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1 General Introduction

Chapter 1

General Introduction

1.1 Introductory Remark

Silicon (Si) wafers are raw materials for semiconductors, which are vital components

of most electronic goods, including computers, telecommunication products, and con-

sumer electronics. SEMI Silicon Manufacturers’ Group (SMG) reported that worldwide

Si wafer area shipments in 2020 are 1.3 times larger than that in 2010 and 1.05 times

larger than that in 2019 [1]. SMG also reported that the shipments increased 6% to 3,534

million square inches in the second quarter of 2021, surpassing the historical high set in

the first quarter, and second quarter 2021 Si wafer shipments grew 12% from the 3,152

million square inches recorded during the same quarter last year [2]. Worldwide Semi-

conductor Trade Statistics (WSTS) forecasted that the global semiconductor market

would grow from 6.8 percent in 2020 to 19.7 percent in 2021. [3]. Demand for semi-

conductors has been growing due to the increasing demand for personal computers and

tablet devices as people spend more time at home. The widespread of 5G smartphones

and an increase in capital investment demand for cloud services and other infrastructure

also influence the demand for semiconductors. However, a shortage of semiconductors

has been an issue, affecting the production of semiconductor-related products such as
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1 General Introduction 1.2. Czochralski process

motor vehicles. Although investments are being made to enhance manufacturing capac-

ity around the world, it takes at least one year to start running a new production line,

and even after the start, the lead time for semiconductor production is said to be three

to six months.

Semiconductors are manufactured by forming electronic circuits on Si wafers. Si

wafers are produced in only one way: by slicing Si ingots [4]. Manufacturing high-quality

ingots with high efficiency is essential to obtain high-quality Si wafers efficiently.

In the field of monosilicon crystal growth, two methods have been well established:

the Czochralski (CZ) and the floating zone (FZ) methods. The CZ method has produced

more than 95% of monocrystalline Si in the current semiconductor industry, while the

FZ method is only used for niche products such as high power devise because the FZ

method can produce a lower oxygen content crystal [5–7].

1.2 Czochralski process

The CZ process is a method to produce Si ingots developed by Jan Czochralski and has

become the most dominant method for producing monocrystalline Si ingots [4].

A schematic diagram of the CZ process is shown in Fig. 1.1. In the furnace, a quartz

crucible is surrounded by a heater and shield. Polycrystalline Si is first charged into the

crucible and melted by the heater. Then, a seed of the crystal is attached to the surface

of the melt. The crystal starts to grow when the seed is pulled up. Due to the surface

tension between the seed and the melt, a meniscus section, which is a thin film of the

melt, is formed. The crystal grows at the solid-liquid interface, which is the top of the

meniscus section. During the crystal growth, the crucible and the crystal are rotated in

opposite directions. The crystal consists of three parts: the neck part, the body of the

crystal, and the tail part.

This dissertation focuses on the production of the ingot body, which requires a longer
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1 General Introduction 1.2. Czochralski process

time than the production of the other parts. During the ingot body production, keeping

the crystal radius and growth rate constant is crucial to produce defect-free crystals and

reduce the loss in the subsequent process. It is also necessary to control the position

of the melt so that the thermal environment around the solid-liquid interface does not

change rapidly. In the industrial CZ process, the desired quality of the product is

obtained by manipulating three variables: the power input to the heater, the crystal

pulling rate, and the crucible rise rate.

The larger size of the Si wafer enables the production of more chips; if the diameter is

increased by a factor of 1.5, the surface area is increased by a factor of 2.25. In addition,

the larger diameter reduces the dead space around the wafer and the area of fluctuation

around the wafer during manufacturing. The fact will further increase the number of

chips obtained from one wafer. For these reasons, the diameter of the Si wafer has

been increasing along with the progress of manufacturing technology. At the beginning

of the 1970s, the diameter was at 50 mm, and this had reached 100mm in 1980, then

200 mm in 1990, and 300 mm in 1995 [8]. Although the production of 300mm wafers

became possible in 1995, mass production of 300mm wafers is started in 2001 [9]. The

CZ process can produce an ingot up to 450 mm in diameter, which weighs about 800

Fig. 1.1: Schematic diagram of the CZ process.
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1 General Introduction 1.3. Control method of CZ process

Fig. 1.2: Block flow diagram of the industrial Czochralski process. Manipulated vari-
ables are P , vp, and vc. Controlled variables are the heater temperature Th, the crystal
radius rcry, and the melt position pmel. Subscripts set and profile denote a set-point and
a profile. rmel, ρcry, and ρmel denote the radius of the melt surface, the crystal density,
and the melt density, respectively.

kg and takes three days to grow [7]. Currently, 200 and 300 mm-diameter crystals have

become standard for various devices because they can stably provide a huge amount of

high-quality wafers at low cost [10].

1.3 Control method of CZ process

The block flow diagram of the current industrial CZ process is represented in Fig. 1.2,

where subscripts set and profile mean a set-point and profile. The crystal radius rcry,

the heater temperature Th, and the melt position pmel are controlled by manipulating

the crystal pulling rate vp, the crucible rise rate vc, and the heater input power P . pmel

is a distance between the melt surface and the bottom of the shield above the melt.
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1 General Introduction 1.3. Control method of CZ process

The crystal growth rate vg cannot be measured in real time; thus, vp is manipulated to

track the predetermined value vp,profile in order to control vg. The melt surface radius

rmel changes as the crystal grows since the crucible is bowl-shaped. ρcry and ρmel are

the density of the crystal and melt.

The CZ process is characterized by a long time constant between P and the controlled

variables (CVs). Also, the input-output relationship changes over time due to the

decrease in melt volume with crystal growth, and the relationship is nonlinear because

the radiative heat transfer is dominant in the furnace. When designing a control system

of the CZ process, it is also essential to consider that the transfer functions from the

manipulated variables (MVs) to the CVs have different time constants. Specifically,

changes in vp and vc affect the CVs faster than P . There is a desire to produce higher

quality 300mm Si wafers at a lower cost for the application of the 300mm Si wafers

to power devices [10]. However, the conventional control method based on PID control

cannot significantly improve its control performance because of the nonlinear and time-

varying characteristics.

Several control methods have been developed to achieve higher control performance.

Gevelber et al. proposed a model-based multi-loop control system [11–14]. They in-

vestigated the importance of controlling the shape of the interface in addition to rcry

in terms of minimizing the number of crystal defects. The model was constructed to

reflect the effect of radiation heat transfer in the furnace, and a control structure was

developed to realize both rcry and the shape of the interface.

Another approach is developed by Winkler et al. [15, 16]. Their approach is based on

the fact that it is easier to derive a sufficiently accurate model of meniscus dynamics

than to build a sufficiently accurate thermal behavior model. Using the model of the

meniscus dynamics, the model-based controller calculates the desired value of vp/vg, the

ratio of vp to vg. They positioned PID controllers around this model-based controller

and manipulated vp and P .
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1 General Introduction 1.3. Control method of CZ process

There also exist studies using the control structure of the industrial CZ process.

The control performance of the industrial control structure depends on the feedforward

trajectories of vp and Th. Lee et al. [17] and Zhang et al. [18] utilized a model to

determine a feedforward trajectory of Th in the traditional control structure.

The studies mentioned above are based on the lumped parameter model, while sev-

eral studies developed distributed parameter models [19–21]. However, it is difficult

to use these methods in practice because the MVs in these models are also spatially

distributed [22].

Some of the previous studies utilize statistical models. Ren et al. [23] constructed a

deep neural network by combining a stacked autoencoder and a long short-term memory

(LSTM) network to capture the features and dynamics of the crystal growth. They used

the model to design two controllers, which control rcry and Th by manipulating vp and P ,

respectively. Ren et al. [24] developed a Hammerstein-Wiener model based on an LSTM

network for the energy transfer process and combined the model with the hydrodynamic

and geometric model. They applied the model to the control of rcry and verified the

effectiveness.

Considering the nonlinearity and time delay of the CZ process, model predictive con-

trol (MPC) is expected to achieve higher control performance than the conventional PID

control. Irizarry-Rivera and Seider [25, 26] developed two model predictive controllers:

one controls rcry by manipulating vp, and the other controls vp by manipulating P .

Abdollahi et al. [27] derived the optimal temperature trajectory using quadratic pro-

gramming and then implemented an MPC strategy to track the optimal temperature.

Rahmanpour et al. [28, 29] developed a control strategy with two model predictive

controllers to control rcry and melt temperature Tmel.

Recent several studies on MPC use statistical models. Liu et al. [30] built a stacked

sparse autoencoder model with the input as rcry and the output as Th. They then

desigend a control structure in which rcry and Th are controlled by manipulating P with
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1 General Introduction 1.4. Thesis Objectives

constant vp. Wan et al. [31] proposed a soft-sensor estimating vg/G, a ratio of vg to the

axial temperature gradient at the solid-liquid interface G. They also designed a dual

closed-loop control strategy to control rcry and vg/G. The CZ process is a batch process;

thus, the operating conditions are different in each batch. Besides, the heat transfer

from the heater varies with time because the melt volume and crystal length vary

with time. The data covering these changes need to be prepared to achieve acceptable

performance in the statistical model-based MPC. In addition, if the parameters in the

statistical models are not set properly or the model is not well-tuned, the predictive

performance of the model will deteriorate. In general, there is no fixed rule for tuning

these parameters, and in most cases, these parameters are determined by trial and

error [30].

