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1. Introduction 

1.1. Manufacturing process of pharmaceutical tablets 

A drug product is composed of one or more active pharmaceutical ingredients (APIs) 

and several functional excipients, such as diluent, disintegrant, binder, and lubricant, and 

manufactured through various unit operations. A representative manufacturing flow of 

pharmaceutical tablets consists of a granulation process, a blending process, a tableting 

process, and a film coating process. The granulation process to transform powder mixture 

into granule improves powder’s properties, such as flowability, handling, bulk density, 

dust formation, resistance to segregation, and solubility.1) The blending process to mix 

the granules and a lubricant in a tumble mixer is conducted to prevent sticking or die 

friction trouble in a tableting process.2) In the tableting process, tablets are manufactured 

by compression of the lubricated granules on a table rotating at high speed. The film 

coating process provides better appearance, distinguishability, and easier swallowing and 

protects the drug product against environmental influences such as humidity and light.3) 

Among these unit operations, the granulation process is critical because the granule 

properties, such as water content, particle size distribution, and bulk density, significantly 

impact the manufacturability in downstream processes and eventually affect the final 

product qualities, such as drug release and stability. Fluidized bed granulation, one of the 

most applied granulation processes, is complex4) because it has more process parameters 

(PPs) than other granulation processes: for example, spray rate, inlet air volume, inlet air 

temperature, inlet air humidity, nozzle air pressure, and nozzle height.5) A schematic 

diagram of a top-spray fluidized bed granulator is shown in Figure 1.1. The fluidized bed 

granulation process is divided into two phases: the granulation phase and the drying phase. 
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In the granulation phase, a binder solution is sprayed onto the particles fluidized by the 

heated inlet air from the bottom of the granulator. After the granulation phase, wet 

granules are dried by the heated inlet air. The water content profile during granulation is 

a crucial factor affecting the granule properties, such as particle size distribution and bulk 

density, which in turn could impact the tablet properties, such as hardness and 

disintegrating time.6) Conventional off-line water content measurement methods, such as 

loss on drying (LOD) and Karl Fischer, are unsuitable for real-time process monitoring. 

Thus, the prediction model to estimate water content has been widely utilized for in-line 

water content monitoring.7) 

In the pharmaceutical industry, the scaling-up of the fluidized bed granulation process 

from small scale to commercial scale has been conducted empirically,8) whereas the 

complicacy of this process usually makes it challenging. Hence, the first-principle models, 

such as heat and mass balance models9-14) and population balance models (PBMs),15-18) 

have been used to enhance process understanding of fluidized bed granulation or drying. 

 

 

Figure 1.1. Schematic diagram of a top-spray fluidized bed granulator. 

Inlet air

Exhaust air

Filter bags

Product container

Air distributor plate

Binder solution
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1.2. Paradigm shift to assure higher-quality pharmaceuticals 

The PPs in each unit operation and material attributes (MAs) of intermediate products, 

such as granules and uncoated tablets, could affect the final product qualities. The 

relationship between PPs, MAs, and final product qualities is complex due to their 

interactions. Before commercial manufacturing, the process validation is performed to 

demonstrate that the developed manufacturing process can consistently deliver quality 

products. Traditionally, the process validation is completed by successfully 

manufacturing three consecutive commercial-scale lots at the target operating conditions. 

However, this traditional approach is insufficient to establish a robust process control 

strategy against the variations of PPs or raw material properties. 

To assure pharmaceutical quality at a higher level, several guidelines19-25) regarding 

Quality by Design (QbD)26,27) and process analytical technology (PAT)19) were published 

by the Food and Drug Administration (FDA), the European Medicines Agency (EMA), 

and the International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH). QbD is a systematic approach 

based on quality risk management. The following steps establish a control strategy based 

on QbD. At first, we define a Quality Target Product Profile (QTPP), which is a 

prospective summary of the quality characteristic of a final product,25) and Critical 

Quality Attributes (CQAs), which are physical and chemical properties necessary to be 

within an appropriate range to assure the desired product quality.25) Then, we determine 

Critical Material Attributes (CMAs) and Critical Process Parameters (CPPs), which affect 

CQAs, through experiments conducted by changing manufacturing conditions to evaluate 

the influence of MAs and PPs on CQAs. At last, we set the acceptable ranges of CMAs 

and CPPs to satisfy the criteria of CQAs consistently, which results in the establishment 
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of a control strategy to assure consistency of product quality through commercial 

manufacturing. Hence, QbD promotes product and process understanding and contributes 

to selecting the target operating condition for commercial manufacturing based on a 

scientific rationale. PAT is a system for designing, analyzing, and controlling 

manufacturing processes through real-time monitoring,25) which enhances the process 

control strategy based on QbD. In other words, feedback or feedforward control of CPP 

is performed using in-line monitoring of CMA, which contributes to the consistency of 

CQA. Besides, PAT is valuable to facilitate process understanding in a process 

development study. Therefore, PAT plays an essential role throughout the pharmaceutical 

lifecycle. 

 

1.3. Soft sensor 

The in-line monitoring methods are divided into two types: hard sensors and soft 

sensors. Hard sensors are electromechanical or optical sensors to measure values 

directly.28) On the other hand, soft sensors are prediction models, and they can estimate 

specific attributes, which cannot be measured in real-time due to technological or 

economical reasons.29) Thus, soft sensors have been widely applied to various industries, 

such as chemical,29) paper/pulp,29) steel,29,30) petrochemical,30) semiconductor,30) and 

pharmaceutical.30) In the pharmaceutical industry, soft sensors using near-infrared 

spectroscopy (NIRS) have been extensively applied to various processes, such as 

fluidized bed granulation or drying,31-34) blending,35-37) tableting,38) and film coating.39,40) 

NIRS has the ability to predict various chemical and physical qualities rapidly and 

nondestructively.41-43) Additionally, NIRS-based monitoring methods are generally robust 

enough to counter the manufacturing scale change. However, NIRS has a known 
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drawback of the high initial investment cost of the near-infrared (NIR) spectrometer and 

the probe. 

Soft sensors are categorized into three types, i.e., white-box, black-box, and gray-box 

models,44) as shown in Figure 1.2. White-box models are based on first-principle, which 

means that they are descriptive and easy for industry operators to interpret.45) Several 

studies on white-box models of fluidized bed granulation or drying have been reported.9-

14) However, white-box models have a known drawback; sometimes they cannot grasp 

the actual dynamics of a complex industrial process, which causes deterioration of their 

prediction accuracy.45) For example, Tanino et al.10) demonstrated that the prediction 

accuracy of the heat and mass balance model could deteriorate depending on the 

formulations. Wang et al.13) reported that the mass balance model predicted higher values 

of granule water content than the reference values. 

 

 

Figure 1.2. Classification of soft sensor. 
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Black-box models are statistical models constructed using manufacturing data, and 

they usually have higher prediction accuracy than white-box models.45) In contrast, they 

are less intuitive in nature,45) which makes it difficult for industry operators to understand 

in detail. Many studies on PP-based or NIRS-based black-box models to predict the 

granule properties in fluidized bed granulation or drying have been reported.4,32-34,46,47) 

Unlike the NIRS-based black-box models, the PP-based black-box models do not require 

a special initial investment because PPs are measured using standard instruments, such as 

a thermometer, hygrometer, flowmeter, and electric balance. Thus, researches focusing 

on the application of the PP-based black-box models to the fluidized bed granulation 

process have been conducted enthusiastically. Rambali et al.4) demonstrated an 

optimization of the fluidized bed granulation process based on the multiple regression 

model. In addition, other regression models such as partial least squares regression 

(PLSR)48) that can cope with collinearity among PPs have been used to increase the 

prediction accuracy and the robustness of the statistical model.46,47) However, the PP-

based black-box models have a certain limitation; they are valid only within the process 

conditions considered during model development. For example, when the manufacturing 

scale is changed, the prediction accuracy of the model might decrease because the 

relationship between the majority of PPs and the water content depends on the intrinsic 

properties of the equipment, such as the heat transfer coefficient. Similarly, the existing 

PP-based black-box models to estimate the particle size of granules were valid only for 

the same granulator for which experimental data was obtained.47,49) The manufacturing 

scale of the granulation process is necessary to adjust according to the demand during 

clinical development and commercial manufacturing. In contrast, no PP-based black-box 

model that predicts the granule properties accurately beyond the calibrated manufacturing 
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scale range has been developed. 

Gray-box models integrate white-box and black-box models to solve each drawback, 

i.e., prediction accuracy and intuitiveness.45) Liu et al.50) developed a gray-box model to 

predict granule size distribution in fluidized bed granulation. The gray-box model 

integrates the PBM and PLSR model, which describes the relationship between the 

operating variables and kernel parameters in the PBM.50) On the other hand, no gray-box 

model focusing on the granule water content in fluidized bed granulation has been 

reported. 

 

1.4. Pharmaceutical lifecycle 

According to ICH Q1024), the pharmaceutical lifecycle is divided into four stages, i.e., 

pharmaceutical development, technology transfer, commercial manufacturing, and 

product discontinuation, as summarized in Figure 1.3. 

 

 

Figure 1.3. Overview of pharmaceutical lifecycle. 
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At the pharmaceutical development stage, formulation and manufacturing processes 

are developed, and investigational products are manufactured. Many experimental data 

are usually acquired at various operating conditions using laboratory-scale and pilot-scale 

equipment through this stage. Based on these experimental data, we evaluate the 

relationship between MAs and CQAs, which is independent of the manufacturing scale, 

and determine the CMAs to impact CQAs. Then, we construct a scale-free prediction 

model, for example, a NIRS-based black-box model, for CMA monitoring applicable to 

the commercial scale, using only the laboratory-scale and pilot-scale experimental data. 

At the technology transfer stage, the knowledge regarding product and manufacturing 

processes is transferred from the development unit to the manufacturing unit through a 

process development study using commercial-scale equipment. In many cases, except for 

rare disease therapeutic drugs, the process is scaled-up in order of laboratory, pilot, and 

commercial scale. The process development study aims to evaluate each manufacturing 

process’s influence on final product qualities to establish a control strategy for 

commercial manufacturing. However, this scaling-up is not easy because of the following 

two reasons. First, the number of lots in process development study using commercial-

scale equipment is usually limited, for example, from three to six lots, because a massive 

amount of expensive API is needed. Second, the relationship between the majority of PPs 

and CMA differs depending on the manufacturing scale, which means that trial and error 

are required to clarify the setting values of PPs to satisfy the desired CMA. Hence, the 

scale-free prediction model for CMA monitoring is crucial for facilitating process 

understanding, which reveals the relationship between PPs and CMA more efficiently. An 

accurate NIRS-based black-box model has been widely utilized for scale-free monitoring, 

whereas an alternative method that requires no initial investment has been desired for 
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cost-saving. However, it is challenging to construct a scale-free and accurate white-box 

model or PP-based black-box model without using commercial-scale experimental data. 

At the commercial manufacturing stage, final products with the desired quality are 

routinely released. In addition, continual improvement is facilitated through trend 

analysis and fluctuating factors identification using accumulated operating data and 

product knowledge, which continues until the final stage, i.e., product discontinuation. A 

descriptive and accurate prediction model for CMA monitoring enhances industry 

operators’ process understanding, which contributes to continual improvement at a higher 

level. However, a non-descriptive NIRS-based black-box model has been commonly used 

because a descriptive white-box model usually has a limitation of prediction accuracy. 

Thus, an alternative method with high prediction accuracy and interpretability is desirable. 

Although the CMA monitoring method’s features required at the technology transfer 

and the commercial manufacturing stages are different, a NIRS-based black-box model 

has been mainly adopted throughout the pharmaceutical lifecycle. A NIRS-based black-

box model is scale-free and accurate, whereas it is non-descriptive and requires a high 

initial investment cost. Therefore, it is crucial to develop practical alternative CMA 

monitoring methods to meet all the requirements at the technology transfer (scale-free, 

accurate, and cost-effective) and the commercial manufacturing (descriptive, accurate, 

and simple) stages, respectively. 

 

1.5. Aim of work and thesis outline 

This thesis aims at providing practical soft sensors suitable for the technology transfer 

and the commercial manufacturing stages. The thesis focuses on the water content 

monitoring in the fluidized bed granulation considering the critical impact on final 
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product qualities. The following two novel soft sensors are developed. 

➢ A scale-free, accurate, and cost-effective soft sensor for technology transfer 

(Chapters 3 and 4) 

➢ A descriptive, accurate, and simple soft sensor for commercial manufacturing 

(Chapter 5) 

 

In Chapter 2, the general information on this thesis, such as formulation, equipment, 

data acquisition, and regression methods, is described. 

