core queries and three are ad-

hoc for using the postings information. Core Lucene queries are term and boolean
queries. The boolean query is used to bind multiple query parts together. The term

queries are used for parts without any children because there is no need to use

dependencies.

Ad-hoc Lucene queries use information in postings to select documents. The first
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one – packed term query – is also an extension of the core term query. It is used

when a part has a POS-only parent or child. Its specific work is to compare both

child and parent-packed POS dependency from postings with a reference created

from the query part.

For query parts when at least one of the children is not just a POS tag, the second

one – dependency query – is used. The main idea behind it is to find trees that

contain the conjunction of parent and all the children from the query part. Also,

for each found tree, the child dependency numbers should be equal to the parent

bunsetsu number. POS-only children are handled in the same way as in the packed

term query.

The last one is used for supporting queries of type “A→EOS” which checks

dependency numbers of postings.

By default, Lucene uses tf.idf similarity for result ranking. Idf measure does not

make any sense in the case of pos-like tokens, so only tf is used in the system. Also,

the length is normalized in a way so that moderately long (4-5 bunsetsu) sentences

gain the highest score.

Sentence Scoring

Search systems usually output results as a list sorted by a score – a number that

specifies how relevant the document is for a query. For a query that has multiple

subqueries, the total score is usually going to be a sum of scores for the individual

subquery.

Elementary queries (not containing subqueries) calculate the score directly from

the documents. For example, a frequently used tf.idf model calculates a document

score for a term query as a product of term frequency (number of times a query

term was found in the document) and inverse document frequency (total number

of documents divided by the number of documents which contain the query term).

Inverse document frequency is used to give more weight to less frequent terms,

which are thought to be more important for the query.

Inverse document frequency is mostly irrelevant for the case if documents are

sentences because they are short and most of the time each term inclusion is equally

important. Moreover, the concept of importance because of the frequency does not

make any sense for tokens that contain POS tags with grammatic words. It is very

strange to say that usage ofで case with nouns is more important than theを case

because it has a higher idf. Because of this, the search system does not use idf for

result ranking.

Additionally, Lucene by default normalizes documents by dividing document

score by square root of document length. For the case of sentence search, it gives a
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much higher score to very short sentences which are usually fragments and are not

useful as example sentences.

Instead of the default normalization function, the search system gives the most

weight to a “sweet spot”: sentences of moderate length — 4-5 bunsetsu. The

weighting function decreases slowly to the right still giving high weight to longer

ones, but drops to almost zero for shorter sentences, effectively prohibiting them

from search results.

Distribution

Handling a large amount of data is impossible without building the system in

a distributed manner. Searching the index is an operation limited mostly by IO

bandwidth and memory bandwidth, and getting the stored data from the database

is an operation limited by IO latency. Distributing the system increases available

resources for every listed operation and makes it possible to work with huge datasets

interactively.

Fortunately, search engines are relatively easy to make distributed. ElasticSearch

and Apache Solr are two distributed search engines built on Apache Lucene. Both

of them use a simple master-slave model for distribution. Unfortunately, they are

not designed for trees: neither for storing them nor for doing queries with trees.

Distribution using master-slave search engine architecture was implemented us-

ing Akka middleware. Master node divides documents for indexing for each slave

node to make the number of indexed sentences approximately equal on each node.

For the search query, the master fans out the input to all nodes. Then it merges

results from slaves, keeping only ones with top scores.

One of the problems related to distribution is that some nodes were greatly slower

than others. Setting timeouts for reply help with this problem, however, it is difficult

to tune the actual value of that timeout. The problem was solved to collect reply

time statistics from slave nodes and tune the full reply timeout so that at least 70%

of slaves were able to reply. A random query from the list is automatically sent to

the system every 5 seconds so that reply times statistics do not become outdated.

4.2.3 System state

The system is currently accessible online
7
. It is deployed on 55 slave nodes and 1

master node of our cluster system. The corpus used for search is a part of a web

corpus, of 700M sentences (about 1TB of compressed results of syntactic parse).

7http://lotus.kuee.kyoto-u.ac.jp/depfinder/search
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Each node has approximately 20GB of compressed trees stored in the compressed

database. The index size is 3GB per node on average.

We have measured search response times in this setting. In the experiment, we

used a list of 1600 queries that contain frequent verbs, nouns, and adjectives with

dependency queries like “~私を→分かる” with different frequent POS and words

in parent and child place. Queries from that list were run once per 500ms and

the response time was measured. For each search, trees for the top 100 results

were extracted from the database and sent as a response. 152179 response times

were collected. 99% were less than 424 ms, 90% were less than 285 ms; median

and average response times were 26 ms and 179 ms respectively. We believe that the

current search speed is reasonably good for general usage. We should note, however,

that the system is presently deployed on a shared cluster that runs programs by other

users at the same time, implying that dedicated installation is going to have a more

stable performance.

The system uses the results of an automatic morphological analyzer and parser, so

there are errors in the analysis. Sentences with different words do appear in search

results because of it. With the improvement of the analyzers, this problem is going

to disappear.

The source code of the system is going to be distributed under an open-source

license. It is also possible to match arbitrary tree structure without modifying

indexing and tokenization, only on the query level, however, this has not been

implemented yet.

4.2.4 Selecting Example Sentence Candidates

Depending on the part of speech, example sentence candidates are searched in a

way so the target word usage would be more or less useful for a learner.

For example, if the target is a verb sentences are selected so they would include

some arguments for a verb and possibly a syntactic parent. Arguments are useful

both for understanding by learners and computing features for the extraction part.

If a verb will have arguments, then the predicate-argument analysis result data is

going to be populated as well giving the ability to compute semantic features.

For selecting candidates we use queries that match a target word with up to 3

children or parents. The exact types of parents of children depend on the POS of the

target word. The number 3 was chosen to have balance with different arguments

and to keep the syntactic vicinity of the target word diverse between the example

sentence candidates.

One specific feature of the search system is the ability to limit the number of

matching subqueries in a compound query. Usually, a disjunction (OR) query makes
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its score as a sum of scores of all its subqueries. If the number of processed sentences

is large, there will be a large number of sentences that fulfill most of the subqueries

for frequent words. By matching all the subqueries an OR query effectively becomes

an AND query, however that is not very useful for example sentences. It decreases

the total diversity of search results making every result to be more or less the same.

To deal with it we implement a special type of compound query that uses only top

N scores of its subqueries.

For a word and its part of speech, the system generates a search query that

represents frequent patterns of word usage. For this section the following notation

is used:

• word denotes the target word

• 〈noun〉, 〈verb〉, 〈adj〉, 〈adv〉 denote any word that have the indicated part of

speech

• → denotes a dependency between two terms with right being a parent and left

being a child.

• Items in a list form a disjunction, or an “OR” query.

• EOS token means end of sentence. Dependency to it like word → EOS means

that the word should be the last word in a sentence.

Patterns for individual parts of speech are described below. Each pattern contains

an additional search term that decreases the score of a sentence if it contains multiple

inclusions of a target word.

Verbs

• 〈noun〉-ga →word

• 〈noun〉-wo →word

• 〈noun〉-ni →word

• 〈adv〉 →word

• word → 〈noun〉

• word → EOS

Patterns for verbs capture that the verb should have some arguments, be the last one

or in the middle of the sentence. The limit on matching subqueries is 3. There is a
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slight bias on the subquery that has 〈noun〉-wo argument, because object arguments

frequently mutate the senses of verbs and are especially important for understanding

the example sentences.

Nouns

• word-ga

• word-wo

• word-ni

• word-de

• word-ha *

• one of:

– 〈noun〉-no →word *

– 〈noun〉 →word

– word-no → 〈noun〉 *

– word → 〈noun〉

• word → (〈verb〉 OR 〈adj〉)

• (〈verb〉 OR 〈adj〉) →word

The limit on subqueries is 3. The ha case marker gives less information about the

relation of the word than other cases, so it is given a slight penalty. Dependencies on

the nouns with no case marker are given a slightly higher weight because no could

be important for the meaning of nouns.

Adjectives

• 〈noun〉-ga →word

• 〈noun〉-ha →word

• word → 〈verb〉

• word → 〈noun〉

• word → EOS

There is no limit on subqueries. Dependency of a target adjective is given a slightly

higher weight if it is a child of a noun, because modifying nouns is a main role of an

adjective. Dependency on EOS is given a slightly lower weight.
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Adverbs

• (〈noun〉-ga AND word) → 〈verb〉

• (〈noun〉-ga AND word) → 〈adj〉

• (〈noun〉-ga AND word) → 〈noun〉

Adverbs usually modify verbs and interesting usages of them are linked both with

the subject of the sentence and the predicate. Patterns try to capture this relationship.

4.2.5 Conclusion

We have developed a distributed large-scale sentence search engine that should

be useful for linguists, researchers, teachers, and students studying Japanese. It

supports queries not only on lexical information but also on POS, grammatic, and

dependency information as well. An installation that uses 700M sentences from the

web is available on the Internet. 90% of simple dependency queries get a response

in 300 milliseconds.

A design of tokens that contained lexical, POS, and grammatic information at a

single place allows using general search technology. Dependency trees were stored

in a specialized compressed database.

4.3 Determinantal Point Process Framework

The objective function of the example extraction task is rather complex. We need

to find a balance between the diversity of the whole set and the inclusion of good

example sentences in the final result. Authors of the DPP have shown that the

method performs well on a series of similar tasks. Reported tasks were text summa-

rization, modeling non-overlapping human poses in images and video and building

timelines of important news stores. Each task requires extracting non-similar high-

quality items from an initial set. Indeed, task formulation for each one is very close

to the expected output of the example extraction system.

A second reason for using DPP as a selection algorithm is its high execution

speed. If similarity features are vectors of length D and similarity between two

items is a dot product of these two items, then a greedy selection algorithm works

with a complexity of O(ND2k +D3) to select k items for situations when a feature

dimension D is smaller than the number of items N and k is smaller than D, which

is usually the case. This is linear in the number of items N and scalable. The greedy

algorithm is approximate and does not fully solve the problem of finding a subset
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Z

Y

A

Figure 4.5: Sets participating in the Equation (4.1)

with the highest possible probability (maximum assignment problem) of selecting

from the DPP. The maximum assignment problem itself is shown to be NP-hard.

Detailed explanations and proofs for theorems should be looked up in the original

work (Kulesza and Taskar 2012).

Subsection 4.3.3 provides an improvement on the greedy selection algorithm in

the terms of execution speed using the structure of the matrix over one provided in

the DPP paper.