1.4 Thesis Objectives

The industrial CZ processes mainly produce Si ingots with a diameter of 300 mm;

however, there have been few studies [17, 18] on the process for 300mm-diameter ingot

production. Although Zheng et al. [32] developed a first-principle model to predict

rcry and vg from P , vp, and vc in the process producing 300mm Si ingots, there have

been no model predicting the three variables (rcry, vg, and Th). In the first-principle

model, the values of variables that cannot be measured at the start of the prediction

are determined by trial-and-error, and thereby, highly accurate predictions can be made

only in a limited period.

This dissertation aims to develop an MPC system for the industrial CZ process with

higher control performance than the conventional control system. First, a gray-box

model is developed by improving the first-principle model proposed by Zheng et al.

[32]. Then, a nonlinear MPC method based on the gray-box model is developed. We

further develop a method for updating the prediction model to achieve high disturbance
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1 General Introduction 1.4. Thesis Objectives

rejection performance even when a large plant-model mismatch exists.

The structure of this dissertation is shown below.

In Chapter 2, we describe the gray-box modeling of the CZ process. First, a review of

conventional models and the issues of the models are presented. To solve the issues, we

construct a statistical model estimating the variable that highly affects the prediction

accuracy of the CVs. We also propose a method for determining unmeasured variables,

which is the reason for the limited validation data in the previous study [32]. The

prediction accuracy of the proposed gray-box model and the conventional first-principle

model is verified using four ingot production data.

The model can predict the CVs with high accuracy, but it consists of high-dimensional

complex differential-algebraic equations. Therefore, it is difficult to solve the optimiza-

tion problem in the nonlinear MPC scheme using the gray-box model. To deal with the

challenge, we apply successive linearization proposed by Meǵıas et al. [33] and propose

the control method based on the gray-box model in Chapter 3. We compare the dis-

turbance rejection performance of the proposed method with that of the conventional

control method used in the industrial CZ process through simulations.

In Chapter 3, we conduct simulations with a plant-model mismatch: one of the pa-

rameters in the prediction model is 5 or 10% different from that in the controlled process.

In practical applications, there would exist a more significant plant-model mismatch.

Hence, in Chapter 4, we propose a method for successively updating the prediction

model based on moving horizon estimation. The effectiveness of the model update is

verified by comparing the gray-box model-based predictive control methods with and

without a model update.

In Chapter 5, the general conclusion ― the summarization of this dissertation and

the future perspectives ― is presented.

8



2 Gray-box modeling of the Czochralski process

Chapter 2

Gray-box modeling of the Czochralski

process

2.1 Introduction

Table 2.1 summarizes the models of CZ processes for the control system design in previ-

ous studies. Gevelber and Stephanopoulos [34] developed a physical model representing

the relationship between P , vp, and rcry. Winkler et al. [15, 16] and Neubert and

Winkler [35] derived a physical model representing the relationship between vp, vc, and

rcry, by taking into account the mass balance and geometric relationship. Satunkin

[36] developed a model based on the mass conservation law, the heat balance, and the

thermodynamic equilibrium condition at the three-phase line, with vp and melt tem-

perature Tmel as inputs and rcry and meniscus height hmen as outputs. Abdollahi and

Dubljevic [37] and Abdollahi et al. [27] constructed a physical model to represent the

relationship between P , vp, rcry, and Tmel, considering the radiative heat transfer from

the heater and the conductive heat transfer in the crystal. Rahmanpour et al. [28] de-

veloped a simple model with fewer states and parameters than the above models, with

P and vp as inputs and rcry and Tmel as outputs. All of the above models were built for

9



2 Gray-box modeling of the Czochralski process 2.1. Introduction

Table 2.1: Input and output variables and the target crystal diameter of the models
built for the control system design of the CZ process in previous studies. The model
type is either physical (P), statistical (S), or gray-box (G).

Reference Model
type

Input
variable

Output
variable

Crystal
diameter [mm]

[34] P P , vp rcry 40
[15, 16, 35] P vp, vc rcry 55

[36] P vp, Tmel rcry, hmen 80
[37, 38] P P , vp rcry, Tmel 100
[28] P P , vp rcry, Tmel 160
[17] S Th vp 200, 300
[18] S Th vp 300
[32] P P , vp, vc rcry, vg 300

Present study G P , vp, vc rcry, vg, Th 300

ingot production processes with a diameter of less than 200mm. Since 300mm diameter

single-crystal silicon ingots are currently mass-produced, a model that can represent the

dynamic characteristics of the industrial-scale CZ process is required [10]. Lee et al. [17]

and Zhang et al. [18] constructed models whose input and output are Th and vp. Zheng

et al. [32] developed a first-principle model to compute rcry and vg from P , vp, and vc

for a process to produce 300mm diameter single-crystal silicon ingots, and showed that

the model simulated rcry and vg with high accuracy using real process data.

None of the previous models can accurately predict four controlled variables (CVs):

rcry, vg, Th, and pmel. We can predict pmel with high accuracy if vg and rcry are

predicted with high accuracy because pmel can be calculated from the mass balance of

silicon. Thus, the objective of the present study is to develop a model to accurately

estimate the three CVs (rcry, vg, and Th) from the three manipulated variables of the

CZ process.

A gray-box model, which integrates the first-principle and statistical models, has

been widely used in process industries [39]. The prediction accuracy of the first-principle

model can be improved by updating a part of its parameters based on available data [40].

In this study, we focus on the temperature gradient at the solid-liquid interface Gcry,

10



2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

which is constant in [32] and highly affects the prediction accuracy of the CVs. Although

Gcry cannot be measured in the real process, we calculate Gcry using the first-principle

model and the quasi-steady-state assumption, which was used to simplify the complex

differential-algebraic equations in [41]. Although the CZ process is a batch process, the

operating conditions do not differ significantly from batch to batch. If the operating

conditions are similar, the corresponding values of Gcry should also be similar. Besides,

the relationship between Gcry and process variables is nonlinear. Based on the above

considerations, we use Gaussian Process Regression (GPR) [42] as the statistical model

building method. We finally build a gray-box model by integrating the first-principle

model and the statistical model.

There has been another issue that the values of some of the unmeasurable variables

at the start of the prediction are determined by trial-and-error, and thereby, accurate

predictions can be made only in a limited period [32]. At the start of the prediction,

if the crystal radius has been maintained as constant so that a cylinder suffices to

describe the shape of the crystal, the quasi-steady-state assumption can be used [41].

In this study, we use data from the production of the body growth part; hence, we

adopted the method of calculating the values of the unmeasured variables using the

above assumption. The prediction accuracy of the proposed gray-box model and the

conventional first-principle model is verified using four ingot production data.

Throughout this paper, the first-principle model consisting of an energy transfer

model and a hydrodynamic and geometrical model is called the EHG model, and the

proposed model is called the gray-box EHG (gray-EHG) model.

2.2 EHG model of CZ process

Figire 2.1 shows the structure of the EHG model. In the energy transfer model, the

crystal growth rate vg is calculated from the heater input power P , the crystal pulling

11



2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

rate vp, and the crucible rise rate vc. In the hydrodynamic and geometrical model, the

crystal radius rcry at the solid-liquid interface is calculated from vp, vc, and vg. Details

of each model are given in the following sections.

2.2.1 Energy transfer model

As shown in Fig. 2.2, the CZ process is assumed to consist of nine components: a

furnace wall, a crucible, a heater, a shield, a furnace bottom, melt, a meniscus section,

a crystal, and an environment. The shield, the heater, and the crucible are divided

into upper, middle, and lower parts. The height of each part is determined by the melt

surface position and the crucible bottom position. The upper part, the middle part, and

the lower part are represented by 1, 2, and 3, respectively. The energy balance of the

crucible, the heater, the shield, the furnace bottom, the melt, and the meniscus section

is calculated from the radiative heat transfer, conductive heat transfer, and heater input

power. Qi,j is the radiative heat transfer from component i to component j, denoted by

the solid arrow. Q∗
i,j is the conductive heat transfer from component i to component j,

indicated by the dotted arrow. Each heat transfer is calculated using the tepmerature

of the components i and j. Subscripts “c,” “h,” “s,” “b,” “mel,” “men,” “cry,” and “e”

mean the crucible, the heater, the shield, the furnace bottom, the melt, the meniscus

section, the crystal, and the environment, respectively. In the energy transfer model,

Fig. 2.1: Structure of the EHG model.
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2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

Fig. 2.2: Heat transfer calculated in the energy transfer model.

the temperature at the middle part and the lower part of the heater, Th(2) and Th(3), are

the same. The variables representing the radius r and the height h of each cylindrical

component of the CZ process are shown in Fig. 2.3, in which “in” and “out” represent

the inside and outside parts. The amount of melt decreases with crystal growth, and

the crucible rises to maintain a fixed position of the melt surface. Therefore, the upper,

middle, and lower heights and the radius of the melt surface vary with the change of

the melt surface position and the crucible position.