In Chapter 3, a scale-free, accurate, and cost-effective PP-based black-box model is 

proposed to address the manufacturing scale change in the technology transfer stage. This 

study assumed an actual technology transfer situation, where it is necessary to construct 

an accurate prediction model applicable to commercial scale using only laboratory-scale 

and pilot-scale experimental data. This study evaluates the input variables’ influence on 

the prediction model’s robustness against the manufacturing scale change to develop a 

scale-free statistical model. Besides, two kinds of regression methods, i.e., PLSR and 

locally weighted partial least squares regression (LW-PLSR),51) are evaluated to build an 

accurate statistical model. LW-PLSR can cope with collinearity and nonlinearity.51) 

In Chapter 4, further evaluation regarding the developed scale-free PP-based LW-

PLSR model is conducted. The scale-free PP-based and NIRS-based LW-PLSR models 

are constructed using different calibration datasets and compared in terms of prediction 

accuracy and development cost. This study aims to clarify the following two points: 1) 

how to prepare the calibration samples required to construct accurate PP-based and NIRS-

based LW-PLSR models, and 2) which type of LW-PLSR model should be selected 

depending on the raw material cost, composition of granules, and price of the NIR 
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spectrometer. 

In Chapter 5, the three types of gray-box models, i.e., parallel,52) serial,53) and 

combined44) gray-box models (see Figure 1.2), are developed. The proposed gray-box 

models are descriptive, accurate, and simple, which means that they are valuable to the 

commercial manufacturing stage. In addition, as the point to consider when applying the 

gray-box models using LW-PLSR to commercial production, the assessment method 

based on Hotelling’s T2 and Q residual54) is proposed to judge whether the gray-box soft 

sensor is suitable for precise process monitoring. 

In Chapter 6, the conclusion of this thesis consisting of an overall discussion and 

outlook, is described. 
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2. General information 

2.1. Formulation 

The two formulations, A and B, consisted of the common API (Daiichi Sankyo Co., 

Ltd., Japan), whereas their components were different, as listed in Table 2.1. Besides, the 

mass fraction of API in formulation A was approximately twice that of formulation B. 

These differences in formulations A and B resulted in different water content of the blend 

for granulation, i.e., 2.4% and 3.3%, respectively. 

 

Table 2.1. Components of two formulations A and B. 

 

 

2.2. Granulators 

The following three fluidized bed granulators were utilized: NFLO-5 (Freund Corp., 

Japan) for approx. 4-kg scale, GPCG-30 (Powrex Corp., Japan) for approx. 25-kg scale, 

and WSG-120 (Powrex Corp.) for approx. 100-kg scale. In this thesis, the manufacturing 

scales were defined as follows: approx. 4 kg for the laboratory scale, approx. 25 kg for 

the pilot scale, and approx. 100 kg for the commercial scale. Granules were sampled 

throughout the granulation runs. 

 

Components Formulation A Formulation B

API   
Excipient A   
Excipient B   
Excipient C   
Excipient D   
Excipient E   
Excipient F   
Excipient G   

 : Included,  : Not included
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2.3. PPs measurement 

The following eight PPs were measured during the granulation process: inlet air 

volume (m3/min), inlet air temperature (°C), inlet air humidity (g-water/kg-air), spray rate 

(g/min), spray air volume (NL/min), product temperature (°C), exhaust air temperature 

(°C), and exhaust air humidity (%RH). In the eight PPs, inlet air volume (m3/min), inlet 

air temperature (°C), spray rate (g/min), and spray air volume (NL/min) are operable PPs. 

All the PPs were acquired using standard instruments such as a thermometer, hygrometer, 

flowmeter, and electric balance. These PPs were normalized, that is, their means were 

equal to 0 and the variances were equal to 1. 

 

2.4. Experimental data for calibration and validation 

The fluidized bed granulation process is divided into two phases: the granulation phase 

and the drying phase. In the thesis, only the granulation phase data were utilized because 

the number of PPs in the granulation phase is different from that in the drying phase; 

spray rate (g/min) and spray air volume (NL/min) are PPs specific to the granulation 

phase. The granulation phase, where liquid supply and evaporation occur simultaneously, 

is more complex and difficult to control water content accurately than the drying phase. 

Besides, the scaling-up is generally performed based on the water content profile during 

the granulation phase. It is desirable that PPs are determined to keep the granule water 

content during the granulation phase constant at different manufacturing scales.8) Thus, 

in-line water content monitoring in the granulation phase is especially important, and the 

thesis focused on the granulation phase. 
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2.4.1. Formulation A 

The experimental data utilized in Chapter 5 are summarized in Table 2.2. 

 

2.4.2. Formulation B 

The experimental data utilized in Chapters 3 and 4 are listed in Table 2.3, and those 

used in Chapter 5 are summarized in Table 2.2. 
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Table 2.2. Experimental data of formulations A and B using Chapter 5. 

t: spraying time (min), PP1: inlet air volume (m3/min), PP2: inlet air temperature (C), PP3: inlet air humidity (g-water/kg-air), PP4: mean value of spray rate 

for 0 min to t min (kg/min), PP5: spray air volume (NL/min), PP6: product temperature (C), PP7: exhaust air temperature (C), PP8: exhaust air humidity 

(%RH), and WC: water content of granules (%). 

 
  

Formulation Lot No. Number of samples
Minimum – Maximum

t PP1 PP2 PP3 PP4 PP5 PP6 PP7 PP8 WC

A 1 11 10 – 114 34.6 – 37.8 90.1 – 90.3 3.5 – 3.8 0.747 – 0.748 548 – 550 38.4 – 43.0 37.8 – 42.8 34.8 – 52.3 2.6 – 3.3

A 2 9 10 – 90 32.7 – 33.2 90.1 – 90.2 3.5 – 3.8 0.948 – 0.948 546 – 548 30.2 – 36.1 30.2 – 38.0 46.9 – 90.8 3.5 – 15.3

A 3 8 10 – 87 31.7 – 33.2 90.2 – 90.3 2.8 – 3.6 0.948 – 0.948 800 – 802 29.8 – 35.6 29.7 – 37.4 48.4 – 91.1 3.9 – 13.1

A 4 11 10 – 115 35.8 – 38.6 90.1 – 90.3 3.4 – 3.8 0.747 – 0.748 798 – 801 38.4 – 43.4 36.9 – 43.1 34.4 – 53.3 2.4 – 3.1

A 5 9 10 – 97 32.6 – 35.2 90.2 – 90.3 3.6 – 3.8 0.847 – 0.848 649 – 652 31.4 – 39.0 31.3 – 40.0 41.4 – 83.3 3.1 – 6.3

A 6 8 10 – 87 33.8 – 35.1 90.1 – 90.3 3.6 – 3.9 0.947 – 0.948 750 – 755 30.2 – 37.1 30.2 – 38.5 46.8 – 90.8 3.7 – 12.2

B 1 6 10 – 62 29.9 – 30.1 89.9 – 90.1 2.2 – 2.4 0.698 – 0.699 692 – 715 35.5 – 41.3 35.1 – 40.1 51.1 – 69.3 3.6 – 5.0

B 2 5 10 – 51 27.4 – 28.1 85.0 – 85.0 3.8 – 4.0 0.848 – 0.849 643 – 650 30.1 – 35.7 30.8 – 37.5 44.7 – 77.8 4.3 – 10.8

B 3 8 10 – 79 31.2 – 32.1 94.9 – 95.1 3.8 – 4.1 0.548 – 0.549 712 – 746 49.8 – 51.1 47.0 – 49.7 20.4 – 26.2 2.5 – 2.8

B 4 6 10 – 62 29.3 – 30.0 90.0 – 90.1 3.6 – 4.0 0.697 – 0.698 694 – 713 36.5 – 42.0 36.0 – 41.1 42.1 – 62.6 3.5 – 4.8

B 5 6 10 – 59 27.6 – 28.3 85.0 – 85.1 3.7 – 4.1 0.749 – 0.749 646 – 672 31.1 – 38.0 31.5 – 38.7 41.9 – 74.7 4.1 – 8.2

B 6 7 10 – 72 31.4 – 32.4 95.0 – 95.1 3.7 – 4.0 0.598 – 0.599 742 – 772 47.1 – 47.6 44.9 – 45.9 29.0 – 31.0 2.7 – 3.0
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Table 2.3. Experimental data of formulation B using Chapters 3 and 4. 

t: spraying time (min), PP1: inlet air volume (m3/min), PP2: inlet air temperature (C), PP3: inlet air humidity (g-water/kg-air), PP4: spray rate (g/min), PP5: 

spray air volume (NL/min), PP6: product temperature (C), PP7: exhaust air temperature (C), PP8: exhaust air humidity (%RH), and WC: water content of 

granules (%). 

 

Chapter 3 Chapter 4 Equipment Lot No. t PP1 PP2 PP3 PP4 PP5 PP6 PP7 PP8 WC

Calibration Calibration NFLO-5 1 5 2.5 69.3 9.2 66 147 35.5 41.6 34 3.7

Calibration Calibration NFLO-5 1 10 2.5 69.9 9.5 65 147 30.6 36.8 46 4.7

Calibration Calibration NFLO-5 1 15 2.5 70.0 9.8 67 147 29.2 34.1 53 7.9

Calibration Calibration NFLO-5 1 20 2.5 69.6 8.8 69 148 28.5 30.4 70 7.7

Calibration Calibration NFLO-5 1 25 2.6 69.9 9.4 67 149 28.4 29.6 73 9.2

Calibration Calibration NFLO-5 1 29 2.5 70.0 9.6 66 148 28.4 29.1 75 10.2

Calibration Calibration NFLO-5 2 0 2.6 67.4 10.0 70 147 42.0 42.6 16 1.9

Calibration Calibration NFLO-5 2 15 2.0 70.6 10.1 81 148 29.3 31.6 65 9.5

Calibration Calibration NFLO-5 2 20 1.5 70.1 10.2 81 149 28.2 30.3 68 12.5

Calibration Calibration NFLO-5 2 25 1.5 70.1 10.1 71 148 27.7 29.4 69 15.6

Calibration Calibration NFLO-5 3 0 2.6 76.3 10.0 50 149 41.3 39.7 20 2.2

Calibration Calibration NFLO-5 3 5 2.5 82.8 10.0 52 150 39.2 38.3 40 2.9

Calibration Calibration NFLO-5 3 10 2.5 84.7 10.1 55 150 36.7 36.6 48 3.5

Calibration Calibration NFLO-5 3 15 2.0 84.7 10.0 53 150 35.1 35.5 50 4.3

Calibration Calibration NFLO-5 3 20 2.5 84.1 9.3 69 149 35.8 34.3 55 3.5

Calibration Calibration NFLO-5 3 25 2.5 84.8 9.5 53 149 36.2 34.1 56 4.0

Calibration Calibration NFLO-5 3 30 2.5 85.1 9.7 49 148 36.7 34.1 58 3.8

Calibration Calibration GPCG-30 4 10 7.9 87.5 6.5 151 148 44.8 42.9 33 2.8

Calibration Calibration GPCG-30 4 20 8.0 88.7 6.6 150 150 43.0 41.3 38 3.0

Calibration Calibration GPCG-30 4 30 7.9 87.9 6.7 149 148 42.1 40.4 41 3.2

Calibration Calibration GPCG-30 4 40 8.0 88.7 6.3 149 151 41.6 40.0 43 3.3

Calibration Calibration GPCG-30 4 50 7.9 88.0 6.7 149 150 41.0 39.6 44 3.5

Calibration Calibration GPCG-30 4 60 7.9 88.0 6.5 150 148 40.7 39.3 46 3.4

Calibration Calibration GPCG-30 4 72 7.9 87.9 6.7 149 151 40.3 38.8 47 3.5

Calibration Calibration GPCG-30 5 10 8.0 87.0 5.1 180 178 41.2 41.8 34 3.1

Calibration Calibration GPCG-30 5 20 7.9 87.9 5.2 180 175 38.0 38.9 44 3.8

Calibration Calibration GPCG-30 5 30 8.0 88.0 5.3 179 179 36.5 37.3 51 4.1

Calibration Calibration GPCG-30 5 40 7.9 87.9 5.4 180 181 35.5 36.1 57 4.5

Calibration Calibration GPCG-30 5 50 7.9 87.6 5.5 180 182 34.9 35.2 61 4.4

Calibration Calibration GPCG-30 5 59 7.9 87.8 5.5 180 181 34.6 34.6 65 4.8
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Table 2.3. Experimental data of formulation B using Chapters 3 and 4 (Continued). 