Subsection 4.3.4 illustrates how DPP works by applying a greedy selection al-

gorithm to a toy problem of selecting non-similar points from a plane. We show

the importance of centrality-like features for the task of selecting items that are

non-similar, but central at the same time.

4.3.1 Main Ideas

Let 𝒴 be finite ground set that contains N items. Without loss of generality, let

elements of𝒴 be integers from 1 to N. Point process assigns a probability measure

for each subset of 𝒴 and there exist 2
N

such subsets. 𝒫 is called a determinantal
point process if, when Z is a random subset drawn according to 𝒫, for every A ⊆ 𝒴,

a marginal probability

𝒫(A ⊆ Z) =
∑︂

Z:

{︂
Z⊆𝒴
A⊆Z

𝒫(Z) = det(KA) (4.1)

is defined for some real, symmetric N ×N matrix K that is indexed by elements of

𝒴. KA denotes restriction of matrix K to the elements of A, KA = [Ki,j] : i, j ∈ A.

Matrix K is called a marginal kernel of DPP, because it contains all information to

compute marginal probabilities of any subset A included in random sample Z.

Limits of summation in the Equation (4.1) are not straightforward. Figure 4.5
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displays Venn diagram-like image of sets participating in the equation. Summation

goes over all sets Z, however, a set Z should be a superset of A and a subset of 𝒴 at

the same time.

For modeling real data, it is difficult to come up with a good marginal kernel

beforehand, thus L-ensembles are introduced. They define specific probabilities of

subset Y being drawn from DPP as

𝒫L(Z = Y) ∝ det(LY), (4.2)

where L is a some positive semi-definite (SPD) matrix or a kernel. To get actual

probabilities, one needs to compute a normalizer

∑︁
Y⊆𝒴 det(LY). One important

theorem for L-ensembles is that for any A ⊆ 𝒴 and any Y ⊆ 𝒴 such that A ⊆ Y

𝒫(A ⊆ Y) =
∑︂

A⊆Y⊆𝒴
𝒫L(Y) = det(L + IA¯ ),

where 𝒫(A ⊆ Y) is a marginal probability of all A’s elements to appear in a random

Y sampled from DPP and IA¯ is a diagonal matrix with ones in the diagonal positions

corresponding to elements ofA¯ = 𝒴\A. Using this theorem, the connection between

L and K kernels is defined as

K = L(L + I)−1 = I − (L + I)−1

. (4.3)

Let’s consider Equation (4.2) once more. A probability of item to be selected is

proportional to an on-diagonal element

𝒫L(Y = {i}) ∝ |Lii | = Lii.

For two items, the formula becomes

𝒫L(Y = {i, j}) ∝
|︁|︁|︁|︁|︁Lii Lij

Lij Ljj

|︁|︁|︁|︁|︁ = LiiLjj − L2

ij.

The more off-diagonal element Lij is, the less is going be the probability to select

these two items together. This means, if L is a similarity matrix, then DPP assigns

higher probability to more diverse or globally non-similar subsets of a ground set.

Equation (4.3) could be formulated using eigendecomposition. Because L is a SPD

matrix, it can be composed into

L =

N∑︂
i=1

λiviv
T
i (4.4)
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where λi is a i-th eigenvalue and vi is a respective eigenvector. Because of the SPD

definition, λi ≥ 0. In this representation, marginal kernel K could also be calculated

from eigendecomposition (4.4) by scaling eigenvalues

K =

N∑︂
i=1

λi

λi + 1

viv
T
i . (4.5)

Converting L kernel to K takes O(N3) operations in any case, be it matrix inversion

or eigendecomposition. Eigendecomposition can be used for sampling from DPP

and allows to decrease computation complexity of computing marginal probabilities

if elements of L are computed as a dot product of two vectors.

4.3.2 Dual Representation

For the tasks when L is a similarity-like matrix, DPP assigns higher probability to

the subsets that are more diverse, or contain globally non-similar items. Specifically,

if the elements of L are calculated like

Li,j = qiϕ
T
i ϕjqj,

it is possible to improve the complexity of DPP algorithms. In this representation,

there are two types of features: quality scalar featuresqi and diversity (or similarity)

vector features ϕi of dimension D. In the matrix notation, the L kernel would be

L = BTB,

where B is a feature matrix built by stacking individual item feature vectors qiϕi. It

is known that eigenvalues λi for a matrixBTB are equal toBBT
. Thus, it is possible to

compute them using a much smaller matrix C = BBT
, which has dimensions D ×D

compared to N ×N of a L kernel. This is called a dual representation of a DPP.

Dual representation of DPP is also SPD and its eigendecomposition is

C =

D∑︂
n=1

λnv̂nv̂
T
n.

It is possible to show (Kulesza and Taskar 2012), p.37 that it is related to L kernel as

L =

D∑︂
n=1

λn

(︃
1√
λn

BT v̂n

)︃ (︃
1√
λn

BT v̂n

)︃T
.
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Because of this, elements of marginal kernel K could be computed as

Ki,j =

D∑︂
n=1

λn

λn + 1

(︃
1√
λn

BT
i v̂n

)︃ (︃
1√
λn

BT
j v̂n

)︃
. (4.6)

Note, that this computation does not depend on the number of all items N and its

complexity is O(D2). To infer a marginal probability of a set of size k, it is necessary

to compute
k(k+1)

2
elements of K for computing a determinant. This process requires

only O(D2k2 + k3) time.

The number of items N is usually fixed by the number of input items and decreas-

ing it can greatly reduce the total goodness of the output. However dimensionality

of feature space D could be changed. One useful way of handling large vectors is

random projections. DPP paper gives theoretical guarantees on the compression

of feature vector dimensions with random projections. The application of random

projections is described in Section 4.4.4.

4.3.3 Selecting Items Using DPP

Kuleza et al. (Kulesza and Taskar 2012) show a simple greedy algorithm for selecting

diverse subsets using a DPP. However, it is possible to improve on its performance

using several facts about the structure of matrices which participate in the algorithm.

Recall that the marginal probability of subset A contained in a sample from

DPP Y is defined in the Equation (4.1) as P(A ⊆ Y) = det(KA). When doing a

greedy selection naively, the probability P(A ∪ i|A ⊆ Y) is computed for each item i

which are not present in A, that means computing a determinant for selecting one

item. Determinant computation using a matrix decomposition is anO(n3) operation.

When selecting items up to subset size k, the total order of operations is O(Nk3),
because the computation for each greedy step will be shadowed by the last step.

However, the running time for each step can be reduced to O(Nk2). The kernel

for the subset A is computed as KA, or elements of marginal kernel K indexed by

elements of A. The conditional marginal probability is computed as

P(A ∪ i|A) = P(A ∪ i)
P(A) .

For the fixed A, P(A) is constant and when finding i that maximizes the probability

P(A ∪ i|A), one can do that by finding

i = arg max

i∈𝒴\A
P(A ∪ i).
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This requires computing a determinant det(KA∪i) for each i ∈ 𝒴\A. However,

they are of special structure. For the j-th selection step (j < k) of the algorithm, the

matrix KA∪i is

KA∪i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

KA1,A1
· · · KA1,Aj−1

KA1,i

KA1,A2
· · · KA2,Aj−1

KA2,i

.

.

.

.
.
.

.

.

.

.

.

.

KA1,Aj−1
· · · KAj−1,Aj−1

KAi−1,i

KA1,i · · · KAi−1,i KAi,i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

(︄
KA V

VT d

)︄
.

When computing determinant of it, in case if detKA is invertible, one can write

detKA∪i in the following manner

det

(︄
KA V

VT d

)︄
= detKA det(d − VTK−1

A V).

Determinant det(d − VTK−1

A
V) is the value of (d − VTK−1

A
V) because the matrix size

is 1 × 1.

The part K−1

A
V could be computed by decomposing KA = GDGT

and solving

a system of linear equations GDGTX = V . This decomposition is usually called

LDLT , but the letter L is already used by L-kernel. G is a lower triangular matrix

with ones on the main diagonal and D is a diagonal matrix. Decomposition has the

O(n3) computational complexity but the solution of a linear system is only O(n2)
when the matrix is triangular. Also, this decomposition can be computed once

for the selection step and its diagonal matrix D also can be used for computing

determinants by taking a product of its elements.

In step j there is O(j3) operations for the decomposition and O(Nj2) operations

corresponding to computations of determinants for finding marginal probabilities

of subsets A ∪ i for each item i. If there are k selection steps, the total complexity of

improved greedy selection becomes O(k3 +Nk2)which is faster than O(Nk3) for the

brute force solution.

For a dual representation, a full matrix K is not needed. Marginal probabilities for

selecting a single item lie on the main diagonal of K. For each additional selection

step, only a single additional row of K is required. Computing a main diagonal or a

row ofKmeans computingO(N) elements using the Equation (4.6), yieldingO(ND2)
complexity. Using a dual representation it is possible to get O(D3+ND2k+Nk2+k3)
complexity. Members of the sum are for eigendecomposition, calculating a diagonal

or a row of K matrix, calculating marginal probabilities and GDGT
decomposition

for each selection step respectfully. Additionally, we need to compute C = BTB as
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Figure 4.6: Item Selection Marginal Probabilities Heatmap: diversity features only.

On each step an item with highest probability is selected. Places with

zero probability are from selected items.

well, but the complexity of this operation is O(ND2) and hidden by computing the

elements of K. This means that the computation time is usually a much smaller

number for a dual representation if feature dimension size D is small enough than

O(N3+Nk2+k3) for using full L kernel to construct marginal kernelK. Furthermore,

D is usually much bigger than k and last two members can be ignored yielding

O(D3+ND2k) complexity for a greedy selection using a dual representation of DPP.

4.3.4 Example: Greedy Selection from Artificial Data

To illustrate usage of DPP as a weighting scheme for a greedy selection algorithm

we are going to use an artificial task of selecting points from a plane. We use a grid

of 20 × 20 evenly spaced points for this task. Similarity of two points pi and pj is

computed from their distance as

sim(pi,pj) =
dm − dist(pi,pj)

dm
,

where dm = max dist(pi,pj) for any pair of pi and pj. Distance between two points

is a Euclidean distance between them. The distance is used as elements of L-kernel:

Li,j = sim(pi,pj).

Normalized item selection marginal probability heatmap is shown on Figure 4.6.
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Figure 4.7: Selection Marginal Probabilities Heatmap: diversity features, r = 0.9

The top-left image is for initial probability estimation. Other images are created

after some points are selected. It is possible to observe that DPP assigns higher

probabilities to items on borders and especially in corners.

