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Abstract
This thesis discusses the modeling and statistical inference of preferential
attachment (PA) in complex networks that exhibit social community char-
acteristics. Growth models of PA explain the scale-free nature of degree
distribution in real-world networks, including social and human networks
such as scientific co-authorship. However, the PA mechanism depends
only on the degree of each individual, which makes it difficult to form
community clusters under the cooperative behavior of multiple individu-
als.

In Chapter 1, we present the motivation and overview of this thesis.
This chapter also describes the following issues we tackle in this thesis:

(i) PA and transitivity, the classic and simple mechanisms, are widely
used to explain the formation of the heavy tail of the degree distri-
bution and the high clustering in real-world networks, respectively.
Since one of the above simple mechanisms is not well suited to cap-
ture both features, many existing studies have attempted to reveal
the formation of the two features by considering both PA and tran-
sitivity. Existing approaches either estimate one mechanism in isola-
tion or jointly estimate both mechanisms assuming some functional
forms. Each of them has the problem of poor fitting or risks losing
the fine details of the two mechanisms.

(ii) There exist social networks where the collectivity of interactions is
lost when expressed in graphs. Since group interactions such as
collaborative behavior may contain more than two individuals, in
graph expression, each of them is decomposed into multiple edges:
the pre-specification that all interactions are pairwise relationships.

For solving the above issues, we present our methodologies, findings, and
discussions in Parts I- III, which are the three main parts of this thesis.

In Chapter 2, we describe the background knowledge of the network
growth models related to the subsequent chapters of this thesis.

In Part I, we address issue (i). We present our methodology in Chap-
ter 3, and the real data analysis in Chapter 4. We propose a statistical
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method for estimating the non-parametric PA and transitivity functions si-
multaneously in a growing network, in contrast to conventional methods
that either estimate each function in isolation or assume a certain func-
tional form for these. Our model is demonstrated to exhibit a good fit
to two real-world co-authorship networks and can illuminate several in-
triguing details of the PA and transitivity phenomena that would be un-
available under traditional methods. Moreover, we introduce a method
for quantifying the amount of contributions of these phenomena in the
growth process of a network based on the probabilistic dynamic process
induced by the model formula. By applying this method, we found that
transitivity dominated PA in both co-authorship networks. This suggests
the importance of indirect relations in scientific creative processes. The
proposed method is implemented and publicly available in the R package
FoFaF.

In Part II, we address issue (ii). We present our methodology in Chap-
ter 5, and the real data analysis in Chapter 6. We propose a new hyper-
graph growth model with a data-driven PA mechanism estimated from
observed data. A key component of our method is a recursive formula
that allows us to overcome a bottleneck in computing the normalizing
factors in our model. We also treat an often-neglected selection bias in
modeling the emergence of new edges with new nodes. Fitting the pro-
posed hypergraph model to 13 real-world datasets from diverse domains,
we found that all estimated PA functions deviate substantially from the
linear form. This demonstrates the need to do away with the linear PA
assumption and adopting a data-driven approach. We also showed that
our model outperformed conventional models in replicating the observed
first-order and second-order structures in these real-world datasets. The
proposed method is implemented in the R package HyperPA, which will
be published on IEEE Xplore Code Ocean.

We present the conclusion of this thesis and the future directions in
Part III, which includes Chapter 7.
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Chapter 1

Introduction

In this chapter, we first describe the motivation of this thesis in Section 1.1.
Secondly, in Section 1.2, we describe the two main issues that we tackle in
this thesis. We then summarize our contributions to the issues in Sec-
tion 1.3. Finally, we briefly describe the organization of this thesis in
Section 1.4. Descriptions in this section are based on our related journal
papers (Inoue et al., 2020b, 2022) and international conference proceed-
ings (Inoue et al., 2018). The figures in this section are newly created for
this thesis.

1.1 Motivation

This thesis originated from some issues about preferential attachment (PA)
that we realized when trying to capture the formation process of the com-
munity structures in scientific co-authorship networks. Investigating the
PA mechanism, the“rich get richer” phenomenon in complex networks, is
one of the most classical and important topics in network science (Barabási
& Albert, 1999). PA explains the scale-free nature of degree distribution in
real-world networks, including social and human networks such as sci-
entific co-authorship. However, the PA mechanism depends only on the
degree of each individual, which makes it difficult to form community
clusters under the cooperative behavior of multiple individuals.

Cooperation is among the most fundamental behaviors of living crea-
tures (Nowak, 2006). Animals cooperate in various activities: from hunt-
ing and forming territories to grooming and child raising (Dugatkin, 1997).
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Humans are the experts of cooperation. From cooperation between states (Wat-
son, 1984), companies (Hamel et al., 1989) to cooperation between individ-
uals (David W. Johnson, 1991), it is the bedrock of our society.

As a form of human cooperation that builds social communities, scien-
tific collaboration is the backbone of the scientific world. In this process,
scientists share their ideas, their time, and their skills with each other in
order to push the boundary of knowledge. Since the start of the twentieth
century, the number of scientific articles with more than one author has
grown to more than three times the number of single-author articles (Lar-
ivière et al., 2015). There is accumulating evidence that articles result-
ing from collaborations are cited more frequently than non-collaborated
ones (Bornmann, 2017; Larivière et al., 2015). Since the number of cita-
tions is the main metric of scientific impact (Tahai & Meyer, 1999), col-
laborations thus lead to high impact research. Therefore, understanding
the evolution of a scientific co-authorship network, in particular, under-
standing how new collaborations are fostered, is significantly important
for policy makers, funding agencies, university managers as well as each
scientist. To understand the evolution of social and human networks, it is
beneficial to consider the evolution in a larger context of the evolution of
complex networks.

1.2 Issues in Preferential Attachment

In this section, we describe the two issues in PA in terms of the formation
of local community structures. We tackle these two issues in this thesis.

1.2.1 Poor Fit of Preferential Attachment to High Cluster-

ing Features in Real-world Networks

Two defining characteristics of an evolving complex network are the heavy-
tail of the degree distribution and the high value of the clustering co-
efficient (Holme & Kim, 2002); both are often represented at the same
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time in social and human networks such as scientific co-authorship net-
works (Newman, 2001b, 2004). Previous studies suffered from difficulties
in capturing the driving forces that form these two co-existing features
with a single comprehensive growth model. Following studies have dis-
cussed the formation of each feature through the data-driven growth mod-
els and estimation of the functions that determine the growth.

On one hand, to explain the heavy tail property, complex network
studies have proposed the PA mechanism where the probability that a
node with degree d receives a new link is proportional to the PA function
Ad (Krapivsky et al., 2001; Pham et al., 2015). When Ad is an increasing
function on average, nodes with higher numbers of links will receive more
new links, and thus hubs are formed and the heavy-tail degree distribu-
tion emerges.

On the other hand, one of the simplest mechanisms to explain the high
value of the clustering coefficient is transitivity where the probability that
a pair of nodes with b common neighbors receives a new link connect-
ing them is proportional to the transitivity function Bb (Newman, 2001a).
When Bb is an increasing function on average, more triangles are formed
between sets of three nodes, and this leads to an increase in the clustering
coefficient.

Existing approaches either estimate one mechanism in isolation (Jeong
et al., 2003; Newman, 2001a; Pham et al., 2015) or estimate jointly the two
mechanisms assuming some parametric forms for Ad and Bb (Krivitsky &
Handcock, 2019; Ripley et al., 2018). On one hand, estimating either mech-
anism in isolation often leads to poor fit, since many real-world networks
simultaneously exhibit heavy-tail degree distribution and high clustering.
On the other hand, it is difficult to justify a particular choice of functional
forms used in parametric estimation methods. A non-parametric estima-
tion method would allow the functional forms to be learned from the ob-
served data.

Estimating Ad and Bb is the first step towards answering the question
of what matters more in the evolution of a complex network: transitivity
or PA. While there is some research studying a similar question regarding
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PA and fitness (Kong et al., 2008), the question regarding PA and transi-
tivity has curiously remained unexplored, despite its potential to provide
deeper understandings on how new cooperation is fostered.

1.2.2 Preferential Attachment Under the Limitation of Graph

Representations

(a) (b)

These two are equivalent in graphs.

Pairwise interaction (edge)

Group interaction (hyperedge)

FIGURE 1.1: Examples of two hypergraphs that are projected
onto the same graph. Graphs do not preserve the dependen-
cies of edges.

Graphs are widely used in various fields, including complex network
theory, to analyze interactions among individuals and their dynamics.
However, there are some data where the range of interactions is lost when
expressed in graphs. For example, in the co-authorship data of scientific
papers, a new co-authorship relationship is added by giving a paper to
the set of authors. In such data, the interaction may contain more than
two individuals, but graphs cannot capture the feature. This is because,
in graphs of such data, an original group interaction is projected as mul-
tiple edges, each of which is a pairwise interaction. Figure 1.1 shows two
instances where the arrangement and the number of original interactions
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are different, but are equivalent in graph representation. Most of the ex-
isting growth models for complex networks rely on graph representations
and thus fail to capture this feature in the growth process. The limitations
of the graph representation in the case of growth processes are discussed
in detail in Section 2.2.2. In those cases, hypergraph representation may
be preferable since it can preserve higher-order relationships with hyper-
edges. However, existing hypergraph models of temporal complex net-
works employ a data-independent growth mechanism, which is the linear
PA (Do et al., 2020). In principle, this pre-specification is undesirable since
it completely ignores the data at hand.

1.3 Contributions

In the subsequent parts of this thesis, we provide the methodologies and
result of real data analysis as solutions for the two issues of PA described
above in Section 1.2.1 and Section 1.2.2, respectively. Our contributions
are as follows.

1.3.1 FoFaF: Joint Estimation of Non-parametric Preferen-

tial Attachment and Transitivity

To address the issues discussed in Section 1.2.1, we propose a statistical
method for estimating the non-parametric PA and transitivity functions si-
multaneously in a growing network, in contrast to conventional methods
that either estimate each function in isolation or assume a certain func-
tional form for these. Our model is demonstrated to exhibit a good fit
to two real-world co-authorship networks and can illuminate several in-
triguing details of the PA and transitivity phenomena that would be un-
available under traditional methods. Moreover, we introduce a method
for quantifying the amount of contributions of these phenomena in the
growth process of a network based on the probabilistic dynamic process
induced by the model formula. By applying this method, we found that
transitivity dominated PA in both co-authorship networks. This suggests
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the importance of indirect relations in scientific creative processes. The
proposed method is implemented in the R package FoFaF (Inoue et al.,
2020a). The methodology and results of real data analysis are based on
our papers (Inoue et al., 2018, 2020b), and presented in Part I.

1.3.2 HyperPA: A Hypergraph Approach for Estimating Pref-

erential Attachment

To address the issues discussed in Section 1.2.2, we propose a new hyper-
graph growth model with a data-driven PA mechanism estimated from
observed data. A key component of our method is a recursive formula
that allows us to overcome a bottleneck in computing the normalizing fac-
tors in our model. We also treat an often-neglected selection bias in mod-
eling the emergence of new edges with new nodes. Fitting the proposed
hypergraph model to 13 real-world datasets from diverse domains, we
found that all estimated PA functions deviate substantially from the linear
form. This demonstrates the need to do away with the linear PA assump-
tion and to adopt a data-driven approach. We also showed that our model
outperformed conventional models in replicating the observed first-order
and second-order structures in these real-world datasets. The proposed
method is implemented in the R package HyperPA and will be available
in (Inoue et al., 2022). The methodology and results of real data analysis
are based on our paper (Inoue et al., 2022), and presented in Part II.

1.4 Organization

We describe the organization of this thesis in this section. Figure 1.2 illus-
trates the structure of this thesis. So far, we have provided the motivations,
issues, and contributions in this chapter. In Chapter 2, we first review the
backgrounds of graph growth models of complex networks, and temporal
hypergraph, which is another representation of complex network data.

Our methodology and findings are discussed in the following three
parts. In Part I, we describe the joint estimation method of non-parametric
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Part Ⅰ. PA and Transitivity in Graphs

Chapter 3. FoFaF:
Joint Estimation of
PA and Transitivity

Chapter 4. Real Data 
Analysis with FoFaF:

Two Co-authorship Data

Part Ⅲ. Conclusion and Future Directions

Chapter 1. Introduction of This Thesis：
Motivations, Issues, Contributions, and Organization

Chapter 5. HyperPA:
Hypergraph-based
Estimation of PA

Chapter 6. Real Data 
Analysis with HyperPA:

13 Hypergraph Data

Chapter 2. Background Knowledge: 
Growth Mechanisms, Temporal Graphs and Hypergraphs, etc.

Part Ⅱ. PA in Hypergraphs

Chapter 7. Conclusion of this thesis:
Summary and Future Directions

FIGURE 1.2: Organization of this thesis.

PA function and transitivity function in Chapter 3, and present the re-
sult of real-world data analysis in Chapter 4. In Part II, we describe a
hypergraph approach to estimate the non-parametric PA function which
relieves the assumption of edge independence that is required in conven-
tional graph models in Chapter 5, and present the result of real-world data
analysis in Chapter 6. Summary of this thesis and future directions are
presented in Part III which includes Chapter 7.





9

Chapter 2

Background

In this chapter, we describe background knowledge and some prelimi-
naries of this thesis. We first briefly review the history of preferential at-
tachment (PA) and transitivity modeling, which are classic growth mech-
anisms of complex networks. We then describe General Temporal (GT)
model that encompasses important existing graph growth models. Finally,
we describe the temporal graph model, which is a new approach to growth
modeling of complex networks. Descriptions and figures in this chapter
are based on our papers (Inoue et al., 2020b, 2022).

2.1 Graph-based Growth Model

In this section, we describe the background of PA mechanism, transitivity
mechanism and GT model as the preliminaries of Part I and Part II.

2.1.1 Preferential Attachment and Transitivity

The concept of the rich-get-richer phenomenon has its roots in the theo-
retical works of Yule (Yule, 1925) and Simon (Simon, 1955). Its status as
a fundamental process in informetrics was cemented by the revolutionary
works of Merton (Merton, 1968) and Price (Price, 1965, 1976). The term
“preferential attachment” was coined by Barabási and Albert when they
re-discovered the mechanism in the context of complex networks (Barabási
& Albert, 1999). In this thesis, we refer to the individuals and their inter-
actions represented by graph structures as “networks”, and the networks
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observed on a large scale in the real world are called “complex networks”.
In order to concentrate on applications to complex networks, we will leave
the detailed mathematical description of graph theory to the textbooks
such as (Godsil & Royle, 2001). However, it is necessary to clarify here
that, for practical application, we add the following conditions to graphs
in our mathematical models. We assume that the edges of the graphs have
no directions and allow multiple edges to the graphs. The allowance for
multiple edges is in accordance with the repeated occurrence of interac-
tions between individuals in real data. In this thesis, we refer to “undi-
rected graph without self-loops” as “graph”.

In PA, the probability that a node with degree d will receive a new
edge is proportional to its PA function Ad. When Ad is an increasing func-
tion on average, the PA effect exists: a node with a large degree d is more
likely to receive more new connections. Estimating the PA phenomenon
in a network amounts to estimating the function Ad given the growth data
of that network. Various non-parametric approaches (Newman, 2001a;
Pham et al., 2015) and parametric methods (Gómez et al., 2011; Massen &
Jonathan, 2007) have been proposed. Power-law function forms, such as
Ad = (d + 1)α, are often employed in parametric methods (Krapivsky &
Redner, 2001).

Transitivity originated as a concept in psychology (Heider, 1946) and
was developed theoretically in the framework of social network analysis
by Holland and Leinhardt in the 1970s (Holland & Leinhardt, 1970, 1971,
1976). It was introduced into the informetrician modeling toolbox in 2001
when Newman provided a heuristic method to estimate the transitivity
function in real-world co-authorship networks (Newman, 2001a). Inde-
pendently at the same time, Snijders introduced his now-famous stochas-
tic actor-based models that include transitivity as a network formation
mechanism (Snijders, 2001).

In transitivity, the probability that a pair of two nodes with b com-
mon neighbors will receive a new edge between them is proportional to
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the transitivity function Bb. When Bb is an increasing function on aver-
age, the transitivity effect exists: when a pair of nodes shares more com-
mon neighbors, it is easier for them to connect. Similarly to the case
of PA, non-parametric approaches (Newman, 2001a) and parametric ap-
proaches (Ferligoj et al., 2015; Kronegger et al., 2012; Zinilli, 2016) have
been proposed to estimate Bb from observed network growth data.