 

Chapter 3 Chapter 4 Equipment Lot No. t PP1 PP2 PP3 PP4 PP5 PP6 PP7 PP8 WC

N/A Calibration WSG-120 6 10 29.9 90.1 3.6 697 713 42.0 41.1 42 3.5

N/A Calibration WSG-120 6 20 30.0 90.0 4.0 697 695 39.4 38.9 49 4.0

N/A Calibration WSG-120 6 30 29.9 90.1 3.7 699 694 38.0 37.7 54 4.4

N/A Calibration WSG-120 6 40 29.9 90.1 3.8 698 703 37.2 36.9 58 4.7

N/A Calibration WSG-120 6 50 30.0 90.1 3.8 699 702 36.7 36.3 60 4.7

N/A Calibration WSG-120 6 62 29.3 90.1 4.0 699 704 36.5 36.0 63 4.8

N/A Calibration WSG-120 7 10 31.4 95.0 3.7 598 772 47.4 44.9 31 2.8

N/A Calibration WSG-120 7 20 32.4 95.0 3.7 598 752 47.1 45.0 30 2.7

N/A Calibration WSG-120 7 30 32.0 95.1 4.0 598 747 47.2 45.3 30 3.0

N/A Calibration WSG-120 7 40 31.5 95.0 3.8 600 747 47.2 45.5 30 3.0

N/A Calibration WSG-120 7 50 31.8 95.0 3.7 597 744 47.3 45.5 30 2.9

N/A Calibration WSG-120 7 60 32.0 95.0 3.7 598 746 47.5 45.7 29 2.9

N/A Calibration WSG-120 7 72 31.8 95.0 3.9 598 742 47.6 45.9 29 3.0

N/A Calibration WSG-120 8 10 28.1 85.1 3.9 749 672 38.0 38.7 42 4.1

N/A Calibration WSG-120 8 20 28.3 85.1 3.7 748 655 34.4 35.5 52 5.3

N/A Calibration WSG-120 8 30 27.6 85.1 4.0 750 650 32.8 33.7 61 6.2

N/A Calibration WSG-120 8 40 28.0 85.0 3.8 749 649 31.9 32.7 67 7.1

N/A Calibration WSG-120 8 50 27.9 85.1 3.9 749 648 31.3 31.9 72 7.6

N/A Calibration WSG-120 8 59 27.6 85.0 4.1 748 646 31.1 31.5 75 8.2

Validation Validation WSG-120 9 10 30.0 89.9 2.3 699 715 41.3 40.1 51 3.6

Validation Validation WSG-120 9 20 30.1 90.0 2.2 699 692 38.7 38.1 54 4.0

Validation Validation WSG-120 9 30 29.9 90.1 2.4 698 698 37.3 36.9 59 4.3

Validation Validation WSG-120 9 40 30.0 90.0 2.3 699 698 36.5 36.1 64 4.7

Validation Validation WSG-120 9 50 30.0 90.1 2.2 698 700 35.9 35.5 67 4.9

Validation Validation WSG-120 9 62 30.0 90.0 2.3 697 699 35.5 35.1 69 5.0

Validation Validation WSG-120 10 10 27.4 85.0 4.0 848 650 35.7 37.5 45 4.3

Validation Validation WSG-120 10 20 28.1 85.0 3.8 849 643 32.2 33.9 59 6.2

Validation Validation WSG-120 10 30 28.1 85.0 3.8 849 649 30.9 32.2 68 7.6

Validation Validation WSG-120 10 40 28.1 85.0 3.9 848 646 30.3 31.2 74 9.3

Validation Validation WSG-120 10 51 28.0 85.0 3.9 848 647 30.1 30.8 78 10.8

Validation Validation WSG-120 11 10 31.9 94.9 3.8 548 730 49.8 47.0 26 2.6

Validation Validation WSG-120 11 20 32.1 95.1 3.8 550 712 50.3 48.4 23 2.6

Validation Validation WSG-120 11 30 31.5 95.1 4.1 548 746 50.8 49.2 22 2.8

Validation Validation WSG-120 11 40 31.9 95.1 3.8 549 743 51.0 49.5 21 2.6

Validation Validation WSG-120 11 50 32.0 95.0 3.9 549 742 50.9 49.6 21 2.8

Validation Validation WSG-120 11 60 31.2 95.0 4.1 549 743 51.0 49.7 21 2.7

Validation Validation WSG-120 11 70 31.8 95.0 3.9 549 741 51.0 49.7 21 2.6

Validation Validation WSG-120 11 79 31.6 95.1 3.8 548 741 51.1 49.7 20 2.5
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2.5. NIR spectra 

2.5.1. Measurement 

The NIR spectra of the granules were measured during the granulation process using 

a Fourier-transform NIR spectrometer MPA (Bruker Optik GmbH, Germany) or Matrix-

F (Bruker Optik GmbH, Germany) through a fiber-optic probe attached to the fluidized 

bed granulator. Because the MPA and Matrix-F use an equivalent optical device, the NIR 

spectra obtained are comparable. 

 

2.5.2. Preprocessing 

The wavenumber region ranging from 8007 cm-1 to 4258 cm-1 was used to exclude 

any noisy regions, and the prediction models were constructed using the following five 

preprocessing methods: first derivative, second derivative, standard normal variate 

(SNV),55) first derivative and SNV, and second derivative and SNV. The method 

presenting the highest prediction accuracy was then selected. Each preprocessing method 

was performed using the OPUS software (Bruker Optik GmbH, Germany). 

 

2.5.3. Wavenumber selection 

The wavenumber region was selected by SFD-NCSC-PLSR, which integrates spectral 

fluctuation dividing (SFD), nearest correlation spectral clustering (NCSC), and PLSR, to 

achieve high-performance prediction.56) 

 

2.6. Reference measurement 

The water content of the granules was measured by the LOD device: HR73 (Mettler-
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Toledo K.K., Japan) or its equivalent HR83 (Mettler-Toledo K.K.). 

 

2.7. Regression method 

PLSR48) and LW-PLSR51) were used to construct the prediction model. Recently, LW-

PLSR has been applied to various industrial processes such as pharmaceutical,49,51,57,58) 

petrochemical,30,59) and semiconductor production30,60) because of its remarkable ability 

to address collinearity and nonlinearity.51) The difference between PLSR and LW-PLSR 

is the weighting rule for the calibration samples. In PLSR, a prediction model is built 

utilizing fixed weighting values for all calibration samples. In contrast, in LW-PLSR, the 

weighting values are determined for each query based on the distances between the query 

and the calibration samples, and a local PLSR model is built. Hence, LW-PLSR includes 

PLSR as a special case;51) LW-PLSR is equivalent to PLSR when the localization 

parameter 𝜂 is set to 0, refer to Eq. (2.4) in Section 2.7.1. The PLSR and LW-PLSR 

models were constructed using MATLAB® software (MathWorks, Inc., US). 

 

2.7.1. LW-PLSR 

Input matrix 
N MX   and output matrix 

N LY   are described using latent 

variables as follows: 

T T

1

R

r r

r=

= + = +X TP E t p E       (2.1) 

T T

1

R

r r

r=

= + = +Y TQ F t q F       (2.2) 

where  1 2 3

N R

R

= T t t t t   is a latent variable matrix,  1 2 3

M R

R

= P p p p p  
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and  1 2 3

L R

R

= Q q q q q   are loading matrices, E and F are errors, and R is the 

number of latent variables. 

LW-PLSR is a just-in-time modeling method. Whenever a prediction is required for a 

query, a local PLSR model is constructed using the weighting calibration samples. A 

similarity matrix to weight calibration samples is expressed as follows: 

( )1 2 3diag N N

N    =       (2.3) 

where similarity 𝜔𝑛  is calculated based on the weighted Euclidean distance 𝑑𝑛 

between the query 𝒙𝑞 and the n-th calibration sample 𝒙𝑛: 

exp n
n

d

d 




 
= − 

 
       (2.4) 

( ) ( )
T

n n q n qd = − −x x x x       (2.5) 

( )1 2 3diag M M

M    =       (2.6) 

where 𝜎𝑑  is a standard deviation of {𝑑𝑛} , 𝜂  is a localization parameter, Λ is a 

weighting matrix, and 𝜆𝑚 is a weight of the m-th input variable. The tuning parameters 

of the LW-PLSR model, i.e., R (the number of latent variables) and 𝜂 (the localization 

parameter), are determined to minimize the prediction error sums of squares of the leave-

one-out cross validation (LOOCV). The localization parameter 𝜂 was tuned in the range 

of 0 to 5.0 (Chapters 3 and 4) or 0 to 10.0 (Chapter 5). 

The predicted output variables �̂�𝑞  corresponding to the query 𝒙𝑞  are calculated 

through the following steps: 

 

I. Set 𝑟 = 1. 

II. Calculate the similarity matrix Ω through Eqs. (2.3), (2.4), (2.5), and (2.6). 
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III. Set 𝑿𝑟, 𝒀𝑟, and 𝒙𝑞,𝑟 as follows: 

 1 2 3r N Mx x x x= −1X X      (2.7) 

 1 2 3r N Ly y y y= −1Y Y       (2.8) 

 
T

1 2 3q,r q Mx x x x= −x x      (2.9) 

1

1

N

n nm

n
m N

n

n

x

x





=

=

=



       (2.10) 

1

1

N

n nl

n
l N

n

n

y

y





=

=

=



       (2.11) 

where N

N1  is a vector of ones, and �̅�𝑚 and �̅�𝑙 are weighted averages. 

IV. Set  
T

1 2 3
ˆ

q Ly y y y=y . 

V. Derive the r-th latent variable of 𝑿. 

r r r=t X w         (2.12) 

where the r-th weight 𝒘𝑟 is derived as the eigenvector of T T

r r r rX Y Y X  , which 

corresponds to the maximum eigenvalue. 

VI. Derive the r-th latent variable of 𝒙𝑞. 

T

,q,r q r rt = x w         (2.13) 

VII. Derive the r-th loading vectors. 

T

T

r r
r

r r

=
X t

p
t t




       (2.14) 

T

T

r r
r

r r

=
Y t

q
t t




       (2.15) 
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VIII. Update 
,

ˆ ˆ
q q q r rt +y y q . 

IX. If 𝑟 = 𝑅, end. Otherwise, set 𝑿𝑟+1, 𝒀𝑟+1, and 𝒙𝑞,𝑟+1 as follows: 

T

1r r r r+ = −X X t p        (2.16) 

T

1r r r r+ = −Y Y t q        (2.17) 

, 1 , ,q r q r q r rt+ = −x x p        (2.18) 

X. Set 1r r + , and return to step V. 

 

2.7.2. PLSR 

PLSR is a linear regression method. In PLSR, a prediction model is built utilizing 

fixed weighting values for all calibration samples, i.e., 𝜂 = 0 in Eq. (2.4). The other 

algorithms are the same as LW-PLSR. The tuning parameter of the PLSR model, i.e., R 

(the number of latent variables), is determined to minimize the prediction error sums of 

squares of the LOOCV. 

 

2.8. Prediction performance evaluation 

To evaluate the prediction accuracy of the developed models, the root mean square 

error of calibration (RMSEC), the root mean square error of cross validation (RMSECV), 

the root mean square error of prediction (RMSEP), the correlation coefficient (R), and 

coefficient of determination (R2) were calculated. 

RMSE, R, and R2 are defined as: 

( )
2

1

1
ˆRMSE

K

k k

k

y y
K =

= −       (2.19) 
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where K is the number of samples, and y
k
 and ŷ

k
 are the reference value and prediction 

value of the water content for the k-th sample, respectively. 

( )( )

( ) ( )

1

22

1 1

ˆ ˆ

=

ˆ ˆ

K

k k

k

K K

k k

k k

y y y y

R

y y y y

=

= =

− −

− −



 
     (2.20) 

where y̅ and y̅̂ are the mean values of y
k
 and ŷ

k
, respectively. 

( )

( )

2

2 1

2

1

ˆ

1

K

k k

k

K

k

k

y y

R

y y

=

=

−

= −

−




       (2.21) 

 

2.9. Evaluation of LW-PLSR model 

Two distance criteria, i.e., Hotelling’s T2 and Q residual,54) were utilized to assess the 

validity of the LW-PLSR model for a query. Kamohara et al.61) and Muteki et al.62) 

reported that T2 and Q could test the validity of the PLSR model for the query. In this 

thesis, a 99% confidence limit was adopted as the threshold of T2 and Q to test whether 

the LW-PLSR model was valid for the query. T2 and Q values were calculated using the 

following equations: 

( )

,

2

, ,2

2
1

=

r calibration

R
r query r calibration

r

t t
T

s=

−


t

      (2.22) 

( )
2

, ,

1

ˆ=
M

m query m query

m

Q x x
=

−       (2.23) 

where R is the number of latent variables, tr,query is the r-th latent variable score of the 

query, tr̅,calibration is the mean value of tr,calibration, which is the r-th score vector of the 
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calibration dataset samples, str,calibration

2  is the variance of tr,calibration, M is the number of 

input variables, xm,query  and x̂m,query  are the query’s experimental value and 

reconstructed value of the m-th input variable. 
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3. Scale-free PP-based Black-box Soft Sensor 

3.1. Introduction 

This study aims to develop an accurate PP-based black-box model that can counter 

the manufacturing scale change. This study evaluated the effects of the input variables 

and a regression method on the accuracy and robustness of the prediction model. There 

are two key ideas to build a scale-free PP-based black-box model for water content 

monitoring. First, to accommodate the manufacturing scale change, the input variables 

were selected based on variable importance in the PLSR model constructed using the 

experimental data obtained at different manufacturing scales. Second, to construct an 

accurate statistical model, LW-PLSR was utilized. The LW-PLSR is a type of just-in-time 

modeling method that can cope with collinearity and nonlinearity.51) The LW-PLSR was 

adopted because the relationship between basic PPs and water content could be nonlinear. 