The reason for that is simple. Items in corners have the highest distance from each

other, which means that similarity for them is going to be the lowest. The probability

of selecting a set of items according to DPP is proportional to the determinant of

indexed L kernel. The determinant value is going to be higher if the off-diagonal

elements are smaller, which is exactly the case for points in the corners of the

rectangle.

Another observation is that regions of lower probability near selected items are

relatively small. Authors of the DPP paper add a parameter r that forces every item

to be more similar for their tasks. Intuitively, each point here is a point and should

not be very different from other points. Using this idea, the L-kernel items are going

to be computed as

Li,j = r + (1 − r) sim(pi,pj)

for the artificial toy task.

For the value of r = 0.9 selection heatmaps are shown on the Figure 4.7. In this

setting, it is possible to see that compared to the Figure 4.6, changes in probabilities

after each selection became much rapid.

Still, it is possible to say that the greedy algorithm on diversity features only

is going to select non-similar items, however, are not going to be representative.
Furthermore, selected items are going to be outliers, which is not a useful property
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Figure 4.8: Selection Marginal Probabilities Heatmap: diversity and quality features,

r = 0.9

for selecting example sentences. For the task of summarization, authors of the DPP

paper use features that serve a measure of centrality as quality features.

Let us see how quality features can change probability distribution. For each item

let’s introduce a scalar value qi that is going to be close to 1 if the item is closer to

the center of the plane and decreases with the distance from the center of the plane.

One possibility is to have

qi = e−dist(pi,p0)
,

where p0 is the center of the plane. Values of L-kernel are going to be

Li,j = r + (1 − r) sim(pi,pj)qiqj.

The Figure 4.8 shows point selection marginal probability heatmap for the case of

using both types of features and the parameter r = 0.9. This time the selection starts

from the center of the plane which is more useful for selecting items that are non-

similar and representative at the same time. For the cases when DPP is used to select

items which are central and non-similar at the same time, usage of a centrality-like

measure in quality features is essential.
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4.4 Features

For the task of example sentence extraction, we adopt the feature representation

recommended by authors of the DPP paper. L kernel is computed from vector

similarity features ϕi and scalar quality features qi for items i and j as

Li,j = qiϕ
T
i ϕjqj.

We construct a similarity feature vector as a weighted stacking of three individual

feature parts

ϕi = f([w1s
lex

i ; w2s
synt

i
; w3s

sema

i ; r])

and a parameter r which makes all sentences similar to each other, following the text

summarization task in (Kulesza and Taskar 2012). We set r = 0.7 in our experiments,

following the recommendations.

Three similarity feature parts are lexical, syntactic and semantic similarity. Fea-

ture weights wi allow us to prioritize similarity feature components. Lexical and

syntactic similarity features are created as count-based vectors and have a large di-

mensionality. The transformation f here is a compression into a 600-dimensional

vector using Gaussian random projections as recommended by (Kulesza and Taskar

2012) to make the dimensionality of ϕi, D, small.

Quality features represent a intrinsic value of individual sentences as examples of

word usage. They consist of five components:

• Semantic centrality – similarity to cluster centroids for semantic features. Intu-

ition for them is to select example sentences that have representative meanings.

• Syntactic centrality – similarity to cluster centroids for syntactic features.

• Semantic “cardinality” – difference of actual semantic cluster size to an average

cluster size. This feature could be used to bias selection in favor of frequent

senses or rare ones.

• Relative Difficulty – a coefficient that approximates how sentences are difficult

for a learner of a fixed level

• Goodness – coefficient that gives a lower score to sentences that contains bad

parts.

Each quality feature is a scalar, they are multiplied together to get a final value for a

sentence.

Most of the features are computed not for just a sentence, but for a combination

of a sentence and a target. That is done to measure how good the sentence not in a
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general sense, but exactly for the target word. Additionally, to support processing

on huge datasets some effort was put to make all computations distributable.

4.4.1 Similarity: Lexical

Lexical similarity is an instance of a count-based vector space model from informa-

tion extraction. Its goal is to measure a simple word overlap between sentences. We

use a modified tf weighting scheme (without the usual idf factor), content words

are given a weight of 1.0; non-content words are given a weight of 0.1. We use

the canonicalization feature of JUMAN (代表表記 dictionary feature) for terms to

handle Japanese orthographic variants.

We also use the hashing trick for computing term ids. The example extraction

system is distributed and sentences from a single list can be processed on different

computational nodes. Because of this, the usual solution of using a mapping from

a word to an id requires having the mapping to be synchronized across all nodes.

Fortunately, hashing trick (Weinberger, Dasgupta, Langford, Smola, and Attenberg

2009) can be used to directly assign ids from word hashes. This steps around the

problem of mapping distribution.

4.4.2 Similarity: Syntactic

Syntactic similarity for two sentences should be higher if they have similar syntactic

structure near the target word, meaning that it was used in a similar syntactic way.

In other words, dependency structure, POS tags, and grammatic words should be

similar near the target word.

We use tf-like weighting scheme for syntactic vectors as well. Terms for syntactic

vectors, however, are lexically-erased small subtrees containing the target word.

The motivation for syntactic similarity comes from the problem of example databases

that provide a search interface. Let us consider the search for word “走る” from the

tatoeba.org free example sentence database. On the first page of the search there

are 3 sentences: “彼は走るのが速い”, “彼女は走るのが遅い”, “リンは走るのが速

い” having more or less different words, but the same syntactic structure. It is more

useful to select sentences with different syntactic structures for language learners to

show more word usage patterns.

The idea for the syntactic similarity method is based on the efficient calculation of

graph similarity using graphlets. Graphlets are parts of a graph, and it is shown by

Shervashidze (Shervashidze, Vishwanathan, Petri, Mehlhorn, and Borgwardt 2009)

that they can be used for the fast approximate computation of graph similarity. One

of the problems raised in that paper was finding out whether two graphs are the
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Figure 4.9: Outline of syntactic similarity bag-of-subtrees feature collection creation.

Bunsetsu containing the target word is colored.

same – graph isomorphism problem. Case for dependency trees is simpler than the

graph problem because unordered tree isomorphism can be solved more efficiently.

Dependency parse trees are treated as unordered because in the Japanese language

dependencies on a single level could be reordered in arbitrary ways without chang-

ing the overall meaning of the sentence.

The outline for the syntactic similarity calculation is shown on the Figure 4.9. The

main idea is to generate bunsetsu subtrees up to a certain size, by growing them from

the target word and using those subtrees as features in the vector space. Overall, the

syntactic similarity model can be thought of as a bag-of-subtrees model. Subtrees

are treated as unordered because bunsetsu in Japanese can be moved on the same

dependency level. Starting from the original parse tree with the target word (shown

in red on Figure 4.9), the process of calculation consists of 4 main steps.

1. Parse tree is erased by stripping lexical information for open parts of speech

and replacing them with part of speech tags. Grammatic words are left as they

were. Parts of speech are shown in yellow on the figure.

2. A set of bunsetsu subtrees up to the size of 3 is generated from the erased tree.

Generation starts from the bunsetsu containing the target word and continues

until no new subtrees can be created.

3. Extending feature space by generating derived subtrees using a simple ruleset

and adding those subtrees into the resulting subtree set, but with different

weights. Bunsetsu that were rewritten in the derivation process are shown in

the Figure in purple.
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4. Generating vector elements by using the weight of subtree features as vec-

tor values and subtree hashes directly as vector indices. Hashing eases the

problem of working with unordered trees.

Feature calculation steps are discussed in more detail below.

Erased trees

The original parse tree is erased to ignore lexical information from the sentence and

focus solely on the syntactic structure causing grammatically and structurally similar

sentences to have a higher similarity score. Using the target word as a starting place

for the tree growing makes a further focus on concrete syntactic usage of the target

word, mostly ignoring parts of the sentence that are far from the target word.

Generating subtrees

Subtrees that are going to be elements of the syntactic similarity vector are generated

by growing them from the bunsetsu containing the target the word until the tree

contains up to n bunsetsu nodes. In experiments, n was chosen to be 3. The number

of all possible subtrees is exponential in n, thus choosing it too big is going to yield

a very large number of subtrees.

Growing a subtree from the target node ensures that the feature will capture only

the vicinity of the target word and ignore the information that is too far from the

target node. This idea of focusing makes the method different from other methods

of measuring tree similarity, like tree edit distance or tree kernels. General methods

measure the overall similarity of two trees, however, the proposed method measures

only the similarity near the target node. Arguably, it makes the method more

appropriate for measuring syntactical similarity in the context of example sentences

with a pin-pointed word.

Subtree derivation

Generated set of bunsetsu is going to be sparse. Some exact language constructs

have mostly the same grammatical meaning and should be generalized to improve

coverage of the algorithm. For example, a bunsetsu “京都大学” when erased is

going to be represented as “〈名詞〉〈名詞〉”. However, from a syntactic point of view,

it is almost the same as a sentence having only a “大学” word, especially if it is not

an example target. Similarly, a phrase “そうですね” is mostly the same as “そうだ

よ”. This problem is combated with deriving new subtrees by making a copy of a

subtree and rewriting the offending bunsetsu to a more general variant. Derived

subtree is then put into the resulting subtree set.
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Table 4.1: Bunsetsu rewrite rules for deriving subtrees. The target word is colored.

Name Example Factor Derived mass

Remove final particles そうだね→そうだ 3.0 0.8

Remove successive nouns 京都大学→大学 2.0 0.7

Remove successive verbs 乗り切る→乗る 1.5 0.6

Remove non-target verbal suffixes 白く咲きそうな→白く咲く 3.0 0.8

Remove other “suffixes” 飲みそうな→飲む 1.0 0.5

Remove auxiliary verbs できません→できます 1.0 0.5

Remove case markers 学校に→学校 0.7 0.4

A problem with this approach is that adding new subtrees changes “similarity

mass” (this term has the same intuition as in the relation between probability and

probability mass) distribution of the entire syntactical vector. For example, if one

sentence had 5 different original subtrees with “〈名詞〉〈名詞〉” bunsetsu and 5 de-

rived subtrees with “〈名詞〉” bunsetsu, and another sentence had only “〈名詞〉”
bunsetsu pattern, the total similarity would be only 0.5 if those subtrees were com-

pletely same except for compound noun. By setting different weights for newly

created subtrees it is possible to work around this issue and decide the place where

the similarity mass is going to be put.