PA and transitivity are among the simplest and most comprehensive
mechanisms using the first-order and second-order structures of graphs,
respectively, which is a main reason why we analyze them in Part I to get a
closer look at the growth mechanisms behind the real-world networks. We
re-emphasize that all existing methods consider either PA or transitivity in
isolation, or are of a parametric nature.

2.1.2 General Temporal Model

We describe an undirected graph version of the General Temporal (GT)
model with PA (Pham et al., 2015). This model is a generalization of var-
ious classical models such as Barabási-Albert model (Barabási & Albert,
1999) and Price’s model (Price, 1976). In the GT model, the probability
that a node pair i, j will acquire an edge connecting them at time t is ex-
pressed as:

Pi,j(t) ∝ Adi(t)Adj(t), (2.1)

where di(t), dj(t) are the degree of node i, j at time-step t, and Ad is the PA
value of degree d. The function Ad of d is often called the attachment func-
tion or attachment kernel. Note that Ad is assumed to be time-invariant.
This graph PA model is hereinafter referred to as “Edge PA”. In Edge PA,
no functional form is assumed on the PA function Ad. Several methods
have been proposed to estimate the PA function Ad from the temporal
network data. Parametric estimation methods for estimating Ad based on
the assumption that the PA function has the functional form Ad = dα with
a tunable parameter α include regression-based methods (Kunegis et al.,
2013), maximum likelihood estimation methods (Gómez et al., 2011), and
methods based on Markov chain Monte Carlo (Sheridan et al., 2012). There
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are also nonparametric estimation methods that do not make assumptions
on the functional form of the PA function Ad including methods using
histograms (Jeong et al., 2003; Newman, 2001a) and maximum likelihood
estimation (Pham et al., 2015).
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2.2 Temporal Hypergraph

newcomer nodes

hyperedge

edge

 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

FIGURE 2.1: Hypergraph expression and graph expression
of temporal data. Whereas a graph consists of nodes and
edges, a hypergraph consists of nodes and hyperedges. Hy-
peredges and edges are indicated by ovals and line seg-
ments, respectively. Dashed ovals and line segments repre-
sent newly added hyperedges and edges at each time-step,
respectively. White nodes represent newcomer nodes.

In this section, as preliminaries of Part II, we explain some properties
of discrete-time hypergraph-based growth models, comparing it with con-
ventional growth models for graphs.

2.2.1 Growth of Hypergraph

Let Gt = (Vt, Et) be the hypergraph at time-step t = 0, . . . , T. The hy-
pergraph Gt consists of the node set Vt and the hyperedge set Et existing
at time-step t. The temporal hypergraph grows from G0 = (V0, E0), the
initial hypergraph, with the emergence of new hyperedges and nodes at
each time-step. Similarly to graphs, we add the following conditions to
hypergraphs in our mathematical models. We assume that hyperedges do
not have any order, and we also allow multiple hyperedges to the hyper-
graphs. Although a hypergraph where the set of nodes in a hyperedge
does not have any order is called an “undirected hypergraph” (Michoel &
Nachtergaele, 2012), in this thesis we simply refer to it as a “hypergraph”.



14 Chapter 2. Background

Fig. 2.1 illustrates a discrete-time temporal hypergraph and its graph
representation. To handle some features of the real-world hypergraph data
collected by discrete-time observations, we explicitly allow the following
two points in the temporal hypergraph model.

1. The hyperedge added at each time-step t can include both existing
nodes and new nodes. This is illustrated in the hypergraph at time-
step t = 1 in Fig. 2.1. We call these new nodes newcomer nodes.

2. The number of hyperedges added at each time-step t can be more
than one. An example is given in the hypergraph at time-step t = 3
in Fig. 2.1.

Guimerà et al. (2005) proposed a probabilistic model of temporal hyper-
graphs that controls the proportion of newcomer nodes that appear with
hyperedges, and analyzed the relationship between this proportion and
the success of collaboration. In this paper, both our proposed estimation
method and generator for hypergraphs address the above two points.

2.2.2 Information loss of Graph Representation

We next explain some information losses that can occur with graph rep-
resentations of complex temporal data. The growth of complex network
data such as co-authorships of papers is conventionally modeled by ordi-
nary graphs, where each motif (e.g., paper) occurring among nodes (e.g.,
authors) is represented by edges (e.g., pairwise co-authorships). When a
motif contains more than two nodes (e.g., a paper with more than two au-
thors), the group interaction created by the motif is decomposed into mul-
tiple edges. On the other hand, in hypergraphs, one motif is represented
by one hyperedge. An example is given in the hypergraph at time-step
t = 0 in Fig. 2.1. In order to present a motif on four nodes, in hypergraph
representations, a hyperedge containing these four nodes is used, whereas
in ordinary graph representations, six ordinary edges, which constitute a
clique on the four nodes, are used instead. Generally, when a motif occurs
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among m nodes, in ordinary graphs, m(m− 1)/2 edges are added collec-
tively, whereas one hyperedge of size m is added in hypergraph represen-
tations. As can be seen from the hypergraph at time-step t = 3, given only
one graph representation at one time-step, in general, we cannot identify
which edges were added together in the past without hyperedge informa-
tion. Thus, the information about motifs is not perfectly preserved when
one employs a graph representation of the data.

Furthermore, there is another information loss when m = 1, i.e., when
a motif contains only one node (e.g., a single-author paper) is added. In
such cases, a hyperedge of size m = 1 is added to the hypergraph, while
the edges of the graph remain unchanged, as illustrated at time-step t = 2
of Fig. 2.1.

As mentioned above, graphs do not preserve the information about
which edges appeared jointly. In other words, the conventional graph-
based growth models assume implicitly that all edges are independent.
Let m denote the size of a hyperedge. Although data with huge m exist
in the real world, for example in multinational projects (Cronin, 2001; Hu
et al., 2010), few studies have examined whether this independence as-
sumption is appropriate under such large values of m. The datasets used
in the experiments in Sections 5.2 and 6.1 contain hyperedges whose m
are greater than 100. Using these datasets, we will investigate the perfor-
mance of some conventional graph-based growth models in the case of
large m, which has not been examined much in existing studies. In ad-
dition, it is reported that the modern science collaboration has shown a
trend that hyperedge sizes are becoming larger. From the beginning of the
20th century to present, the average number of co-authors per paper has
increased in almost all disciplines (Fortunato et al., 2018). Such changes
in data over time may also lead to unforeseen problems for graph-based
growth models.

The main motivation for considering hypergraph models in Chapter 4
is that it does not require the above independence assumption throughout
the growth process. In Chapter 4, we describe our proposed approach to
capture the characteristics of temporal hypergraphs.
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Part I

PA and Transitivity Functions in
Evolving Graphs
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Chapter 3

FoFaF: Joint Estimation of
Non-parametric PA and
Transitivity Functions

Our contributions, descriptions and figures in this chapter are based on
our papers (Inoue et al., 2018, 2020b).

3.1 Introduction

Science has never been more collaborative. In this era, which has been wit-
nessing an unprecedented explosion of multi-author scholarly articles (Lar-
ivière et al., 2015), collaboration has become increasingly important in the
quest for scientific success (Bornmann, 2017; Jones et al., 2008). Promising
ideas from numerous analytical fields, including complex network theory,
statistics, and informetrics, have been combined to understand the collab-
orative nature of science (Fortunato et al., 2018; Zeng et al., 2017).

An early attempt was made to analyze the formative process of scien-
tific collaborations in physics when Newman proposed a non-parametric
method to estimate the preferential attachment (PA) and transitivity func-
tions from scientific collaboration networks (Newman, 2001a). PA (Barabási
& Albert, 1999; Merton, 1968; Price, 1965, 1976) and transitivity (Heider,
1946; Holland & Leinhardt, 1970, 1971, 1976) are two fundamental mecha-
nisms of network growth. PA is a phenomenon concerning the first-order
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structure of a network. In PA, a higher number of co-authors that a sci-
entist already has will result in more collaborators being formed. Transi-
tivity pertains to the second-order structure: co-authors of co-authors are
likely to collaborate. The method of Newman is non-parametric in that
it does not assume any forms for either the PA or transitivity function.
However, the method considers each phenomenon in isolation, and thus
completely ignores any entanglements of the two phenomena, which are
entirely plausible in real-world networks.

In addition to this non-parametric, in-isolation approach, a joint esti-
mation approach, in which the two phenomena are considered simultane-
ously, has been attempted in recent years (Ferligoj et al., 2015; Kronegger et
al., 2012; Zinilli, 2016) under the framework of stochastic actor-based mod-
els (Snijders, 2001). This approach is inherently parametric: it assumes the
forms of the PA and transitivity functions a priori, and therefore risks los-
ing the fine details of the two phenomena, which are difficult to capture
using any parametric functional forms.

We argue that the ideal method should combine the best of both worlds
whenever possible: it should consider both phenomena simultaneously
and it should not assume any functional forms for these.

The contributions of this part can be summarized as follows:

1. We propose a network growth model that combines non-parametric
PA and transitivity functions for undirected networks, which is the
type of scientific collaboration networks. We derive an efficient Minorize-
Maximize (MM) algorithm (Hunter & Lange, 2000) for their simulta-
neous estimation. This iterative algorithm is guaranteed to increase
the log-likelihood of the model per iteration. Using simulated exam-
ples, we demonstrate that our approach is capable of capturing the
complex details of PA and transitivity, as opposed to conventional
approaches (see Fig. 3.1). Furthermore, we perform a systematic sim-
ulation to confirm the performance of our algorithm.

2. We suggest a method for quantifying the amount of contributions of
PA and transitivity in the growth process of a network. Our quan-
tification exploits the probabilistic dynamic process induced by the
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network growth formula and can easily be extended to other net-
work growth mechanisms.

3. We apply the proposed method to two real-world co-authorship net-
works and uncover several interesting properties that would be un-
available under conventional approaches. In particular, the transi-
tivity function appears to be substantially different from the typical
power-law functional form. Moreover, we find that transitivity dom-
inated PA in the growth processes of both networks. This suggests
the importance of indirect relations in scientific creative processes: it
does in fact matter whom your collaborators collaborate with. All of
the proposed method is implemented in the R package FoFaF (Inoue
et al., 2020a).

The remainder of this part is organized as follows. The proposed growth
model is discussed in detail in Section 3.2. Section 3.3.2 presents the esti-
mation method, derivation of an efficient MM algorithm for the estima-
tion and the effectiveness of our methodology. In Section 3.4, we discuss
how to exploit the probabilistic dynamic process imposed by the model
formula to sensibly quantify the amount of contributions of PA and tran-
sitivity. We apply the proposed method to two real-world collaboration
networks and analyze the results in Section 4.1. Concluding remarks are
presented in Section 4.2.

3.2 Joint Non-parametric Modeling of PA and Tran-

sitivity

In this section, we first describe our network growth model that incorpo-
rates non-parametric PA and transitivity functions. Moreover, we explain
its relation to several conventional network models.
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3.2.1 Proposed Network Model

Our model for undirected networks can be viewed as a discrete Markov
model, which is a popular framework in social network modeling (Hol-
land & Leinhardt, 1977). Let Gt denote the network at time t. Starting
from a seed network G0, at each time step t = 1, · · · , T, v(t) new nodes
and m(t) new edges are added to Gt−1 to form Gt. In particular, at the on-
set of time step t, let di(t) denote the degree of node i, and bij(t) denote the
number of common neighbors between nodes i and j in Gt−1. Our model
is based on the GT model (2.1) and dictates that the probability of a new
edge emerging between nodes i and j at time step t is independent of the
other new edges at that time and is equal to

Pij(t) ∝ Adi(t)Adj(t)Bbij(t), (3.1)

where Ad is the PA function of degree d and Bb is the transitivity function
of the number b of common neighbors. That is, the unordered pair of the
two ends (i, j) of a new edge follows a categorical distribution over all
unordered pairs of nodes existing at time t. The weight of each pair is
proportional to the product of the PA and transitivity values of that pair
at t. Thus, this formulation can capture the PA and transitivity effects
simultaneously.

Apart from modeling how new edges connect in Gt by Eq. (3.1), we do
not explicitly model probability distributions of any other aspects of the
growth process. Suppose that the joint distribution of v(t) and m(t) is gov-
erned by a certain parameter vector θt (t ≥ 1), and the distribution of G0

is governed by another parameter vector θinit. Note that we do not make
any assumptions on forms of these two distributions, essentially allowing
a great degree of freedom for them. However, we need to make one stan-
dard assumption, which is virtually employed in all network models, that
the parameter vectors θt (t ≥ 1) is independent of Ad and Bb given v(t),
m(t), and Gt−1; and θinit is independent of Ad and Bb. Under this assump-
tion, the probability of the observed data G0,· · · , GT can be expressed as
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follows:

P(G0, · · · , GT) =
T

∏
t=1

P(Gt|Gt−1)P(G0)

=
T

∏
t=1

P(Gt|m(t), v(t), Gt−1, Ad, Bb)P(m(t), v(t)|Gt−1, θt)

· P(G0|θinit). (3.2)

As revealed in Section 3.3.1, Eq. (3.2) enables a partial likelihood approach,
whereby one can ignore θt and θinit in estimating Ad and Bb. Next, we dis-
cuss the relation between the model in Eq. (3.1) and those in the literature.

3.2.2 Related Models

As explained previously, existing non-parametric models either have a
non-parametric Ad function (Pham et al., 2015) or a non-parametric Bb

function (Newman, 2001a), and the probabilities of PA and transitivity for
a new edge emerging between nodes i and j at time step t are respectively
as follows,

Pij(t) ∝ Adi(t)Adj(t), (3.3)

Pij(t) ∝ Bbij(t). (3.4)

while estimating Ad function and Bb function in isolation can lead to bias,
Eq. (3.1) is the first to combine both non-parametric functions to deal with
it. It includes several well-known complex network models as special
cases, such as the Barabási-Albert model (Barabási & Albert, 1999) or the
Erdös-Rényi with growth model (Callaway et al., 2001).

The well-known stochastic actor-based model (Ripley et al., 2018; Sni-
jders, 2001, 2017) has been employed in studies on scientific co-authorship
networks (Ferligoj et al., 2015; Kronegger et al., 2012; Zinilli, 2016). The
actor-based model is a type of generalized linear models with and it is
not clear how to convert the PA and transitivity functions in our proba-
bilistic setting into those in the setting of the stochastic actor-based model,
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because the two models are defined differently. However, for a fair com-
parison, we can set the joint parametric model of PA and transitivity in
the framework of GT model for experiments, as well as an actor-based
model. In this case, the functional forms are explicitly given to the growth
functions Ad and Bb in Eq. (3.1). For example, when we assume log-linear
forms Ad = (d + 1)α, Bb = (b + 1)β, the joint parametric model we use in
this part can be expressed as

Pij(t) ∝ (di + 1)α(dj + 1)α(bij + 1)β. (3.5)

Note that we here consider only undirected graphs in the growth of net-
works, the PA and transitivity phenomena are modeled in a parametric
manner in the undirected version of the stochastic actor-based model (Sni-
jders, 2017).

One key assumption of the model in Eq. (3.1) is that Ad and Bb are not
dependent on t; that is, on a practical level, they change little throughout
the growth process. While this time-invariance assumption is standard
and is employed in all of the network models mentioned previously, there
is an increasing body of models departing therefrom. A time-varying Ad

has been discussed in the context of citation networks (Csárdi et al., 2007;
Medo et al., 2011; Wang et al., 2008), while different parametric forms for
such Ad have been studied by Medo (Medo, 2014). More recently, the R
package tergm (Krivitsky & Handcock, 2019) has enabled the estimation
of time-varying parametric PA and transitivity functions. However, no
existing work has employed time-varying and non-parametric modeling
simultaneously, presumably because a huge amount of data is probably
required in such a model. If time has little importance in the system, time-
varying modeling is not necessary. In Section 4.1.4, we demonstrate that
the time-invariance assumption indeed holds in all of the real-world net-
works analyzed in this study.

Finally, we note that, while we model the PA phenomenon directly
in this chapter, an alternative approach is to let PA emerging as a conse-
quence of some deeper mechanisms. For example, it has been shown that
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PA can emerge from either reference-copying mechanisms in citation net-
works (Golosovsky & Solomon, 2017; Simkin & Roychowdhury, 2007) or
some optimization frameworks (D’Souza et al., 2007).

3.3 Methodology of Estimation

In this section, we discuss maximum partial likelihood estimation for the
model and derive an efficient the Minorize-Maximize algorithms for the
log-likelihood function. We also provide two simulated examples to demon-
strate our method. We conclude the section by presenting a systematic
simulation to investigate the performance of the proposed method.