A quasi-steady state is assumed for the temperature of the shield, the crucible, and

the furnace bottom to reduce the complexity and computational cost. Based on the

assumption, the energy balance at the shield, the crucible, and the furnace bottom are

13



2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

Fig. 2.3: Definition of the radius and the height of each component of the Czochralski
process.

expressed by

Qh(k),s(k) −Q∗
s(k),e = 0 (k = 1, 2, 3), (2.1)

Qh(1),c(1) −Qc(1),mel −Qc(1),e = 0, (2.2)

Qh(2),c(2) −Q∗
c(2),mel = 0, (2.3)

Qh(3),c(3) −Q∗
c(3),mel −Qc(3),b = 0, (2.4)

Qh(3),b +Qc(3),b −Q∗
b,e = 0. (2.5)

The energy balance of the heater is given by

Ch

dhh(1)Th(1)

dt
= P(1) −Qh(1),s(1) −Qh(1),e +Q∗

h(2),h(1)

+ Ch

(
(1− δh)Th(1)

dhh(1)

dt
+ δhTh(2)

dhh(1)

dt

)
,

(2.6)

14



2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

Ch

d
(
hh(2) + hh(3)

)
Th(2)

dt
=

3∑
k=2

(
P(k) −Qh(k),s(k) −Qh(k),c(k)

)
−Q∗

h(2),h(1) −Qh(3),b

− Ch

(
(1− δh)Th(1)

dhh(1)

dt
+ δhTh(2)

dhh(1)

dt

)
,

(2.7)

Ch = chρhπ
(
r2h(out) − r2h(in)

)
, (2.8)

P(k) =
hh(k)

hh
P =

hh(k)

hh(1) + hh(2) + hh(3)
P (k = 1, 2, 3), (2.9)

δh =


1

(
dhh(1)

dt ≥ 0
)

0
(

dhh(1)

dt < 0
) , (2.10)

where Ti(k) is the temperature of the part i of the component k. ch and ρh are the

specific heat and the density of the heater.

The energy balance of the melt can be described as follows:

cmelmmel
dTmel

dt
= Qc(1),mel +Q∗

c(2),mel +Q∗
c(3),mel −Qmel,e −Q∗

mel,men, (2.11)

where cmel, mmel, and Tmel are the specific capacity, the mass, and the temperature of

the melt.

In the energy transfer model, the axial temperature gradient in the meniscus section

is constant, and the radial temperature gradient is zero inside the meniscus section and

the crystal. The crystal growth rate then can be expressed as follows from the energy

15



2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

Table 2.2: Parameters used in the energy transfer model.

Variable Description unit Value

chρh Heat capacity per unit volume of heater J m−3 K−1 3.6× 106

rh(out) Outer radius of heater m 0.480
rh(in) Inner radius of heater m 0.450
hh Height of heater m 0.640
cmel Heat capacity of melt J kg−1 K−1 1040
kmen Heat conductivity of meniscus section W m−1 K−1 67.0
kcry Heat conductivity of crystal W m−1 K−1 21.6
ρcry Density of crystal kg m−3 2330
∆Hf Specific latent heat of fusion for silicon J kg−1 K−1 1.65× 106

T ∗ Crystallization point of silicon K 1685

balance at the solid-liquid interface between the meniscus section and the crystal:

vg =
kmenGmen − kcryGcry

ρcry∆Hf
, (2.12)

Gmen = −Tmel − T ∗

hmen
, (2.13)

where kmen and kcry are the heat conductivity of the meniscus section and the crystal.

Gmen and Gcry are the axial thermal gradients of the meniscus section and the crystal

at the solid-liquid interface, ρcry is the density of the crystal, and ∆Hf is the specific

latent heat of fusion for silicon. T ∗ is the crystallization point of silicon equal to the

temperature at the solid-liquid interface. In the energy transfer model, kmen, kcry, ρcry,

∆Hf , T
∗, and Gcry are constant. The meniscus height hmen is calculated with the

hydrodynamic and geometrical model explained in Section 2.2.2.

The parameters used in the energy transfer model are shown in Table 2.2. The details

of the energy transfer model are described by Zheng et al. [32].
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2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

Fig. 2.4: Geometrical relationship around the solid-liquid interface.

2.2.2 Hydrodynamic and geometrical model

As shown in Fig. 2.4, rcry is expressed by the following equation using vg and the crystal

slope angle φ [34]:

drcry
dt

= vg tan (φ) . (2.14)

Equation (2.14) denotes that φ determines the direction of change in rcry, since normally

vg > 0. The crystal slope angle φ is expressed by the mass balance at the meniscus as

follows:

dφ

dt
=
vp − vc − ψ1(rcry, φ)vg

ψ2(rcry, φ)
, (2.15)

where ψ1 and ψ2 are functions of rcry and φ derived from the mass balance of silicon.

Details of the derivation of ψ1 and ψ2 are described by Winkler et al. [15]. Ferguson
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2 Gray-box modeling of the Czochralski process 2.2. EHG model of CZ process

Fig. 2.5: Prediction result of the crystal radius rcry, the crystal growth rate vg, and
the heater temperature Th by the EHG model. The horizontal axis is the dimensionless
crystal length. The range between the dotted lines represents the tolerance of the
prediction error.

proposed describing the meniscus height hmen with rcry and φ [43]:

hmen = a

√√√√1− sin (φ0 + φ)

1 + 1√
2rcry

, (2.16)

a =

√
2γ

ρmelg
, (2.17)

where φ0 is the wetting angle, γ is the surface tension of silicon, and g is the gravitational

acceleration.

2.2.3 Issue of EHG model

Figure 2.5 shows an example of the prediction results based on the EHG model. The

heater temperature can be calculated as follows:

Th =
hh(1)Th(1) + (hh(2) + hh(3))Th(2)

h(1) + h(2) + h(3)
. (2.18)

Figure 2.5 shows that rcry and vg can be predicted with high accuracy, while Th cannot

be accurately predicted. To improve the prediction accuracy of the three CVs, we

focused on the temperature gradient at the solid-liquid interface Gcry, which is constant
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2 Gray-box modeling of the Czochralski process 2.3. Proposed gray-EHG model

Fig. 2.6: Structure of the gray-EHG model.

in the EHG model. Rahmanpour et al. [28] calculated the heat flux from the interface

to the crystal ϕs using a computational fluid dynamics simulation software CGSim [44].

They showed that ϕs changed with the crystal length L. The result indicates that

assuming Gcry as a function of L will improve the prediction accuracy of the CVs,

because kcryGcry corresponds to ϕs and kcry is constant in this study.

2.3 Proposed gray-EHG model

As shown in Fig. 2.6, the proposed model consists of the EHG model and a statistical

model. We construct the statistical model to predict the temperature gradient at the

solid-liquid interface Gcry from the crystal length L and the melt temperature Tmel

available in real-time.

2.3.1 Training data for statistical model

Before constructing the statistical model, we generated training data of Gcry because

Gcry is unmeasurable. We calculated Gcry using the EHG model and real process data

in the following methods. We adopted a quasi-steady-state assumption [45] that the

crystal length changes much slower than the temperature of each process component
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2 Gray-box modeling of the Czochralski process 2.3. Proposed gray-EHG model

and rcry. This assumption leads to the following equations:

dTh(1)

dt
= 0, (2.19)

dTh(2)

dt
= 0, (2.20)

dTmel

dt
= 0, (2.21)

drcry
dt

= 0, (2.22)

dL

dt
= vg. (2.23)

By replacing Eqs. (2.6), (2.7), and (2.11) in the energy transfer model with Eqs. (2.19)–

(2.21), and using Eq. (2.22) and measurable process data (rcry, vg, hmel, P , vp, vc, and

crucible position pc), we can calculate the temperature of each process component and

φ. The following equation is obtained from Eqs. (2.12) and (2.13):

Gcry = − 1

kcry

(
kmen(Tmel − T ∗)

hmen
+ ρcry∆Hfvg

)
. (2.24)

Gcry is obtained by substituting the measured values of vg and rcry, and the calculated

values of Tmel and φ into Eqs. (2.16) and (2.24).

In the present study, we use real process data obtained during the production of six

silicon ingots. The temperature of each process component and Gcry were calculated

using the real process data of the ingots 1 and 2. The calculated Tmel and Gcry are shown

in Fig. 2.7. The range of kcryGcry calculated using CGSim by Rahmanpour et al. [28] is

−1.24×105 W/m2 ≤ kcryGcry ≤ −1.04×105 W/m2, and the range of kcryGcry calculated

from Gcry shown in Fig. 2.7 is −7.6 × 105 W/m2 ≤ kcryGcry ≤ −3.2 × 105 W/m2.