Table 4.1 shows rules that are used for bunsetsu rewriting in the tree derivation

process. Examples are shown in their lexical form, but should be thought only as

operations, resulting in syntactic and grammatical changes in the parse tree. Factor

column specifies a multiplier for a weight of current subtree orig, so rewritten

subtree weight is going to be rewr = orig · factor. Subtree set has both original

and derived versions of the subtrees and they both are going to be used as features.

Other sentences, that have only derived subtrees matching their subtrees, are going

to have only the proportion of similarity mass that is specified in the derived mass
column because of vector normalization. If two sentences have non-derived subtrees

matching, it means that they had similar structure originally and should have both

parts of similarity mass: original and derived.

Factors for rules were chosen with the general direction that factor should be

greater than one whether rewriting does not change general syntactic meaning of the

sentence. Otherwise, a factor of less than 1 was chosen.

The first rule erases final particles likeねorよ that have no syntactic meaning in the

sentence. The second rule rewrites successive nouns to a single noun. Syntactically,

compound nouns are mostly the same as single nouns, so the rule moves similarity

mass from original subtrees to the rewritten ones, enabling higher scores when

matching with other subtrees that are simple from the beginning. The third rule

does the same for the compound verbs, but with more conservative scoring, because

there are grammatical combinations of連用形 form of verbs with auxiliary verbs like
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Figure 4.10: Hash function sketch for a subtree. A node containing the target word

is colored.

逃げ出す or逃げ切る that are not purely lexical. The fourth rule conjugation suffixes

from non-target words. Non-target conjugations are not as crucial for the example

sentence as target ones, erasing them does not change the syntactic meaning of the

sentence a lot.

The remaining rules remove grammatical suffixes from words, essentially strip-

ping them from the grammatical meaning, increasing recall of the similarity function

instead. Because of that, they put most of the similarity mass to non-rewritten sub-

trees.

Hashing subtrees

To convert a set of subtrees to a vector form, each subtree should be assigned a

number. Converting subtree to a number can be done by building a string repre-

sentation from some fixed tree traversal and then assigning a number to that string,

for example by storing strings with their associated numbers in a hash map. How-

ever, creating a canonical string representation for an unordered tree is non-trivial.

Furthermore, distributed construction of vectors, while having a shared mapping

from a string representation to a vector requires keeping a synchronized mapping

on each node and is impractical.

Calculating directly a hash for subtrees is a solution that does not have both men-

tioned drawbacks. Hash value calculation from data usually consists of operations

of mixing individual values together. MurmurHash3
8

is a family of general mixing

functions that can be used for creating specialized hash functions for the data. The

design of a hash function for subtree is closely related to the tree traversal. Idea for

it is displayed on Figure 4.10.

A recursive function rh(node) is called for a subtree node. It mixes three com-

ponents using a MurmurHash3 algorithm: a hash value of its content nh(node),
8https://code.google.com/p/smhasher/wiki/MurmurHash3
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Figure 4.11: Agglomerative clustering on a syntax similarity for 150 random sen-

tences with the word黒い

a result of a recursive call to own parent, and a sum of values of recursive calls

to own children. Because hash values for children are mixed with a commutative

function (plus), the resulting hash function is invariant for the order of children

nodes. Additionally, the directions of mixing are mixed into respective hash values

as well, separating children from parents.

Agglomerative clustering on syntactic similarity

Figure 4.11 displays agglomerative clustering result on syntactic similarity for sim-

ilarity matrix for the word “黒い”. Lighter colors represent the higher similarity

between two sentences. Clusters are empathized by red squares. Cluster 0 contains

sentences that have word 黒い being a dependent of a noun, like in sentence 黒い
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犬. Inner clusters have parent of黒い to have different role in a sentence:

1. noun being a subject (黒い犬が吠える)

2. object (黒い犬を飼う)

3. dependent of another noun withの (黒い犬のえさ)

4. sentences when noun has at least two dependents: 黒い and some another

noun like in sentence寝ている黒い猫

5. 黒い being a dependent to a verb, like in sentence黒く染まる

6. 黒い being dependent to another adjective like in黒くて甘い

It can be said that a set of syntactic similarity features capture a structural usage
pattern of a word in an example sentence. By clustering on the syntactic similarity, it

is possible to distinguish patterns that are frequently used with the target word or

expression from bad sentences that are present in the web data.

4.4.3 Similarity: Semantic

The semantic similarity score should be higher if the target word is used in the

same or a close sense. Other words in the sentence should not directly change the

measure.

It is possible to have embeddings (vector representations) for words. These

embeddings can be trained from raw text and have interesting properties. For

example, word2vec method (Mikolov, Yih, and Zweig 2013) give embeddings that

have linguistic regularities. For example, if d(king) is an embedding for the word

“king”, then it is possible show things like

d(queen) − d(woman) + d(man) ≈ d(king).

Prototype Projections

Unfortunately, such methods usually have only a single vector representation for

a word, meaning it is impossible to distinguish different senses of a word. How-

ever, there are method called prototype projections (Tsubaki, Duh, Shimbo, and

Matsumoto 2013).

Consider a binary relation R(a1,a2) between two words, for example, a relation

between a predicate and object with the loss of generality. If we fix a verb in the a1

slot, then frequently occurring words that can take place in the a2 slot are going to

form a set of prototype words. Those prototype words somehow define different
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senses of the target word. For example, a verb would be “掛ける”, then the set of

prototype words would contain声,電話,迷惑,副,鍵. In Japaneseをmarks an object

for a predicate, and those words usually fill theを case slot in sentences with掛け

る. If we have a parsed corpus, then the set of prototype words {w1,w2, ...,wm} can

easily be computed.

By using embeddings for the prototype words d(wi) it is possible to construct a

prototype matrix C. Matrix is built by simply stacking embedding vectors for the

prototype words on top of each other

C = [d(w1),d(w2), · · · ,d(wm)]T .

A singular value decomposition (SVD) of matrix C = UΣVT
is going to contain “the

most important” directions of the prototype words in the right singular vectors VT
i

corresponding to the largest singular values Σi. By dropping the singular vectors

corresponding to the smallest singular values, it is possible to get a prototype space.

It is represented by a matrix Σ0:kV
T
0:k

for k highest singular values. It is possible to

create a projection matrix to this subspace in the original space by creating a matrix

PR,a1
= (Σ0:kV

T
0:k)T (Σ0:kV

T
0:k).

An embedding d(w0) of a word w0 projected into a prototype subspace spanned by

the word the slot a1 over the relation R is going to be denoted as

w0 |Ra1

= PR,a1
d(w0).

By applying prototype projection to the both ends of the relation, and combining

the together by summing them it is possible to get a vector representation for the

whole relation instance d(R(a1,a2)) = a1 |Ra2

+ a2 |Ra1

. This representation is going

to have high cosine similarity to relation instances of the similar meaning and low

for usages in a different sense. The Figure 4.12 displays a construction of a vector

representation for a phrase “迷惑を掛ける”. It consists of a relation overを case and

two prototype projections. The first uses the predicates of “迷惑” over theを case as

prototype words and another uses the arguments of “掛ける” over the same case.

Authors have shown that this method is very good for detecting paraphrases like

“run a company” versus “operate a company”. However, if it can detect seman-

tic information even in distinct words, it should be possible to use it for coarse

unsupervised word sense disambiguation as well.

Word embeddings for representations were trained from the web corpus with

0.7B sentences. Lists of frequently used arguments were computed from Japanese

105



4 High-Quality Example Extraction
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Figure 4.12: Protype Projection for a phrase “迷惑を掛ける”

Table 4.2: Similarity for Prototype Projection○|を
掛ける

+掛ける|を
○

, 0 : k, dl% = 0.2

世話 迷惑 負担 電話 コート 眼鏡 鍵 声

世話 1.000 0.877 0.774 0.734 0.595 0.712 0.686 0.753

迷惑 0.877 1.000 0.834 0.716 0.559 0.716 0.667 0.783

負担 0.774 0.834 1.000 0.696 0.578 0.722 0.707 0.764

電話 0.734 0.716 0.696 1.000 0.728 0.825 0.820 0.796

コート 0.595 0.559 0.578 0.728 1.000 0.872 0.795 0.694

眼鏡 0.712 0.716 0.722 0.825 0.872 1.000 0.883 0.809

鍵 0.686 0.667 0.707 0.820 0.795 0.883 1.000 0.775

声 0.753 0.783 0.764 0.796 0.694 0.809 0.775 1.000

case frames (D. Kawahara and Kurohashi 2006) by simple aggregation taking top

200 arguments on each side.

Improving Similarity

Subspaces are created by performing an SVD on a matrix composed of stacked

word vectors. Words in the matrix are frequently occurring with the target over the

relation. The subspace is created using parts of singular values Σ and right singular

vectors VT
for the SVD. The original setting of creating a prototype projection is to

drop some percentage of right singular vectors corresponding to lowest dl% = 0.2

part of all singular values. This means that k in the expression Σ0:kV
T
0:k

is going to

be computed so it will include 1 − d% percent of all singular values.

Table 4.2 shows を case semantic similarity for the for the かける as a predicate

and words電話,世話,迷惑,負担,コート and鍵 as arguments. The method seems

to work for the definition of working that similarity for the closer meaning should

be higher than for distant ones. There seems to be a certain cluster for the words世
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Table 4.3: Similarity of Prototype Projection○|を
掛ける

+掛ける|を
○

, 1 : k, dl% = 0.5

世話 迷惑 負担 電話 コート 眼鏡 鍵 声

世話 1.000 0.746 0.661 0.415 -0.105 0.052 0.260 0.534

迷惑 0.746 1.000 0.522 0.283 -0.348 -0.085 0.024 0.465

負担 0.661 0.522 1.000 0.279 0.028 0.013 0.257 0.487

電話 0.415 0.283 0.279 1.000 0.217 0.452 0.438 0.481

コート -0.105 -0.348 0.028 0.217 1.000 0.539 0.306 -0.076

眼鏡 0.052 -0.085 0.013 0.452 0.539 1.000 0.500 0.183

鍵 0.260 0.024 0.257 0.438 0.306 0.500 1.000 0.299

声 0.534 0.465 0.487 0.481 -0.076 0.183 0.299 1.000

話,迷惑,負担 and their relation for the application to humans. Their similarity with

other selected words is lower. On the other hand, 電話 has the highest similarity

with鍵, but声 is still higher than other words.