3.3.1 Maximum Partial Likelihood Estimation

Here, we describe how to estimate the parameters of the model in Eq. (3.1).
We denote X = {G0, G1, · · · , GT} as the observed data, and let A = [A0, A1, . . . , Admax ]

with Ad > 0 being the PA function and B = [B0, B1, . . . , Bbmax ] with Bb > 0
being the transitivity function. In this case, dmax is the maximum degree
and bmax is the maximum number of common neighbors between a pair
of nodes. Given X, our goal is to estimate A and B without assuming
any specific functional forms, which is an approach we refer to as “non-
parametric”.

We can rewrite Eq. (3.2) using the new notations:

P(X) =
T

∏
t=1

P(Gt|m(t), v(t), Gt−1, A, B)P(m(t), v(t)|Gt−1, θt)P(G0|θinit).
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Taking the logarithm of both sides of the previous equation provides us
with:

L(A, B, θinit, θ1, . . . , θT|X) =
T

∑
t=1

log P(Gt|m(t), v(t), Gt−1, A, B)︸ ︷︷ ︸
L(A,B|X)

+
T

∑
t=1

log P(m(t), v(t)|Gt−1, θt)︸ ︷︷ ︸
L(θ1,...,θT |X)

+ log P(G0|θinit)︸ ︷︷ ︸
L(θinit|X)

, (3.6)

where L denotes the log-likelihood function. Maximization of the total
log-likelihood L(A, B, θinit, θ1, . . . , θT|X) leads to maximization of the three
terms on the right-hand side, and the parameters of our interest A, B are
only involved in the first term. This allows us to ignore the nuisance pa-
rameters θinit, θ1, . . . , θT in estimating Ad and Bb, and we only need to
maximize L(A, B|X). For simplicity, when calculating P(Gt|m(t), v(t), Gt−1, A, B),
we ignore the new edges that attach to new nodes that emerge at time step
t. Starting from Eq. (3.1), with some calculations, we arrive at

L(A, B|X) =
T

∑
t=1

dmax

∑
d1=0

dmax

∑
d2=d1

bmax

∑
b=0

md1,d2,b(t) log Ad1 Ad2 Bb−

T

∑
t=1

m(t) log

(
dmax

∑
d1=0

dmax

∑
d2=d1

bmax

∑
b=0

nd1,d2,b(t)Ad1 Ad2 Bb

)
, (3.7)

where nd1,d2,b(t) is the number of node pairs (i, j) satisfying (di(t), dj(t), bij(t)) =
(d1, d2, b) with d1 ≤ d2 at time step t, and md1,d2,b(t) is the number of new
edges between such node pairs. The number of new edges at time step t
can then be expressed as m(t) = ∑dmax

d1=0 ∑dmax
d2=d1

∑bmax
b=0 md1,d2,b(t).

Although analytically maximizing L(A, B|X) is intractable, we can de-
rive an efficient MM algorithm that iteratively updates A and B. Its deriva-
tion is presented in the next Section. We also write the final results of the
algorithm as Â and B̂, which are estimates of A and B.
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3.3.2 An MM algorithm for Estimating the Non-parametric

PA and Transitivity Functions

We derive an instance of the Minorize-Maximize algorithms (Hunter &
Lange, 2000) for maximizing the partial log-likelihood function l(A, B) in
Eq. (3.7). Denote A(q)

d the value of Ad at iteration q (q ≥ 0), and A(q) =

[A(q)
0 , A(q)

1 , . . . , A(q)
dmax

] the value of A at that iteration. Define B(q)
b and B(q)

in the same way. Starting from some initial values (A0, B0) at iteration
q = 0, we want to compute (A(q+1), B(q+1)) from (A(q), B(q)). In MM algo-
rithms, such update formulas can be derived by first determining a surro-
gate function Q(A, B) satisfying l(A, B) ≥ Q(A, B), ∀A, B and l(A(q), B(q)) =

Q(A(q), B(q)), and then maximizing the surrogate function. It can be proved
that, if (Aq+1, Bq+1) maximizes Q(A, B), then l(A(q+1), B(q+1)) ≥ l(A(q), B(q));
that is, the objective function is increased monotonically per iteration. Since
several surrogate functions satisfying the conditions may exist, the main
indicator for evaluating a particular Q(A, B) is the ease of its maximiza-
tion.

Based on previous works (Pham et al., 2015, 2016), the following func-
tion is a surrogate function of l:

Q′(A, B) =
T

∑
t=0

D

∑
i=0

D

∑
j=i

B

∑
l=0

mi,j,l(t) log Ai AjBl

−
T

∑
t=0

m(t) log

(
D

∑
i=0

D

∑
j=i

B

∑
l=0

ni,j,l(t)A(q)
i A(q)

j B(q)
l

)

−
T

∑
t=0

m(t)
∑D

i=0 ∑D
j=i ∑B

l=0 ni,j,l(t)Ai AjBl

∑D
i=0 ∑D

j=i ∑B
l=0 ni,j,l(t)A(q)

i A(q)
j B(q)

l

+
T

∑
t=0

m(t), (3.8)

where D := dmax and B := bmax.
The product Ai AjBl in the numerator of the third term on the right hand
side of Eq. (3.8) prevents parallel updating of A and B. One approach to
handle this product is to apply the AM-GM inequality (Hunter & Lange,



28
Chapter 3. FoFaF: Joint Estimation of Non-parametric PA and

Transitivity Functions

2004):

−Ai AjBl ≥−
1
2

A(q)
j

A(q)
i

A2
i +

A(q)
i

A(q)
j

A2
j

 Bl

≥− 1
4

A(q)
j B(q)

l(
A(q)

i

)3 A4
i +

A(q)
i B(q)

l(
A(q)

j

)3 A4
j

− 1
2

A(q)
i A(q)

j

B(q)
l

B2
l .

Inserting this inequality into Eq. (3.8), we obtain the final surrogate func-
tion:

Q(A, B) =
T

∑
t=0

D

∑
i=0

D

∑
j=i

B

∑
l=0

mi,j,l(t) log Ai AjBl

−
T

∑
t=0

m(t) log

(
D

∑
i=0

D

∑
j=i

B

∑
l=0

ni,j,l(t)A(q)
i A(q)

j B(q)
l

)

−
T

∑
t=0

m(t)

∑D
i=0 ∑D

j=i ∑B
l=0 ni,j,l(t)

(
1
4

(
A(q)

j B(q)
l(

A(q)
i

)3 A4
i +

A(q)
i B(q)

l(
A(q)

j

)3 A4
j

)
+ 1

2
A(q)

i A(q)
j

B(q)
l

B2
l

)
∑D

i=0 ∑D
j=i ∑B

l=0 ni,j,l(t)A(q)
i A(q)

j B(q)
l

+
T

∑
t=0

m(t).

Solving ∂Q(A,B)
∂Ad

= 0 and ∂Q(A,B)
∂Bb

= 0, we obtain the following closed-form
formulas:

A(q+1)
d =

4

√√√√√√√√√√
∑T

t=0 ∑D
i=0 mi,d,·(t) + ∑T

t=0 ∑D
j=d md,j,·(t)

∑T
t=0 m(t)

∑D
j=d+1 ∑B

l=0 nd,j,l (t)
A(q)

j B(q)l(
A(q)

d

)3 + ∑d−1
i=0 ∑B

l ni,d,l (t)
A(q)

i B(q)l(
A(q)

d

)3 + ∑B
l=0 nd,d,l (t)

 A(q)
d B(q)l(
A(q)

d

)3 +
A(q)

d B(q)l(
A(q)

d

)3


∑D

i=0 ∑D
j=i ∑B

l=0 ni,j,l (t)A(q)
i A(q)

j B(q)
l

,

B(q+1)
b =

√√√√√√√√
∑T

t=0 m·,·,b(t)

∑T
t=0 m(t)

∑D
i=0 ∑D

j=i ni,j,b(t)
A(q)

i A(q)
j

B(q)b

∑D
i=0 ∑D

j=i ∑B
l=0 ni,j,l (t)A(q)

i A(q)
j B(q)

l

,

where mi,d,·(t) := ∑B
l=0 mi,d,l(t) and m·,·,b := ∑D

i=0 ∑D
j=i mi,j,b(t).

Based on these formulas, at each iteration A(q+1) and B(q+1) can be
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computed in parallel without solving any additional optimization prob-
lems. This enables the method to work with large datasets. The objective
function value l(A(q+1), B(q+1)), as explained previously, is guaranteed to
be increasing in q.

3.3.3 Illustrative Examples

We demonstrate the effectiveness of our method using two examples. In
the first example, we simulate a network using Eq. (3.1) with

Ad = 3(log(max d, 1))2 + 1,

Bb = 3(log(max b, 1))2 + 1.

This functional form, which deviates substantially from the power-law
form, has been used to demonstrate the processes of non-parametric PA
estimation methods (Pham et al., 2015). The initial number of nodes is
300. At each time step, first m(t) = 100 new edges are added between ex-
isting nodes, and then five new node are added. The total number of time
steps T is 199. In the second example, we use real-world functions as the
true functions for a more realistic comparison. We first estimate Ad and Bb

by applying our proposed method to a real-world co-authorship network
between authors in statistics journals (see Section 4.1), and then use these
parameter values to simulate a network based on Eq. (3.1). In the process,
we maintain the initial condition, as well as the number of new nodes and
new edges at each time step, exactly the same as those observed in the
real-world network.

We apply three estimation methods to each simulated network. The
first is our proposed method, which jointly estimates the non-parametric
functions Ad and Bb. The second is a joint parametric method, which
jointly estimates PA and transitivity using the simplistic functional forms
Ad = (d + 1)α and Bb = (b + 1)β. This parametric formation is used
extensively in various PA and transitivity estimation methods (Gómez
et al., 2011; Massen & Jonathan, 2007). The third method ignores the
joint existence of PA and transitivity. It consists of two sub-methods: the
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first is a non-parametric method for estimating the PA function in isola-
tion (Pham et al., 2015), and the second is a maximum likelihood version
of a non-parametric method for estimating the transitivity function in iso-
lation (Newman, 2001a).

The results are presented in Fig. 3.1. In both examples, while the joint
parametric method somehow succeeds in obtaining the general trends of
Ad and Bb, it fails to capture the deviations from the power-law form in
the two functions. The non-parametric, in-isolation method grossly over-
estimates both the PA and transitivity mechanisms, owing to its complete
disregard for their joint existence. The proposed method performs reason-
ably well, succeeding in capturing the PA and transitivity functions in fine
details.

3.3.4 Simulation Study

We performed a systematic simulation to evaluate the effectiveness of the
proposed method in estimating Ad and Bb. We selected Ad = (d + 1)α and
Bb = (b + 1)β as the true functions. This power-law functional form has
been used in previous simulation studies on PA estimation methods (Pham
et al., 2015, 2020). We considered five values (0, 0.5, 1, 1.5, and 2) for the
exponent α and seven values (0, 0.5, 1, 1.5, 2, 2.5, and 3) for the exponent
β. These are the ranges of α and β observed in Section 4.1.2. We simulated
10 networks for each combination of α and β. In each network, the initial
number of nodes is 100, and 20 new edges and one new node are added at
each time step.

For each simulated network, we first estimated Ad and Bb, as described
in the previous section, and then fitted (d + 1)α and (b + 1)β to the estima-
tion results to determine the estimates of α and β. That is, we indirectly
measured how well Ad and Bb are estimated by analyzing the estimation
of α and β: if the estimates of α and β are good, the estimations of Ad and
Bb are probably also successful.

Figure 3.2 presents the true and estimated values of α and β. The pro-
posed method successfully recovers α and β in all combinations. This im-
plies that the estimation of Ad and Bb is good. When β and α are small, the
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FIGURE 3.1: Proposed method compared to conventional
methods for estimating PA and transitivity functions in
two simulated networks. A, B: estimated PA and tran-
sitivity functions from a simulated network with Ad =
3(log(max d, 1))2 + 1 and Bb = 3(log(max b, 1))2 + 1. C,
D: estimated PA and transitivity functions from a simulated
network in which true Ad and Bb are Ad and Bb estimated
from a real-world co-authorship network between authors
in statistics journals. The interval at each point of the pro-
posed method represents the standard deviation obtained
as a by-product of the maximum likelihood estimation. In
both networks, the proposed method successfully captures
the fine details of the PA and transitivity.
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standard errors of β are comparatively large. This appears to be caused by
the instability of the estimation of Bb for large b; see Section 4.1.5.

0.0
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2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β

α True

Estimated

FIGURE 3.2: True and estimated exponents α and β from the
power-law forms Ad = (d + 1)α and Bb = (b + 1)β. The
exponents are estimated by a two-step procedure: first, Ad
and Bb are estimated jointly by the proposed method, and
then (d + 1)α and (b + 1)β are fitted to the estimated results
by least square using the actual values. Each estimated point
is the mean of the results of 10 simulations, with the error
bars displaying the two standard errors of the mean.

3.4 Quantifying Contribution Amounts of PA and

Transitivity

Our model provides a simple answer to a previously un-raised yet fas-
cinating question: how can one compare the amount of contributions of
PA and transitivity in the growth process of a network? To the best of our
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knowledge, no attempt has been made to quantify the amount of contribu-
tions of different network growth mechanisms. To answer this question,
one must determine a meaningful method to define the amount of contri-
butions, so that they are computable and comparable. We achieve this by
considering the dynamic process expressed in Eq. (3.1). This probabilistic
dynamic process suggests that the variability of the PA/transitivity values
in the set of node pairs is a sensible measure for the amount of contribu-
tions of PA/transitivity.

We define the amount of contributions of PA and transitivity at time
step t, which are denoted as sPA(t) and strans(t), respectively. Taking the
logarithm of both sides of Eq. (3.1), we obtain:

log2 Pij(t) = log2[Adi(t)Adj(t)] + log2 Bbij(t) − C(t), (3.9)

where C(t) = log2 ∑i,j Adi(t)Adj(t)Bbij(t) is the logarithm of the normal-
izing constant at time step t, and it is independent of i and j. Equa-
tion (3.9) implies that, considering a node pair (i, j) locally, PA and transi-
tivity contribute to log2 Pij(t) according to the amounts of log2[Adi(t)Adj(t)]

and log2 Bbij(t), respectively; the amount of contributions is measured by
log2 fold changes.

However, the relative sizes of all log2[Adi(t)Adj(t)] and log2 Bbij(t) at that
time step t are ultimately what are important. For example, consider the
case when Ad = 1, ∀d. In this case, the value of log2[Adi(t)Adj(t)] will be
the same for all node pairs, and thus, the PA plays no role in determining
which pair receives a new edge. By considering the case when Bb = 1, ∀b,
it can be observed that the same reasoning should apply to log2 Bij(t).

This observation prompts us to define sPA(t) and strans(t) as the stan-
dard deviations of log2[Adi(t)Adj(t)] and log2 Bbij(t), respectively, when (i, j)
is sampled based on Eq. (3.1). Let U(t) be the set formed by all node pairs
(i, j) existing at time step t− 1; that is, all the combinations of two nodes
in Gt−1. The probability Pij(t) in Eq. (3.1) can be explicitly expressed as:

Pij(t) =
Adi(t)Adj(t)Bbij(t)

∑(i,j)∈U(t) Adi(t)Adj(t)Bbij(t)
.
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The aforementioned standard deviations can be calculated as follows:

sPA(t) :=

 ∑
(i,j)∈U(t)

Pij(t)
(

log2[Adi(t)Adj(t)]− EPA(t)
)2

1/2

, (3.10)

strans(t) :=

 ∑
(i,j)∈U(t)

Pij(t)
(

log2 Bbij(t) − Etrans(t)
)2

1/2

, (3.11)

in which EPA(t) := ∑(i,j)∈U(t) Pij(t) log2[Adi(t)Adj(t)], and
Etrans(t) := ∑(i,j)∈U(t) Pij(t) log2 Bbij(t). Although Ad and Bb are only de-
fined up to multiplicative constants, the standard deviations of log2[Adi(t)Adj(t)]

and log2 Bbij(t) are invariant to the constant factors in Ad and Bb, and thus,
sPA(t) and strans(t) are well defined. The use of base-2 logarithms en-
ables us to interpret sPA(t) and strans(t) as log2 fold changes; a contribution
value of s indicates a change in the probability of 2s times in Eq. (3.1). We
also note that, although Ad and Bb are assumed to be time invariant, di(t),
bij(t), and Pij(t) change over time, thereby leading to the dynamic nature
of sPA(t) and strans(t).

In real-world situations, the true values A and B are not available to us,
but only their estimates Â and B̂. We insert these estimates into Eqs. (3.10)
and (3.11) to obtain ŝPA(t) and ŝtrans(t), which are estimates of sPA(t) and
strans(t), respectively.