Although L and rcry used by Rahmanpour et al. [28] are different from those used

in the present study, kcryGcry calculated from Fig. 2.7 are on the same order of that

obtained by Rahmanpour et al. [28], and consequently, the derived values are considered

to be reasonable.
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2 Gray-box modeling of the Czochralski process 2.3. Proposed gray-EHG model

Fig. 2.7: Calculated melt temperature Tmel and temperature gradient in the crystal at
the solid-liquid interface Gcry using the real process data of the ingots 1 and 2.

2.3.2 Statistical model

When predicting the CVs, we need to calculate Gcry from variables that are known

in real-time. We, therefore, construct a statistical model whose input variables are

available in real-time, and the output variable is Gcry. Figure 2.7 shows that Gcry

changes with the crystal length L, but it is not uniquely determined by L. In this

study, we selected L and the melt temperature Tmel as the input variables x of the

statistical model.

We employed Gaussian Process Regression (GPR) [42]

y = fGPR(x) + ξ, (2.25)

where y is an output variable, and ξ is a variable that follows a Gaussian distribution

with zero mean and variance σ2, and fGPR(x) is a latent variable from a zero-mean

Gaussian process with covariance function,

k(xn,xn′ | σl, σf ) = σ2
f exp

[
−1

2

(xn − xn′)
T
(xn − xn′)

σ2
l

]
, (2.26)
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2 Gray-box modeling of the Czochralski process 2.4. Results and Discussion

Fig. 2.8: Temperature gradient in the crystal at the solid-liquid interface Gcry predicted
by the statistical model using the data of ingot 2.

where σl and σf are parameters, and xn and xn′ are the nth and n′th samples of the

input variables. In constructing the statistical model, the input and output variables

were centered and scaled to have zero mean and unit variance. The parameters were

determined by five-fold cross-validation.

2.3.3 Prediction accuracy of statistical model

We validated the statistical model constructed using the data of the ingot 1 by predicting

Gcry of data of the ingot 2. The prediction results in Fig. 2.8 show that the root-mean-

square error (RMSE) was 2.5× 102 K/m, and the determination coefficient R2 was 1.0,

confirming that the developed statistical model can estimate Gcry with high accuracy.

2.4 Results and Discussion

The prediction accuracy of the three CVs (rcry, vg, and Th) by the EHG model and the

proposed gray-EHG model was compared using real process data.
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2 Gray-box modeling of the Czochralski process 2.4. Results and Discussion

2.4.1 Simulation Conditions

To compare the prediction accuracy under different operating conditions, we applied

the models to data of the ingots 3 to 6 that were obtained during the production of

the ingot body. The data were divided without duplication into hourly subdata, and

a total of 328 subdata (82 subdata per ingot) were used for validation. Both models

require the initial values of four variables: the crystal slope angle φ, the temperature

at the upper part of the heater Th(1), the temperature at the middle part of the heater

Th(2), and the melt temperature Tmel. In the previous study [32], the initial values were

determined by trial and error to minimize the prediction error because a systematic

method for determining the initial values had not been developed. In this research, the

initial values were calculated by the same method described in Section 2.3.1. In the

EHG model, Gcry was calculated using Eq. (2.24) and process data (vg, Tmel, and hmen)

at the start of the prediction.

2.4.2 Prediction results

The statistical model in the proposed gray-EHG model was constructed using the train-

ing data generated from the data of the ingots 1 and 2. The parameters were determined

by five-fold cross-validation; σ = 0.01, σl = 5.43, and σf = 4.84. The prediction ac-

curacy of the CVs was evaluated based on the RMSE scaled by the acceptable error.

Figure 2.9 shows the RMSE of each subdata against the crystal length at the start of

the prediction. Figure 2.10 shows the prediction results of the CVs at three stages in

the data of the ingot 3. Table 2.3 shows that the mean value and standard deviation

of the RMSEs of the gray-EHG model are smaller than those of the EHG model in all

cases. The proposed gray-EHG model reduced the mean of RMSEs of rcry, vg, and Th

by 93.7–94.4%, 56.2–69.2%, and 56.8–84.4%, respectively, compared to the EHG model.
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(d) Ingot 6.

Fig. 2.9: RMSEs of the crystal radius rcry, the crystal growth rate vg, and the heater
temperature Th against the data of the ingots 3 to 6. The horizontal axis is the dimen-
sionless crystal length.
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(a) Early stage.
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(c) Late stage.

Fig. 2.10: Prediction results of the crystal radius rcry, the crystal growth rate vg, and
the heater temperature Th at three stages in data of the ingot 3. The range between
the dotted lines shows an acceptable error.
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2.4.3 Discussion

The EHG model can accurately predict rcry and vg when the initial values of the four

variables (φ, Th(1), Th(2), and Tmel) were determined by trial and error as shown in

Fig. 2.5. The initial values were calculated by the method described in section 2.3.1;

hence, the prediction accuracy of the EHG model was decreased for rcry and vg. On

the other hand, the gray-EHG model can accurately predict the three CVs. Figure 2.11

shows that Gcry changes by about 1% in an hour in the gray-EHG model. These results

show that predicting the change in Gcry based on the operating conditions is essential to

achieve high prediction accuracy of the CVs. The prediction accuracy was significantly

improved at the late stage, where the change of Gcry against the crystal length is larger

than that at the other stages.

2.5 Conculusion

We developed a gray-box model that predicts the three CVs (rcry, vg, and Th) with

high accuracy, because the conventional first-principle model was not accurate enough

Table 2.3: The mean and standard deviation of the RMSEs of three controlled variables:
the crystal radius rcry, the crystal growth rate vg, and the heater temperature Th.

Ingot Model
RMSE of rcry RMSE of vg RMSE of Th
mean std mean std mean std

3
gray-EHG 0.38 0.21 0.64 0.25 0.83 0.53

EHG 6.1 8.8 1.5 2.2 1.9 2.6

4
gray-EHG 0.37 0.25 0.61 0.27 0.86 0.54

EHG 6.3 9.5 1.5 2.6 2.1 1.0× 106

5
gray-EHG 0.37 0.21 0.55 0.27 0.69 0.51

EHG 5.9 9.5 1.5 3.1 1.9 2.8

6
gray-EHG 0.36 0.18 0.51 0.26 0.78 0.50

EHG 6.3 15 1.7 5.0 5.0 30
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2 Gray-box modeling of the Czochralski process 2.5. Conculusion

(a) All stages.

(b) Early stage. (c) Middle stage. (d) Late stage.

Fig. 2.11: Temperature gradient in the crystal at the solid-liquid interface Gcry used
for prediction in the data of the ingot 3 by the EHG model and the gray-EHG model.

to predict Th. In the gray-box model, a statistical model is employed to predict the

temperature gradient in the crystal at the solid-liquid interface Gcry from the crystal

length L and the melt temperature Tmel. The gray-box model and the first-principle

model were validated using real process data. The gray-box model reduced the RMSEs

of rcry, vg, and Th by 94.1%, 62.7%, and 70.6%, compared to the first-principle model.

A significant improvement in prediction accuracy was achieved, especially for the late

phase of the batch, where Gcry changes faster than the other phases.
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3 Gray-box model-based predictive control

Chapter 3

Gray-box model-based predictive

control

3.1 Introduction

Table 3.1 summarizes previous research on MPC of the CZ process. Irizarry-Rivera and

Seider [25, 26] developed two model predictive controllers: one controls rcry by manipu-

lating vp, and the other controls vp by manipulating P . Abdollahi et al. [27] derived the

optimal temperature trajectory using quadratic programming and then implemented

an MPC strategy to track the optimal temperature. Rahmanpour et al. [28] developed

a control strategy with two model predictive controllers to control rcry and melt tem-

perature Tmel. Liu et al. [30] proposed a control structure where rcry is controlled by

manipulating Th with constant vp. Lee et al. [17] and Zhang et al. [18] used MPC to

determine a feedforward trajectory of temperature in the traditional control structure.

As shown in Table 3.1, two of seven studies focused on the commercial CZ process

producing 300 mm silicon ingots. Although control of rcry, vg, and pmel is required to

manufacture high-quality products, pmel is not used as the CV in the previous studies.

Besides, in four of seven previous studies, vp is controlled instead of vg. The reason
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3 Gray-box model-based predictive control 3.1. Introduction

Table 3.1: Research on MPC of the CZ process.

Reference
Controlled
variable

Manipulated
variable

Crystal
diameter [mm]

[25, 26]
rcry vp 40
vp P

[27] rcry, Th P , vp 50
[28] rcry, Tmel P , vp 160
[30] rcry, Th Th 208
[18] rcry, Th, vp P , vp 300
[17] rcry, Th, vp P , vp 300

Present study rcry, vg, pmel P , vp, vc 300

would be there had been no model predicting the three variables (rcry, vg, and pmel)

with high accuracy. Zheng et al. [32] developed a first-principle model to predict rcry

and vg from P , vp, and vc in the process producing 300mm silicon ingots. We improved

the first-principle model and built a gray-box (GB) model to predict all CVs used in the

industrial process as shown in Chapter 2. The present chapter proposes an MPC method

based on the GB model. Although the GB model can accurately predict the CVs, solving

an optimization problem using the GB model requires a high computational cost. To

reduce the computational cost, we apply successive linearization proposed by Meǵıas

et al. [33] and simplify the optimization problem. Our contributions are summarised as

follows:

• Develop an MPC method based on the gray-box model predicting three CVs with

high accuracy.