For the task of phrase similarity, this model was good, however for the task of

assigning lower similarity for semantically distinct senses and higher similarity to

semantically close words it does not produce a similar result.

SVD is related to eigendecomposition, which means that top vectors are, speaking

informally, main components of every vector in the matrix. Assuming that the

singular vector related to the highest singular value holds the information of the

“word itself” and other vectors hold semantic information of its usage in different

contexts, it would make sense to discard top singular vector as well. Table 4.3

shows similarity of prototype projections for the same expression when expression

for computing prototype subspace is Σ1:kV
T
1:k

, dropping a top singular vector and

bottom singular values related to dl% = 0.5 singular values.

Using prototype projections in this setting is more suitable for detecting different

senses, however, parts of projection themselves are interesting as well. Actually, in

the setting of dl% = 0.2 projections かける into subspaces spanned by each word

かける|◦ yielded almost similar vectors, most having similarity of > 0.9. Summing

them to projection ◦|かける created a situation that almost every similarity is high.

For setting dl% = 0.5, 1 : k, projectionかける|◦ had lower similarities, however they

were not usable for similarity calculations. In contrast to that, projection ◦|かける
yielded much more “clean” matrix in sense that it clearly separates semantically close
senses. It is presented in Table 4.4.

Computing Semantic Representations

Prototype projection as a method allows computing a representation for a pair of

words and a certain relation like predicate-wo-argument. However, it is only a part of

a sentence and there could be different arguments possibly modifying the meaning
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Table 4.4: Prototype Projection similarity of○|を
掛ける

, 1 : k, dl% = 0.5

世話 迷惑 負担 電話 コート 眼鏡 鍵 声

世話 1.000 0.813 0.473 0.070 -0.470 -0.324 -0.231 0.235

迷惑 0.813 1.000 0.532 0.044 -0.550 -0.408 -0.352 0.315

負担 0.473 0.532 1.000 -0.089 -0.466 -0.367 -0.261 0.184

電話 0.070 0.044 -0.089 1.000 0.132 0.250 0.181 0.031

コート -0.470 -0.550 -0.466 0.132 1.000 0.729 0.239 -0.397

眼鏡 -0.324 -0.408 -0.367 0.250 0.729 1.000 0.373 -0.317

鍵 -0.231 -0.352 -0.261 0.181 0.239 0.373 1.000 -0.293

声 0.235 0.315 0.184 0.031 -0.397 -0.317 -0.293 1.000

of the word. Output semantic representation a target word in a sentence was

combined from such elementary representation. If vxs(t) is a elementary semantic

vector representation for a target word t over a relation x, then a full representation

vs(t) is going to be a normalized sum of elementary representation

vs(t) =
∑︂
i

wiv
i
s(t),

where wi is a weight of an elementary representation. Parameters of a prototype

projection were 1 : k and dl% = 0.5. Depending on a part of speech, there are 4

variations in how exactly the representation was created.

Semantic representations for verbs and adjectives were tested as a word sense dis-

ambiguation task on the Japanese SemEval (Okumura, Shirai, Komiya, and Yokono

2010) data. Using semantic representations with a simple nearest neighbor classifier

achieved significantly higher accuracy than the most frequent sense baseline. For

more details please refer to Appendix.

Verbs For verbs, the main information for creating semantic vectors is the predicate-

argument structure of a sentence. The verb is going to be a predicate and its argu-

ments can be used to compute semantic vector representation. Data for collocations

can be aggregated from the case frames. The following list of cases was used for a

summation: を,が,に,と,から,まで,修飾 andで. For all cases exceptで, weigts wi

were set to 1 and elementary representation was computed as t|
○
+○|

t
. For theで

case only projection of a target word t|
○

was used and the weight was set to 0.5.

Adjectives Adjectives are treated the same as verbs. Moreover, they usually use

onlyが case and the meaning mostly depends on the argument ofが case slot.
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Adverbs Adverbs usually modify a verb and their meaning can depend on the

verb’s subject or object, especially if a verb is almost auxiliary like する. Adverbs

themselves frequently occupy修飾 slot of a parent verb as well. Because of this, if

an adverb is a child of a verb, representation-wise it can be treated as the verb itself,

albeit with the reduced number of cases used. Only修飾 andが cases are used for

computing the semantic representation. The adverb’s parent is used as a target.

If an adverb is a predicate by itself, the algorithm for verbs is used without

modifications.

Nouns Nouns can create a relationship that changes meaning using a dependency

with another noun and a の particle. For example, a phrase “私の犬” is certainly

about a dog, but a phrase “警察の犬” can have a different meaning. Thus, this data

should be used as well. Original case frames operate only on predicate-argument

structure, so this data was collected from a web corpus. Frequent words over this

relation were collected to make case frame-like aggregated lists.

If a noun is a predicate of the sentence, then, as in the verb case, predicate-

argument analysis information is used in addition to a relation over の if it exists.

Otherwise, in addition to a relation overの, a relation between a noun and its parent

is used to compute a semantic similarity vector.

4.4.4 Random Projections

Using counting approaches for creating word vectors results in high dimensionality.

Usually, the dimensionality is equal to dictionary size. However such sizes are

unwieldy for DPP dual representation.

Random projections is a family of methods that allow to decrease the number of

dimensions of a data, while keeping some of the original data properties.

Recall that DPP features can be represented as a matrix B. Rows of this ma-

trix are vectors for each data item. Using lexical and syntactic similarity features,

which were described in previous subsections, is going to produce vectors of large

dimensionality M, in hundreds of thousands. However, DPP works efficiently if the

number of feature dimensions is relatively low.

Gaussian Random Projection is defined by a matrix P of dimensionality M ×D,

with the elements of P independently drawn from a normal distribution 𝒩(0,
1

M),
having a zero mean and a variance of

1

M . A classical result on Random Projections

(Johnson and Lindenstrauss 1984) shows that even if D ∝ log(M), with a high

probability distance between original points are approximately equal to the distances

between the projected ones. DPP paper explains the applicability of those results to

DPP case in great detail.
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Figure 4.13: Cosine similarity error of a random projection

For the example extraction, random projection is used to compress lexical, syntac-

tic, and semantic parts of similarity vectors into a single similarity vector. The size

of that vector is chosen experimentally to have D = 250. Figure 4.13 displays cosine

similarity errors of projected vectors compared to non-projected ones. For vectors a

and b, and a projection matrix P the cosine similarity error is |aTb − (Pa)TPb|.
For this experiment, 1000 sentences were used. Original dimensions of vectors

were 100k, 400k and 300 for lexical, syntactic, and semantic similarities respec-

tively. The semantic similarity vector is small and dense, however, after a prototype

projection, its effective dimension is smaller than 300. To ease further operations, a

concatenated vector of all similarity features was projected into a smaller dimension.

For the selected value D of 250, 90% of similarity errors are less than 0.1. Moreover,

those errors usually occur when vectors are nearly perpendicular, meaning that their

dot product is close to 0. This was not the case for vectors close to each other. Still,

when D becomes very small, the approximation error becomes very large.

4.4.5 Quality: Centrality

One of the main objectives for example sentence is for them to being representative.

If the sentence is semantically representative, that means the sentence uses the target

word in a frequently used sense. If the sentence is syntactically representative, that

means the sentence used the target word in a frequent grammatical pattern. For

example, a noun can be frequently used in a certain case with a verb.

This parameter could be treated as a sort of “centrality” of individual usage
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Table 4.5: Word difficulties based on word frequency rank

Max Word Rank Word Difficulty

500 0

1000 1

2000 2

5000 3

10000 4

20000 5

50000 6

Rest 7

inside a sentences sample. This centrality could be calculated as a distance to the

nearest centroid after an application of a clustering procedure over a fixed similarity

measure. For the semantic centrality, the distance measure naturally could be created

from a semantic similarity measure. The idea is the same for syntactical centrality.

For the clustering K-Means++ algorithm was used because it does not require a

similarity matrix and is scalable to large datasets. A number of clusters k was set to

30 for semantic centrality. For syntactic centrality, the number of clusters was set to

10 because syntactic diversity is usually lower than semantic one.

4.4.6 Quality: Difficulty

Example sentences should be understandable for learners. Most of the time, the

target word should not be “shrouded” in other words. To do that, the difficulty

of the sentence is adapted as a quality feature. It is done in two steps. First, the

difficulty of the sentence is estimated as a single number. Then the difficulty is

transformed to a quality coefficient, a number from 0 to 1. This difficulty quality

coefficient is multiplied by other quality features.

A sentence difficulty consists of several factors: grammar difficulty, lexical diffi-

culty, presence of anaphora and probably many others. However, a simple lexical

feature is probably should be a good first approximation to this task. Lexical sen-

tence difficulty ds of the sentences is approximated from the word difficulties using

the formula

ds =

(︄ ∑︂
wi∈s

d4

wi

)︄ 1

4

.

Here dw is a word difficulty, and wi are all content words in a sentence. The idea

was to make a softmax-like function, that will still accumulate difficulty if a sentence

contains a lot of medium words. Power of 4 seemed to be the best option.

A word difficulty is estimated using word frequencies in a corpus and JLPT word
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Table 4.6: Frequency-based difficulty for words in JLPT lists. Bold entries were

moved to lexical difficulty corresponding to the JLPT level

Difficulty

JLPT Level 0 1 2 3 4 5 6 7

N5 182 92 172 84 37 14 5 3
N4 116 68 266 126 50 20 5 1
N3 167 84 692 492 187 100 18 3
N2 49 30 218 388 413 460 207 19
N1 138 73 406 595 648 896 451 42

lists. First, words are ranked by their frequencies in the corpus. After that, words

are assigned a difficulty number based on their rank. Assignments are displayed in

the Table 4.5. After the first approximation of the difficulty, the ranked list is merged

with JLPT (Japanese Language Proficiency Test) word lists. Some words that have

relatively low frequency, yet still are present in relatively low JLPT levels and should

not be treated as very difficult ones.

Merging with the lists is done by moving the words which have greater frequency

difficulty than JLPT difficulty. Word JLPT difficulty was chosen to correspond with

the frequency difficulty. JLPT level N5 was assigned difficulty 1 and JLPT level N1

to the difficulty 5. Frequency-based difficulties for words are shown in the Table 4.6.

Bold entries correspond to words that were moved into position so they would have

the difficulty specified by JLPT lists.