The requirement that (i, j) is sampled from Eq. (1) is necessary to re-
flect the probabilistic dynamic process accurately, and leads to the fol-
lowing interpretation of sPA(t) and strans(t). Assume that, at some time
step t, we observe m(t) ≥ 2 new edges, the end points of which are
(i1, j1), · · · , (im(t), jm(t)). Consider the sample standard deviation of
log2(Bbil jl

(t)) for l = 1, · · · , m(t), which is defined as

htrans(t) :=

(
1

m(t)− 1

m(t)

∑
l=1

log2(Bbil jl
(t))

2

− 1
m(t)(m(t)− 1)

(
m(t)

∑
l=1

log2(Bbil jl
(t))

)2)1/2

.



3.4. Quantifying Contribution Amounts of PA and Transitivity 35

Similarly, define hPA(t) as the sample standard deviation of log2(Adil
(t)Adjl

(t))

for l = 1, · · · , m(t). Standard calculations then yield strans(t)2 = E htrans(t)2

and sPA(t)2 = E hPA(t)2. By inserting the estimates Â and B̂, we can re-
gard ŝPA(t) and ŝtrans(t) as the estimates of the expectations of the sample
standard deviations of the PA and transitivity values observed at the end
points of the new edges at time step t. As noted in Section 4.1.3, this inter-
pretation also provides a means to visualize how effectively the model fits
an observed network.

Finally, we note that this quantification approach is not limited to PA
and transitivity. Given a growth formula in which all growth mechanisms
are combined in a multiplicative manner; for example, as in Eq. (3.1), the
standard deviation of the logarithmic values of each growth mechanism
can be used as a measure of the contribution of that mechanism.
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Chapter 4

Real Data Analysis with FoFaF

Our contributions, descriptions and figures in this chapter are based on
our papers (Inoue et al., 2020b).

4.1 Experiments

4.1.1 Real-world Datasets

We apply our proposed method to two scientific co-authorship networks:
SMJ (Ronda-Pupo & Pham, 2018) and STA (Ji & Jin, 2016), in which the
nodes represent authors and the links represent co-authorship in papers.
SMJ includes papers published in the Strategic Management Journal, which
is considered as one of the top journals in strategy and management, from
1980 to 2017. STA includes papers in four statistics journals: the Journal
of the American Statistical Association, the Journal of the Royal Statistical So-
ciety (Series B), the Annals of Statistics, and Biometrika, from 2003 to 2012.
These are generally considered as leading journals in statistics. New and
repeated collaborations are pooled together in both networks. The time
resolution is selected as one year in SMJ and six months in STA.

Table 4.1 presents the summary statistics for the two networks. The
ratios ∆|V|/|V| and ∆|E|/|E| are both close to 1, indicating that each net-
work grows from a relatively small initial network, compared to the size of
the final network. As the number of new edges ∆|E| loosely corresponds
to the amount of available data in our statistical model, STA has the larger
amount of data. The clustering coefficients in both networks are rather
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high, but nevertheless fall within the normal range observed in real-world
networks (Newman, 2001c). The clustering coefficient C of the final snap-
shot can be calculated as

C =
1
|V|

|V|

∑
i=1

Ci.

Note that the coefficient Ci of node i is defined as

Ci =


2∆i

di(di−1) (di ≥ 2)

0 (di = 0, 1)
, ∆i = ∑

j,l
xi,jxj,lxl,i,

where xi,j = 1 indicates the presence of edges between i and j, whereas
xi,j = 0 indicates the absence of edges.

TABLE 4.1: Summary statistics for two scientific co-
authorship networks. |V| and |E| are the total numbers of
nodes and edges, respectively, in the final snapshot; T is the
number of time steps; ∆|V| and ∆|E| are the increments of
nodes and edges, respectively, after the initial snapshot; C
is the clustering coefficient of the final snapshot; dmax is the
maximum degree; and bmax is the maximum number of com-
mon neighbors.

Dataset |V| |E| T ∆|V| ∆|E| C dmax bmax
SMJ 2704 4131 23 1991 3538 0.378 34 15
STA 3607 6808 19 3261 6509 0.320 65 19

It is instructive to investigate more fine-grained statistics. Figures 4.1A
and B present the distributions of the numbers of collaborators d in the fi-
nal snapshots of SMJ and STA, respectively. As the degree distributions in
the two datasets exhibit signs of heavy tails, we fit one of the most rep-
resentative classes of heavy-tailed distributions, namely the power-law
distribution d−γdeg , to these degree distributions by means of Clauset’s
procedure (Clauset et al., 2009). This procedure first selects the mini-
mum degree dmin for which the power-law holds, and then uses a max-
imum likelihood approach to estimate the power-law exponent γdeg. The
estimated power-law exponents for the degree distributions in SMJ and
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STA are 2.97 and 3.35, respectively. These values fall within the range of
2 < γdeg < 4, which is a commonly observed range for γdeg in real-world
networks (Clauset et al., 2009; Newman, 2005).

However, the situation with the distributions of bij is less clear. Fig-
ures 4.1C and D present the distributions of the numbers of node pairs
with b common neighbors in the final snapshots of SMJ and STA, respec-
tively. We also fit the power-law distribution b−γcn to these distributions
by means of Clauset’s procedure and find that the estimated power-law
exponents for the distributions of b in SMJ and STA are 2.99 and 3.22, re-
spectively. However, it appears that the power-law form is not a very good
fit for these distributions. The right-most point of bij in SMJ is due to a sin-
gle paper with 17 authors. The ranges of b in the two distributions seem to
be too narrow to draw any definitive conclusion regarding the tails. To the
best of our knowledge, no previous work has studied the distributions of
bij, in either co-authorship networks or any other network types. Because
the determination of the distributional form of bij is not our main goal, we
leave this task as future work.

4.1.2 Non-power-law characteristics of PA and transitivity

functions

By applying the proposed method to two datasets, we find that the esti-
mated PA and transitivity functions exhibit non-power-law and complex
trends (Fig. 4.2).

In both networks, the value of Ad increases on average in d, implying
the existence of the PA phenomenon: when an author gains more collabo-
rators, they are more likely to gain a new one. This is consistent with pre-
vious results in the literature, in which the phenomenon has been found
in collaboration networks in diverse fields (Ferligoj et al., 2015; Kronegger
et al., 2012; Milojević, 2010; Newman, 2001a).

The situation with the transitivity functions is more complex. In both
SMJ and STA, there is a huge jump when b changes from 0 to 1: B1/B0

is approximately 60 in SMJ and almost 100 in STA. These jumps in the
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FIGURE 4.1: Distributions of di and bij in final snapshots of
two networks. A, B: degree distributions in the final snap-
shots of SMJ and STA, respectively. These distributions both
display typical heavy-tailed shapes. In each panel, the solid
line indicates the fitted power-law distribution, whereas the
dotted line indicates where the minimum degree dmin is set.
C, D: distributions of the numbers of pairs with b common
neighbors in final snapshots of SMJ and STA, respectively. In
each panel, the solid line indicates the fitted power-law dis-
tribution, whereas the dotted line indicates where the mini-
mum number of common neighbours bmin is set. In contrast
to the degree distributions, the ranges of these distributions
of bij are too narrow for any signs of heavy tails to emerge.
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FIGURE 4.2: Non-parametric joint estimation of PA Ad and
transitivity Bb functions in SMJ and STA. The vertical bar at
each estimated value indicates a±2σ confidence interval. A:
the estimated PA functions increase on average in both net-
works. This implies the existence of the PA phenomenon:
a highly connected author is likely to gain more new col-
laborations than a lowly connected author. B: The transitiv-
ity functions substantially deviate from the power-law form.
While Bb increases significantly when b changes from 0 to 1
in both networks, after this initial huge jump, Bb remains rel-
atively horizontal in SMJ and only increases slightly in STA.
The huge jump at b = 1 implies that co-authors of co-authors
are at least fifty times more likely to become new co-authors,
compared to the case when no mutual co-author exists.
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Bb values have been observed in co-authorship networks (Milojević, 2010;
Newman, 2001a). However, following this initial jump, Bb remains rela-
tively horizontal in both SMJ and STA, before increasing slightly again in
SMJ. This complex departure from the power-law form renders any state-
ment regarding a universal transitivity effect moot. However, the value
of Bb at every b > 0 is at least fifty times higher than B0, which suggests
that co-authors of co-authors appear to be at least fifty times more likely to
become new co-authors, compared to the case when no mutual co-author
exists.

A few other jumps in values of Ad and Bb can be seen in the regions of
large d and b, respectively. However, the sizes of these jumps are compa-
rable with the large confidence intervals in those regions, where the esti-
mations of Ad and Bb are naturally unstable owing to the fact that there are
comparatively fewer data points in those regions. Therefore, it appears to
be safe to assume that those jumps convey few interesting insights on the
PA and transitivity phenomena.

It is informative to supplement the non-parametric analysis with a para-
metric analysis, because the theoretical literature offers numerous insights
into this context. In this case, we follow standard practice and fit the
power-law functional forms Ad = (d + 1)α and Bb = (b + 1)β (Jeong et
al., 2003; Krapivsky & Redner, 2001; Pham et al., 2015). To determine the
PA attachment exponent α and the transitivity attachment exponent β, we
substitute these forms into Eq. (3.1), and numerically maximizes the re-
sulting log-likelihood function with respect to α and β. Table 4.2 displays
the estimated values of α and β.

TABLE 4.2: Estimated values of PA attachment exponent
α and transitivity attachment exponent β in two networks.
The values are estimated by the maximum partial likelihood
estimation. The interval provided at each estimated value is
two sigma.

Network PA attachment exponent α Transitivity attachment exponent β
SMJ 0.93 (±0.04) 2.50 (±0.07)
STA 0.84 (±0.03) 3.05 (±0.04)
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The PA attachment exponent α in both networks is within the sub-
linear region; that is, 0 < α < 1, which is a frequently observed range
in real-world networks (Newman, 2001a; Pham et al., 2015; Ronda-Pupo
& Pham, 2018). While this region has been demonstrated to result in a
heavy-tailed degree distribution when only PA is at play (Krapivsky &
Redner, 2001), no such theoretical result has been observed when PA co-
exists with transitivity. However, it is not entirely unreasonable to expect
that the sub-linear value of α is responsible for the observed heavy-tailed
degree distributions in Figs. 4.1A and B.

The transitivity attachment exponents β are both greater than 1, indi-
cating an exponentially faster growth rate of the transitivity function com-
pared to the PA function. For example, this is evident in STA: while A10 is
less than 10, B10 is already larger than 100. To the best of our knowledge,
no theoretical results are available regarding the effect of β on the struc-
ture of a growing network, even for the supposedly simpler case when
only transitivity exists.

Overall, the results in this section indicate the joint existence of the PA
and transitivity phenomena in both networks. Our non-parametric ap-
proach reveals that a conventional power-law functional form in a para-
metric approach may not be optimal for describing the two phenomena.
The power-law form fits the estimated Ad reasonably well up to the middle-
degree part, but it cannot capture the deviations from the power-law form
in the high-degree part. For Bb, the power-law form is even less suitable.
We note that our findings hold even if we exclude the paper with 17 au-
thors from SMJ; see Section 4.1.5. We hope that our non-parametric find-
ings can offer hints on more suitable parametric forms for Ad and Bb.

4.1.3 Domination of Transitivity in Both Networks

After obtaining the estimates Â and B̂, we can compute the amounts of
contributions of the PA and transitivity phenomena in the growth process
of each network by inserting these estimates into Eqs. (3.10) and (3.11).
The estimated amounts of contributions ŝPA(t) and ŝtrans(t) are indicated
by the solid lines in Fig. 4.3.
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FIGURE 4.3: Estimated and simulated contributions of PA
and transitivity at each time step in SMJ and STA. The con-
tribution amount is measured by log2 fold changes in the
model of Eq. (3.1). The solid lines indicate the estimated con-
tributions ŝPA(t) and ŝtrans(t), calculated by inserting the es-
timates Â and B̂ into Eqs. (3.10) and (3.11), respectively. Each
dotted line is the average of the corresponding true contribu-
tions of 100 simulated networks, using Â and B̂ as the true
functions. The band around each depicts the interval of ±
two times the population standard deviation of the simu-
lated contributions. The solid and dotted lines agree well
with one another, suggesting that ŝPA(t) and ŝtrans(t) are re-
liable.
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In each network, ŝtrans(t) is greater than ŝPA(t) for all t. Looking at
the left panel in Fig. 4.3, the value of ŝPA(t) (red solid line) is around 1 at
t = 1 and it gradually increases up to around 2 at t = 23, where the con-
tribution is measured by log2 fold changes. Thus the contribution of PA
in SMJ network is around 2-fold change at the beginning and it becomes
around 4-fold change at the end. The value of ŝtrans(t) (blue solid line) is
around 3 with slight increase, meaning that the contribution of transitivity
in SMJ network is around 8-fold change. Although both contributions are
increasing, transitivity has larger impact than PA in the growing mecha-
nism of the SMJ network. Looking at the right panel, we again observe
that the contribution of transitivity is much larger than that of PA in the
STA network.

It is worth questioning whether these tendencies also hold for the true
values sPA(t) and strans(t), or are simply artifacts that arise when we insert
Â and B̂ into Eqs. (3.10) and (3.11). We demonstrate by means of simula-
tions that, if the true A and B are close to the estimates Â and B̂, sPA(t) and
strans(t) are similar to ŝPA(t) and ŝtrans(t). For each real network, we sim-
ulate 100 networks based on Eq. (3.1), using the estimates Â and B̂ as true
functions. We maintain all of the aspects of the growth process that are
not governed by Eq. (3.1) the same as those observed in the real network.
This includes using the observed initial graph, and observed numbers of
new nodes and edges at each time step in the simulation. Because Â and B̂
are the true PA and transitivity functions for each simulated network, we
can calculate the true contributions of the PA and transitivity in each sim-
ulated network using Eqs. (3.10) and (3.11), respectively. The behaviors
of the simulated contributions are very similar to those of the estimated
contributions ŝPA(t) and ŝtrans(t), indicating that the latter are likely to be
reliable.

As explained in Section 3.4, one can interpret the contributions ŝPA(t)
and ŝtrans(t) as estimates of the expectations of ĥPA(t) and ĥtrans(t), which
are the sample standard deviations of the PA and transitivity values at the
end points of actually observed new edges at time step t. This is expressed
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as
E ĥPA(t) ≈ ŝPA(t); E ĥtrans(t) ≈ ŝtrans(t),

where the estimates ŝPA(t) and ŝtrans(t) slightly overestimate the expecta-
tions, because

E ĥtrans(t) ≤ (E ĥtrans(t)2)1/2 ≈ ŝtrans(t).

Figure 4.4 presents the observed values ĥPA(t) and ĥtrans(t), the estimates
ŝPA(t) and ŝtrans(t) of their expectations, and the estimates of their stan-
dard deviations (see Section 4.1.5). The observed values generally fall
within two standard deviations around the estimates of their expectations,
implying that Eq. (3.1) is consistent with the observed data.
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FIGURE 4.4: Sample standard deviations of PA and transi-
tivity values at end points of actually observed new edges,
ĥPA(t) and ĥtrans(t), agree well with their estimated expec-
tations, ŝPA(t) and ŝtrans(t). This implies that the statisti-
cal model is consistent with the observed data. The band
around ŝPA(t) depicts the interval of ± two standard devia-
tions of ĥPA(t). The band around ŝtrans(t) is similar.

Overall, the data indicate the governing role of transitivity in the growth
processes of both networks: the differences in the transitivity values mainly
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determine where new collaborations are formed. This intuitive result is
consistent with previous results, which found that common neighbors are
more effective than PA for link prediction in co-authorship networks (Liben-
Nowell & Kleinberg, 2007). If the PA dominated, the probability that you
will work with a particular scientist in the future will not be significantly
affected by whether or not you have worked with the scientists he knows.
However, in light of the current result, they may need to be more selec-
tive, because the increase of common collaborators may offer greater ad-
vantages. Furthermore, the results suggest that, beyond mere comparison
of the contribution of PA and transitivity, the following point should be
taken into account in PA modeling. That is, the PA reflects nothing of the
potential connection between the two. The more extensive the range of
data observation, the greater the risk of selecting a person with a large
degree, even though she/he is entirely out of scope.

4.1.4 Diagnosis: Time Invariance and Goodness of Fit

Finally, we consider two questions that are critical to our real-world data
analysis. The first concerns the validity of the time-invariance assump-
tion of Ad and Bb in two networks: in each network, is the observed data
consistent with the assumption that Ad and Bb change little throughout
the growth process? The second is whether Eq. (3.1) is a reasonably good
model for the networks. Although Fig. 4.4 already hints at an affirmative
answer to both questions, we examine each question in finer detail.