In this study, PP-based black-box models were developed using both laboratory-scale and 

pilot-scale experimental data; the prediction accuracy in the commercial scale was 

evaluated based on the assumption that the process was scaled-up from the pilot scale to 

the commercial scale. A NIRS-based prediction model was also constructed as a reference. 

Both the PP-based and NIRS-based black-box models were constructed using a dataset 

obtained from the same experiments, and their prediction accuracy was compared. 

 

3.2. Materials and Methods 

3.2.1. Materials 

The formulation B was granulated using laboratory, pilot, and commercial-scale 

fluidized bed granulators, refer to Sections 2.1 and 2.2. 
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3.2.2. Measurement of PPs, NIR spectra, and reference 

Refer to Sections 2.3, 2.5.1, and 2.6. 

 

3.2.3. Calibration and validation datasets 

In this study, a scenario in which the granulation process was scaled-up from a pilot 

scale to a commercial scale was investigated. As shown in Table 2.3, the calibration 

dataset for both the PP-based and NIRS-based models consists of 30 samples (Lot Nos. 

1-5), which were acquired at the laboratory and pilot scale: NFLO-5 (3 lots) and GPCG-

30 (2 lots). On the other hand, the validation dataset consists of 19 samples (Lot Nos. 9-

11) acquired at the commercial scale: WSG-120 (3 lots), which is not included in the 

calibration dataset. 

 

3.2.4. Input variable selection 

3.2.4.1.  PPs 

To predict the water content at a commercial scale without using the commercial-scale 

experimental data in the calibration dataset, critical PPs whose effects on water content 

are constant among manufacturing scales were selected as follows. First, a PLSR model 

was constructed using all the PPs provided in the calibration dataset. Then, variable 

importance in the projection (VIP) scores, which indicate contributions of the input 

variables to the prediction value, were calculated. The VIP score for the j-th variable is 

defined as follows:  
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( )( )

( )

2
2

1

2

1

=

R
T

r r r jr r

r
j R

T

r r r

r

M q t t w w

VIP

q t t

=

=

 
  


     (3.1) 

where M is the number of input variables, R is the number of latent variables, q
r
 is the 

r-th regression coefficient vector, tr is the r-th score vector, and wjr is the j-th element 

of the r-th weighting vector wr. Here, R was determined to minimize the prediction error 

sums of squares of the LOOCV. 

In general, the input variables whose VIP scores are greater than or equal to one are 

considered critical to the prediction value.63) In this study, PPs with VIP scores greater 

than or equal to one were selected as the input variables. 

 

3.2.4.2.  NIR spectra 

Refer to Sections 2.5.2, and 2.5.3. 

 

3.2.5. Regression method 

PLSR and LW-PLSR were utilized to build the prediction model using the selected 

input variables. To evaluate the effect of the input variable selection on the prediction 

performance, a PLSR model using all the PPs was constructed and evaluated. LOOCV 

was performed to determine the tuning parameters of PLSR and LW-PLSR models. The 

detailed information regarding PLSR and LW-PLSR is described in Section 2.7. 
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3.2.6. Prediction performance evaluation 

After the LOOCV was conducted, RMSECV and RCV were calculated. Besides, to 

evaluate the applicability to the validation dataset, RMSEP and RP were calculated. The 

detailed information on calculation is described in Section 2.8. 

 

3.2.7. Evaluation of LW-PLSR model 

Refer to Section 2.9. 

 

3.3. Results and discussion 

3.3.1. PP-based black-box models 

3.3.1.1.  Input variable selection 

Figure 3.1 shows the VIP scores of all the PPs, which were calculated using the PLSR 

model after normalization. The results show that the VIP scores of four PPs, i.e., inlet air 

temperature (°C), product temperature (°C), exhaust air temperature (°C), and exhaust air 

humidity (%RH), were greater than one. Therefore, these four PPs were selected as the 

input variables. 

RMSEP values of the PLSR models are provided in Figures 3.2A and 3.2B. RMSEP 

was significantly reduced from 27.2% to 3.5% by using the four selected PPs as input 

variables. In addition, RMSECV values are provided in Figures 3.2C and 3.2D. The PLSR 

model with the four selected PPs showed a notably smaller difference between RMSEP 

and RMSECV than that with all PPs; their differences were 1.7% and 25.6%, respectively. 

These results confirm that the proposed method constructed a robust PP-based black-box 

model to counter the manufacturing scale change. 



 

29 

 

Figure 3.1. Importance of PPs based on VIP scores. 

 

 

Figure 3.2. Prediction accuracy of PLSR models using the four selected PPs (A, C) and 

all PPs (B, D). 

RMSECV=1.6%

RCV=0.87

RMSEP=27.2%

RP=0.86

RMSEP=3.5%

RP=0.86

RMSECV=1.8%

RCV=0.83

(A)

(C)

(B)

(D)
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3.3.1.2.  Regression method 

LW-PLSR and PLSR were compared in terms of prediction accuracy. The four 

selected PPs were used as input variables in both models; RMSEP values were calculated 

using the validation dataset shown in Table 2.3. As shown in Figures 3.2A and 3.3A, the 

RMSEP of 0.5% for the LW-PLSR model was significantly smaller than that of 3.5% for 

the PLSR model. In addition, the difference between the RMSEP and RMSECV of -0.2% 

for the LW-PLSR model was smaller than that of 1.7% for the PLSR model, as shown in 

Figures 3.2 and 3.3. These results indicate that the LW-PLSR model is more accurate and 

robust than the PLSR model. The LW-PLSR model with the four selected PPs was 

confirmed to show the highest prediction accuracy among the three PP-based black-box 

models. LW-PLSR was effective in improving the prediction accuracy because the 

relationship between the four selected input variables and the output variable of the water 

content was nonlinear, as shown in Figure 3.4. Hence, the LW-PLSR model achieved a 

better prediction performance and robustness compared to the PLSR model. 

 

 

Figure 3.3. Prediction accuracy of LW-PLSR model using the four selected PPs. 

 

RMSEP=0.5%

RP=0.99

RMSECV=0.7%

RCV=0.98

(A) (B)
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Figure 3.4. Relationship between input and output variables in the calibration dataset. 

 

As shown in Figure 3.5, the four PPs selected as input variables, i.e., inlet air 

temperature (°C), product temperature (°C), exhaust air temperature (°C), and exhaust air 

humidity (%RH), were in similar ranges regardless of the manufacturing scale. In contrast, 

the parameter ranges of the other four PPs, i.e., inlet air volume (m3/min), inlet air 

humidity (g-water/kg-air), spray rate (g/min), and spray air volume (NL/min), 

significantly differed depending on the manufacturing scale. Reflecting the ranges of the 

four PPs used in the LW-PLSR model, T2 and Q values of all validation dataset samples 

were within the 99% confidence limit, which contributes to the validity of the LW-PLSR 

models for the query. 

Furthermore, the reasonability of the VIP criteria was retrospectively evaluated. The 

LW-PLSR model utilizing the four PPs showed higher prediction accuracy compared to 
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those using different PPs selected by the various VIP criteria, as shown in Figure 3.6. The 

difference between the RMSEP and RMSECV became remarkably smaller when the VIP 

criterion was 1.0 or greater. Additionally, the RMSEP and RMSECV values of the LW-

PLSR model using the four PPs selected based on the VIP criterion of 1.0, were smaller 

than those utilizing the two PPs selected at the VIP criterion of 1.2. Based on the results, 

the four selected PPs were considered critical for constructing a robust PP-based black-

box model to counter the manufacturing scale change. 

 

 

Figure 3.5. Input variable ranges at three fluidized bed granulators with different scales. 
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Figure 3.6. Difference between RMSEP and RMSECV values of LW-PLSR models 

depending on VIP score criteria. 

 

3.3.2. NIRS-based black-box models 

3.3.2.1.  Preprocessing 

Table 3.1 shows the RMSECV and RCV values of the five PLSR models constructed by 

applying various preprocessing methods. As a result, SNV, which showed the highest 

prediction accuracy, was selected as the preprocessing method for constructing the NIRS-

based black-box model. 

 

Table 3.1. Comparison of five preprocessing methods in RMSECV and RCV values. 
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3.3.2.2.  Wavenumber selection 

Figure 3.7 shows the wavenumber region selected by SFD-NCSC-PLSR, i.e., ranging 

from 7212 cm-1 to 6935 cm-1, which includes the first overtone wavenumber region for 

H2O. 

 

 

Figure 3.7. NIR spectra, preprocessed using SNV, of granules during fluidized bed 

granulation at the wavenumber region ranging from 8007 cm-1 to 4258 cm-1. 

 

3.3.2.3.  Regression method 

The LW-PLSR and PLSR models were constructed after applying SNV to the 

calibration dataset of the NIR spectra with a wavenumber region ranging from 7212 cm-

1 to 6935 cm-1. The RP values for both models were evaluated using the validation dataset 

shown in Table 2.3. The RP value of 0.98 for the LW-PLSR model was higher than that 

of 0.93 for the PLSR model, as observed from the results shown in Figures 3.8A and 3.8B. 

Moreover, Figure 3.8 shows the 0.5% difference between the RMSEP and RMSECV for 

the LW-PLSR model, which was equivalent to that of 0.6% for the PLSR model. Thus, 
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the NIRS-based LW-PLSR model was confirmed to be the better estimator of the water 

content compared to the PLSR model. 

 

 

Figure 3.8. Prediction accuracy of LW-PLSR (A, C) and PLSR (B, D) models using 

absorbance at the wavelength selected by SFD-NCSC-PLSR. 

 

3.3.3. Comparison of the prediction accuracy 

The best PP-based LW-PLSR model with the four PPs, and the best NIRS-based LW-

PLSR model with a wavenumber region from 7212 cm-1 to 6935 cm-1 were compared. As 

shown in Figures 3.3A and 3.8A, the 0.5% RMSEP for the PP-based LW-PLSR model 

was slightly smaller than that of 1.0% for the NIRS-based LW-PLSR model. In addition, 

Figures 3.3A, 3.3B, 3.8A, and 3.8C show the -0.2% difference between the RMSEP and 

RMSECV for the PP-based LW-PLSR model, which was equivalent to that of 0.5% for the 
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NIRS-based LW-PLSR model. These results indicate that the PP-based LW-PLSR model 

was as accurate as the NIRS-based LW-PLSR model and robust enough to counter the 

manufacturing scale change. 

 

3.4. Summary 

In Chapter 3, it was demonstrated that the proposed PP-based black-box model could 

predict water content accurately beyond the manufacturing scale range of the calibration 

dataset. There are two key ideas for constructing a scale-free PP-based black-box model. 

First, to accommodate the manufacturing scale change, critical PPs whose effects on 

water content are constant among manufacturing scales were used as the input variables. 

Second, to construct an accurate statistical model, LW-PLSR was utilized to cope with 

collinearity and nonlinearity. The experiments demonstrated that the PP-based black-box 

model based on the proposed method exhibited a high prediction accuracy, which was 

equivalent to the widely-used NIRS-based black-box model. Unlike the NIRS-based 

method, the proposed method requires only standard instruments. Therefore, the proposed 

method is expected to be a cost-effective alternative to the existing NIRS-based 

monitoring method. 
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4. Prediction Performance and Economic Efficiency of Black-

box Soft Sensors: PP-based Model vs. NIRS-based Model 

4.1. Introduction 

PP-based and NIRS-based models are standard statistical models used to predict water 

content. Economic efficiency, as well as prediction accuracy, is a key factor to be 

considered when choosing between PP-based models and NIRS-based models. Cogdill et 

al.64) demonstrated through a hypothetical case study that investment in PAT generated 

financial benefit through the achievement of real-time release testing (RTRT), which 

reduces the labor and resources required for the operation of the quality unit. Thus, the 

economic potential of PAT in a routine production period was revealed. However, an 

economic case study focusing on the development cost of PAT has not been reported. To 

maximize the financial benefit of PAT, it is crucial to reduce its development cost. 

In Chapter 3, the application of the scale-free PP-based LW-PLSR model for water 

content monitoring was demonstrated. The PP-based and NIRS-based LW-PLSR models, 

which were constructed using a common calibration dataset, showed equivalent 

prediction accuracy. However, the influence of the calibration dataset on the prediction 

accuracy has not been revealed; therefore, further evaluation is needed to understand 

which properties of the dataset are crucial to building accurate scale-free PP-based LW-

PLSR models. 

In this study, two types of statistical models to predict water content, i.e., PP-based 

and NIRS-based LW-PLSR models, were constructed using different calibration datasets 

and compared in terms of prediction accuracy and development cost. This study aims to 

reveal the following two points: 1) how to prepare the calibration samples required to 
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construct accurate PP-based and NIRS-based LW-PLSR models, and 2) which type of 

statistical model should be selected depending on the raw material cost, composition of 

granules, and price of the NIR spectrometer. Clarification of these two points enables to 

promote the efficiency of building accurate models and save the development cost of PAT, 

which in turn improves the financial benefit of PAT and enhances more accurate quality 

control. 