Here are some examples of words that had frequency difficulty 5 or 6, but much

lower JLPT difficulty. For JLPT N5 (dw = 1) moved words were something likeおま

わりさん,花瓶,作文 or上着 which often occur in beginner level textbooks, but do

not have high frequency in the actual language. For N4 (dw = 2), words like乗り

物,郊外,押し入れ or水泳were moved.

After the computation of the sentence difficulty, the value is transformed into a

quality coefficient. It is transformed using a sigmoid-like piecewise linear function

qd(ds) that is shown on the Figure 4.14. The idea is to have a slower initial quality

decrease when the sentences are not difficult and a rapid decrease when the difficulty

becomes larger. The default configuration of this difficulty conversion function stops

giving high qualities after the sentence difficulty becomes more than 4, which is

about JLPT N3 – intermediate Japanese proficiency level.

It is possible to modify the difficulty function as q = qd(ds+biasd), where the bias

term would make sentences easier or harder, making it possible to select sentences

for learners of other proficiency levels.
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Figure 4.14: Sentence difficulty to quality coefficient conversion

4.4.7 Quality: Goodness

The final part of quality features performs soft filtering on the sentences. Web

corpus contains a large number of sentences that are sentence fragments, missing

some parts. For example, they could begin with a case marker like “に誰も入って

こない。”. Other sentences could not be suitable for example sentences by simple

cosmetic criteria. For example, sentences that contain punctuation that hints that

the sentence is unfinished are usually not helpful as an example.

Each example sentence is rated by a series of rules each of that outputs a number

from 0 to 1. The product of those numbers is going to be the final “goodness” quality

measure.

There are three main types of rules. The first type tries to find out sentences

that are definitely will not be good examples, like ones that begin or end with a

case marker. It assigns a low score, near 0.2 or 0.3 to such sentences making the

probability of them appearing in results extremely low.

The second one ranks things that are normal in small quantities but are bad in

large. For example, lots of punctuation in a sentence usually makes it a bad example.

Another example is that sentences that contain random numbers and alphabet are

usually something like part numbers of some items or identifiers and are useless as

examples. However, a single number in a sentence is perfectly fine.

The third type is something in between. For example, words that were automati-

cally acquired from Wikipedia are not useful in example sentences.
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4.4.8 Related Work

It is possible to use another language to perform the word sense disambiguation

(de Melo and Weikum 2009) for example sentence extraction. One more important

feature of that work is a concern about diversity of example sentences. They generate

a set of 1,2,3-grams for each example sentence and use them for scoring example

sentences. After one sentence is selected, all scores for n-grams that are contained

in the selected sentence are set to zero, decreasing scores of similar sentences. It is

possible to say, that de Melo work considers mostly lexical diversity and centrality,

and does not consider sentence difficulty. Sentence difficulty turns out to be a major

factor in the evaluation by language learners.

4.5 Evaluation

Evaluating the suitability of example sentences for learning a foreign language is

difficult. Evaluating the sentences one by one does not determine the diversity of

the extracted sentence list.

The automatic evaluation of example sentences is possible if the problem is for-

mulated such that the only criterion is that example sentences should be present for

every sense of a word. However, this evaluation does not determine whether the

example sentences are useful for learners.

We perform an evaluation experiment with learners and a teacher with two distinct

main goals:

1. To assess the performance of the example extraction system;

2. To validate the assumptions on the meaning of the “quality” of example sen-

tences.

The first goal is achieved by having participants vote on lists of example sentences

and select their preferred lists.

For the second goal, the evaluation was performed in the form of an interview.

Participants were asked why they have or have not chosen specific lists of example

sentences after the initial preference selection.

4.5.1 Baselines

We used three methods in the evaluation: the proposed one and two baselines. The

proposed method is labeled DPP in the evaluation results.

The first baseline was a method by de Melo (de Melo and Weikum 2009), explained

in the Section 4.4.8. However, because our setting uses only monolingual corpora,
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only lexical centrality and diversity parts were used from this method. As an

additional point, the method did not use raw sentences as input, it was using results

of a search engine instead. The method is referred to as DeMelo.

The second baseline was a simple uniform random sampling without replacement.

The input data, as in DeMelo, was a list of example sentence candidates from a search

system, not raw examples. Random sampling should have high diversity in many

aspects, however, its results could not be consistent. This method is referred to as

Rand.

4.5.2 Data Preparation

For the experiment we have selected following 14 words:

• verbs: 飛ぶ,積む,走る,取る,掛ける;

• adjectives: 青い,汚い,鋭い;

• adverbs: 全然,バリバリ,サッパリ;

• nouns: 頭,卵,足.

Each word has more than one sense and diverse usage patterns. Most of the words

are relatively easy and should be familiar to language learners.

For each of the words, we used the top 10k search results from the search engine

as example sentence candidates. Each of the words had more than 10k containing

sentences. After that, 12 sentences were extracted by each method from each list.

That yields a total of 14 × 12 × 3 sentences which were presented to participants of

the experiment.

For our system, we selected the original dimensions of vectors to be 100k, 400k

and 300 for lexical, syntactic, and semantic similarities respectively. The semantic

similarity vector is small and dense, and after a prototype projection, its effective

dimension is smaller than 300. We selected the resulting dimension of random

projection D to be 250, so that 95% of similarity errors are less than 0.1:

|sim(a,b) − sim(P(a),P(b))| < 0.1.

Here a and b are two full sentence representations, consisting of all three compo-

nents, and P is a random projection. We used weights 0.6, 1.0, 1.0 for lexical, syntactic

and semantic similariy vector parts respectively.
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4.5.3 Experiment Results

The first part of the evaluation experiment used Japanese language learners as

participants. For each word, participants were given three lists of example sentences

produced by three methods. The lists were placed side by side in a random order to

force participants to read sentence lists in a different order every time. Participants

were asked to select a list that was more useful from their point of view for putting

sentences on the flashcards. After a participant would select a personally preferable

list, anonymized names for the methods were displayed and the participant was

asked to explain the reasons behind their choice.

Before the experiment, participants were shown the experiment guidelines, con-

sisting of three main points:

• a brief introduction, explaining about flashcards and usage of example sen-

tences in flashcards;

• explanation of the experiment;

• data handling policy.

The experiment explanation itself was exactly the following text:

• You are going to see automatically-collected example sentences.

• Sentences are going to be created for 14 words: 5 verbs, 3 adjectives, 3 adverbs,

and 3 nouns.

• Sentences will be grouped into 3 lists.

• You should select a list which you would prefer to use for creating flashcards

for a word.

No explicit criteria for selecting the best list of example sentences was given. Instead

of that, participants were asked to explain the selection in an interview-like manner

to satisfy the second goal of the experiment.

In total, evaluation and interviews were performed with 23 learners. The first

stage of evaluation had 11 participants (1-11) and the additional evaluation had 12

participants (12-23). The evaluation took about 1.5 hours per learner on average.

In the first evaluation, there were two participants with relatively low levels. They

mostly preferred sentences extracted by DPP because sentence difficulty was used

as a quality feature. Participant #1 still had problems with understanding sentences

because of the low Japanese proficiency, however, participant #9 could understand

most of them. Interview results for the evaluation by learners are discussed in
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Table 4.7: Learners’ votes on the best example lists. Bold numbers are the majority

for a person. FC means that the learner has experience of using flashcards.

The level is approximate JLPT-style Japanese language proficiency from

N5 (lowest) to N1 (highest). + and− near a level means that the participant

is higher or lower than the specified level, however, the specified level is

the closest one.

# FC Level Rand DeMelo DPP

1 * N4+ 3 1 10
2 * N2+ 5 3 6
3 N2 4 6 4

4 N2 5 2 7
5 N1 7 4 3

6 * N2− 3 4 7
7 N1− 8 0 6

8 N1− 4 7 3

9 * N3− 0 1 13
10 * N1− 2 3 9
11 * N1− 3 2 9
12 * N2 0 1 12
13 N2 4 5 5
14 * N2 3 6 5

15 N2 6 1 7
16 * N3 3 2 9
17 N1 3 6 5

18 N2 8 0 6

19 N1 7 3 4

20 * N2 2 2 10
21 N3 2 2 10
22 * N3 4 0 10
23 N2 0 2 12

Total 86 63 173

Percentage 26.7% 19.6% 53.7%
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Table 4.8: Learner vote ratios for DPP and the corresponding 95% confidence inter-

vals, computed with bootstrap resampling

Level Votes, % Lower Bound Upper Bound

All 53.7 48.8 58.6

N3 75.0 64.3 85.7

N2 53.2 46.1 60.4

N1 39.8 30.6 49.0

the following subsection. In the second evaluation, we focused on learners with

intermediate (N3-N2) levels, for which we had insufficient coverage in the first

evaluation.

Vote counts for users and aggregated counts are shown in Table 4.7. DPP gets

about half of all votes, which is a good result for the proposed method. It also gets a

majority for every participant who had the experience of using flashcards or spaced

repetition systems. This gives hope that example sentences are going to be useful

inside the flashcards.

Table 4.8 shows 95% confidence intervals for learners’ votes over the example

sentence lists. Confidence intervals (CI) were computed by bootstrap resampling:

we resampled individual learner votes from a categorical distribution using the

collected data as a vote distribution for a learner. Then we aggregated the results in

the same way as in the main experiment. We used 100,000 samples in the bootstrap

resampling and show lower and upper bounds as the computed percentage at 2.5

and 97.5 levels.

Based on the bootstrap resampling, N3 learners’ vote for DPP is larger with a

statistical significance than the majority of votes (50%) with the lower CI bound of

64.3. Voting for all learners and N2 learners is larger with a statistical significance

than a random choice (33%). On the other hand, the voting of N1 learners for DPP

is not larger with a statistical significance than a random choice.

4.5.4 Evaluation by a Native Teacher of Japanese

The second part experiment was performed by showing the same example sentence

lists to a native Japanese language teacher. In addition to selecting the best list, a

teacher was asked to rank from 1 to 5 how appropriate the list was for students of

approximately N3 and N2 JLPT levels. Identically to the learners’ case, no explicit

criteria were given. Unfortunately, because of time limitations, only one teacher has

participated in the second part of the evaluation.

For the initial selection, the teacher commented that the best list was selected as if

examples were for learners of N3 level. The votes on the initial selection were 0, 4,
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Table 4.9: Sense coverage of the extracted example sentences. Gold is the number

of senses in the monolingual dictionary. Rand, DeMelo and DPP is the

number of senses in the extracted example sentences.