• Improve disturbance rejection performance than the conventional control method

even when a plant-model mismatch exists.

This chapter proposes a model-based predictive control method with higher control

performance than the conventional method using PID controllers; thus, we need a model

that can accurately predict the CVs of the industrial CZ process. The GB model
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3 Gray-box model-based predictive control 3.2. Proposed control method

in Chapter 2 satisfies this requirement and does not require further improvement in

prediction accuracy for the purpose.

3.2 Proposed control method

The CVs and the manipulated variables (MVs) are defined as follows:

y(t) = [rcry(t), vg(t), pmel(t)]
T
, (3.1)

u(t) = [P (t), vp(t), vc(t)]
T
. (3.2)

Here, the number of the MVs and the CVs nu and ny are three. MPC requires pre-

dictions of y(t) over the prediction horizon (t = t0 + 1, · · · , t0 +Hp) at each sampling

instant t0. The proposed method computes the output predictions ŷ expressed as

ŷ(t) = ŷfree(t) + ŷforced(t), (3.3)

where ŷfree is a free response, which is an output of the GB model without change

in input variables (∆u(t) = u(t) − u(t − 1) = 0) over the prediction horizon. ŷforced

is a forced response, which depends on ∆u(t) over the prediction horizon. Successive

linearization of the GB model is applied and a state-space model computing ŷforced

is derived every linearization interval ∆tl to solve the optimization problem in several

seconds. The next MVs u(t0) are determined by solving the optimization problem in

3.2.2 for each control interval ∆tc.

3.2.1 Successive linearization

It is challenging to linearize the GB model analytically because the GB model has several

nonlinear algebraic equations, including a term of radiation heat transfer proportional

to the fourth power of the component’s temperature. Based on the method developed
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3 Gray-box model-based predictive control 3.2. Proposed control method

by Meǵıas et al. [33], the GB model is linearized in the following steps:

1. Calculate a free response ŷfree(t) over the prediction horizon by the GB model

with u(t) = u(t0 − 1).

2. For i = 1, 2, and 3, calculate ŷui(t), which is an output of the GB model over

the prediction horizon with

uj(t) =


uj(t0 − 1) + ∆uj,max (j = i),

uj(t0 − 1) (j ̸= i),

(3.4)

where uj is the jth variable in (3.2), and ∆uj,max is the maximum absolute change

of uj in one-batch operation data obtained from the industrial process.

3. For i = 1, 2, and 3, calculate difference between the responses ŷui
(t) and ŷfree(t)

given by

Yui =



(ŷui(t0 + 1)− ŷfree(t0 + 1))
T

(ŷui
(t0 + 2)− ŷfree(t0 + 2))

T

...

(ŷui(t0 +Hp)− ŷfree(t0 +Hp))
T


. (3.5)

4. Derive a state-space model

ŷforced(t) = Cx(t), (3.6)

x(t+ 1) = Ax(t) +B∆u(t), (3.7)

where A, B, and C are matrices calculated from Yu1
, Yu2

, and Yu3
, and x is a

state vector.

Details of the derivation of the state-space model are described by Jimoh and Dan’

Isa [46].
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3 Gray-box model-based predictive control 3.3. Simulation condition

3.2.2 Optimization problem of model predictive control

For each control interval, the optimal MVs uopt(t) over the control horizon (t =

t0, · · · , t0 +Hc − 1) are obtained by solving the following optimization problem:

min
u(t) (t=t0,··· ,t0+Hc−1)

t0+Hp∑
t=t0+1

e(t)TQe(t) +

t0+Hc−1∑
t=t0

∆u(t)TR∆u(t), (3.8)

s.t. e(t) = yset(t)− ŷ(t), (3.9)

ŷ(t) = ŷfree(t) + ŷforced(t), (3.10)

ŷforced(t) = Cx(t), (3.11)

x(t+ 1) = Ax(t) +B∆u(t), (3.12)

x(t0) = 0, (3.13)

∆umin ≤ ∆u(t) ≤ ∆umax, (3.14)

u(t) ≥ 0, (3.15)

∆u(t) = 0 (t = t0 +Hc, · · · , t0 +Hp − 1), (3.16)

where Q and R are diagonal weighting matrices. Hc and Hp are the lengths of the

control horizon and the prediction horizon. ∆umax is a vector whose ith element is

∆ui,max, and ∆umin is a vector whose ith element is −∆ui,max. The next MVs are the

optimal MVs at t = t0: u(t0) = uopt(t0).

3.3 Simulation condition

We evaluated the disturbance rejection performance of the conventional and proposed

methods through control simulations in the following procedure:
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1. Control the process by the conventional method until relative control deviations

of all CVs to ϵyi,max are smaller than 0.01 during 10 minutes.

2. Switch the control method to the proposed one when evaluating the performance

of the proposed method.

3. Control the process for 30 minutes without disturbance.

4. After the 30 minutes, inject a constant disturbance during a minute into one of

the MVs or the CVs except for vg. The magnitude of the disturbance to the MV

and the CV is ∆ui,max and ϵyi,max, respectively.

5. Continue the simulation for the next 120 minutes.

ϵyi,max is the maximum absolute control deviation of the ith CV yi in one-batch indus-

trial process data.

The dynamic characteristics of the CZ process change as the crystal grows; thus,

we compared the performance at the early, middle, and late stages. Each of them

corresponds to the stage where the crystal length is 0–33%, 33–66%, and 66–100% of

the product’s crystal length.

We used the GB model as the controlled process. In the proposed method, the control

simulations with or without a plant-model mismatch were conducted. In cases with a

plant-model mismatch, two types of mismatches were used. The plant-model mismatch

was represented by changing the physical property in the prediction model. The values

of most of the physical properties used in the gray-box model were provided by SUMCO

Corporation. On the other hand, the two physical property values, the overall heat

transfer coefficient of the heater Uh and the melt emissiity εmel, in the prediction model

may differ significantly from their true values. This is because the true value of Uh is

unknown and εmel is between 0.2 and 0.3 in previous studies [32, 34, 47, 48]. In the

controlled process, Uh and εmel were 490 W/(m2K) and 0.25. In the prediction model,

Uh was changed to 490×1.1 = 539W/(m2K) or εmel was changed to 0.25×0.95 = 0.2375.

In the conventional method, the PID controllers were designed using the improved,
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3 Gray-box model-based predictive control 3.4. Results

simplified internal model control (SIMC) tuning rules [49]. The control interval of the

conventional method is 1 s. In the proposed method, ∆tc = ∆tl = 1 min,Hp = 60 min,

and Hc = 10 min. The weighting matrices were as follows:

Q = diag

(
100

ϵy1,max
,

100

ϵy2,max
,

100

ϵy3,max

)
, (3.17)

R = diag

(
1

∆u1,max
,

1

∆u2,max
,

1

∆u3,max

)
. (3.18)

Hp, Hc, Q, and R were determined to minimize the sum of the integral absolute errors

(IAEs) of the three CVs through prior several control simulations. The differences

between the control simulations and the real control are summarized in Table 3.2.

3.4 Results

3.4.1 Linearization of gray-box model

Figure 3.1 shows Yui used in procedure 3 in section 3.2.1 during control simulations

without a plant-model mismatch. The values of ui and yi are nondimensionalized by

scaling factors ∆ui,max and ϵyi,max, respectively. Note that the values of the scaling

factors affect the changes in the CVs.

The input-output relationships between P and the CVs (b–d), vp and rcry (f), and vc

and rcry (j) change with time more significantly than the others. The change in rcry 60

Table 3.2: Differences between the control simulations and the real control.

Control simulations Real control
MPC PID PID

Controlled process Gray-box model Real process

Control interval 60 sec 1 sec —

Tuning method
Minimizing sum of IAEs
of controlled variables

Improved SIMC
tuning rules —

Controlled variables rcry, vg, pmel rcry, pmel, Th
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Fig. 3.1: Responses used for linearization. Responses with steps of (a) P , (b) vp, and
(c) vc are shown in (b)–(d), (f)–(h), (j)–(l), respectively. 30 responses are plotted at
each stage.

minutes after the step change in vp and vc at the early stage is about 20% larger than that

at the other stages. This is because vg at the early stage is smaller than that at the other

stages; when vg becomes small, the change in φ becomes large, and consequently the

change in rcry becomes large as shown in Eqs. (2.14) and (2.15). Successive linearization

is required to represent these time-varying input-output relationships in a prediction

model.

The changes in the CVs 60 minutes after the step change in vp and vc are 5 (b and

j) to 1000 (d and l) times larger than those after the step change in P . This result

is qualitatively consistent with the fact that vp and vc are mainly used to control rcry
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Table 3.3: IAEs of controlled variables in the presence of disturbance in early stage.