 

4.2. Materials and Methods 

PP-based and NIRS-based LW-PLSR models were developed, and their prediction 

accuracy and development cost were compared. The development cost of PAT was 

defined as the cost of goods required to construct an accurate model of commercial-scale 

equipment. Various calibration datasets were prepared in accordance with the general 

process development scenario; that is, the process was scaled-up in order of laboratory, 

pilot, and commercial scale. To evaluate the development cost comprehensively, the raw 

material cost, composition of granules, and price of the NIR spectrometer were taken into 

account. 

 

4.2.1. Materials 

The formulation B was granulated using laboratory, pilot, and commercial-scale 

fluidized bed granulators, refer to Sections 2.1 and 2.2. 

 

4.2.2. Measurement of PPs, NIR spectra, and reference 

Refer to Sections 2.3, 2.5.1, and 2.6. 
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4.2.3. Calibration and validation datasets 

As shown in Table 2.3, the eleven granulation lot data (Lot Nos. 1-11) were utilized. 

Three commercial-scale granulation lots (Lot Nos. 9-11) were selected from the eleven 

lots as a validation dataset. From the remaining eight granulation lots (Lot Nos. 1-8), ten 

calibration datasets (calibration dataset A to J) were prepared, as shown in Table 4.1. The 

number of granulation lots in the calibration datasets was increased from one (calibration 

dataset A) to eight (calibration dataset H), considering the general process development 

scenario; that is, the process is scaled-up in order of laboratory, pilot, and commercial 

scale. Additionally, calibration datasets I and J consisted of only pilot-scale and 

commercial-scale experimental data, respectively. PP-based and NIRS-based models 

were developed using each calibration dataset. 

 

Table 4.1. Ten calibration datasets consisting of different manufacturing scale data. 

 

 

Calibration datasets A, B, and C consisted of one or more laboratory-scale lots, i.e., 

Lot Nos. 1, 2, and 3. Calibration datasets D and E consisted of three laboratory-scale lots 

and one or two pilot-scale lots, i.e., Lot Nos. 4 and 5. Calibration datasets F, G, and H 

consisted of three laboratory-scale lots, two pilot-scale lots, and one or more commercial-

scale lots, i.e., Lot Nos. 6, 7, and 8. Calibration dataset I consisted of only two pilot-scale 

Calibration dataset
Lot No. Number of samples

Laboratory Pilot Commercial Laboratory Pilot Commercial

A 1 - - 6 0 0

B 1, 2 - - 10 0 0

C 1, 2, 3 - - 17 0 0

D 1, 2, 3 4 - 17 7 0

E 1, 2, 3 4, 5 - 17 13 0

F 1, 2, 3 4, 5 6 17 13 6

G 1, 2, 3 4, 5 6, 7 17 13 13

H 1, 2, 3 4, 5 6, 7, 8 17 13 19

I - 4, 5 - 0 13 0

J - - 6, 7, 8 0 0 19
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lots, i.e., Lot Nos. 4 and 5. Finally, calibration dataset J consisted of only three 

commercial-scale lots, i.e., Lot Nos. 6, 7, and 8. The validation dataset consisted of three 

commercial-scale lots, i.e., Lot Nos. 9, 10, and 11, to judge whether the constructed 

models could predict water content accurately on a commercial scale. 

To assess the similarity between calibration and validation samples, principal 

component analysis (PCA)65) was applied to the calibration dataset H. The validation 

samples were projected onto the subspace spanned by the first and second principal 

components (PCs). PCA models were constructed using Python software (Python 

Software Foundation). 

 

4.2.4. Input variables 

4.2.4.1.  PP-based models 

From the eight PPs provided in Table 2.3, the following four critical PPs whose effects 

on water content are constant among manufacturing scales were utilized, based on the 

result in Chapter 3 (see Section 3.3.1.1): inlet air temperature (°C), product temperature 

(°C), exhaust air temperature (°C), and exhaust air humidity (%RH). 

 

4.2.4.2.  NIRS-based models 

This study used SNV as the preprocessing method and adopted the wavenumber 

region from 7212 cm-1 to 6935 cm-1 selected by SFD-NCSC-PLSR, based on the result in 

Chapter 3 (see Sections 3.3.2.1 and 3.3.2.2). 
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4.2.5. Regression method 

In both PP-based and NIRS-based models, it was demonstrated that LW-PLSR models 

were the better estimators of water content than the PLSR models, based on the result in 

Chapter 3 (see Sections 3.3.1.2 and 3.3.2.3). Hence, this study utilized LW-PLSR was 

used to construct both PP-based and NIRS-based models. The detailed information on 

LW-PLSR is described in Section 2.7.1. 

 

4.2.6. Prediction performance evaluation 

To evaluate the applicability of water content monitoring on commercial scale, 

RMSEP of the constructed models was evaluated. The detailed information on calculation 

is described in Section 2.8. 

 

4.2.7. Development cost of PAT 

The development cost of PAT ($) was defined as the cost of goods required to 

construct an accurate model on the commercial scale. The required criterion of RMSEP 

was set to 1.0% because Alcalà et al.34) reported that the water content prediction model, 

whose RMSEP was 0.93%, was useful for monitoring the granulation process. 

The development cost of PAT 𝐶𝑜𝑠𝑡𝑑𝑒𝑣 is expressed as: 

      (4.1) 

where 𝐶𝑜𝑠𝑡𝑟𝑚 is the raw material cost ($) to obtain the experimental data required to 

build an accurate model, whose RMSEP is smaller than 1.0%, and 𝐶𝑜𝑠𝑡𝑖𝑛𝑣 is the initial 

investment cost ($), which is the price of the NIR spectrometer. 𝐶𝑜𝑠𝑡𝑖𝑛𝑣 was regarded 

dev rm invCost Cost Cost= +
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as a variable; it was set as $2.0×104, $1.1×105, and $2.0×105 considering the actual price 

of NIR spectrometers. 

The raw material cost 𝐶𝑜𝑠𝑡𝑟𝑚 was calculated by 

    (4.2) 

where 𝐶𝑜𝑠𝑡𝑟𝑚,𝑙𝑎𝑏, 𝐶𝑜𝑠𝑡𝑟𝑚,𝑝𝑖𝑙𝑜𝑡, and 𝐶𝑜𝑠𝑡𝑟𝑚,𝑐𝑜𝑚𝑙 are the raw material cost ($) to obtain 

the experimental data at the laboratory, pilot, and commercial scale, respectively. Then, 

𝐶𝑜𝑠𝑡𝑟𝑚,𝑙𝑎𝑏, 𝐶𝑜𝑠𝑡𝑟𝑚,𝑝𝑖𝑙𝑜𝑡, and 𝐶𝑜𝑠𝑡𝑟𝑚,𝑐𝑜𝑚𝑙 are defined as follows: 

  (4.3) 

  (4.4) 

  (4.5) 

where 𝐶𝑜𝑠𝑡𝐴𝑃𝐼 is the cost of API ($/kg), 𝐺𝑙𝑎𝑏, 𝐺𝑝𝑖𝑙𝑜𝑡, and 𝐺𝑐𝑜𝑚𝑙 are the mass of the 

powders charged into the granulator at laboratory, pilot, and commercial scale (kg), 

𝑀𝐹𝐴𝑃𝐼 is the mass fraction of API, 𝐶𝑜𝑠𝑡𝑒𝑥 is the cost of excipients ($/kg), and 𝑁𝑙𝑎𝑏, 

𝑁𝑝𝑖𝑙𝑜𝑡 , and 𝑁𝑐𝑜𝑚𝑙  are the minimum required numbers of the experimental lots at the 

laboratory, pilot, and commercial scale, which are necessary to construct an accurate 

model. In this study, to perform an exhaustive economic evaluation, 𝐶𝑜𝑠𝑡𝐴𝑃𝐼 and 𝑀𝐹𝐴𝑃𝐼 

were set as variables; 𝐶𝑜𝑠𝑡𝐴𝑃𝐼 varied from 0 $/kg to 2.0×104 $/kg, and 𝑀𝐹𝐴𝑃𝐼 varied 

from 0 to 1. 𝐶𝑜𝑠𝑡𝑒𝑥  was fixed at 40 $/kg because it is usually much cheaper than 

𝐶𝑜𝑠𝑡𝐴𝑃𝐼. 𝐺𝑙𝑎𝑏, 𝐺𝑝𝑖𝑙𝑜𝑡, and 𝐺𝑐𝑜𝑚𝑙 were set as 4.3 kg, 24.0 kg, and 96.2 kg, respectively. 

To compare the economic efficiency of the PP-based model and the NIRS-based 

model, the difference in development cost was calculated by 

, ,difference dev PP dev NIRSCost Cost Cost= −      (4.6) 

, , ,rm rm lab rm pilot rm comlCost Cost Cost Cost= + +

( ), 1rm lab API lab API ex lab API labCost Cost G MF Cost G MF N= + −  

( ), 1rm pilot API pilot API ex pilot API pilotCost Cost G MF Cost G MF N = + − 

( ), 1rm coml API coml API ex coml API comlCost Cost G MF Cost G MF N= + −  
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where 𝐶𝑜𝑠𝑡𝑑𝑒𝑣,𝑃𝑃 is the development cost of the PP-based model, and 𝐶𝑜𝑠𝑡𝑑𝑒𝑣,𝑁𝐼𝑅𝑆 is 

that of the NIRS-based model. 

 

4.3. Results and discussion 

4.3.1. Prediction accuracy 

4.3.1.1.  PP-based LW-PLSR models 

Figure 4.1 shows the RMSEP values of the PP-based LW-PLSR models, constructed 

utilizing the four PPs: inlet air temperature (°C), product temperature (°C), exhaust air 

temperature (°C), and exhaust air humidity (%RH). The RMSEP values of LW-PLSR 

models built using experimental data acquired at only the laboratory scale, i.e., calibration 

datasets A, B, and C, were larger than 1.0. In contrast, the LW-PLSR model constructed 

utilizing the three laboratory-scale lots and one pilot-scale lot (calibration dataset D), met 

the criterion of RMSEP. Thus, 𝑁𝑙𝑎𝑏, 𝑁𝑝𝑖𝑙𝑜𝑡, and 𝑁𝑐𝑜𝑚𝑙 were determined to be three, one, 

and zero, respectively. 
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Figure 4.1. Prediction accuracy of PP-based LW-PLSR models. 

The diagonal bar indicates the calibration dataset with the minimum required number of experimental 

data to meet the criterion of RMSEP. 

 

PCA was applied to the calibration dataset H. The relationship between the number of 

PCs and the cumulative proportion is shown in Figure 4.2. With the first two PCs, the 

cumulative proportion surpassed 0.9. The scatter plots of the first and second PCs are 

provided in Figure 4.3. Calibration samples, Lot Nos. 1 and 2, had a considerable distance 

from the validation samples compared with the other calibration samples. As shown in 

Table 2.3, the inlet air temperatures in Lot Nos. 1 and 2 were around 70 °C, which was 

much lower than 85-95 °C in the validation samples, i.e., Lot Nos. 9, 10, and 11. 

According to the loading scores, as shown in Figure 4.4, the inlet air temperature had an 

impact on both the first and second PCs. Reflecting the distance between calibration 

samples and validation samples on the PC1-PC2 subspace, the RMSEP values of 34.1% 

and 9.7% for the models constructed using datasets A and B considerably exceeded the 

criterion of 1.0%. On the other hand, the RMSEP values of 4.9% and 0.7% for the models 

CBA D E G H J

1.0

2.0

0

3.0

4.0

5.0

6.0
34.1 9.7

F I

R
M

S
E

P
(%

)

Calibration dataset



 

45 

constructed using datasets C and D were remarkably small because the calibration 

samples, Lot Nos. 3 and 4, were located near the validation samples on the PC1-PC2 

subspace. The RMSEP of 0.7% for the model built by dataset D was equivalent to RMSEP 

values of 0.5%, 0.4%, 0.5%, and 0.5% for the models constructed using datasets E, F, G, 

and H, respectively. Thus, dataset D contained sufficient data to construct an accurate 

model, and additional data did not improve prediction performance. Also, the RMSEP of 

2.0% for the model constructed by dataset I was smaller than that of 4.9% for the model 

built by dataset C because the calibration samples consisting of dataset I were closer to 

the validation samples than those consisting of dataset C on the PC1-PC2 subspace. As 

shown in Table 4.1, dataset I consisted of two pilot-scale lots, while dataset C contained 

three laboratory-scale lots. These results indicated that the prediction accuracy of PP-

based LW-PLSR models was dependent on the distance between calibration and 

validation samples on the PC1-PC2 subspace. 

 

 

Figure 4.2. Relationship between number of PCs and cumulative proportion in PCA 

conducted using calibration dataset H. 

 



 

 

4
6
 

 

Figure 4.3. Scatter plots with the first and second PC in PCA conducted using calibration dataset H, which was utilized to construct a PP-

based LW-PLSR model. 