Word Gold Rand DeMelo DPP

飛ぶ 13 4 6 5

積む 6 4 3 3

走る 12 4 4 3

取る 75 11 11 10

掛ける 48 9 10 5

青い 3 2 2 3

汚い 6 3 3 3

鋭い 5 4 3 3

全然 3 2 2 1

バリバリ 3 2 2 2

さっぱり 5 2 3 1

頭 10 3 3 3

卵 4 2 2 4

足 6 1 2 2

10 for Rand, DeMelo, and DPP respectively. Average ranks for lists were 3.36, 3.79,

4.64 and 3.86, 4.21, 4.36 for N3 and N2 learner level respectively.

Results of the evaluation by the teacher also assign the DPP system as the best

for N3 learners both by vote numbers and by average rank. For N2 learners a score

for DPP was lower, at the same time the score for DeMelo has raised. The score for

Rand was the lowest.

Criteria for selection were the following. Non-target words in a sentence should

not be too difficult. A sentence should not depend on the outer context like if it

was inside the conversation or about current affairs. The sentences should be short

and the usages of the target words should be common. These criteria are strongly

aligned with the objectives DPP uses for sentence extraction, which seems to be the

reason for its high appraisal by the teacher.

If examples would be selected for N2-like learners, a sentence should include more

different structures and usages. However, if usages are too non-usual, in contrary

they are more difficult to use, albeit interesting. However, some high-level students

had a different point of view.

4.5.5 Evaluating Semantic Diversity

To check the semantic diversity we have performed word sense disambiguation

manually, with senses defined by Super Daĳirin Japanese Dictionary. Table 4.9
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Table 4.10: Comparison of Learners’ Feedback for Methods

Methods

DPP DeMelo Rand

Positive Feedback

◦ Short

◦ Contain different usages

◦ Simple and easy to under-

stand

◦ No useless words

◦ Possible to guess word

meaning from context

◦ Look “good”

◦ Closer to daily life

◦ Contain different usages

◦ Contain different gram-

mar

◦ Contain different usages

◦ Interesting usages

◦ Long and lots of context

Negative Feedback

◦ Sentences are short and

bland

◦ Compound verbs (e.g. 飛

び込む) seem not the same

as plain verbs (飛ぶ)

◦ Similar sentences

◦Many sentence fragments

◦ Used difficult grammati-

cal constructions

◦ Sentences look too infor-

mal

◦More difficult to read fast

◦ Similar sentences

◦ Lack of punctuation

◦ Too much katakana-

words

◦ Very long sentences

◦ Contain difficult words

◦ Have words that are not

useful for examples

◦More difficult to read fast

◦ Emoticons

shows the number of senses in the extracted sentences and the total number of senses

in a word, as defined by the dictionary. Generally, all methods have comparable

performance. However, DPP has significantly lower semantic diversity with 掛け

る, and could not produce more than one sense for全然 andさっぱり. On the other

hand, it has better semantic diversity for 青い and 卵. To conclude, DPP keeps

the diversity comparable to other methods, while producing overall easier to read

sentences and cleaner sentences.

4.6 Discussion

All evaluations were performed in an interview manner. Participants were asked to

explain their choices about lists and criteria they were using. We show frequently

discussed positive and negative feedback in Table 4.10.

Generally, list diversity was regarded as one of the main criteria for the selection.

Semantic and lexical diversity was the mainly referred part. However, grammatic

diversity was named as well. By grammatic diversity participants usually meant, for

example, usage of a verb in different grammatic forms. Other themes that frequently

came into the criteria for the selection were sentence difficulty and how interesting
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were the sentences. Each of the points is discussed in greater detail below.

4.6.1 Similarity and Diversity

Diversity was the main hypothesis behind this work and it was validated by the

answers of the participants. Most of them have stated that the non-similarity of

sentences in a list was one of the main criteria for the selection.

All three used methods were specialized to produce non-similar sentences. DeMelo

explicitly tries to select sentences with frequent words and penalize such words in

the next selections. Random selection is going to select different words with the

high probability if the ground set contained the diverse sense in approximately

equal proportions.

For the DPP features were explicitly crafted to deal with semantic and syntactic

similarity in addition to lexical similarity. Based on the results, there were cases

where DPP was better in terms of diversity and the cases when it was worse.

One example of good performance in this regard was the word “卵”. In addition

to the usual meaning of an egg in a sentence like “それには多くの卵を割る必要が

あります”, the DPP have also displayed several sentences for the usage like “医師の

卵に期待が集まっている” with the meaning of “future profession”. Other methods

did not produce example sentences with this sense.

Sentences for the word “頭” show a similar, but slightly mixed result. DPP has

selected 6 sentences that have the regular meaning of the word as “head” like “彼

女は僕の頭に手をかける”. However, the other 6 had the meaning of the beginning

of a time period like in the sentence “今年の頭に撮った写真です”. For nouns, most

semantic similarity comes from the relation over の particle and the rest from the

relation with the noun’s parent if there is one.

The worst-rated DPP selection was for the word “取る”. It had several almost

same sentences, for example, “自分の行動に責任を取れ” and “自分の行動に責任を

とる”. General sense diversity was not good as well. There could be several reasons

for this.

The first reason is that writings of 取る in example sentences were different, as

using kanji – “取れ” in the first sentence against hiragana-only “とる” in the second

sentence. Hiragana only writing can have multiple ambiguous kanji writings – at

least (取る,執る,捕る,採る,摂る,撮る,盗る). A tool could correctly disambiguate

them and select the correct one –取る, but it could not do it in this case and simply

produced a list of all candidates. Because of the results of predicate-argument

structure analysis, which are used for building semantic similarity vectors, contained

all the possible variants and the semantic representation vectors become non-similar

for these two similar sentences.
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In the case of 掛ける, while there is a lack of sense diversity, which is mostly

defined by arguments inを case, DPP selects sentences with differing arguments in

other slots, e.g. 遊んでいる時に声をかけてみました。 (time case present with時

as argument) and何かあったら声をかけてね。 (no additional cases).

The second reason probably lies in model parameters. There is no training data at

the moment to tune model parameters to produce the best example sentences, the

greedy selection algorithm with DPP ranking requires tuning in terms of similarity

features, quality features, and making every item more or less similar. Applications

of DPP described in the Kulesza et al (Kulesza and Taskar 2012) used training of the

quality features and tuning of similarity parameter r, although in this application

there was no training data to do so.

The first reason is that writings of 取る in example sentences were different, as

using kanji – “取れ” in the first sentence against hiragana-only “とる” in the second

sentence. Hiragana only writing can have multiple ambiguous kanji writings – at

least (取る,執る,捕る,採る,摂る,撮る,盗る). A tool could correctly disambiguate

them and select the correct one –取る, but it could not do it in this case and simply

produced a list of all candidates. Because of the results of predicate-argument

structure analysis, which are used for building semantic similarity vectors, contained

all the possible variants and the semantic representation vectors become non-similar

for these two similar sentences.

The second reason probably lies in model parameters. There is no training data at

the moment to tune model parameters to produce the best example sentences, but

as it was shown in Subsection 4.3.4, greedy selection with DPP ranking algorithm

requires tuning in terms of similarity features, quality features, and making every

item more or less similar. Applications of DPP described in the Kulesza and Taskar

(2012) used training of the quality features and tuning of similarity parameter r,

although in this application there was no training data to do so.

The last probable reason lies in the DPP method itself. It is possible not only to

select from it greedily, as we do in this thesis but also to sample from DPP as a

distribution, where more diverse subsets are assigned a higher probability. If a size

of an individual sample is n, then it is shown (Kulesza and Taskar 2012) that an

expected size of a sample E[n] from a DPP is

E[n] =
N∑︂
i=1

λi

λi + 1

,

where λi are the eigenvalues of C or L matrices. Expected sample sizes for the

data used in our experiment are shown in Table 4.11. Most of the expected sample

sizes are very large, much larger than the 12 sentences that were extracted. Large
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Table 4.11: Expected DPP sample sizes

Word 飛ぶ 積む 走る 取る 掛ける 青い 汚い
E[n] 58.27 67.67 74.53 69.78 75.24 74.32 77.60

Word 鋭い 全然 バリバリ サッパリ 頭 卵 足

E[n] 62.31 110.51 32.80 101.41 110.28 77.59 113.40

expected sample sizes could mean that one needs to select a large number of items

to get a good diverse subset. It seems that similarity features are the reason for

high expected sample sizes. Lexical features could give large variation to the shape

of vectors and form many distinct eigenvectors. Saying that, tuning parameters of

similarity feature mixing may help this problem as well.

As a side note, examples forばりばり, which had the lowest expected sample size,

were good and it was a clear win of the DPP algorithm. The votes were 2, 1, 8 for

Random, DeMelo, and DPP respectively.

4.6.2 Difficulty

Sentence difficulty is also one of the main criteria learners have used for the list

selection. The initial assumption for the creation of the system is that example

sentences should be easy to understand and as short as possible. One reason for this

is because if example sentences are shown as a question on each flashcard, a learner

has to read many sentences and overly long sentences create too much cognitive

load.

Some learners agree with the initial vision on example sentence difficulty: “an

example sentence should not contain words harder than its target”. However, there

was another point of view as well. If learners thought that the sentences were for the
reference, like those shown with the definition of a word in a dictionary, then they

selected the sentences which were readable, but not too easy compared to others.

Examples by DPP were too easy for those learners. Mostly the people who did not

have experience of using flashcards selected sentences in this manner.

There was another small group of learners who wanted to see really difficult

sentences. Probably, the difficulty of example sentences should be customizable and

one-size-fits-all type of solution is not going to work.

One more “low hanging fruit” that was not done for the sentence difficulty is

using kanji for estimation. Learners of lower levels from countries that do not use

Kanji simply could not read sentences containing kanji unknown to them. This point

should be included in the improved version of the difficulty estimation.
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Hypotheses

Optimal for a learner relative difficulty of an example sentence for a target word is

a function having at least the following three parameters:

• example usage mode,

• level of a learner,

• learner’s familiarity with a target word.

The difficulty of kanji, sentence non-target words, and grammar are included in the

function as well, however, we would like to discuss the parameters mentioned in

the bullet list in more detail.

Example usage mode is whether example sentences are used for reference or a

review. Reference usage occurs in a dictionary-like setting where a list of example

sentences is presented for a learner to compare between word usage in different

senses or situations. In this setting, a learner has other sentences to serve as a sort of

“anchor” to focus on a target word. Because of this, and a need to provide a way to

compare sentences from each other, example sentences could have higher difficulty

when they make up a reference list. In contrast to that, if an example sentence is

shown as a flashcard question, there is no such “anchor” to compare a single sentence

to others. Review sentences should be slightly easier to understand because they

have fewer hints for a learner in general.