Time invariance of PA and transitivity functions

One means of answering the first question is to compare the Ad and Bb in
Fig. 4.2 with the Ad and Bb estimated using only a certain portion of the
growth process for many different portions. If they are similar, it is reason-
able to believe that the observed data is consistent with the assumption
that Ad and Bb change little throughout the growth process.

To this end, we create three new networks from each original network.
The first new network (“First Half”) contains only the first half of the
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growth process, thereby allowing Ad and Bb to be estimated in this por-
tion. In the second new network (“Initial 0.5”), we set the initial time at
the middle of the timeline, effectively enabling the estimation of Ad and Bb

in the second half of the growth process. In the third new network (“Initial
0.75”), we set the initial time at the 3/4 point of the timeline. This network
allows us to estimate Ad and Bb in the final quarter of the growth process.
The estimated Ad and Bb in these three new networks then are compared
with the Ad and Bb values obtained from the full growth process (Fig. 4.5).
A visual inspection of Fig. 4.5 suggests that both the PA and transitivity
functions appear to change little in the growth process of each network,
which validates the time invariance assumption.

Goodness of fit

We use a simulation-based approach to investigate the goodness of fit of
the model. For each real-world network, we reuse the simulation data
used in Fig. 4.3, which consists of 100 simulated networks generated us-
ing the estimated Ad and Bb of that network as true functions. We com-
pare several statistics of the simulated networks with the corresponding
statistics of the real network. If Eq. (3.1) is a good fit, the observed and
simulated statistics must be close. Similar simulation-based approaches
have been proposed for inspecting the goodness of fit of exponential ran-
dom graph models (Hunter et al., 2008) and stochastic actor-based mod-
els (Conaldi et al., 2012; Lospinoso, 2012).

To provide an overview, we investigate how well the model can repli-
cate the observed degree curves. In Fig. 4.6, for each real-world network
we select ten nodes uniformly at random from the top 1% of all nodes in
terms of the number of new edges accumulated during the growth pro-
cess. For each node, we then plot the evolution line of the observed and
simulated degree values. When this line is closer to the equality line, the
model captures the observed degree growth of that node better. Although
the simulated degree at times tends to be lower than the observed degree
for certain nodes, overall, the lines are reasonably close to the identity line,
implying that the model captures the degree growth well.
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FIGURE 4.5: Time invariance of PA and transitivity func-
tions. A and C: PA and transitivity functions of SMJ. B and
D: PA and transitivity functions of STA. While “First Half”
contains only the first half of the growth process, the initial
time is set at the middle and at the 3/4 point of the time-
line in “Initial 0.5” and “Initial 0.75”, respectively. In each
dataset, all four PA /transitivity functions agree well with
one another, suggesting that the observed data is consistent
with the assumption that the PA and transitivity functions
change little during the growth process.
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For closer inspection, we analyze how well the model replicates the
probability distribution of new edges during the growth process. In par-
ticular, consider sampling an edge e uniformly at random from the set of
all new edges in the growth process. Suppose that e is between a node
pair with degrees D1 and D2 (D1 ≤ D2), and the number of their common
neighbors is X. The relative frequency, or observed probability, that D1 =

d1, D2 = d2, and X = b is pd1,d2,b = ∑t md1,d2,b(t)/ ∑dmax
d1=0 ∑dmax

d2=d1
∑bmax

b=0 ∑t md1,d2,b(t),
in which md1,d2,b(t) is the number of new edges emerging at time t be-
tween a node pair with degrees d1 and d2, and their number of common
neighbors is b. Thus, the probability pd1,d2,b summarizes the information
regarding the associations of d1, d2, and b at the end points of the new
edges throughout the growth process.

Our joint estimation of the PA and transitivity is compared with two
conventional approaches in which PA (Pham et al., 2015) and transitiv-
ity (Newman, 2001a) are estimated in isolation. For each approach, we
first estimate the PA/transitivity function in isolation, and then use the
estimated function to generate 100 networks to determine how well each
existing method replicates pd1,d2,b. To visualize this probability distribu-
tion, which is multi-dimensional, we slice it into many one-dimensional
distributions by means of conditioning.

Firstly, we investigate

pd|b∈B := Pr(D1 +D2 = d|X ∈ B) = ∑
b∈B

dmax

∑
d1=0

pd1,d−d1,b/ ∑
b∈B

dmax

∑
d1=0

dmax

∑
d2=d1

pd1,d2,b,

with the convention that pd1,d2,b = 0 whenever d1 > d2 or d2 > dmax.
This is the conditional probability distribution of D1 + D2 given the event
X ∈ B. As we know from Fig. 4.1 that the number of node pairs with b = 0
or b = 1 is vastly greater than the remainder, we consider two probability
distributions pd|b≤1 and pd|b≥2, and their cumulative probability distribu-
tions are illustrated in Fig. 4.7. In all cases, the joint estimation approach
best replicates the observed distributions. It is surprising to observe that
the transitivity in isolation approach, which does not explicitly leverage
any information regarding d, exhibit approximately the same replication
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performance as the PA in isolation approach, which explicitly leverages
this information. This suggests that the dimension of b preserves a fair
amount of information regarding d.

Secondly, we consider

pb|(d1,d2)∈D := Pr(X = b|(D1, D2) ∈ D) = ∑
(d1,d2)∈D

pd1,d2,b/
bmax

∑
b=0

∑
(d1,d2)∈D

pd1,d2,b,

where D is a non-empty set of unordered pairs. This is the conditional
probability distribution of X given the event (D1, D2) ∈ D. Given a pair
of nodes with degrees d1 and d2, and their number of common neighbors
is b, a natural condition is imposed on b: b must be not greater than either
d1 or d2. Therefore, if one selects D such that d1 or d2 may be too small,
the range of b will be severely limited. For this reason, we consider two
probability distributions: pb|max(d1,d2)≤9 and pb|max(d1,d2)≥10, both of which
allow a large range for b. Their cumulative distributions are presented
in Fig. 4.8. Once again, the joint estimation approach best replicates the
observed cumulative probability distributions in all cases. While the tran-
sitivity in isolation approach replicates the observed distributions fairly
well in most cases, the PA in isolation approach completely fails to do so
in all cases. This implies that, while the dimension of b appears to pre-
serve a fair amount of information regarding d1 and d2, the dimensions of
d1 and d2 maintain little information regarding b.

Overall, the joint estimation approach performs comparatively well.
The surprisingly good performance of the transitivity in isolation approach
is in agreement with the dominating role of Bb in the growth process of
both networks. Combining the results in Fig. 4.6 with those in Figs. 4.7
and 4.8, we can conclude that the joint estimation approach captures both
the first-order and second-order information of the networks reasonably
well. This good fit is consistent with the fact that the key assumption of
the time invariability of Ad and Bb is satisfied in both networks.
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FIGURE 4.7: Observed and simulated cumulative probabil-
ity distributions pd|b≤1 and pd|b≥2 of d = d1 + d2 in two net-
works. For each estimation method, we generate 100 net-
works from the estimation result and report the average val-
ues over 100 simulations. A and B: cumulative probability
distributions pd|b≤1 in SMJ and STA, respectively. C and :
cumulative probability distributions pd|b≥2 in SMJ and STA,
respectively. In all cases, our joint estimation approach repli-
cates the observed distributions comparatively well.
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FIGURE 4.8: Observed and simulated cumulative probabil-
ity distributions pb|max(d1,d2)≤9 and pb|max(d1,d2)≥10 in two net-
works. For each estimation method, we generate 100 net-
works from the estimation result and report the average val-
ues over 100 simulations. A and B: cumulative probability
distributions pb|max(d1,d2)≤9 in SMJ and STA, respectively. C
and : cumulative probability distributions of pb|max(d1,d2)≥10
in SMJ and STA, respectively. In all cases, our joint estima-
tion approach replicates the observed distributions compar-
atively well.
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4.1.5 Further Discussions

Estimation accuracy when β is small

We explain the comparatively large standard errors of β observed when
both β and α are small in Fig. 3.2. Figure 4.9 presents the estimated Bb and
the number of new edges corresponding to Bb in three randomly chosen
networks for two cases: α = β = 0 and α = 0, β = 1.5. The comparatively
large standard errors of β observed when both β and α are small appears
to be due to the instability of Bb when b is large. This, in turn, is due to the
relatively small number of new edges corresponding to Bb in this region.

Estimation of the standard deviations of ĥtrans(t) and ĥPA(t)

We have the following closed-form formula for the variance of the sample
variance htrans(t)2:

Vhtrans(t)2 =
1

m(t)
E(log2 Bbij −E log2 Bbij)

4 − (m(t)− 3)strans(t)4

m(t)(m(t)− 1)
.

The delta method then provides:

sd(htrans(t)) ≈
1
2

(
E htrans(t)2

)−1/2√
Vhtrans(t)2 ≈ 1

2
(strans(t))

−1
√

Vhtrans(t)2.

The standard deviation of ĥtrans(t) then can be calculated by inserting Â
and B̂ into the above formula. The standard deviation of ĥPA(t) follows
the same derivation.

Estimation results in SMJ when excluding outliers

Figure 4.10 presents the estimation results of Ad and Bb in SMJ when ex-
cluding one paper with 17 author, compared to those obtained with the
full dataset. The results of the two cases are similar.
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FIGURE 4.9: The comparatively large standard errors of β
when α and β are small are ultimately due to a relatively
small number of data points corresponding to Bb when b is
large. A: estimated Bb for three random networks when α =
β = 0. The value of Bb is unstable for large b. B: estimated
Bb for three random networks when α = 0 and β = 1.5.
The value of Bb is stable for large b. C: average number of
new edges corresponding to b for the networks in panel A.
The instability observed in panel A is due to a small number
of new edges corresponding to b when b is large. : average
number of new edges corresponding to b for the networks in
panel B. Here, the average numbers of new edges for large b
are relatively higher than those in panel C, leading to stable
estimations.
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4.2 Conclusion

In this part, we have provided the proposed statistical network model that
incorporates non-parametric PA and transitivity functions, and have de-
rived an efficient MM algorithm for estimating its parameters. Moreover,
we presented a method that can quantify the amount of contributions of
not only the PA and transitivity, but also many other network growth
mechanisms, by exploiting the probabilistic dynamic process induced by
the model formula.

We demonstrated that the proposed network model provided a reason-
ably good fit to two real-world co-authorship networks, and revealed in-
triguing properties of the PA and transitivity functions in these networks.
The PA function increased on average in both networks, implying that
the PA effect was at play. Excluding the high-degree part, it followed the
conventional power-law form reasonably well. However, the transitivity
function exhibited highly non-power-law behavior in the two networks:
it jumped substantially after b = 0, but remained relatively horizontal or
only increased slightly thereafter. This non-conventional form implies that
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co-authors of co-authors appear to be at least fifty times more likely to be-
come new co-authors, compared to the case when no mutual co-author
exists. Furthermore, we found that the transitivity dominated the PA in
both networks, suggesting the importance of indirect relations in scientific
creative processes.

There are several fascinating directions for further development of the
statistical methodology. Firstly, although the proposed model and most
other network models in the literature assume that the new edges at each
time step are independent, this is hardly the case in real-world collabora-
tion networks, where several co-authorships can emerge simultaneously
from one paper with many authors. The independence assumption is thus
a limitation of our model. It is important to devise a method to verify the
impact of this assumption on the estimation of growth mechanisms. More-
over, efficiently relaxing this assumption may lead to improved models for
scientific collaboration networks. These two problems are left for future
work.

Secondly, it will be interesting to observe whether one could adapt the
time-invariability test developed for stochastic actor-based models (Lospinoso
et al., 2011) to our model. Lastly, it is worth extending our model to handle
transitivity in directed networks.

On the application front, this work has laid out a potentially fruitful
approach for analyzing complex networks, while raising more questions
than it answers. For example, does transitivity always dominate PA in co-
authorship networks? Which parametric forms are capable of capturing
the fine details observed in Fig. 4.2? What are the properties of PA and
transitivity in co-authorship networks at the level of institutions or coun-
tries? We hope that this research will convince informetricians to include
non-parametric modeling of PA and transitivity into their toolbox.
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Part II

PA Function in Evolving
Hypergraphs





61

Chapter 5

HyperPA: A Hypergraph
Approach for estimating
Non-parametric PA Function

Our contributions, descriptions and figures in this chapter are based on
our papers (Inoue et al., 2022).

5.1 Introduction

Network modeling, a notable application of graph theory, can reveal static
and dynamic natures of interactions between individuals in various real-
world complex systems (de Arruda et al., 2018; Riolo & Newman, 2020;
Wang et al., 2019). However, in some data domains, there is an informa-
tion loss in simplifying the interaction of complex systems with graphs:
we implicitly break group interactions of three or more individuals into in-
dependent pairwise interactions. For example, in scientific co-authorship
data, papers may be written by more than two researchers. The co-authorship
of such papers is decomposed into pairwise co-authorship when the data
is represented by graphs. This inability to preserve higher-order interac-
tions is a serious limitation of graph representations. We can address this
problem by replacing graphs with hypergraphs (de Arruda et al., 2020).
Using hypergraphs, the co-authorship of each paper can be represented
by one hyperedge, regardless of how many authors the paper has. This
preserves the collectivity of co-authorship (Lung et al., 2018). This study



62
Chapter 5. HyperPA: A Hypergraph Approach for estimating

Non-parametric PA Function

aims to examine hypergraph growth models that can capture the dynam-
ics of higher-order interactions in temporal data.

A hypergraph consists of a set of nodes and a set of hyperedges. A
hyperedge contains an arbitrary number of nodes, whereas an edge in
ordinary graphs contains only two nodes. The number of nodes that a
hyperedge contains is referred to as the size of the hyperedge. We note
that this size can take different values for each hyperedge. For a node in
a hypergraph, the number of hyperedges containing it is called its “hy-
perdegree”, whereas the number of edges connected to a node in ordi-
nary graphs is called its “degree”. In hypergraph representations of co-
authorship data, each node and each hyperedge represents one researcher
and the co-authorship of one paper, respectively. The size of a hyperedge
indicates the number of co-authors of the corresponding paper, and the
hyperdegree of a node corresponds to the number of papers the corre-
sponding researcher has written in the past. Hypergraphs have been ap-
plied successfully in a wide variety of domains, including recommender
systems (Zheng et al., 2018), bioinformatics (Mithani et al., 2009), classifi-
cation (Sun et al., 2021), clustering (Kamiński et al., 2019), and document
retrieval (Spitz et al., 2020).

Although there have been many attempts in complex network theory
to model the growth of interactions in temporal data using graph repre-
sentations, there is little existing research on hypergraph-based growth
models. One of the most well-known growth mechanisms is preferen-
tial attachment (PA) (Barabási & Albert, 1999). PA is a “rich-get-richer”
mechanism that can provide a compelling explanation of the heavy-tailed
degree distributions appeared in many real-world networks. In this mech-
anism, the probability a node will get new edges at some time-step is pro-
portional to its degree, i.e., the number of edges connected to the node up
to that time-step. In case of temporal graph-based models, several models
and estimation methods have been proposed for various growth mecha-
nisms, including PA (Inoue et al., 2020b; Overgoor et al., 2019; Pham et al.,
2015, 2016; Snijders, 2017).

Of the few existing works on hypergraph-based growth models, most
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employ a data-independent growth mechanism which is the linear prefer-
ential attachment (Do et al., 2020; Lee et al., 2021; Liu et al., 2014). This pre-
specification of the growth mechanism risks over-simplifying the poten-
tially complex interactions in real-world datasets. In fact, existing works
that employed graph-based models suggested that the PA mechanism in
real-world temporal graphs is hardly linear (Pham et al., 2015).

In this chapter, we propose a hypergraph growth model with a data-
driven PA mechanism that can be estimated from observed data. Whereas
graph-based PA mechanisms are defined on the degree of a node, our
hyper-graph based PA mechanism is defined on the hyperdegree of a node.
In our PA mechanism, a node with hyperdegree k, i.e., the node is con-
tained in k hyperedges, will belong to a new hyperedge with probability
proportional to Ak, the preferential attachment kernel. For example, the
linear model is specified as Ak = k. The exact form of Ak is estimated
from observed data.