Case VWDa CPPb rcry vg pmel Sum
MPC PID MPC PID MPC PID MPC PID

1
P

- 0.10
1.3

1.1
3.0

0.020
0.52

1.2
4.82 Uh 0.12 1.2 0.020 1.3

3 εmel 0.11 1.1 0.020 1.2

4
vp

- 0.57
2.1

3.6
4.5

0.056
0.76

4.2
7.35 Uh 0.56 3.5 0.057 4.1

6 εmel 0.58 3.6 0.054 4.2

7
vc

- 0.33
1.5

2.9
3.1

0.17
1.9

3.4
6.68 Uh 0.35 2.9 0.18 3.5

9 εmel 0.33 2.8 0.17 3.3

10
rcry

- 0.94
2.4

4.9
4.1

0.27
0.53

6.1
7.111 Uh 0.90 4.8 0.27 5.9

12 εmel 1.1 5.5 0.27 6.9

13
pmel

- 0.52
1.3

3.0
3.0

0.23
1.7

3.8
6.014 Uh 0.52 3.1 0.23 3.9

15 εmel 0.53 3.1 0.23 3.8

a Variable with disturbance
b Changed physical property

in the industrial CZ process. Since vc highly affects the CVs, it should be essential to

manipulate vc to achieve high control performance.

3.4.2 Control simulation

The IAEs of the conventional method (PID) and the proposed method (MPC) are shown

in Tables 3.3–3.5, where the IAE of yi is nondimensionalized by ϵyi,max. In the cases

without a plant-model mismatch, the sum of IAEs of MPC is 11–87% of that of PID.

In the cases with a plant-model mismatch, the sum of IAEs of MPC is 11–98% of that

of PID. MPC achieved better disturbance rejection performance than PID even when

a 5% or 10% plant-model mismatch exists. Quad-Core Intel Core i5 CPU (2.3 GHz)

was used, and it took less than 30 seconds to compute MVs at each control interval (60
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Table 3.4: IAEs of controlled variables in the presence of disturbance in middle stage.

Case VWDa CPPb rcry vg pmel Sum
MPC PID MPC PID MPC PID MPC PID

16
P

- 0.23
5.7

1.5
4.9

0.0065
0.030

1.7
1117 Uh 0.20 1.4 0.0069 1.6

18 εmel 0.30 1.6 0.0054 1.9

19
vp

- 0.73
6.1

3.9
6.6

0.047
0.53

4.7
1320 Uh 0.70 3.9 0.048 4.7

21 εmel 0.82 3.9 0.046 4.8

22
vc

- 0.46
5.8

3.2
5.0

0.16
1.9

3.8
1323 Uh 0.44 3.2 0.16 3.8

24 εmel 0.55 3.2 0.16 3.9

25
rcry

- 1.7
6.8

7.1
6.3

0.26
0.051

9.1
1326 Uh 1.7 7.1 0.28 9.0

27 εmel 1.6 6.3 0.22 8.1

28
pmel

- 0.54
5.7

3.4
4.9

0.22
1.1

4.2
1229 Uh 0.52 3.3 0.22 4.1

30 εmel 0.60 3.5 0.22 4.3

a Variable with disturbance
b Changed physical property

seconds).

The control simulation results in cases 19–21 are shown in Fig. 3.2. Each vertical axis

of the MVs and the CVs is nondimensionalized by ∆ui,max and ϵyi,max, respectively,

and scaled so that each initial value in the conventional method is zero. Even with a

10% plant-model mismatch, MPC reduced the control deviation of rcry and pmel much

faster than PID.

3.5 Conclusion

We proposed a nonlinear model predictive control method based on successive lineariza-

tion of the gray-box model of the Czochralski process. The proposed method’s control
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3 Gray-box model-based predictive control 3.5. Conclusion

Table 3.5: IAEs of controlled variables in the presence of disturbance in late stage.

Case VWDa CPPb rcry vg pmel Sum
MPC PID MPC PID MPC PID MPC PID

31
P

- 0.26
3.5

1.7
2.0

0.014
13

2.0
1832 Uh 0.25 1.7 0.014 2.0

33 εmel 0.26 1.7 0.014 2.0

34
vp

- 0.68
3.9

4.1
2.4

0.048
13

4.8
1935 Uh 0.66 4.0 0.047 4.8

36 εmel 0.69 4.1 0.048 4.8

37
vc

- 0.45
3.4

3.4
2.9

0.16
15

4.0
2138 Uh 0.44 3.4 0.16 4.0

39 εmel 0.46 3.4 0.16 4.0

40
rcry

- 1.4
3.3

7.0
2.3

0.30
13

8.7
1841 Uh 1.3 6.5 0.27 8.0

42 εmel 1.4 6.8 0.26 8.4

43
pmel

- 0.63
3.5

3.8
2.4

0.23
14

4.6
2044 Uh 0.61 3.8 0.23 4.6

45 εmel 0.63 3.8 0.23 4.6

a Variable with disturbance
b Changed physical property

performance was compared with that of the conventional method using PID controllers

through control simulations. The results demonstrated that the proposed method pro-

vided a higher disturbance rejection performance than the conventional method in the

cases with or without a 5% or 10% plant-model mismatch. The sum of integral absolute

errors of the controlled variables of the proposed method was 11–98% of that of the

conventional method. Besides, the proposed method was able to calculate the MVs in

a sufficiently shorter time than the control interval.
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3 Gray-box model-based predictive control 3.5. Conclusion

(a) Result for 150 minutes.

(b) Result from time = 28 to 38 min.

Fig. 3.2: Control simulation results in cases 19–21. The disturbance of the crystal
pulling rate vp was injected from time = 30 to 31 min.
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4 Successive model update

Chapter 4

Successive model update

4.1 Introduction

To manufacture higher-quality silicon ingots, several model-based control methods

have been proposed. The methods for producing silicon ingots with a large diameter

(≥200 mm) are summarized in Table 4.1. Liu et al. [30] designed a control structure in

which rcry and Th are controlled by manipulating P with constant vp. Wan et al. [31]

proposed a soft-sensor estimating vg/G, a ratio of vg to the axial temperature gradient

at the solid-liquid interface. They also designed a dual closed-loop control strategy to

Table 4.1: Research on model-based control of the CZ process producing ingots with a
diameter of more than 200mm.

Reference
Controlled
variable

Manipulated
variable

Crystal
diameter [mm]

Liu et al. [30] rcry, Th P 208
Wan et al. [31] rcry, vg/G P 209
Ren et al. [23] rcry, Th P , vp 208
Ren et al. [24] rcry P , vp 209
Zhang et al. [18] rcry, Th P , vp 300
Lee et al. [17] rcry, Th P , vp 200, 300
Chapter 3 rcry, vg, pmel P , vp, vc 300
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4 Successive model update 4.1. Introduction

control rcry and vg/G. Ren et al. [23] constructed a deep neural network by combining a

stacked autoencoder (SAE) and a long short-term memory (LSTM) network to capture

the features and dynamics of the crystal growth. They used the model to design two

controllers, which control rcry and Th by manipulating vp and P , respectively. Ren

et al. [24] developed a Hammerstein-Wiener model based on an LSTM network for the

energy transfer process and combined the model with the hydrodynamic and geometric

model. They applied the model to the control of rcry and verified the effectiveness.

Zhang et al. [18] and Lee et al. [17] determined a feedforward trajectory of temperature

in the traditional control structure based on model predictive control (MPC).

We built the GB model that can predict the three controlled variables (CVs) in the

industrial CZ process with high accuracy and proposed a nonlinear MPC method based

on the GB model as shown in Chapter 3. The method improved disturbance rejection

performance than the conventional industrial control method even when a plant-model

mismatch exists.

In general, the control performance of model-based control relies heavily on the pre-

diction accuracy of the CVs, and the prediction model often contains a plant-model

mismatch. In Chapter 3, we used the prediction model whose parameter is different

from that of the controlled process by 5% or 10%. However, in real applications, two

or more parameters may differ from those of the controlled process. In addition, the

parameter may differ by more than 10%. This chapter deals with the cases where one

parameter of the prediction model differs from that of the controlled process by more

than 10% and two parameters of the prediction model differ from those of the controlled

process.

Various state estimation methods have been proposed, such as Kalman filter [50],

particle filter [51], and moving horizon estimation (MHE) [52, 53]. The CZ process is

characterized by a long time constant, and the present process variables are affected

by the past state; thus, this study adopts MHE, which modifies the model parameters
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4 Successive model update 4.2. Proposed method

to reproduce the time series data from the past to the present. In applying MHE, we

need to select the parameters to be modified online. We use the two physical proper-

ties described in the previous chapter, Uh and εmel, as the parameters to be modified.

It is also difficult to derive the parameters that minimize the prediction errors of the

gray-box model by solving the optimization problem. Therefore, we construct mod-

els corresponding to several candidate parameters in advance, as in grid search, and

compare their prediction accuracy to obtain the suitable parameters.

Our contributions are summarised as follows:

• To develop an MPC method for updating the prediction model to compensate for

the plant-model mismatch.