Orange, green, and blue symbols are calibration samples acquired at laboratory, pilot, and commercial scale, respectively. Red symbol indicates validation 

samples projected onto the subspace spanned by the first and second PC. 
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Figure 4.4. Loading scores of individual PPs in PCA conducted using calibration dataset 

H, which was utilized to construct a PP-based LW-PLSR model. 

 

Besides, Figure 4.1 shows that the RMSEP of 2.0% for the model constructed by 

dataset I was larger than that of 0.5% for the model built using dataset E. As shown in 

Table 4.1, dataset I consisted of two pilot-scale lots, while dataset E contained three 

laboratory-scale lots and two pilot-scale lots. Although the calibration samples, Lot Nos.1 

and 2, were far from the validation samples compared to the other calibration samples 

(Lot Nos. 3, 4, and 5), they contributed to improving the prediction accuracy. Thus, it was 

concluded that the construction of accurate PP-based LW-PLSR models required the 

calibration samples with the following two features: 1) located near the validation 

samples on the subspace spanned by PCs, and 2) having a wide range of variations in PC 

scores. As provided in Figure 4.4, the inlet air temperature and exhaust air humidity 
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affected both the first and second PCs, while the product temperature and exhaust air 

temperature mainly had an impact on the first PC. The product temperature, exhaust air 

temperature, and exhaust air humidity correlate with the granule water content regardless 

of the manufacturing scale, as shown in Figure 4.5. These results indicate that the distance 

between samples on the PC1-PC2 subspace derives from the difference of inlet air 

temperature and granule water content. The inlet air temperature is an operable PP, and 

the granule water content is controlled by other two operable PPs, i.e., inlet air volume 

and spray rate. Hence, regardless of the manufacturing scale, it is possible to obtain the 

calibration samples located near the validation samples on the PC1-PC2 subspace by 

setting the inlet air temperature and granule water content to align with the validation 

samples. Also, we can acquire different samples on the PC1-PC2 subspace by changing 

inlet air temperature and granule water content independently, which contributes to the 

preparation of the calibration samples having a wide range of variations in PC scores. 
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Figure 4.5. Relationship between each PP and water content of granules in calibration 

dataset H, which was utilized to construct a PP-based LW-PLSR model. 

 

4.3.1.2.  NIRS-based LW-PLSR models 

Figure 4.6 shows the RMSEP values of the NIRS-based LW-PLSR models constructed 

utilizing the absorbance at the selected wavenumber region of the NIR spectra, i.e., from 

7212 cm-1 to 6935 cm-1. As shown in Figure 4.6, the LW-PLSR model constructed using 

three laboratory-scale lots, i.e., calibration dataset C, fulfilled the criterion of RMSEP. 

Hence, the values of 𝑁𝑙𝑎𝑏, 𝑁𝑝𝑖𝑙𝑜𝑡, and 𝑁𝑐𝑜𝑚𝑙 were determined to be three, zero, and 

zero, respectively. 
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Figure 4.6. Prediction accuracy of NIRS-based LW-PLSR models. 

The diagonal bar indicates the calibration dataset with the minimum required number of experimental 

data to meet the criterion of RMSEP. 

 

PCA was applied to the calibration dataset H. The relationship between the number of 

PCs and the cumulative proportion is shown in Figure 4.2. With the first PC, the 

cumulative proportion surpassed 0.9. The scatter plots of the first and second PCs are 

provided in Figure 4.7. Most of the calibration samples existed near the validation 

samples, which resulted in the RMSEP values of all the models to be around 1.0. It was 

suggested that the construction of accurate NIRS-based LW-PLSR models requires the 

calibration samples with the same features as PP-based LW-PLSR models. 
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Figure 4.7. Scatter plots with the first and second PC in PCA conducted using calibration dataset H, which was utilized to construct a 

NIRS-based LW-PLSR model. 

Orange, green, and blue symbols are calibration samples acquired at laboratory, pilot, and commercial scale, respectively. Red symbol indicates validation 

samples projected onto the subspace spanned by the first and second PC. 
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Figure 4.8 indicates that PC1, which was the dominant PC with a high proportion of 

0.91, strongly correlated with the water content of granules, regardless of the 

manufacturing scale. This result means that the NIR spectra of the granules are dependent 

on the water content, regardless of the manufacturing equipment. Thus, it is possible to 

obtain calibration samples having desired scores of the dominant PC by setting the 

calibrated range of granule water content to align with the range of the validation samples. 

 

 

Figure 4.8. Influence of water content of granules on the first (A) and second (B) PC in 

PCA conducted using calibration dataset H, which was utilized to construct a NIRS-based 

LW-PLSR model. 

 

4.3.2. Comparison of development cost of PAT 

𝐶𝑜𝑠𝑡𝑟𝑚 of PP-based and NIRS-based LW-PLSR models were calculated through Eqs. 

(4.2), (4.3), (4.4), and (4.5) at the determined values of 𝑁𝑙𝑎𝑏, 𝑁𝑝𝑖𝑙𝑜𝑡, and 𝑁𝑐𝑜𝑚𝑙 (refer 

to sections 4.3.1.1. and 4.3.1.2.). 𝐶𝑜𝑠𝑡𝑑𝑒𝑣 of both models were computed using 𝐶𝑜𝑠𝑡𝑟𝑚 

and the preset values of 𝐶𝑜𝑠𝑡𝑖𝑛𝑣 according to Eq. (4.1). Their difference 𝐶𝑜𝑠𝑡𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

was calculated by Eq. (4.6). Figure 4.9 shows the value of 𝐶𝑜𝑠𝑡𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 depending on 

R=0.97

R=  0.09

(A) (B)
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𝐶𝑜𝑠𝑡𝐴𝑃𝐼, 𝑀𝐹𝐴𝑃𝐼, and 𝐶𝑜𝑠𝑡𝑖𝑛𝑣. As shown in Figure 4.9, the reduction in 𝐶𝑜𝑠𝑡𝐴𝑃𝐼 and 

𝑀𝐹𝐴𝑃𝐼  made the PP-based LW-PLSR models more cost-effective compared with the 

NIRS-based LW-PLSR models. This is because the impact of 𝐶𝑜𝑠𝑡𝑟𝑚  on 𝐶𝑜𝑠𝑡𝑑𝑒𝑣 

became smaller than that of 𝐶𝑜𝑠𝑡𝑖𝑛𝑣 on 𝐶𝑜𝑠𝑡𝑑𝑒𝑣 (refer to Eq. (4.1)). Besides, the area 

where PP-based LW-PLSR models become more cost-effective was enlarged, along with 

the increase in 𝐶𝑜𝑠𝑡𝑖𝑛𝑣. 

 

 

Figure 4.9. 𝐶𝑜𝑠𝑡𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 depending on 𝐶𝑜𝑠𝑡𝐴𝑃𝐼, 𝑀𝐹𝐴𝑃𝐼, and 𝐶𝑜𝑠𝑡𝑖𝑛𝑣. 

𝐶𝑜𝑠𝑡𝑖𝑛𝑣, the price of the NIR spectrometer, was set as (A) $2.0×104, (B) $1.1×105, and (C) $2.0×105. 

The area surrounded by red line indicates 𝐶𝑜𝑠𝑡𝑑𝑒𝑣,𝑃𝑃 is smaller than 𝐶𝑜𝑠𝑡𝑑𝑒𝑣,𝑁𝐼𝑅𝑆. 
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4.4. Summary 

In Chapter 4, two types of statistical models to predict water content, i.e., PP-based 

and NIRS-based LW-PLSR models, were evaluated with respect to prediction accuracy 

and development cost. This study demonstrated that both PP-based and NIRS-based LW-

PLSR models achieved high prediction accuracy on the commercial scale, without 

commercial-scale experimental data in the calibration dataset. 

This study clarified the key points to construct accurate PP-based and NIRS-based 

LW-PLSR models. It is crucial to prepare the calibration samples with the following two 

features: 1) located near the validation samples on the subspace spanned by PCs, and 2) 

having a wide range of variations in PC scores. In PP-based LW-PLSR models, scores of 

the dominant PCs depend on inlet air temperature and granule water content regardless 

of the manufacturing scale. Thus, it is possible to acquire calibration samples with desired 

PC scores by adjusting inlet air temperature and granule water content independently. In 

contrast, NIRS-based LW-PLSR models are simple; scores of the dominant PC strongly 

correlate with granule water content regardless of the manufacturing scale. 

Besides, this study revealed which type of LW-PLSR model should be selected 

depending on the raw material cost, composition of granules, and price of the NIR 

spectrometer. The reduction in cost and mass fraction of API makes the PP-based LW-

PLSR models more cost-effective than the NIRS-based LW-PLSR models. Additionally, 

the PP-based LW-PLSR models become more cost-effective as the price of the NIR 

spectrometer increases. 

The revealed points through this study are expected to promote the efficiency of 

building accurate models and save the development cost of PAT. 
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5. Gray-box Soft Sensor 

5.1. Introduction 

This study aims to develop descriptive and accurate gray-box models for water content 

monitoring in fluidized bed granulation. These gray-box models enable to promote 

process understanding and more accurate quality control. In this study, three types of 

gray-box models, i.e., parallel,52) serial,53) and combined44) gray-box models (see Figure 

1.2), were constructed by integrating the heat and mass balance model (white-box model) 

and the LW-PLSR model (black-box model). This study evaluated the prediction accuracy 

of the white-box, parallel gray-box, serial gray-box, and combined gray-box models, 

which were built using real operating data on a commercial scale with two formulations. 

 

5.2. Materials and Methods 

5.2.1. Materials 

The two formulations A and B were granulated using the commercial-scale fluidized 

bed granulator, refer to Sections 2.1 and 2.2. 

 

5.2.2. Measurement of PPs and reference 

Refer to Sections 2.3 and 2.6. 
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5.2.3. Calibration and validation datasets 

As shown in Table 2.2, the six granulation lot data were prepared in each formulation. 

Four granulation lots were selected from the six lots as a calibration dataset. The 

remaining two granulation lots were utilized as a validation dataset. Since lot selection 

impacts the prediction accuracy, this study evaluated all 15 combinations of the 

calibration and validation datasets. This procedure was common to both formulations, as 

provided in Table 5.1. 

 

Table 5.1. Combination of calibration and validation datasets. 

 

 

5.2.4. Heat and mass balance model (white-box model) 

The present work adopted the main principles of the heat and mass balance model 

developed by Tanino et al.10) However, this study modified several equations and 

introduced three fitting parameters, i.e., 𝛽, 𝛾, and 𝛿, to describe the phenomena during 

granulation more realistically. 

Trial No.
Lot No.

Calibration dataset Validation dataset

1 3, 4, 5, 6 1, 2

2 2, 4, 5, 6 1, 3

3 2, 3, 5, 6 1, 4

4 2, 3, 4, 6 1, 5

5 2, 3, 4, 5 1, 6

6 1, 4, 5, 6 2, 3

7 1, 3, 5, 6 2, 4

8 1, 3, 4, 6 2, 5

9 1, 3, 4, 5 2, 6

10 1, 2, 5, 6 3, 4

11 1, 2, 4, 6 3, 5

12 1, 2, 4, 5 3, 6

13 1, 2, 3, 6 4, 5

14 1, 2, 3, 5 4, 6

15 1, 2, 3, 4 5, 6
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5.2.4.1.  Equations for water content calculation 

The granule water content of wet granules at 𝑡  min (%) was calculated using the 

following equation: 

( )
( ) 100

( )

W t
M t

S t
=         (5.1) 

where 𝑊(𝑡) is water content quantity in wet granules (kg), and 𝑆(𝑡) is total weight of 

wet granules (kg). 𝑊(𝑡) and 𝑆(𝑡) are expressed as follows:  

( )( ) ( ) ( ) (0)w wW t AL t G t dt W= − +      (5.2) 

( )( ) ( ) ( ) (0)w wS t L t G t dt S= − +      (5.3) 

where 𝐴 is water ratio of binder solution, 𝐿𝑤(𝑡) is spray rate (kg/min), and 𝐺𝑤(𝑡) is 

water evaporation speed (kg/min). The setting values of 𝐴 , 𝑊(0) , and 𝑆(0)  in 

formulations A and B are listed in Table 5.2. 𝐺𝑤(𝑡) is expressed as follows: 

( )
( )( ) ( ) ( )w warmG t E t E t

H t


= −       (5.4) 

( ) ( )539 0.56 100 ( )pH t T t= + −       (5.5) 

( ) ( )( ) ( ) ( ) ( )f e f aE t T t T t V t t k  = − +      (5.6) 

( ) ( )warm w wE t L t k=        (5.7) 

( )
273 29

273 ( ) 22.4f

t
T t

 = 
+

      (5.8) 

where 𝛼 is drying efficiency, which is a fitting parameter ranging from 0 to 1, 𝐻(𝑡) is 

heat of water vaporization (kcal/kg), 𝑇𝑝(𝑡)  is product temperature (℃ ), 𝐸(𝑡)  is the 

difference in heat quantity between inlet and exhaust air (kcal/min), and 𝐸𝑤𝑎𝑟𝑚(𝑡) is 

sensible heat utilized to warm the water in the binder solution (kcal/min), 𝑇𝑓(𝑡) is inlet 



 

58 

air temperature (℃ ), 𝑇𝑒(𝑡)  is exhaust air temperature (℃ ), 𝑉𝑓(𝑡)  is inlet air volume 

(m3/min), and 𝜌(𝑡) is air density (kg/m3). 𝑘𝑎 is specific heat of air (kcal/kg∙ ℃), and 

𝑘𝑤 is specific heat of water (kcal/kg∙ ℃). In this study, 𝑘𝑎 and 𝑘𝑤 were set to 0.238 

kcal/kg∙ ℃ and 1 kcal/kg∙ ℃, respectively.66)  

For the calculation of Eq. (5.6), 𝑇𝑓(𝑡) , 𝑇𝑒(𝑡) , and 𝑉𝑓(𝑡)  should be assigned the 

values just before flowing in or after flowing out through the granulator (denoted as “ideal 

values”). However, the measured values could be different from the ideal values due to 

the positions of the sensors in the duct. For example, the inlet air temperature measured 

by the thermometer located far from the air supply opening could be higher than the ideal 

value. To adjust the gap between the measured and ideal values, this study introduced two 

fitting parameters of 𝛽 and 𝛾; 𝛽 ranged from -25 ℃ to 0 ℃, and 𝛾 ranged from 0.5 

to 1. In addition, 𝛿  is the temperature difference between granule surface at water 

evaporation and binder solution, which is a fitting parameter ranging from 0 ℃ to 25 ℃. 