The contributions of this part can be summarized as follows:

1. We propose a novel hypergraph-based growth model with a non-
parametric PA kernel. What we mean by “non-parametric” is that
the tunable parameter is

A = [A1, A2, A3, . . .] (5.1)

without specific functional forms. Since the model is invariant to
the scale of A, we may set A1 = 1 without loss of generality. In
most existing works on hypergraph-growth models, the linear PA
kernel Ak = k is assumed. Such unfounded pre-specification of the
growth mechanism completely ignores the data at hand. In contrast,
in our model, the PA kernel Ak is entirely free of assumptions. We
stress that our non-parametric PA kernel is more flexible than the
one-parameter kernel Ak = kα, which is often employed in graph-
based growth models but not used in any existing hypergraph-based
models. We provide a method to estimate from the data each value
of Ak for each observed hyperdegree k. Specifically, we employ max-
imum likelihood estimation of A for this task and derive a recursive
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formula that significantly reduces the computation cost of the likeli-
hood function of our model. An R package HyperPA of the proposed
method will be available in (Inoue et al., 2022).

2. We provide a new approach to treat a selection bias that arises in
modeling the emergence of new hyperedges with new nodes. Since
parameter estimation in hypergraph-based growth models has not
been considered, there is no existing work on this bias in hypergraph
settings. In conventional graph-based growth models, in order to re-
move this bias, new edges are often removed from calculations of the
log-likelihood function. However, a similar approach of removing
hyperedges from calculations of the log-likelihood function would
discard too much information, since the typical number of hyper-
edges with new nodes can be high in real-world datasets. In our
method we use conditional probabilities in order to treat the selec-
tion bias in a principled way. We note that this approach can also be
applied to graph-based growth models.

3. We fit our proposed model to 13 real-world datasets that can be di-
vided into five categories: scientific co-authorship datasets, online
thread participants datasets, online tagging datasets, national drug
code directory datasets, and email datasets. We show that our pro-
posed hypergraph PA model was better in replicating the observed
data compared with conventional graph-based models. When one
considers replications of the observed distributions of local cluster-
ing coefficients, the proposed hypergraph outperformed conventional
models in all 13 datasets. When one considers replications of the ob-
served distributions of the number of triplets, the proposed model
provided the best fit in seven datasets, including all co-authorship
networks. These findings confirm the importance of considering the
collectivity of edges in modeling temporal complex data.

The rest of this part is organized as follows: Section 5.2 describes our
hypergraph-based approach and presents illustrative results of our pro-
posed model. Section 5.3 provides our estimation methodology and the
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hypergraph generation algorithm for our growth model. Section 6.1 ex-
plores the performance of the proposed method in 13 real-world datasets
by comparing it with the conventional method. Finally, Section 6.2 con-
cludes this work and outlines future work.

5.2 Hypergraph PA growth Model

In this section, we first describe our proposed PA growth model for hy-
pergraphs. We then present illustrative results showing the effectiveness
of the proposed model.

5.2.1 Proposed Hypergraph Growth Model

We propose a hypergraph version of the PA model based on the GT model (2.1).
Instead of defining PA growth for edges, we define the probability of PA
growth for hyperedges, i.e., sets of nodes. Let Gt = (Vt, Et) be the hyper-
graph at time-step t and Cm(Vt) be a family of sets whose elements are the
sets that satisfy B ⊂ Vt, |B| = m. We define the probability that a node set
B = {i1, i2, . . . , im} ∈ Cm(Vt) acquires a hyperedge of size m at time-step t
as follows:

PB(t) ∝ ∏
i∈B

Aki(t), (5.2)

where ki(t) is the hyperdegree of node i at time-step t, and Ak is the PA
value of hyperdegree k. We refer to the above proposed growth model
as “Hyper PA”. As in Edge PA (2.1), we assume no functional form for
the PA function Ak. Do et al. (2020) proposed a generative model with
linear PA PB ∝ kB for hypergraphs in which kB is defined as the number
of hyperedges that contain the set. However, when the size m is large, i.e.,
|B| ≫ 1, the value of kB becomes zero for almost all B, because such node
sets seldom have hyperedges. Thus, this is not suitable for estimating the
functional form of Ak. Therefore, in our model, we define the PA growth
on the hyperdegrees ki for i ∈ B.

Edge PA and Hyper PA are equivalent only for data where the size
of all hyperedges is two. The difference between Hyper PA and Edge
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PA emerges when we consider the probability of a hyperedge whose size
is greater than two. As an example, let us consider the Hyper PA and
Edge PA for a group interaction occurring on the set of three nodes B =

{i1, i2, i3} at time-step t. In Hyper PA, this interaction is considered as a
single hyperedge and the probability of this event is PB(t) ∝ Aki1

(t)Aki2 (t)
Aki3 (t)

.
On the other hand, in Edge PA, the joint probability for all pairs of nodes
is Pi1,i2(t)Pi1,i3(t)Pi2,i3(t) ∝ (Adi1

(t)Adi2 (t)
Adi3 (t)

)2. In addition to the differ-
ence between using hyperdegree ki and degree di, the exponent m− 1 in
Edge PA, which is equal to 2 for the case of m = 3 above, makes the event
of large m very rare.

The value of Ak in Hyper PA can be estimated from observed data
by maximum likelihood estimation. More details of the proposed model,
including a treatment of a selection bias that arises when the observed
node set B contains some newcomer nodes, and estimation method are
described in Sections 5.3.1 and 5.3.2. We can also generate hypergraphs
with a given PA function Ak by a procedure provided in Section 5.3.3.

5.2.2 Illustrative Results

This section illustrates that our proposed Hyper PA model is better than
the conventional Edge PA model and some other baseline models in terms
of goodness-of-fit in two real-world co-authorship temporal networks: STA-
coauthor from the statistics field (Ji & Jin, 2016) and HEP-coauthor from
the high energy physics field (Inoue et al., 2018; Kunegis, 2013). The de-
tails of these datasets are provided in Section 6.1. We first fit the models
to these data by estimating the PA function Ak for Hyper PA by our pro-
posed method and Ad for Edge PA by the method in (Pham et al., 2015).
We then compare some statistics of simulated graphs generated from the
fitted models with those of the real-world data. The closer the simulated
statistics of a model are to the real-world statistics, the better the model
is in term of goodness-of-fit. To compare the hypergraphs generated by
Hyper PA and the graphs generated by Edge PA, the hypergraphs were
converted into graphs. The detail of the proposed estimation method and
the procedure for generating hypergraph is described in Section 5.3.
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(b) (c)
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FIGURE 5.1: Hyper PA outperforms conventional models in
reproducing first-order and second-order structures in sci-
entific co-authorship data. (a): Observed and simulated
graphs of STA-coauthor, a dataset of co-authorships in jour-
nals from statistics field. Each graph illustrates the final 8%
increments of the temporal graph. The color of each node
represents the value qi of the maximum size of cliques that
contain the node. q̄ is the average of all qi in the data. Hy-
per PA outperformed Edge PA in reproducing both high val-
ues of qi (red nodes) and the average q̄. (b): The observed
distribution of the numbers of co-authors per paper, i.e.,
the sizes of hyperedges, of STA-coauthor and that of HEP-
coauthor, a dataset of co-authorships in high energy physics.
The size of a hyperedge can be enormous, as can be seen
from HEP-coauthor. (c): Observed and simulated probabil-
ity distributions of degrees and local clustering coefficients
in HEP-coauthor. The average values over 10 simulations
are shown. The generated hypergraphs in Hyper PA and
Hyper Uniform were converted into graphs for comparison.
Hyper PA outperformed Edge PA and Hyper Uniform in
replicating both distributions, thanks to hypergraph-based
growth and PA mechanism.
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Fig. 5.1(a) visualizes the final portion in the growth of STA-coauthor
and those of the simulated temporal graphs generated by Hyper PA and
Edge PA. Specifically, we plot the final 8% increments of the temporal
graphs, which correspond to the last 260 papers that appear in STA-coauthor.
To visualize the collectivity of edges around each node, we colored each
node i according to the size qi of the largest clique that contains i. In the
graphs generated by Edge PA, there are fewer red nodes than in the ob-
served data, which means that Edge PA did not capture enough higher-
order information and failed to replicate large cliques. On the other hand,
Hyper PA generated large cliques similarly to those observed in the real
data. This observation can also be supported quantitatively by looking at
the average q̄ of qi over the whole graphs in 10 simulations. To the ob-
served value q̄ = 3.26, Hyper PA gave a close match of q̄ = 3.29, which is
much closer than the value q̄ = 2.83 given by Edge PA.

The reason why Edge PA failed to replicate the collective nature of
edge increments in STA-coauthor is that Edge PA adds each edge inde-
pendently. The poor fit of Edge PA is also confirmed for second-order
structures of graphs such as triangles in not only STA-coauthor but also
other real-world co-authorship datasets. See Section 6.1.3 for more results.

As noted earlier, although conventional graph-based models such as
Edge PA may be a reasonable modeling choice if the typical size of hyper-
edges in the data is small, this number can be enormous in some datasets.
Fig. 5.1(b) shows the distributions of the numbers of co-authors per paper
in STA-coauthor and HEP-coauthor. In hypergraph expression of scientific
co-authorship, the number of co-authors of a paper is equal to the size of
the corresponding hyperedge. As can be seen in Fig. 5.1(b), HEP-coauthor
contains many relatively large hyperedges. The maximum hyperedge size
is 201 for the HEP-coauthor and 10 for the STA-coauthor. More detailed
data descriptions for all datasets used in this part are provided in Sec-
tion 6.1.1. For a dataset that has a tendency for edge collectivity as strong
as HEP-coauthor, one would expect clear differences between Hyper PA
and Edge PA. The following experiment in Fig. 5.1(c) illustrates this point.

In Fig. 5.1(c), we demonstrate that both hypergraph-based growth and
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PA mechanism are needed to provide a reasonably good fit to HEP-coauthor.
To this end, we add another baseline model, namely Hyper Uniform, that
is a special case of Hyper PA in which Ak = 1 for every hyperdegree k, i.e.,
there is no PA effect in Hyper Uniform. Fig. 5.1(c) shows the observed and
simulated probability distributions of degrees and local clustering coeffi-
cients. The local clustering coefficient, whose mathematical definition is
given in Section 6.1.3, is a popular way to express the density of triangles
around a node. The distribution of local clustering coefficients can be used
to express the degree of collectivity of edges in the data.

From Fig. 5.1(c), the following observations can be made.

1. Hyper PA outperformed both Edge PA and Hyper Uniform in repro-
ducing the overall degree distribution, thanks to both the hypergraph-
based growth and the PA mechanism. Although Edge PA captured
better the right tail of the degree distribution compared with Hy-
per Uniform, both Edge PA and Hyper Uniform underestimated the
portion of low degrees compared with Hyper PA. This implies that
the PA mechanism may be responsible for reproducing the right tail
of the degree distribution, whereas the hypergraph-based growth is
potentially responsible for replicating the left tail.

2. In replicating the distribution of local clustering coefficients, Hyper
PA also outperformed both Edge PA and Hyper Uniform. Edge PA
significantly underestimated the local clustering coefficients, which
implies that it could not capture the collectivity of edges in the data.
This is expected, since Edge PA adds edges independently.

To summarize, both hypergraph growth and PA mechanism are crucial in
capturing first-order and second-order structures of the data. Hyper PA
employs both ingredients and thus was able to provide good fits to STA-
coauthor and HEP-coauthor compared with conventional models. Further
experiments are provided in Chapter 6.
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5.3 Methodology of Estimation

In this section, we describe the maximum likelihood estimation of the PA
function in our model and pseudo codes for generating temporal hyper-
graphs from our model. In addition to the derivation of the likelihood
function, we provide a recursive formula that enables a fast calculation of
the likelihood function. We also provide a principled approach based on
conditional probabilities for handling a selection bias that arises in model-
ing the emergence of new hyperedges with newcomer nodes.

5.3.1 Maximum Likelihood Estimation

Likelihood Function

We first derive the likelihood function of A for Hyper PA model. As we
described in Section 5.2, our growth model (5.2) is based on the undirected
GT model. Therefore, the derivation of the likelihood function in Hyper
PA model here is also based on previous works (Inoue et al., 2020b; Pham
et al., 2015, 2016) where maximum likelihood estimation of the PA func-
tion is derived for the GT model.

We define some notations needed in the exposition. Let Gt = (Vt, Et)

be the hypergraph at time-step t. Vt and Et are the node set and the hy-
peredge set, respectively. Let {Gt}T

t=0 be the hypergraph sequence, and
{ht}T

t=1 be the sequence of the number of hyperedges added to the hyper-
graph at each time-step. We denote the size of each hyperedge at time-step
t as mt = [mt,1, . . . , mt,ht ] and the number of newcomer nodes that appear
with each hyperedge as nt = [nt,1, . . . , nt,ht ]. For the l-th (1 ≤ l ≤ ht) hy-
peredge at time-step t, its size is given by mt,l, and we have 0 ≤ nt,l ≤ mt,l;
the number of newcomer nodes is nt,l and the number of existing nodes is
mt,l − nt,l. This hyperedge contains solely existing nodes if nt,l = 0, and
contains solely newcomer nodes if nt,l = mt,l.

Now we consider the probability that some node set Bt,l whose size is
mt,l acquires a new hyperedge of size mt,l. If we assume that Bt,l contains
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only existing nodes, the acquisition probability is:

PBt,l(t) =
∏i∈Bt,l

Aki(t)

∑B′∈Cmt,l (Vt) ∏i′∈B′Aki′ (t)
, (5.3)

where Cmt,l(Vt) is the family of sets such that a set B belongs to Cmt,l(Vt)

if and only if B ⊂ Vt and |B| = mt,l. The case that Bt,l contains some
newcomer nodes needs some special care, since there is a selection bias.
This problem is treated in Section 5.3.2.

Suppose that the joint distribution of ht, mt, and nt is governed by the
parameter vector θt, and that the initial hypergraph G0 is determined by
θinit. As in previous works (Inoue et al., 2020b; Pham et al., 2015, 2016),
we assume that θt and θinit are independent of A in growth process. This
assumption is interpreted as follows: the increments of hypergraph (i.e.
the number of additional nodes and hyperedges) at each time-step are in-
dependent of the PA growth. With this assumption, the probability of the
observed data can be written as:

P(G0, . . . , GT)

=
T

∏
t=1

P(Gt|Gt−1)P(G0)

=
T

∏
t=1

P(Gt|Gt−1, ht, mt, nt, A)P(ht, mt, nt|Gt−1, θt)

· P(G0|θinit).

Taking the logarithm of both sides, the log-likelihood function of A can be
expressed as:

L(A|G0, . . . , GT)

=
T

∑
t=1

log P(Gt|Gt−1, ht, mt, nt, A)

+
T

∑
t=1

log P(ht, mt, nt|Gt−1, θt) + log P(G0|θinit).
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Since on the right-hand side only the first term includes the PA function A,
we can omit the other terms related to the nuisance parameters θinit and
θt. The log-likelihood function can then be rewritten as follows:

L(A|G0, . . . , GT)

=
T

∑
t=1

log P(Gt|Gt−1, ht, mt, nt, A)

=
T

∑
t=1

ht

∑
l=1

log PBt,l(t) (5.4)

=
T

∑
t=1

ht

∑
l=1

log ∏
i∈Bt,l

Aki(t)

−
T

∑
t=1

ht

∑
l=1

log

 ∑
B′∈Cmt,l (Vt)

∏
i∈B′

Aki(t)

. (5.5)

Note that we substituted (5.3) into (5.4).
The maximum likelihood method estimates the value of A by maxi-

mizing L(A|G0, . . . , GT). The parameter vector A in (5.1) actually includes
only elements Ak with the observed values of k in the dataset. In addition,
to reduce the number of parameters, we employ the “logarithmic binning”
(Inoue et al., 2020b; Pham et al., 2015, 2016) of k, where we set Ak+1 = Ak

in groups of k values.
Since (5.5) is computed numerically, we need its efficient evaluation.

The term ∑B′∈Cmt,l (Vt) ∏i∈B′Aki(t) is the normalization of the probability
(5.3), which is the summation of the probabilities of every node set in
Cmt,l(Vt). When the hyperedge size mt,l is large, the computational cost
of this term becomes intractable in a naive calculation. This is because of
the combinatorial explosion of the number of possible node sets. Specifi-
cally, when the number of nodes in the entire hypergraph at time-step t is

N(t), the computational complexity of a naive calculation is O
(( N(t)

mt,l

))
=

O
( N(t)!

mt,l !(N(t)−mt,l)!
)
, which scales exponentially in N(t) if N(t) is much larger

than mt,l. Next we describe a fast computation which scales linearly in
N(t).
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A Recursive Formula for Fast Computation of the Normalizing Factor

A fast computation of the normalizing factor

Sm(t) = ∑
B′∈Cm(Vt)

∏
i∈B′

Aki(t) (5.6)

is possible if one can find a way to reduce the numbers of summations
needed by exploiting its recursive structures.