• To improve disturbance rejection performance of the gray-box model-based pre-

dictive control method proposed in Chapter 3.

4.2 Proposed method

This section presents a method for updating the prediction model to cope with a plant-

model mismatch. The proposed method is based on moving horizon estimation (MHE),

a simple state estimation method that modifies states to reproduce the past actual

data. MHE is available for parameter estimation by regarding unknown parameters as

unknown constant states [53]. The present study assumes that the parameters to be

updated are known in advance.

In the proposed method, first, the parameters to be updated θ and their candidates

{θ1, · · · ,θNall
} are determined. Then, Nall models are built.

After control starts, the prediction model is first updated at time t = tu, and then

updated every Tu time steps by the following steps:

1. Select Ns models from Nall prepared models.
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4 Successive model update 4.2. Proposed method

2. Predict the CVs from t = t0 − Tp to t = t0 by the Ns selected models. Actual

data of MVs are input to the models.

3. Derive the nondimensionalized estimation errors of the CVs.

4. Adopt the model whose sum of the estimation errors is the smallest as the next

prediction model.

In step 1, the models similar to the current prediction model are selected. The similarity

between two models can be evaluated by the relative errors between their parameters.

Ns is determined based on the computer performance and Tu.

In this study, two parameters in the GB model are determined to be updated: the

overall heat transfer coefficient of the heater Uh and melt emissivity εmel. The candidates

of their values are as follows:

Uh∈
{
440, 490, 540 W/(m2 K)

}
, (4.1)

εmel∈ {0.21, 0.23, 0.25, 0.27, 0.29} . (4.2)

Uh cannot be measured and its true value is unknown; we used 440 W/(m2 K),

490 W/(m2 K), and 540 W/(m2 K). The candidates of εmel were determined based on

the fact that the experimental values [47] and the values used in past studies [32, 34, 48]

are between 0.2 and 0.3, and that the CVs predicted by the GB model change

significantly when εmel changes by about 0.02.

In the offline preparation, we built fifteen GB models (Nall = 15) for all combinations

of candidates of Uh and εmel in Eqs. (4.1) and (4.2). It took about 30 minutes to build

one statistical model using Quad-Core Intel Core i5 CPU (2.3GHz). In online procedure,

all of the models are selected in step 1: Ns = 15.
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4 Successive model update 4.3. Simulation condition

4.3 Simulation condition

We evaluated the disturbance rejection performance of the conventional method without

a model update and the proposed method with a model update, labeled C1–C3 and

P1–P12 respectively, as shown in Table 4.2. We used GB model 1 in which Uh =

490 W/(m2 K) and εmel = 0.25 as the controlled process. To investigate the effect

of a plant-model mismatch to the control performance, in C1–C3, we used three GB

models: GB model 1, GB model 2 (Uh = 490 W/(m2 K), εmel = 0.21) and GB model

3 (Uh = 540 W/(m2 K), εmel = 0.27). In P1–P12, GB models 2 and 3 were used as

the initial prediction model. To investigate the effect of the parameters Tu and Tp, we

used six different combinations. For each simulation, the sampling interval, the control

interval ∆tc, and the linearization interval ∆tl were 1 min. Hp = 60 min, Hc = 10 min,

and weighting matrices were as follows:

Q= diag

(
100

ϵy1,max
,

100

ϵy2,max
,

100

ϵy3,max

)
, (4.3)

R= diag

(
1

∆u1,max
,

1

∆u2,max
,

1

∆u3,max

)
. (4.4)

The control simulation was conducted in the following procedure:

1. Determine the initial condition and start control simulation.

2. Conduct the first model update after 30 minutes when using the method with a

model update.

3. Inject a constant disturbance during one minute into one of the MVs or the CVs

except for vg after 60 minutes from the start. The magnitude of the disturbance

to the MV and the CV is ∆ui,max and ϵyi,max, respectively.

4. Continue the simulation for next 120 minutes.
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4 Successive model update 4.4. Results and Discussion

ϵyi,max is the maximum absolute control error of the ith CV in one-batch industrial

process data. In step 2, the model updates started after 30 min so that the update

simultaneously occurs as early as possible.

We compared the control performance at the early, middle, and late stages, consid-

ering the dynamic characteristics of the CZ process change as the crystal grows. The

crystal length is 0–33%, 33–66%, and 66–100% of the product’s crystal length at the

early, middle, and late stages. We used five patterns of disturbances at three stages;

thus, control simulations were conducted in 15 cases as shown in Table 4.2.

4.4 Results and Discussion

Figure 4.1 shows the results in cases 2, 7, and 12 in C1, C2, and P4–P6. The IAEs of

the CVs nondimensionalized by ϵyi,max for 120 minutes after the disturbance injection

are compared. The results are summarized in Table 4.2. Each sum of IAEs was divided

by that in C1, which is the value in parentheses in the table. The orders of the sums

are different between cases in C1 because the CVs changed more significantly when the

disturbance was injected into the CV than when the disturbance was injected into the

MV. In cases 4 and 5 in C2 and case 14 in P1, each IAE was calculated based on the

simulation results for shorter than 120 min. This is because vg became negative before

the 120 minutes simulation, and the simulation was aborted.

As shown in Table 4.2, the sums of IAEs in C2 are larger than those in C1 in all cases

except for case 3. The sums of IAEs in C3 are equal to or smaller than those in C1 in

11/15 cases, and the mean is the same as that in C1. This is because the prediction

accuracy of the CVs by GB model 2 is lower than that by GB model 1, while that by

GB model 1 and that by GB model 3 are almost the same.

The reason why the prediction accuracy of GB model 3 was almost the same as GB

model 1 is shown below. If Uh becomes large in the first-principle model, Th decreases
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4 Successive model update 4.4. Results and Discussion

Fig. 4.1: Control simulation results in cases 2, 7 and 12 in C1, C2, P4, P5, and P6.
The model update started at Time=30 min, and the disturbance was injected into vp
at Time=60 min.

and the heat transfer rate from the heater to the melt becomes small, leading to a

decrease in dTmel

dt . If εmel becomes large, in the first-principle model, the radiative heat

transfer rate from the melt increases, leading to a decrease in dTmel

dt . If Tmel becomes

small, Gmen becomes large. In the statistical model in the GB model, when Tmel becomes

small, the predicted value of Gcry becomes large, as represented in Chapter 2. The

prediction accruacy of vg is dependent on kmenGmen − kcryGcry, which is the numerator
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Fig. 4.2: Uh and εmel of the selected prediction model at each sampling interval in case
7 of P1–P6.
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Fig. 4.3: Uh and εmel of the selected prediction model at each sampling interval in case
7 of P7–P12.
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in Eq. (2.12), and affects the prediction accuracy of rcry and φ. In GB model 3, the

changes in kmenGmen and kcryGcry from those of GB model 1 are almost the same, and

hence the prediction accuracy of the CVs and the IAEs are almost the same.

Table 4.2 shows that the mean of the sums of IAEs in P1–P6 are smaller than that in

C2, and that in P8–P12 is the same as that in C3. The sums of IAEs in P1–P6 and P7–

P12 are smaller than those in C2 and C3 in 78/90 and 50/90 simulations, respectively.

Although the sums of IAEs in P1–P12 are larger in the other simulations, the proposed

method did not significantly deteriorate the control performance.

In Fig. 4.1, each vertical axis of the MVs and the CVs is nondimensionalized by

∆ui,max and ϵyi,max, respectively, and shifted so that each initial value is zero. In case

2, the control errors of rcry and vg in P4 and P6 are smaller and reduced faster than

those in C2. In case 2 in P5, the control errors of rcry and vg for Time=110—130 min are

larger than those in C2 because the prediction performance of the CVs by the selected

model was insufficient. In case 7, the control errors of rcry and vg in P4–P6 are smaller

and reduced faster than that in C2. In case 12, the control errors of rcry in P4–P6 are

smaller and reduced faster than that in C2, and those of vg in P4–P6 immediately after

the disturbance rejection are larger but reduced faster than those in C2, resulting in the

smaller sum of IAEs.

Figures 4.2 and 4.3 show the parameters of the selected prediction model in case 7 in

P1–P6 and P7–P12, respectively. The marker symbols represent the timing of the model

update. The horizontal lines represent candidate values of Uh and εmel, and the solid

blue and red lines represent their correct values. The trajectories of the parameters of

the selected prediction models are different. The comparison between P1–P3 and P4–P6

and that between P7–P9 and P10–P12 show that the change in Tu or Tp does not highly

affect the disturbance rejection performance.

The proposed method achieved high disturbance rejection performance even when the

selected Uh and εmel are different from those of GB model 1. This is because the model
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with a plant-model mismatch can sometimes predict the CVs with high accuracy, such

as GB model 3.

4.5 Conclusion

We proposed a method for updating the prediction model in MPC to achieve high

disturbance rejection performance even when a large plant-model mismatch exists. The

control performance of MPC with the proposed model update method was compared

with the conventional method without a model update through control simulations. The

results demonstrated that the proposed method achieved higher disturbance rejection

performance than the conventional one in 128/180 simulations.
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Table 4.2: Sum of IAEs of three controlled variables for each case using methods with
and without model update. Each sum of IAEs was divided by that of C1, which is the
value in parentheses.