 

Table 5.2. Setting values of 𝐴, 𝑊(0), and 𝑆(0) in the heat and mass balance model. 

 

 

5.2.4.2.  Fitting parameters optimization 

The four fitting parameters in the heat and mass balance model, i.e., 𝛼, 𝛽, 𝛾, and 𝛿, 

were optimized through the following steps: 

  

Formulation A Formulation B

𝐴 𝑊(0) (kg) 𝑆(0) (kg) 𝐴 𝑊(0) (kg) 𝑆(0) (kg)

0.991 1.75 97.3 0.930 2.41 96.2
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I. Construct a heat and mass balance model 𝑓hm to predict an output variable 𝑦. 

( )hm, hm hm,
ˆ ,n ny f= x        (5.9) 

where �̂�hm,𝑛  is the granule water content predicted by 𝑓hm  for the n-th sample. 

𝒙hm,𝑛 is the corresponding inputs: spraying time (min), mean value of spray rate for 

0 min to t min (kg/min), product temperature (°C), inlet air temperature (°C), exhaust 

air temperature (°C), and inlet air volume (m3/min). 𝜽 is a fitting parameters vector, 

whose elements are 𝛼, 𝛽, 𝛾, and 𝛿. 

II. Determine 𝜽  to minimize the prediction error sums of squares using Bayesian 

optimization. 

2

hm,

1

arg min
N

n

n

e
=

= 


        (5.10) 

( )hm, hm hm,n ,n ne y f= − x       (5.11) 

L U            (5.12) 

where 𝑒hm,𝑛 is the output error of the heat and mass balance model, and 𝑦𝑛 is the 

output measurement for the n-th sample. 𝑁  is the number of samples in the 

calibration dataset. 𝜽L and 𝜽U are lower and upper limit vectors, respectively. The 

ranges of 𝛼, 𝛽, 𝛾, and 𝛿 are provided in Section 5.2.4.1. Calculations in Bayesian 

optimization were conducted using the Statistics and Machine Learning Toolbox in 

MATLAB® software (MathWorks, Inc.), and the acquisition function ‘expected-

improvement-plus’ was selected from the options. 
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5.2.5. Gray-box models 

In this section, the modeling methods of parallel, serial, and combined gray-box 

models are described. The general framework of gray-box modeling and the fundamental 

concept of parallel, serial, and combined gray-box models have been previously reported 

elsewhere.44,45) 

 

5.2.5.1.  Parallel gray-box model 

Parallel gray-box models utilize the black-box model to offset the output error of the 

white-box model. The parallel gray-box models were constructed through the following 

steps: 

 

I. Build a heat and mass balance model ( )hm, hm hm,
ˆ ,n ny f= x . 

II. Optimize fitting parameters 𝜽 through Eqs. (5.10), (5.11), and (5.12). 

III. Construct a statistical model 𝑓pa to estimate the output error of the heat and mass 

balance model 𝑒hm,𝑛. 

( )( )
pa

2

pa hm, pa sm, pa

1

arg min ,
N

n n

n

e f
=

= −


 x     (5.13) 

( )hm, pa sm, pa
ˆ ,n ne f= x         (5.14) 

where 𝝋pa is a vector of tuning parameters in the LW-PLSR model 𝑓pa, i.e., R (the 

number of latent variables) and 𝜂 (the localization parameter), refer to Section 2.7.1. 

The localization parameter 𝜂 was optimized in the range of 0 to 10.0. When the 

localization parameter 𝜂 is 0, LW-PLSR is equivalent to PLSR. 𝒙sm,𝑛 is the n-th 

measurement vector of nine inputs: spraying time (min), inlet air volume (m3/min), 
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inlet air temperature (°C), inlet air humidity (g-water/kg-air), mean value of spray 

rate for 0 min to t min (kg/min), spray air volume (NL/min), product temperature 

(°C), exhaust air temperature (°C), and exhaust air humidity (%RH). 

IV. Develop a gray-box model by integrating the heat and mass balance model and the 

statistical model 𝑓pa. 

( ) ( )pa, hm hm, pa sm, pa
ˆ , ,n n ny f f= +x x       (5.15) 

where �̂�pa,𝑛 is the n-th prediction value obtained using the parallel gray-box model. 

 

5.2.5.2.  Serial gray-box model 

Serial gray-box models use the black-box model to update the fitting parameters of 

the white-box model based on the PPs. The LW-PLSR model predicted all four fitting 

parameters of the heat and mass balance model, i.e., 𝛼 , 𝛽 , 𝛾 , and 𝛿 , because they 

depend on manufacturing conditions. The serial gray-box models were built through the 

following steps: 

 

I. Build a heat and mass balance model ( )hm, hm hm,
ˆ ,n ny f= x . 

II. Determine fitting parameters 𝜽  for each calibration sample using Bayesian 

optimization. 

( )( )
2

hm hm,arg min ,
n

n n n ny f= − x


   ( )1,2,3,...,n N=    (5.16) 

L Un            (5.17) 

where �̃�𝑛 is the optimal fitting parameters vector for the n-th sample. 
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III. Construct a statistical model 𝑓se  to predict �̃�𝑛 . When �̂̃� n was lower than 𝜽L  or 

higher than 𝜽U, �̂̃�n was replaced with 𝜽L or 𝜽U, respectively. 

( )( )
se

2

se se sm, se

1

argmin ,
N

n n

n

f
=

= − x


        (5.18) 

( )se sm, se

ˆ
,n nf= x        (5.19) 

where 𝝋se is a vector of tuning parameters in the LW-PLSR model 𝑓se. 

IV. Develop a gray-box model by integrating the heat and mass balance model and the 

statistical model 𝑓se. 

( )( )se, hm hm, se sm, se
ˆ , ,n n ny f f= x x       (5.20) 

where �̂�se,𝑛 is the n-th prediction value based on the serial gray-box model. 

 

5.2.5.3.  Combined gray-box model 

Combined gray-box models utilize both a serial gray-box model and a parallel gray-

box model; in other words, the black-box model is used to compensate for the output error 

of the serial gray-box model. The combined gray-box models were developed by applying 

a part of the model-building procedure of the parallel gray-box model, i.e., steps III and 

IV, to the serial gray-box model. 
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5.2.6. Prediction performance evaluation 

In the white-box models, the RMSEC of the granule water content was calculated. In 

the parallel, serial, and combined gray-box models, the RMSECV was calculated.  

To evaluate the applicability to real operating data on a commercial scale, the RMSEP 

and R2 were calculated using the validation dataset, which was not included in the 

calibration dataset. The RMSEP criterion required for application to commercial 

production was set to 1.0%, based on the study in Chapter 4. The detailed information on 

calculation is described in Section 2.8. 

 

5.2.7. Evaluation of LW-PLSR model 

In Chapter 3, it was demonstrated that the assessment based on T2 and Q was also 

valuable for testing whether the LW-PLSR model was valid for the query. A 99% 

confidence limit was adopted as the threshold of T2 and Q to align with the study in 

Chapter 3. The detailed information on calculation is described in Section 2.9. 

 

5.3. Results and discussion 

5.3.1. Model building 

In both formulations, the white-box model and three types of gray-box models were 

constructed 15 times with different calibration datasets. Their prediction accuracy was 

evaluated based on the median values of the RMSE. In this section, the parameter 

optimization and LOOCV results of each model are described. 
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5.3.1.1.  Heat and mass balance model (white-box model) 

The fitting parameter values determined by Bayesian optimization considering all the 

calibration samples are shown in Figure 5.1. Regardless of the formulation, the optimal 

values of 𝛿 varied remarkably, depending on Trial No. This result is reasonable because 

the temperature of the granule surface at water evaporation depends on the manufacturing 

conditions. Figure 5.2 shows that the median values of RMSEC in formulations A and B 

were 1.6% and 1.0%, respectively. The accuracy did not satisfy the requirement. 

 

5.3.1.2.  Parallel gray-box model 

The tuning parameters of the LW-PLSR models determined based on LOOCV are 

listed in Table 5.3. As shown in Figure 5.2, the median values of RMSECV for the parallel 

gray-box models in formulations A and B were 0.6% and 0.2%, respectively. They were 

63% and 80% smaller than those of RMSEC in the white-box models, i.e., 1.6% and 1.0%, 

respectively. This result means that the LW-PLSR models successfully compensated for 

the output error of the white-box models, and the parallel gray-box modeling was useful 

for improving the prediction accuracy. 
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Figure 5.1. Fitting parameter values of the heat and mass balance model, i.e., 𝛼, 𝛽, 𝛾, and 𝛿, in case of (A) formulation A and (B) 

formulation B. 

In white-box models (filled triangles), the fitting parameter values were determined by Bayesian optimization considering all calibration samples. In serial 

gray-box models (open circles), the fitting parameter value for each query was predicted using the LW-PLSR model in LOOCV. 

(A)

(B)
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Figure 5.2. RMSE boxplots of white-box, parallel gray-box, serial gray-box, and combined gray-box models in case of (A) formulation A 

and (B) formulation B. 

In white-box models, RMSEC was described. In gray-box models, LOOCV was conducted, and RMSECV was calculated.  

  

(A) (B)
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Table 5.3. Tuning parameters of LW-PLSR models determined by LOOCV. 

 

Formulation Trial No.

Parallel gray-box model Serial gray-box model Combined gray-box model

Number of latent 

variables

Localization 

parameter

Number of latent 

variables

Localization 

parameter

Number of latent 

variables

Localization 

parameter

A 1 7 2.0 6 0.2 4 2.3

A 2 8 1.5 1 0 5 1.2

A 3 4 1.2 1 1.5 2 0.6

A 4 7 1.9 1 0 4 2.5

A 5 9 2.3 4 0.5 9 3.2

A 6 5 1.2 6 0 4 0.1

A 7 6 5.5 6 1.1 5 1.1

A 8 5 2.1 5 0.2 5 2.4

A 9 6 2.1 9 1.1 6 2.4

A 10 8 0.4 3 1.3 8 0

A 11 5 1.6 4 0 5 2.3

A 12 5 1.5 2 0.9 6 1.4

A 13 7 1.4 7 0.5 4 1.2

A 14 6 1.0 4 1.3 9 1.5

A 15 5 2.2 8 9.0 1 1.3

B 1 4 6.5 1 0 4 9.8

B 2 2 2.4 2 10.0 9 1.6

B 3 4 3.8 1 0.2 4 3.8

B 4 4 7.5 1 0 4 5.5

B 5 5 4.5 1 0 4 4.2

B 6 3 4.6 1 0.1 2 5.5

B 7 3 4.7 1 0.5 3 3.2

B 8 9 2.8 9 5.8 1 0

B 9 5 5.3 1 0 5 4.9

B 10 3 4.1 1 0 2 4.2

B 11 3 2.9 1 0 3 2.8

B 12 8 2.8 2 0 7 2.3

B 13 5 1.5 9 6.2 2 2.3

B 14 4 2.0 1 0 3 1.6

B 15 4 2.1 1 0 3 2.1
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5.3.1.3.  Serial gray-box model 

Figure 5.1 shows the fitting parameter value for each query predicted using the LW-

PLSR model in LOOCV. The predicted value of 𝛿 differed significantly, depending on 

the manufacturing condition of each query. Table 5.3 shows the tuning parameters of the 

LW-PLSR models determined based on LOOCV. As shown in Figure 5.2, the median 

values of RMSECV for the serial gray-box models in formulations A and B were 0.7% 

and 0.5%, respectively. They were 56% and 50% smaller than those of RMSEC in the 

white-box models, i.e., 1.6% and 1.0%, respectively. This result indicates that the LW-

PLSR models adjusted the fitting parameters of the white-box model depending on the 

PPs, which made the serial gray-box models more accurate than the white-box models. 