The level of a learner is another major factor in whether an example sentence

is going to be useful or not. Learners of higher levels are going to understand

more difficult sentences and easy ones become boring to them. However beginners

and intermediate level learners can find it difficult (and sometimes even impossible

without an additional explanation) to understand sentences that advanced learners

find interesting.

The last point is the learner’s familiarity with the example sentence target word.

It strongly relates to the difficulty of a non-target word in a sentence. If a learner is

not familiar with the target word, then other words serve mostly as an explanation

for target’s meaning and the sentence itself should be easier. If a learner is generally

familiar with the word, that context given by an example sentence helps the learner

to learn and remember usage situations of the target. Sentences in this period of

familiarity could be a bit harder than the average. However when a learner is

completely familiar with the target word, then even usage situations can be inferred

by a simple collocation. Collocation is going to help with disambiguating word

senses and nothing else.
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It seems that we should talk not about good example sentences in general, but good

example sentences for a learner at some point in a learning process. Static example lists

are not going to solve this problem efficiently, but an educational tool like SRS can.

It has access not only to the learner’s general knowledge level but to the learning

process data for individual words as well. Using it, an example extraction system

can provide the best examples learner needs at that point in time.

4.6.3 Sentence Content

Another criterion that was used by learners for selecting sentences was if the sen-

tences were interesting. There were 3 main types of such sentences:

• Sentence has a story.

“画像が汚いのは、携帯カメラで撮ったからです、今度綺麗な写真でも撮っ

ておきましょう” vs “画像が汚かったりしたら買う気しませんからね”

• Sentence displaying a vivid image.

“旧ソ連の宇宙飛行士ガガーリンの有人宇宙飛行「地球は青かった」”

• Sentence is funny or unusual for a participant.

“「中天」とは死者が修行を積むような場所”

At the beginning of the evaluation, there were cases where a single interesting
sentence gave a reason for a participant to select a list of sentences even if it con-

tained sentences of generally lower quality like complete fragments. After that case

participants were additionally instructed to try judge lists on a whole and not focus

only on a single sentence.

Still, such content usually occur only in more or less lengthy sentences containing

many different words. DPP was heavily biased against such sentences.

At the same time, lengthy sentence content does not usually interact with the

target words directly. Thus such cases should be treated specially.

At the present, it is very hard to automatically judge if a sentence is going to

be funny, unusual or generally interesting for a learner. However, it should be

possible to automatically get sentences that has some kind of story. A simple story is

two events with a cause-effect relationship. By exploiting information about events

and event relations developed by Shibata (Shibata, Kohama, and Kurohashi 2014)

it should be possible to collect sentences with frequent events. These story-like

sentences could be more helpful for remembering the connotations of a word and

its usage.
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4.6.4 Errors in Pipeline

Recall that example sentence candidates were preselected by a search engine that

tries to find good patterns of target word usage, while keeping a sentence length not

very long. This kind of selection has helped to sidestep most problems related to

errors in automatic syntactic analysis (because the sentences were generally short)

and predicate-argument structure analysis (because the sentences were selected to

have patterns useful for that analysis, refer to Section 4.2.4 for details). However,

there were several classes of problems with external tooling that has decreased

performance of example extraction system in general.

One of those problem classes was discussed in the Section 4.6.1. Ambiguity in a

canonic representation makes makes it difficult to compute good semantic similarity

vectors for such words. Most of the other problems manifested in invalid search

results providing bad example sentences to the pre-selection lists.

These problems were mostly caused by the mistakes of the morphological ana-

lyzer. Sometimes, because of that a completely different word could appear in search

instead of a target. For example a sentence 相手が居なけりゃ自分でやりゃあえ

え。 was found when searching for the word “青い”. It seems that morphological

analyzers have performed incorrect segmentation (やりゃ｜あええ) instead of (や

りゃあ｜ええ) and because of that青い9
have “appeared” in the sentence. Incorrect

words in sentences because of segmentation errors are a bad problem because such

sentences do not contain the target word and are completely useless as examples.

Another problem related to analysis arises from character sequences that were

unexpected for the analyzer like typos or dialects. For example, a sentence “そん

なことを言うとりました” contains a dialect usage and it is a low priority to have

robust dialect support for the analyzers. Analyzer thinks that “とりました” is a verb

取る and causes a sentence with an incorrect word to appear in the search result.

4.6.5 Support of Other Languages

An example extraction system is developed for Japanese, however underlying meth-

ods have very few Japanese-specific parts. The system itself is unsupervised and

has only a tokenizer, morphologic analyzer, and dependency parser as software

dependencies. All other data can be created from a raw corpus analyzed by these

three tools.

For example, English could be supported by using a dependency parser that

performs labeled dependency analysis like a Stanford Core NLP parser (D. Chen

and C. Manning 2014). Parsing a corpus will produce information sufficient to build

9あええ can be a phonetic change fromあおい in male speech
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a database of relations with prototypes, needed to create semantic representation.

Creating word embeddings does not require even that information.
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5 Conclusion

This thesis discusses the improvements for Japanese language learning with natural

language processing technology. Japanese language, because of the nature of its

script, requires programs to segment the input text into words before the further

process. Chapters 2 and 3 of the thesis discuss the improvments in Japanese mor-

phological analysis. Chapter 4 discusses an approach for automated high-quality

example sentence extraction for Japanese language.

5.1 Morphological Analysis

We give an overview of history and types of approaches for morphological analysis.

We reviewed the two main styles of morphological analysis, comparing the pluses

and minuses of pointwise and search-based approaches.

5.1.1 Improvements of Juman++ Morphological Analyzer

We achieved a 250x improvement in analysis speed compared to the original version

of the Juman++ morphological analyzer. Because of our improvements, it became a

practical morphological analysis of Japanese with extremely high analysis accuracy.

Improvements that made it possible can be classified into algorithmic improvements

and microarchitectural optimizations. The main algorithmic improvements are the

following:

• Organizing binary dictionary as a column-based database and using the dic-

tionary organization to compute hash-based features without accessing string-

based features, described in Subsection 2.3.2.

• Modifying the beam search procedure to greatly decrease the number of con-

sidered paths spanning character boundaries by heuristically weighting lattice

nodes, described in Subsection 2.3.6.

• Moving dictionary-related computations to the dictionary build step
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In addition to algorithmic improvements, Juman++ contains multiple enhance-

ments, which also improved its analysis speed. The most notable improvements

are:

• Generating static linear model evaluation code from model definition, de-

scribed in Subsection 2.3.4.

• Prefetching linear model weights by delaying computations of the linear model

score, described in Subsection 2.3.4.

• Performing necessary computations of the linear model score only once, de-

scribed in Subsection 2.3.4.

• Vectorizing and batching the computations of the recurrent neural language

model, described in Subsection 2.3.7.

Both types of improvements also enabled Juman++ to improve the analysis accu-

racy as well by enriching the model representative power and making it possible

to train the linear model better. Such a high-accuracy practical morphological ana-

lyzer in our opinion is a very useful tool for most applications of natural language

processing.

5.1.2 Fully-Neural Low-Footprint Morphological Analyzer

The high accuracy of search-based morphological analyzers was realized because of

human-curated high-quality morphological dictionaries. It was, however, difficult

to combine the dictionary information with pointwise morphological analyzers. We

proposed a fully-neural model for morphological analysis and a training regime that

can incorporate rich dictionary information into the pointwise model. The training

procedure uses a bootstrap analyzer to produce large quantities of automatically-

labeled training data. The resulting analyzer can have the same analysis accuracy

as the bootstrap analyzer while having a much smaller model (20x smaller in our

experiments). Our additional experiments showed that it is possible to shrink the

model even further, while sacrificing analysis accuracy, opening doors to high-

accuracy sub-megabyte models for morphological analysis. Such models can be

easily deployed in mobile or serverless applications which are sensitive to the model

size. Sub-megabyte models can even be usable from a browser, opening ways to

new applications.
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5.1.3 Future Work

One unexplored direction for further improving the analysis speed is the MeCab-like

precomputing of feature weights. While it would not be feasible to fully precompute

all features, it would be interesting to perform partial precomputation of features.

The implementation, however, would be significantly more complex than it is now,

so that would be a trade-off for computation speed versus complexity and maintain-

ability.

Another important direction would be to develop a morphological analyzer, ro-

bust to errors in the input text. Current analyzers expect that the input text is correct,

which is true for professionally edited newspaper texts but can contain errors, ty-

pos, or IME misconversions. Such an analyzer would be very useful for analyzing

user-generated text from social media.

One unresolved problem of Jumandic-based analyzers is the low quality of reading

estimation of analysis results. This is also an important direction for the improve-

ments.

Finally, it would be interesting to find a way to improve the generalization of

neural networks with limited training data. We have shown that the data-rich

approach works, but efficient usage of rich dictionary information while training

only on human-annotated data remains an open research question.

5.2 Example Extraction

We proposed an automated example sentence extraction system for language learn-

ing using automated tools like spaced repetition systems. The proposed example

extraction system focuses on extracting diverse and good sentences and consists of

a syntactically aware distributed search system and determinantal point process-

based extraction part. We evaluated the system on the Japanese language with

learners of different levels and a native teacher of Japanese as a second language.

In both settings, the participants preferred our approach to baselines. The pro-

posed method was especially preferred by intermediate (N3) learners, followed by

upper-intermediate (N2), with the results being statistically significant in both cases.

Advanced level learners (N1) found sentences produced by our method to be short

and bland, but still slightly preferred our method to other methods. Our approach

can be used to create a learning experience fully personalized for students’ needs

and knowledge.
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5.2.1 Future Work

There are several areas for improvement in the proposed approach. One area is pro-

viding interesting example sentences. Learner evaluators have expressed a prefer-

ence for interesting example sentences. Having an automated approach for selecting

interesting sentences can provide a way to make language learning more engaging

activity, and increase the motivation of learners.

Another important direction would be to improve the method of computing the

similarity vector representation for example sentences. While the current approach

was shown to work, an approach based on contextualized language models can

greatly improve the quality of vector representations, and, hopefully, the extracted

example sentences.

Finally, the experiments have shown that sentence difficulty is very important for

learners. Inferring sentence difficulty from lexical data was shown to be useful.

However, an approach that takes into consideration words, grammar, and context

should be more precise and produce reliable results.
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