Label C1 C2 C3 P1 P2 P3 P4 P5 P6

Initial prediction model 1 2 3 2
Model update No Yes

Tu — 1 1 1 10 10 10
Tp — 10 20 30 10 20 30

Case Stage Disturbance Ratio of sum of IAEs to that in C1 (original sum of IAEs)

1 P 1.0 ( 0.34 ) 3.0 0.84 1.6 7.1 4.0 1.6 3.0 1.8
2 vp 1.0 ( 3.8 ) 6.9 0.91 1.3 0.89 0.93 1.6 9.1 1.7
3 Early vc 1.0 ( 2.9 ) 1.0 0.60 1.2 0.94 0.95 1.1 0.86 1.2

4 rcry 1.0 ( 32 ) 21 * 1.1 1.2 1.5 1.1 1.3 2.5 1.5

5 pmel 1.0 ( 15 ) 42 * 0.89 1.2 1.2 2.0 4.0 8.9 4.0

6 P 1.0 ( 0.30 ) 61 1.1 11 12 12 12 9.7 12
7 vp 1.0 ( 3.8 ) 5.6 1.0 1.3 1.5 1.4 2.1 1.4 1.5
8 Middle vc 1.0 ( 2.8 ) 8.1 1.0 1.6 1.8 1.5 1.9 1.6 1.8
9 rcry 1.0 ( 32 ) 1.8 1.1 1.6 14 2.9 1.2 1.5 2.0
10 pmel 1.0 ( 25 ) 1.4 1.0 1.1 1.1 1.3 1.0 1.2 1.0

11 P 1.0 ( 1.9 ) 1.2 1.0 0.95 0.95 1.0 0.95 1.0 1.0
12 vp 1.0 ( 4.6 ) 1.4 1.0 1.2 1.0 1.0 1.0 1.0 1.0
13 Late vc 1.0 ( 4.1 ) 1.1 1.0 1.3 1.0 1.3 1.0 1.0 1.0
14 rcry 1.0 ( 30 ) 26 1.1 1.0 3.4 1.1 1.1 1.1 1.3

15 pmel 1.0 ( 16 ) 62 0.87 1.0 * 1.4 1.0 0.94 1.0 1.0

Mean 1.0 ( 12 ) 16 1.0 1.9 3.3 2.2 2.2 3.0 2.3

Label P7 P8 P9 P10 P11 P12

Initial prediction model 3
Model update Yes

Tu 1 1 1 10 10 10
Tp 10 20 30 10 20 30

Case Stage Disturbance Ratio of sum of IAEs to that in C1

1 P 0.84 1.0 1.1 0.84 0.84 1.0
2 vp 1.0 1.0 1.0 0.91 0.91 0.93
3 Early vc 0.64 0.6 0.63 0.60 0.59 0.61
4 rcry 1.6 1.0 1.1 1.3 1.2 1.2
5 pmel 1.0 1.0 1.0 0.88 0.88 0.88

6 P 1.1 1.1 1.1 1.1 1.1 1.1
7 vp 1.6 1.1 1.1 1.1 1.1 1.1
8 Middle vc 1.4 1.2 1.1 1.1 1.1 1.1
9 rcry 1.1 1.2 1.6 1.2 1.1 1.4
10 pmel 1.1 1.2 0.92 0.82 0.80 0.82

11 P 1.0 1.0 1.0 1.0 1.0 1.0
12 vp 1.2 1.0 1.0 1.0 1.0 1.0
13 Late vc 1.0 1.0 1.0 1.0 1.0 1.0
14 rcry 1.0 1.1 1.1 1.1 1.1 1.1
15 pmel 0.92 0.94 0.92 0.87 0.87 0.88

Mean 1.1 1.0 1.0 1.0 1.0 1.0

* The IAEs were calculated using the simulation result for shorter than 120
minutes.
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Chapter 5

Conclusion / Future Perspectives

5.1 Summary

In this dissertation, a gray-box model was developed for the CZ process, which manu-

factures single-crystal silicon ingots with a diameter of 300mm, and a control system

based on the model was developed.

In Chapter 1, we explained the recent market of the semiconductor industry and the

necessity of improving the control performance of the CZ process, which is mainly used

for producing monocrystalline silicon ingots. Then, the current control structure used

in the industrial CZ process was shown, and the previous studies on control systems

of the CZ process were summarized to clarify the purpose of the present thesis. A

control method based on the first-principle model is effective to achieve higher control

performance considering the nonlinearity and the time-varying input-output relationship

of the CZ process. In this study, a gray-box model was constructed by improving the

first-principle model constructed by Zheng et al. [32].

In Chapter 2, the method of building the gray-box model and the prediction results

were presented. We first described the issues of the first-principle model and then

proposed a method to estimate the variable that affects the prediction accuracy of the
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control variables using a statistical model. In addition, we showed how to determine

the values of unmeasurable variables necessary for building the statistical model. We

estimated the state of the process at the start of prediction using the same method, and

the prediction enables us to predict the controlled variables at any point. The prediction

accuracy of the proposed gray-box model was higher than the first-principle model for

multiple ingot production data.

In Chapter 3, we proposed a model predictive control method based on the gray-box

model. The gray-box model consists of complex differential-algebraic equations, and a

high computational load is required to solve the optimization problem using the gray-

box model in the model predictive control framework. To reduce the computational

load, we proposed a method for deriving a prediction model by successive linearization

of the gray-box model. The behavior of the linear model changed among the three

different stages of the crystal pulling process, and it was confirmed that successive

linearization is necessary to represent the time-varying input-output relationship of the

gray-box model. This chapter compared the proposed control method with the control

method used in the industrial CZ processes through control simulations. The proposed

method improved the disturbance rejection performance, and the control performance

of the proposed method was better than that of the conventional method even when

one of the parameters in the prediction model was different from that of the controlled

process by 10%.

In Chapter 4, in order to utilize the gray-box model-based predictive control method

over a long period, a method for dealing with a plant-model mismatch derived from

the estimation error of the physical properties in the actual process is investigated.

In order to reduce the effect of the mismatch, it is practical to update the prediction

model so that the next prediction model achieves higher prediction accuracy. In this

chapter, under the assumption that the variables owing to a plant-model mismatch are

known, a method to avoid degradation of control performance due to the mismatch is

53



5 Conclusion / Future Perspectives 5.2. Future Outlooks

examined. The gray-box model is complex and requires a high computational load when

the controlled variables need to be predicted many times. In addition, it is challenging

to clarify the relationship between the prediction accuracy of the gray-box model and

the variables. Therefore, we proposed a method for preparing several gray-box models

in advance and updating the prediction model online by comparing their estimation

accuracy. We compared the control performance of gray-box model-based predictive

control methods with and without a modeling error through several simulations where

the plant-model mismatch is more significant than that in Chapter 3, and showed that

the method with model update improves the performance.

Through the investigations in Chapters 2 to 4, we 1) developed a gray-box model that

predicts three controlled variables with high accuracy for operation data of multiple

ingots, which was not possible with the existing methods; 2) developed a nonlinear

model predictive control method using successive linearization of the gray-box model;

and 3) proposed a model update method to deal with a plant-model mismatch in which

multiple parameters in the prediction model and the controlled process are different.

5.2 Future Outlooks

The next step is to apply the developed method to the actual process. First, it is

necessary to verify whether the parameters in the gray-box model are adequate or not.

This is because in this dissertation, two parameters (the overall heat transfer coefficient

of the heater Uh and melt emissivity εmel) of the prediction model are different from

those of the controlled process. However, this investigation may not be sufficient to

prove the effects of the parameters in the model on the prediction performance. The

prediction accuracy should be validated using several operation data to confirm that the

gray-box model has satisfactory prediction accuracy. Following the above validation,

experiments in the actual furnace will be conducted to confirm that the proposed method
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can produce higher-quality ingots than the conventional control method. Finally, the

method will be applied to the commercial process.

On the other hand, there remain some problems with the method.

1. The proposed method works well in the body growth section. However, it cannot

be used when the crystal changes significantly, especially in crowning and tailing

parts, because the proposed method estimates the state at the beginning of the

prediction based on the quasi-steady-state assumption. To achieve high control

performance even when the crystal changes, a method to estimate the state of

the process at the beginning of the prediction is required.

2. This dissertation assumed that all variables could be measured without noise. In

the CZ process, it is difficult to measure the process variables accurately. For

example, the radius of the Si ingot is usually estimated based on the bright ring

taken by the camera above the melt [22]. The radius measured from the bright

ring is different from the actual one and affects the control performance of the

crystal radius [54–57]. In addition, the measured values of the variables contain

noise, so it is necessary to remove the noise appropriately. The methods for

measuring the variables with high accuracy have been studied [58].

By solving these issues and combining them with the control method proposed in this

dissertation, we will be able to achieve higher control performance in real processes.
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