 

5.3.1.4.  Combined gray-box model 

Table 5.3 lists the tuning parameters of the LW-PLSR models determined based on 

LOOCV. Figure 5.2 shows that the median values of RMSECV in formulations A and B 

were 0.3% and 0.2%, respectively. They were 57% and 60% smaller than those of 

RMSECV in the serial gray-box models, i.e., 0.7% and 0.5%, respectively, which means 

that the LW-PLSR models offset the output error of the serial gray-box models. The 

combined gray-box models showed the highest prediction accuracy among the white-box 

models and three types of gray-box models, regardless of the formulation. 
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5.3.2. Applicability to real operating data on commercial scale 

Figure 5.3 shows the RMSEP and R2 boxplots of the white-box model and three types 

of gray-box models. In formulation A, the median RMSEP values of the white-box, 

parallel gray-box, serial gray-box, and combined gray-box models were 1.7%, 1.1%, 

1.0%, and 0.8%, respectively. The median RMSEP values of the combined gray-box 

models were 53%, 27%, and 20% smaller than those of the white-box, parallel gray-box, 

and serial gray-box models, respectively. Reflecting these results, the median R2 values 

of the white-box, parallel gray-box, serial gray-box, and combined gray-box models were 

0.68, 0.87, 0.90, and 0.95, respectively. Hence, in the case of formulation A, the combined 

gray-box model showed the highest prediction accuracy among the three types of gray-

box models and met the RMSEP criterion. 
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Figure 5.3. Prediction accuracy of white-box, parallel gray-box, serial gray-box, and combined gray-box models in case of (A, C) 

formulation A and (B, D) formulation B. 

(A, B) RMSEP boxplots, (C, D) R2 boxplots. 

(A) (B)

(C) (D)
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On the other hand, in formulation B, the median RMSEP values of the white-box, 

parallel gray-box, serial gray-box, and combined gray-box models were 1.3%, 0.6%, 

0.6%, and 0.6%, respectively. The median RMSEP values of the three gray-box models 

were equivalent and smaller than the RMSEP criterion. In contrast, the difference between 

maximum and minimum RMSEP values except for outliers of the combined gray-box 

model was more than twice those of the parallel gray-box and serial gray-box models. In 

other words, the parallel gray-box and serial gray-box models were more robust than the 

combined gray-box model. Additionally, the median R2 values of the white-box, parallel 

gray-box, serial gray-box, and combined gray-box models were 0.27, 0.68, 0.85, and 0.79, 

respectively. Although the R2 variations of all four models were considerable (see Figure 

5.3), this is mainly caused by the difference in the reference values range of granule water 

content, which depends on lot selection. For example, in the case of Trial No. 12 of 

formulation B (see Table 5.1), the RMSEP value of the serial gray-box model was 0.7% 

and smaller than the RMSEP criterion, whereas the R2 value of the model was -18.0. This 

is because the range of reference values from 2.5% to 3.0% is too narrow compared to 

the acceptable output error, i.e., the RMSEP criterion of 1.0% (refer to Section 5.2.6). 

Considering an actual process development, these cases where the range of water content 

is narrow, like Trial No. 12, are unrealistic because the experimental data were acquired 

with various manufacturing conditions through a process development study using 

commercial-scale equipment. Therefore, it was concluded that the serial gray-box model 

was the best estimator of the water content in the case of formulation B. 

These results demonstrated that the gray-box models improved the prediction 

accuracy of the white-box models regardless of the formulation, as shown in Figure 5.4. 

The best model among the three types of gray-box models differed depending on the 
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formulations, which means that we should select an accurate and robust model for each 

formulation. Additionally, this study clarified the point to consider when applying the 

gray-box models using LW-PLSR to commercial production. As shown in Figure 5.3, in 

formulation B, the serial gray-box and combined gray-box models showed the extreme 

outliers of RMSEP, i.e., 8.2% and 8.3%, respectively, which were calculated in Trial No. 

8 (see Table 5.1). In both gray-box models, T2 or Q values of more than 90% validation 

samples exceeded the 99% confidence limit. Reflecting these results, the RMSEP values 

of the serial gray-box and combined gray-box models were 8.2% and 8.3%, respectively, 

and much larger than that of the white-box model, i.e., 1.7%. Thus, we should assess the 

validity of the LW-PLSR model for a query in terms of two distance criteria, i.e., 

Hotelling’s T2 and Q residual; if the T2 or Q value of the query is higher than the 99% 

confidence limit, we should consider adopting the white-box model because the LW-

PLSR model could deteriorate the prediction accuracy of the white-box model. 
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Figure 5.4. Scatter plots of measured vs. predicted water content using white-box, parallel gray-box, serial gray-box, and combined gray-

box models, in case of (A) formulation A (Trial No. 6) and (B) formulation B (Trial No. 7). 
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5.4. Summary 

In Chapter 5, descriptive and accurate three types of gray-box models for water 

content monitoring in fluidized bed granulation were developed. These gray-box models, 

i.e., parallel gray-box, serial gray-box, and combined gray-box models, were constructed 

by integrating the heat and mass balance model (white-box model) and the LW-PLSR 

model (black-box model). Their applicability to real operating data on a commercial scale 

was demonstrated using validation datasets with two formulations. Regardless of the 

formulation, all three types of gray-box models improved the prediction accuracy of the 

white-box models. The best model among the three types of gray-box models was 

different depending on the formulations, which means that we should adopt an accurate 

and robust model for each formulation. Besides, this study revealed the point to consider 

when applying the gray-box models using LW-PLSR to commercial production. 

Whenever a prediction is required for a query, we should assess the validity of the LW-

PLSR model for the query based on two distance criteria, i.e., Hotelling’s T2 and Q 

residual. Considering the assessment result, we should judge whether the gray-box soft 

sensor is suitable for precise process monitoring. 

Furthermore, the developed gray-box models require only basic manufacturing 

information regarding PPs and formulations, which means that they are simple and easy 

to apply. Therefore, the proposed three types of gray-box models, which balance 

prediction accuracy and interpretability, are expected to be alternative soft sensors to the 

white-box and black-box models. 
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6. Conclusion 

In the pharmaceutical industry, QbD and PAT have been recently noted to assure 

pharmaceutical quality at a higher level. Since soft sensors enhance the process 

understanding, they play a crucial role throughout the pharmaceutical lifecycle. In 

contrast, the soft sensor’s features required at the two key stages, i.e., the technology 

transfer and the commercial manufacturing, are different. 

This thesis developed the following two practical soft sensors to satisfy all the 

requirements at the technology transfer (scale-free, accurate, and cost-effective) and the 

commercial manufacturing (descriptive, accurate, and simple) stages, respectively. 

➢ A scale-free, accurate, and cost-effective PP-based black-box soft sensor for 

technology transfer (Chapters 3 and 4) 

➢ A descriptive, accurate, and simple gray-box soft sensor for commercial 

manufacturing (Chapter 5) 

 

In Chapter 3, a scale-free, accurate, and cost-effective PP-based black-box model was 

developed to cope with the manufacturing scale change in the technology transfer stage. 

The proposed method exploits two key ideas to construct a scale-free PP-based black-box 

model. First, to accommodate the manufacturing scale change, the critical PPs whose 

effects on water content are constant among manufacturing scales were selected as input 

variables. Second, to construct an accurate statistical model, LW-PLSR that can address 

collinearity and nonlinearity was utilized. The PP-based black-box model was developed 

using both laboratory-scale and pilot-scale experimental data. The prediction accuracy in 

the commercial scale was evaluated to align with the situation at the technology transfer 
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stage. The developed scale-free PP-based black-box model exhibited a high prediction 

accuracy, which was equivalent to the commonly-used NIRS-based black-box model. 

In Chapter 4, further evaluation on the PP-based LW-PLSR model developed in 

Chapter 3 was conducted. The scale-free PP-based and NIRS-based LW-PLSR models 

were constructed using different calibration datasets and compared in terms of prediction 

accuracy and development cost. The development cost was defined as the cost of goods 

required to build an accurate model of commercial-scale equipment. The number of 

granulation lots in the calibration datasets was increased by one lot in order of laboratory, 

pilot, and commercial scale to align with the general stage-up situation from the 

pharmaceutical development stage to the technology transfer stage. This study revealed 

that the construction of accurate LW-PLSR models requires the calibration samples with 

the following two features: 1) located near the validation samples on the subspace 

spanned by PCs, and 2) having a wide range of variations in PC scores. Furthermore, it 

was demonstrated that the reduction in cost and mass fraction of API made the proposed 

PP-based LW-PLSR models more cost-effective than the NIRS-based LW-PLSR models. 

In Chapter 5, a descriptive, accurate, and simple gray-box model was developed to 

enhance continual improvement with an insightful process understanding in the 

commercial manufacturing stage. The three types of gray-box models, i.e., parallel, serial, 

and combined gray-box models, were evaluated in terms of prediction accuracy using real 

operating data on a commercial scale with two formulations. The gray-box models were 

constructed by integrating the heat and mass balance model (white-box model) and the 

LW-PLSR model (black-box model). In the serial gray-box models, LW-PLSR models 

adjusted the fitting parameters of the white-box model depending on the PPs for each 

query. In the parallel gray-box or combined gray-box models, LW-PLSR models 
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compensated for the output error of the white-box or serial gray-box models, respectively. 

The results demonstrated that all three types of gray-box models improved the prediction 

accuracy of the white-box models regardless of the formulation. Besides, the thesis 

proposed the assessment method based on Hotelling’s T2 and Q residual for gray-box 

models using LW-PLSR, which contributes decision support to select a gray-box or white-

box model. 

Throughout the pharmaceutical lifecycle, scale-free and accurate NIRS-based black-

box models have been mainly adopted at the expense of a high initial investment cost of 

the NIR spectrometer and the probe. An alternative method that requires no initial 

investment has been naturally desired for cost-saving. However, it has been challenging 

to build an accurate white-box model or PP-based black-box model applicable to 

commercial scale without using the commercial-scale experimental data. Thus, the 

successful development of a scale-free, accurate, and cost-effective PP-based black-box 

soft sensor is a breakthrough in water content monitoring. Furthermore, this thesis 

proposed a decision support method to select a PP-based or NIRS-based LW-PLSR model 

considering prediction performance and economic efficiency. The innovative PP-based 

LW-PLSR model is expected to be an alternative to the existing NIRS-based method, 

which enhances the implementation of real-time monitoring at the technology transfer 

stage. Heat and mass balance models are based on the first-principle, and their high 

interpretability enables industry operators to understand the process in detail. However, 

non-descriptive NIRS-based black-box models have been extensively utilized for 

commercial production because heat and mass balance models have a known drawback 

of prediction accuracy. Hence, the developed descriptive, accurate, and simple three types 

of gray-box models are valuable to promote industry operators’ process understanding for 
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continual improvement and precise quality control at the commercial manufacturing stage. 

Moreover, the developed gray-box soft sensors are expected to be useful for feedback or 

feedforward control because their input variables contain operable PPs critical to the 

water content, such as spray rate, inlet air volume, and inlet air temperature. In conclusion, 

the thesis provides novel and practical soft sensors for expanding PAT implementation 

and enhancing process understanding of the fluidized bed granulation throughout the 

pharmaceutical lifecycle. 

Finally, this thesis discusses a further application of the developed innovative scale-

free PP-based LW-PLSR model. This thesis focused on a scaling-up at the technology 

transfer stage. In contrast, manufacturing site change or addition is also conducted 

according to the product demand at the commercial manufacturing stage. A NIRS-based 

monitoring method is available only when the new manufacturing site has the equivalent 

special instruments, such as the NIR spectrometer and the probe. On the other hand, the 

developed scale-free PP-based LW-PLSR model could apply to a new fluidized bed 

granulator with standard instruments, such as a thermometer and hygrometer. Thus, the 

developed scale-free PP-based LW-PLSR model is practical and easy to apply, and it will 

be a powerful tool to assure consistency in product quality before and after the change of 

manufacturing scale or site. Besides, a scale-free PP-based LW-PLSR model could 

potentially estimate other granule properties, such as particle size, depending on the 

formulations. The relationship between granule particle size and water content must be 

constant among manufacturing scales to realize scale-free prediction of granule particle 

size. When the mass fraction of binder in the formulation is insufficient, scaling-up 

usually makes the particle size of the fragile granule smaller, which is a difficult case to 

apply scale-free prediction using the PP-based LW-PLSR model. Furthermore, the 
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concept of the scale-free PP-based LW-PLSR model could be applied to water content 

monitoring in other manufacturing processes, such as film coating. Therefore, further 

evaluation for applying the proposed concept of scale-free PP-based black-box soft 

sensors to various MAs and manufacturing processes could lead to more cost-effective 

PAT implementation, which contributes to the higher-level assurance of pharmaceutical 

quality. 
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