Our key observation is that (5.6) is in fact an elementary symmetric poly-
nomial, namely, it is the sum of all distinct products of m distinct variables.
We define the elementary symmetric polynomial em(x1, . . . , xn) (0 ≤ m ≤
n) with variables x1, . . . , xn as follows. For m = 0, e0(x1, . . . , xn) = 0, and
for m > 0,

em(x1, . . . , xn) = ∑
1≤i1<i2<···<im≤n

xi1 xi2 · · · xim .

From the definition above, the normalizing factor can be written as an el-
ementary symmetric polynomial of a suitable choice of variables, namely

Sm(t) = em(Ak1(t), . . . , AkN(t)(t)).

We also define the m-th power sum as

pm(x1, . . . , xn) =
n

∑
i=1

xm
i ,

where m and n are positive integers. According to Newton’s identities (Baker,
1959), we have:

em(x1, . . . , xn)

=
1
m

m

∑
j=1

(−1)j−1em−j(x1, . . . , xn)pj(x1, . . . , xn),
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for all positive integers m and n satisfying m ≤ n. We finally arrive at the
key recursive formula:

Sm(t) =
1
m

m

∑
j=1

(−1)j−1Sm−j(t)pj(Ak1(t), . . . , AkN(t)(t)). (5.7)

Note that m ≤ N(t) always holds in hypergraphs. Our approach is to use
this formula recursively to calculate the normalizing factor Sm(t). Since
the calculation of the power sums is dominating in (5.7), the time complex-
ity of calculating Sm(t) can be reduced fromO

(
N(t)!

m!(N(t)−m)!

)
toO

(
m2N(t)

)
.

By utilizing (5.7), the log-likelihood function given in (5.5) can be opti-
mized by standard numerical methods such as quasi-Newton methods or
MM algorithms (Pham et al., 2015).

5.3.2 A Selection Bias in Modeling The Emergence of New

Hyperedges with Newcomer Nodes

We consider the case that the node set Bt,l contains some newcomer nodes.
Denote such Bt,l simply as B. Naively treating the hyperdegree of new-
comer nodes as k = 0 causes a selection bias, since in that way such new-
comer nodes with hyperdegree k = 0 acquire new hyperedges a priori.
Here we assume for our dataset that newcomer nodes are included in Gt

only when they got a hyperedge. This may lead to overestimation of the
true value of A0. We are going to solve this problem by considering condi-
tional probabilities given that newcomer nodes acquire new hyperedges.

Whereas one can use an existing remedy for a similar bias occurring in
graph-based models (Pham et al., 2015, 2016), this conventional approach
is sub-optimal in hypergraph settings. Specifically, this approach excludes
any new hyperedge that contains some newcomer nodes in calculating
the log-likelihood in (5.4). Since the proportion of new hyperedges with
newcomer nodes can be high in many real-world data (Guimerà et al.,
2005), this leads to throwing away too much data and risks destabilizing
the estimation of Ak.
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Assume that B consists of B1 and B2, where B1 is the set of newcomer
nodes and B2 is the set of existing nodes. Instead of throwing away all
the information contained in B as in the existing remedy approach, our
approach is to salvage the portion of information contained in the event
that a new hyperedge emerges on the set B2 of existing nodes, given that
the hyperedge also contains the set B1 of newcomer nodes. We will include
a term for B2 in the log-likelihood function, and thus it contributes to the
estimation of A. However, we do not estimate A0, because we assume that
existing nodes have at least one hyperedge.

This intuition can be formalized as follows. For convenience, we de-
note Vnew = Vt \ Vt−1, Vexist = Vt−1. With these new notations, note that
B = B1 ∪ B2, B1 ⊂ Vnew, and B2 ⊂ Vexist. Let n and m′ be the sizes of B1 and
B2, respectively, and thus the size of B is m = n + m′. Now we consider
the conditional probability that B gets a new hyperedge, conditioned on
the event that the set of newcomer nodes is equal to some pre-specified set
B∗ with B∗ ⊂ Vnew. This conditional probability can be written as:

PB|B1=B∗(t)

=
∏i∈B2

Aki(t)

∑B′2∈Cm′ (Vexist) ∏i′∈B′2
Aki′ (t)

, (5.8)

which is essentially equivalent to (5.3) but applied to the B2 part. In other
words, we simply ignore the B1 part. In calculating (5.4), if the observed
node set Bt,l contains only existing nodes, one uses (5.3), whereas if it con-
tains some newcomer nodes, one uses (5.8). Note that in (5.8), all cal-
culations occur solely on existing nodes. Therefore, we can remove the
selection bias and obtain a stable estimate of Ak(k > 0) at the same time.
The calculation of the denominator of (5.8) can also be accelerated by the
recursive formula (5.7). We next provide a derivation of (5.8).

Derivation

We here derive the conditional probability (5.8). Let Gt = (Vt, Et) be the
hypergraph at time-step t. Vt and Et are the node set and the hyperedge
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set, respectively. For convenience, we denote Vnew = Vt \Vt−1 and Vexist =

Vt−1. Recall that Hyper PA determines the probability that a set B of m
nodes will acquire a hyperedge of size m. Let B1 and B2 be the sets of the
nodes satisfying B = B1 ∪ B2, B1 ⊂ Vnew, B2 ⊂ Vexist, |B1| = n, and |B2| =
m − n = m′. We here decompose (5.2) into the conditional probability
given that B1 = B∗ for a pre-specified set B∗ ⊂ Vnew and the probability of
observing B∗:

PB(t)

=PB1∪B2(t)

=PB1∪B2,B1=B∗(t)

=PB1∪B2|B1=B∗(t)PB1=B∗(t). (5.9)

The term PB1∪B2|B1=B∗(t) corresponds to the desired conditional probabil-
ity in (5.8). Note that we denote B∗ ⊂ Vnew and not B∗ = Vnew because
we allow the temporal hypergraphs to add multiple hyperedges at each
time-step t. With (5.3) and (5.9), we obtain:

PB1∪B2|B1=B∗(t)

=
PB1∪B2(t)
PB1=B∗(t)

=

(∏i∈B1
Aki(t)

)(∏i∈B2
Aki(t)

)

∑B′∈Cm(Vexist∪Vnew) ∏i′∈B′ Aki′ (t)

∑B′2∈Cm′ (Vexist)
(∏i∈B1

Aki(t)
)(∏i′∈B′2

Aki′ (t)
)

∑B′∈Cm(Vexist∪Vnew) ∏i′∈B′ Aki′ (t)

=

(
∏i∈B1

Aki(t)

) (
∏i∈B2

Aki(t)

)
(

∏i∈B1
Aki(t)

) (
∑B′2∈Cm′ (Vexist) ∏i′∈B′2

Aki′ (t)

)
=

∏i∈B2
Aki(t)

∑B′2∈Cm′ (Vexist) ∏i′∈B′2
Aki′ (t)

,

thus showing (5.8).
So far we have assumed that B1 = B∗ is pre-specified, but we can

change the setting so that B1 is randomly sampled from Vnew with P(B1) =
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1/
( |Vnew|

n

)
. Then log P(B1) terms may be added to the log-likelihood func-

tion L(A|G0, . . . , GT). However, since log P(B1) does not involve A, it does
not change the maximum likelihood estimation of A.

5.3.3 Algorithm for Generating Hypergraphs

In this section, we describe the procedure for generating hypergraphs
in simulations. The pseudocode for our proposed hypergraph generator
is provided in Algorithm 1.

First, we describe how to determine the input of the generator. By
using real-world observations, we can set reasonable values in our simu-
lations; inputs (ii) to (vi) can be given directly as descriptive statistics of a
dataset, whereas input (i) needs to be estimated from the data. Ak can be
given either as an estimated nonparametric sequence or a function with
estimated parameters.

At each time t of the iteration in the procedure, the set of nodes that
acquire a new hyperedge (vexist

i at line 5) is sampled from the Hyper PA
model with the HyperPA procedure, which is described at the bottom of
Algorithm 1 as a subroutine. We use the conditional probability given
in (5.8) of Hyper PA to separate the effects of the node birth process from
the hyperedge acquisition process. In our experiments, the set of new-
comer nodes (vnew

i at line 4) is simply taken from the history of a dataset;
this is not explicitly described in Input though.
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Algorithm 1 The proposed Hyper PA generator for temporal hypergraph.

Input: (i) preferential attachment: A
(ii) initial hypergraph: G0 = (V0, E0)
(iii) timespan : T
(iv) sequence of the number of new hyperedges: {ht}T

t=1
(v) sequence of hyperedge size: {mt}T

t=1,
mt = [mt,1, . . . , mt,ht ]

(vi) sequence of the number of emerging nodes: {nt}T
t=1,

nt = [nt,1, . . . , nt,ht ]

Output: evolving hypergraph: {Gt}T
t=1, Gt = (Vt, Et)

1: for time t in [1, . . . , T] do
2: set Vt ← Vt−1 and Et ← Et−1
3: for i in [1, . . . , ht] do
4: vnew

i ← set nt,i newcomer nodes
5: vexist

i ← sample mt,i − nt,i nodes from Vt−1 by HY-
PERPA(A, Gt−1, mt,i, nt,i)

6: ei ← set a hyperedge containing vnew
i ∪ vexist

i
7: add vnew

i to Vt and ei to Et
8: end for
9: Gt ← (Vt, Et)

10: end for
11: return {Gt}T

t=1

subroutine: HYPERPA(A, Gt−1, mt,i, nt,i)

12: {k j}
N(t)
j=1 ← calculate the hyperdegrees for all existing nodes at time

t− 1 from hypergraph Gt−1
13: vexist

i ← sample mt,i − nt,i nodes according to the probability PB(t) ∝
∏j∈B Akj(t), B ∈ Cmt,i−nt,i(Vt−1)
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Chapter 6

Real Data Analysis with HyperPA

Our contributions, descriptions and figures in this chapter are based on
our papers (Inoue et al., 2022).

6.1 Experiments

In this section, we first describe the real-world datasets and then present
the estimation results for the PA function Ak in these datasets. We then
perform simulations to evaluate goodness-of-fit of our proposed hyper-
graph model.

6.1.1 Real-world Datasets

We use 13 real-world datasets as temporal hypergraphs in experiments.
The datasets can be divided into five categories.

• Scientific co-authorship datasets: Each node is an author and each
hyperedge is a set of authors who have written a paper collabora-
tively. We use the following four datasets: Complex Network The-
ory (CMP-coauthor) (Pham et al., 2020), High Energy Physics (HEP-
coauthor) (Inoue et al., 2018; Kunegis, 2013), Strategic Management
Journal (SMJ-coauthor) (Ronda-Pupo & Pham, 2018), and Statistics
(STA-coauthor) (Ji & Jin, 2016).

• Online thread participants datasets: Each node represents a user
answering questions on threads and each hyperedge describes a set
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of users in a thread in which questions are posted. We use three
datasets created from sub-forums of the online Stack Exchange fo-
rum: ask-ubuntu-user, math-sx-user, and stack-overflow-user.

• Online tagging datasets: Each node is a tag and each hyperedge
is a set of tags associated with a question. We use three datasets
created from sub-forums of the Stack Exchange forum: ask-ubuntu-
tags, math-sx-tags, and stack-overflow-tags.

• National drug code (NDC) directory datasets: We use two datasets:
NDC-classes and NDC-substances. Each node is a class label of drugs
(NDC-classes) or a substance in drugs (NDC-substances) and each
hyperedge is a set of class labels of a drug or a set of substances in a
drug.

• Email network datasets: Each node is an email address and each
hyperedge is a set of email addresses of the sender and all recipients
contained in an email. There is one dataset in this category: Eu-
email.

Except for the four scientific co-authorship datasets, the remaining datasets
are from the hypergraph collection of Benson et al. (2018).

Some preprocessing is needed before one can perform model fitting.
For each dataset in Benson et al. (2018), we extracted the latest 5000 hyper-
edges for analysis. In addition, several datasets with too few or too many
nodes extracted from Benson et al. (2018) are excluded from the analy-
sis and not listed here. In each dataset, we set the initial state G0 as the
first 50% of each data in terms of the number of edges. In co-authorship
datasets, except for STA-coauthor, the original datasets only have tempo-
ral graphs and do not contain hyperedges. For this reason, we heuristi-
cally reconstructed the hyperedges from the increments of edges at each
time-step. Specifically, at each time-step, we repeatedly replaced the new
edges that constitute the largest clique with a new hyperedge until there
was no more new edges. We tested this procedure on the STA-coauthor,
and confirmed that all hyperedges were successfully reconstructed from
its graph representation.
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Table 6.1 shows some summary statistics of the datasets. It is important
to note that HEP-coauthor contains large collaborative research projects
such as accelerator physics (Kahn, 2017), and hence the average number
of co-authors per paper (i.e., the average size of hyperedges) is larger than
the other datasets.

6.1.2 Preferential Attachment in 13 Datasets

True

!" = $(&'( ")*+,
!" = ",..

!" = "/..

(a) (b)

FIGURE 6.1: Our proposed method can estimate the PA
function Ak from observed temporal hypergraphs without
any assumptions on the functional form of Ak. We gener-
ated synthetic hypergraphs from the Hyper PA model, and
applied our method to recover the PA function from the sim-
ulated data. (a): Hyper PA 1 with Ak = 3(log k)2 + 1 as the
true PA function. (b): Hyper PA 2 and Hyper PA 3 with
Ak = k0.5 and Ak = k1.5, respectively, as the true PA func-
tion. In the three functional forms, the method successfully
recovered the PA functions.

We first demonstrate that our estimation method works in some hy-
pergraphs generated from the Hyper PA model. We generated one hyper-
graph (Hyper PA 1) using the PA function Ak = 3 (log k)2 + 1, and two
other hypergraphs, namely, Hyper PA 2 and Hyper PA 3, using the PA
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function Ak = kα with α = 0.5 and α = 1.5, respectively. The former func-
tional form is also used in previous works (Inoue et al., 2020b; Pham et al.,
2015) to verify the nonparametric estimation of the PA function for graph
growth models. The latter log-linear form is a widely-used form for the PA
function Ad of Edge PA with degree d, as described in Section 5.2. When
applying the hypergraph generator of Algorithm 1 in Section 5.3.3, input
parameters other than Ak were determined from STA-coauthor in order
to generate realistic hypergraphs. Fig. 6.1 shows the estimation results for
each of the generated hypergraphs. Without making any assumptions on
the functional form of the PA function, each estimation result captured
reasonably the shape of the corresponding true PA function.
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FIGURE 6.2: Nonparametrically estimated PA values of Hy-
per PA in four real-world datasets: HEP-coauthor, STA-
coauthor, math-sx-user, and NDC-substances. The esti-
mated Ak are generally increasing, which implies the exis-
tence of preferential attachment in hypergraph growth. PA
exponent α calculated with the estimated PA values for all
datasets including the above four datasets are given in Ta-
ble 6.1.

We next estimated the PA function Ak by our proposed method in



84 Chapter 6. Real Data Analysis with HyperPA

all datasets. Fig. 6.2 illustrates the nonparametrically estimated values
of the PA functions of Hyper PA model in HEP-coauthor, STA-coauthor,
math-sx-user, and NDC-substances. The nonparametrically estimated Ak

in these datasets increase on average, which indicates the existence of
the PA effect. Furthermore, they are substantially linear in log-log scale.
Therefore, we also fitted the log-linear form Ak = kα with hyperdegree k to
the estimated Ak values and calculated the exponent α by the least-squares
method. The values of PA exponent α of Ak for all datasets are given in
Table 6.1. Since the estimated attachment exponents α are greater than 1 in
all co-authorship datasets and thread participants datasets, the PA effect is
superlinear in those datasets. And the values of α for the tagging datasets
and NDC datasets were all in the range of 0.9 to 1.2, and 0.77 for Eu-Email.
This result suggests the existence of the PA effect, particularly the strong
PA effect in the co-authorship datasets and thread participants datasets.
For example, in co-authorship data, the PA effect is that authors who have
written more papers in the past are more likely to write new papers in the
future.

In the 13 real-world datasets, we found that, while PA successfully cap-
tures first-order structures, it alone cannot explain the observed second-
order structures. Fig. 6.3(a) shows a remarkably high correlation between
the estimated attachment exponent α with the power-law exponent γ in
the real-world datasets. There is a theoretical reason for this high corre-
lation. In PA trees with Ak = kα, γ has been shown to be highly corre-
lated with α when α ≤ 1 (Krapivsky & Redner, 2001). Extrapolating this
result to our hypergraph-based growth model, it is reasonable to expect
that when the average size of hyperedges is not large, the degree distri-
bution of our model behaves similarly to that of a PA tree. This explains
the observed high correlation between α and γ when α is around 1. How-
ever, given α, one cannot infer too much about the clustering coefficient
C, as can be seen from the high variation of C in Fig. 6.3(b). This implies
that PA alone cannot explain second-order structures, which is expected
since PA is only a first-order mechanism. It is reasonable to expect that
second-order structures, such as the clustering coefficient C, also depend
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on various higher-order growth factors, such as the distributions of sizes
and numbers of hyperedges at each time-step.

6.1.3 Evaluation of Goodness-of-fit for Second-order Struc-

tures

In this section we perform additional experiments to compare the pro-
posed Hyper PA model with some baseline models in reproducing second-
order structures in the observed data. As in Section 5.2.2, in addition to
Edge PA and Hyper PA models, we also consider the Hyper Uniform
model. This special case of the Hyper PA model uniformly adds hyper-
edges, i.e., the PA function in Hyper Uniform is Ak = 1 for all hyperde-
gree k. As already described in Section 5.2.2, we will adopt a simulation-
based approach to investigate the goodness-of-fit of the models. Specif-
ically, we will generate networks from each model and compare several
important statistics of the generated data to those of the real-world data.
In each dataset, Hyper PA incorporates Ak estimated in the previous sec-
tion, and Edge PA incorporates Ad obtained from a nonparametric esti-
mation method (Pham et al., 2015). Since Edge PA generates graphs, we
converted hypergraphs generated by Hyper PA and Hyper Uniform into
graphs for comparison.

One of the most important graph properties often found in real-world
networks is triangle-rich, which is manifested as a high value of the clus-
tering coefficient (Bianconi et al., 2014; Newman, 2001a). We here examine
the distribution of the number of triangles that each node has. We denote
the number of triplets of node i as:

∆i = ∑
j,l

xi,jxj,lxl,i,

where xi,j = 1 indicates the presence of edges between i and j, whereas
xi,j = 0 indicates the absence of edges. Fig. 6.4 shows the observed and
simulated cumulative probabilities of the numbers of triplets in represen-
tative cases when Hyper PA succeeded and when it failed. When Hyper
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FIGURE 6.4: Observed and simulated cumulative proba-
bility distributions of the numbers of triplets in some rep-
resentative datasets. For each of 13 datasets, we gener-
ate 10 graphs by Edge PA, and 10 hypergraphs by Hyper
PA and Hyper Uniform, respectively. The generated hy-
pergraphs are converted into graphs for comparison. The
average values over 10 simulations are compared with the
observed distributions. To illustrate, we show the ob-
served and simulated distributions for four representative
datasets: HEP-coauthor, STA-coauthor, math-sx-user, and
NDC-substances. The quantitative comparison results for
all datasets are given in Table 6.1. In datasets where Hyper
PA is the best, Edge PA often over-estimates in the region of
small numbers of triplets, as can be seen in HEP-coauthor,
STA-coauthor, and math-sx-user. This is expected, since the
independence of edges in Edge PA makes it more prone to
produce nodes with a small number of triplets. For NDC-
substances, Hyper PA and Hyper Uniform failed by under-
estimating in the region of low number of triplets, while
Edge PA performed well.
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PA succeeded, Edge PA often over-estimated the region of small number
of triplets, which may be caused by the edge independence assumption
in Edge PA. When Hyper PA failed, it often under-estimated the region of
small number of triplets. Table 6.1 shows a quantitative comparison for all
datasets using Etriplet, which is calculated as follows:

Etriplet =
1

Nbin

Nbin

∑
n=1

∣∣pobs(∆
′
n)− psim(∆′n)

∣∣ ,

where Nbin is the number of logarithmic bins, and pobs and psim are the
probability distributions of the numbers of triplets in real-world data and
simulation data, respectively. We note that ∆′1, . . . , ∆′Nbin

are the logarith-
mic binning of ∆, and we describe the result with Nbin = 10 in Table 6.1.
Hyper PA provided the best fit in 10 datasets, whereas Edge PA and Hyper
Uniform prevailed in the remaining three.

For closer inspection, we investigate the density of triangles around
nodes, i.e., the local clustering coefficient. The high density of triangles
in low-degree nodes is a signature property of many real-world networks.
This property is also important since it may make practical tasks such as
low-dimensional embedding more difficult (Seshadhri et al., 2020). The
local clustering coefficient of node i with degree di is

Ci =


2∆i

di(di−1) (di ≥ 2)

0 (di = 0, 1).

The average of Ci over all nodes in a graph is called the clustering coeffi-
cient. We analyze the distribution of Ci averaged over nodes that has the
same degree d:

C(d) =
1

Nd
∑

i∈Vd

Ci, (6.1)

where the set Vd is all nodes with degrees d in a graph, and Nd is the
number of nodes in Vd. Fig. 6.5 shows the observed and simulated dis-
tributions C(d) for some representative datasets. Hyper PA succeeded
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FIGURE 6.5: Observed and simulated local clustering coef-
ficients averaged over nodes with degree d in some repre-
sentative datasets. See Fig. 6.4 for simulation settings. To il-
lustrate, we show the observed and simulated C(d) for four
representative datasets: HEP-coauthor, STA-coauthor, math-
sx-user, and NDC-substances. The quantitative comparison
results for all datasets are given in Table 6.1. In these four
datasets, Hyper PA succeeded in replicating the signature
decreasing of C(d) when d increases. Edge PA often under-
estimated C(d), especially in the region of low d.

in reproducing the signature decreasing of C(d) when d increases, while



90 Chapter 6. Real Data Analysis with HyperPA

Edge PA under-estimated C(d), especially in the region of low d. Table 6.1
shows a quantitative comparison in all the 13 datasets using Elocal, which
is calculated as follows:

Elocal =
1

Nbin

Nbin

∑
n=1

∣∣Cobs(d′n)− Csim(d′n)
∣∣ ,

where Nbin is the number of logarithmic bins, and Cobs and Csim are (6.1)
of observed and simulated data, respectively. We note that d′1, . . . , d′Nbin

are
the logarithmic binning of d, and we describe the result with Nbin = 10 in
Table 6.1. Out of the 13 datasets, Hyper PA provided the best fit in all.
Hyper Uniform prevailed over Edge PA in 11 datasets, in spite of the fact
that Hyper Uniform uses a constant PA function, while Edge PA estimates
the PA function from data. Even though the number of parameters in
Hyper Uniform is zero, it has a better fit than Edge PA, which uses the
estimation results as parameters. This suggests that the good fit of Hyper
PA is more than just overfitting. These results highlight the importance
of incorporating hyperedge information. Taking into accounts the results
in Section 5.2.2, Hyper PA replicates well various first-order and second-
order structures in all datasets.

6.1.4 Further Discussions

Some words are needed to bound the scope of our proposed hypergraph
growth model. While our model does not allow the deletion of nodes and
edges in the temporal network, it is indeed natural for nodes or edges to
disappear in some network types. For example, an author may become
inactive in co-authorship networks, while in relationship networks a re-
lationship edge may be dissolved after some years. Our model also as-
sumes that the PA function does not change with time. However, in co-
authorship networks it is not unreasonable to expect that yearly advance-
ments in communication and transportation technologies, which poten-
tially ease how collaborations are formed and maintained, may make the
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PA function change with time. Even for those types of networks, the pro-
posed growth model can still be a viable approximation for the growth
of the network in a short time span, e.g., five to ten years, where one can
reasonably assume that the disappearances of nodes and edges, as well as
any temporal change in the PA function, are negligible.

Our approach can potentially be used in predicting properties of a tem-
poral network in the future. Some common network properties that are
of potential interest are local properties such as degree and betweenness
centrality of a node or global properties such as the diameter of a net-
work (Yang et al., 2014). In principle, by using a probabilistic generative
model such as our proposed hypergraph-based model, one can get infor-
mation about any network property at a specific time in the future in the
form of probability distributions. In order to do this, one uses the fitted
model to generate multiple simulated networks at that specific time in the
future, and calculates the empirical probability distribution of the prop-
erty of interest in these simulated networks.

6.2 Conclusion

In this part, we have provided a proposed statistical method for estimat-
ing the preferential attachment in temporal hypergraphs. We also derived
the conditional probability and the recursive formula that stabilize and
accelerate the estimation on the hypergraph model. The analysis of the
real-world datasets showed that the PA function of the hypergraph model
had a similar form to that of the graph model in previous works. Further-
more, we demonstrated that our hypergraph PA growth model has advan-
tages over conventional graph-based models in that it can better capture
the first-order and second-order structures around each node.

Investigating the trade-offs of graph models, such as simplification
by pairwise relationships, can provide valuable insight when consider-
ing which structures to choose for real-world complex systems: graphs,
hypergraphs, or others. Future work includes more scrutiny of growth
mechanisms in hypergraph models. In the case of functions using node
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features such as hyperdegree in our model, the computational complexity
of the likelihood function can be similarly reduced by utilizing the pro-
posed recursive formula. For example, the log-likelihood function can be
efficiently computed when (5.2) is modified to

PB(t) ∝ ∏
i∈B

Aki(t) fi,

where fi is the “fitness” parameter of node i (Pham et al., 2016). However,
in the case of features that use dyadic relations, such as common neighbor
nodes between a node pair, or features defined for a node set, the recur-
sive formula can not be directly applied. Therefore, when extending the
method to higher-order features, it will be necessary to solve the combina-
torial computation problem, which hypergraph models often face.
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Conclusion and Future Directions
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we have discussed the modeling of PA in complex networks
which have local community structures and the statistical inference of the
growth functions to address the issues of the conventional graph-based
PA models. In this thesis, we have discussed the modeling and statistical
inference of the growth functions of PA in complex networks which have
local community structures. In Chapter 1, we provided the motivation and
overview of this thesis. We then described the background knowledge of
the network growth models related to Parts I and II in Chapter 2. In Parts I
and II, we considered the following issues:

7.1.1 Issues

(1) The scale-free degree distribution and the high value of the cluster-
ing coefficient are often observed simultaneously in real-world com-
plex networks. PA and transitivity, the classic and simple mecha-
nisms, are widely used to explain the formation of the heavy tail of
the degree distribution and the high clustering, respectively. Since
one of the above simple mechanisms is not well suited to capture
both features, many existing studies have attempted to reveal the
driving force behind the formation of the two features by consider-
ing both PA and transitivity. The estimation of PA and transitivity in
existing studies can be classified into the following two categories,
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each of which has its own problems. Existing approaches either esti-
mate one mechanism in isolation (Jeong et al., 2003; Newman, 2001a;
Pham et al., 2015) or jointly estimate both mechanisms assuming
some functional forms (Krivitsky & Handcock, 2019; Ripley et al.,
2018). They each have the problems of poor fitting or risks losing the
fine details of the two phenomena. Thus, statistically sound methods
are needed to answer the questions: Do PA and transitivity co-exist
in the growth of real-world complex networks? If they co-exist, how
can we compare the effect of the two?

(2) Graphs have been widely utilized to represent pairwise interactions
between individuals and their dynamics in various domains. How-
ever, in some real-world data, the collectivity of interactions is lost
when expressed in graphs. Since group interactions such as co-authorship
may contain more than two individuals, in graph expression, each
of them is decomposed into multiple edges: the pre-specification of
pairwise relationships. Most of the existing growth models for com-
plex networks rely on graph representations and thus fail to capture
the feature caused by group interactions in the growth process. Ex-
isting hypergraph models of temporal complex networks often em-
ploy some data-independent growth mechanism, which is the linear
PA in most cases (Do et al., 2020; Lee et al., 2021; Liu et al., 2014). In
principle, this pre-specification is undesirable since it completely ig-
nores the data at hand. Thus, modelings which are free from the pre-
specifications need to be considered to answer the questions: Is the
graph-based growth model most suitable for representing networks
with group interactions? Isn’t there any drawback to graph-based
PA that has still not been apparent?

To address the above issues, we provided the following contributions:

7.1.2 Contributions

(a) We discussed the issue (1) in Part I. We proposed a method for the
non-parametric joint estimation of PA and transitivity in complex
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networks, as opposite to conventional methods that either estimate
one mechanism in isolation or jointly estimate both assuming some
functional forms. We also derived an efficient MM algorithm that
iteratively updates the estimates. We apply our method to two sci-
entific co-authorship networks: the authors in the Strategic Manage-
ment Journal and the statistics field. Our non-parametric method
revealed complex trends of PA and transitivity that would be un-
available under conventional parametric approaches. In both net-
works, having one common collaborator with another scientist in-
creases at least 60 times the chance that one will collaborate with
that scientist. Finally, by quantifying the contribution of each mech-
anism, we found that transitivity dominates preferential attachment
in the two networks. We also developed a publicly available R pack-
age FoFaF (Inoue et al., 2020a).

(b) We discussed the issue (2) in Part II. We proposed a hypergraph ap-
proach for estimating the function that determines the growth of
real-world hypergraphs and generating hypergraphs with the esti-
mated functions. We used PA for our hypergraph growth model and
presented a maximum likelihood estimation for the function. We
analyzed 13 real-world networks, and the results suggest the exis-
tence of PA growth in real-world hypergraphs. We also found the
advantages of combining PA with hypergraph growth in terms of
the first-order and second-order structures. We also derived a recur-
sive formula and a conditional probability that significantly reduce
the computational cost of our model and the selection bias of new-
comer nodes in analyzing hypergraphs, respectively. Even the spe-
cial case of the proposed hypergraph model, which adds hyperedges
to uniformly chosen nodes, outperformed the graph PA model in re-
producing second-order structures of graphs. We also developed a
publicly available R package HyperPA (Inoue et al., 2022).



98 Chapter 7. Conclusion

7.2 Future Directions

Finally, we list the future directions for the modeling and statistical infer-
ence of the PA growth models discussed in this thesis.

Time-invariability Test of Growth Mechanisms

The first future direction is verifying the time-invariability of the growth
functions. The growth models discussed in both Chapter 3 and Chap-
ter 5 assume time-invariance of the growth function that determines PA
and transitivity. In Section 4.1.4, we tested this assumption on real data
and confirmed that the influence of time points on the estimation results
is small for the two co-author network datasets used in the experiment.
However, testing this on networks of various types or networks collected
over longer time periods would help us to better understand the nature of
growth mechanisms in the real-world. One way to perform this analysis
is adapting the time-invariability test also used in stochastic actor-based
models (Lospinoso et al., 2011).

Directed Networks

Secondly, there is future work to consider directions or orders in the inter-
actions of network data. For example, in social network field, it is difficult
to observe the direction of the co-authorship relationship in co-authorship
networks, but the directions can be easily obtained from some domains
such as citation networks of scientific papers or friendship networks on
Twitter. In this thesis, we did not exploit the directions or orders of the
interactions in the complex network data. That is, in the case of graphs,
we considered undirected graphs, which do not have the directions on
edges. In the case of hypergraphs, we considered undirected hypergraphs,
where a set of nodes included in a hyperedge does not have any order. The
PA functions of directed graphs have already been discussed in previous
works since only two patterns, in-degree and out-degree, need to be con-
sidered. However, the estimation of the growth function of the following
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situations has not yet been discussed. The directed version of transitiv-
ity is more complicated than PA since all the direction of the edge among
three nodes needs to be considered. In directed hypergraphs, estimating
growth functions is more complex because one hyperedge may contain
more than three nodes. Since a hyperedge can contain more than three
nodes, even PA needs new frameworks for the growth of directed hyper-
graphs.

Generalizing the Growth Mechanism of Hypergraph Mod-

els

The third possible future direction is to consider growth mechanisms other
than PA to the hypergraph growth mechanisms discussed in Part II. In our
Hyper PA model (5.2), the probability of growth was defined only by the
hyperdegree. If a feature θi is defined for each node i, its PA function Aθ

can be estimated by the same procedure as Hyper PA, and this would be
a promising extension. On the other hand, a feature θ′ij defined between
two nodes i, j, such as the number of common neighbors bij of transitiv-
ity in Chapter 3, cannot be directly adopted into our model. When using
such features that are defined between two or more nodes, it is necessary
to consider a new scheme of acceleration for maximum likelihood esti-
mation, such as the recursive formula proposed in Section 5.3.1. Another
challenging direction is to consider the hyperedge size m in the growth
mechanisms defined for each node. This would require estimating a func-
tion of m for each node, which would be an advanced version of the fitness
mechanism (Pham et al., 2016), and it would be difficult to estimate them.
However, if this becomes possible, it is expected that the model can cap-
ture the growth characteristics between the mass and individual, for ex-
ample, researchers who are good at single-author research and researchers
who are good at collaborative research in co-authorship networks.
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