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Abstract

Predictive simulation of concurrent debris flows using only pre-disaster informa-

tion has been difficult, partly because of problems faced in predicting debris-flow

initiation locations (i.e., slope failure). However, because catchment topography

has convergent characteristics with all channels in it joining each other as they

flow downstream, damage to downstream areas could be predicted using rela-

tively inaccurate initiation points. Based on this hypothesis, this study uses

debris-flow initiation points generated randomly with statistical slope failure pre-

diction and performs a many-case simulation across numerous initiation points

to quantify the effect of slope-failure locations in terms of deviations in the

predicted water level and topographic change. This paper presents the results of

2D simulations based on a conventional debris-flow model that was run on a

supercomputer to realise simulations of many cases. The obtained relative stan-

dard deviation was found to decrease as the debris flow and sediment-laden flood

approached the downstream area, indicating that the predictability of the inun-

dation and topographic change can be decided from the terrain characteristics.
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1 | INTRODUCTION

Debris flow is a primary hazard to human life (Hungr
et al., 2014). When significant rainfall events affect a water-
shed topography, multiple debris flows occur concurrently
within a single catchment. Additionally, debris flows and
sediment-laden floods transported downstream with
increasing discharge can significantly influence lowland
areas. Numerical simulations are useful for reproducing
such debris flows, assessing their risk, and designing coun-
termeasures against them (Hungr & McDougall, 2009;
Naef et al., 2006; O'Brien et al., 1993; Salvatici et al., 2017).
In such simulations, post-disaster information, especially

the location of debris-flow initiation, is crucial. However,
locations of debris-flow initiation are unknown before the
event, making predictive pre-disaster simulations difficult.
Therefore, although such predictive simulations are essen-
tial to quantify the flood risk under debris flows and
sediment-laden floods, especially in a high-risk catchment,
assumptions are required to treat debris-flow initiation.

1.1 | Treatment of debris-flow initiation
in existing simulations

From a physical viewpoint, three types of debris-flow ini-
tiation have been considered: (1) fluidization of a shallow
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landslide, (2) collapse of a natural dam comprising land-
slide mass, and (3) erosion of river bed material by over-
land flow (Takahashi, 2007). As debris-flow initiation
includes many unknowns resulting from a lack of in situ
observations, multiple assumptions are made in simula-
tions. The first approach is to assume hydrograph and
sediment concentration values at the inlet of the target
domain (Bao et al., 2019; Chen et al., 2017; Frank
et al., 2015; Gao et al., 2016; Han et al., 2018; Nakatani
et al., 2016; Rickenmann et al., 2006). The inlet point is
usually set as the debris-flow initiation point or the loca-
tion where the debris flow is sufficiently developed. The
simulation can then be simplified even if all elementary
processes (e.g., rainfall infiltration, landslides, and debris-
flow development) are neglected. However, hydrograph
setting basically requires empirical variables or informa-
tion that can only be obtained after an event, such as the
total debris-flow volume (Rickenmann, 1999), and is dif-
ficult when considering multiple sources.

The second approach involves connecting a rainfall-
infiltration-runoff simulation to a surface erosion model
(Melo et al., 2018; van Asch et al., 2014). Although it pre-
cisely treats debris-flow initiation type (3), it requires
multiple parameters related to water transportation
(e.g., coefficient of saturated/unsaturated permeability),
underground structures, and soil strength (e.g., cohesion
coefficient, internal friction angle). These widely distrib-
uted physical underground parameters generally cannot
be uniquely determined at the watershed scale, and no
well-established remote observation techniques are avail-
able for obtaining them. Thus, this method is unsuitable
for predictive simulations.

The third approach is to set the free-flowing landslide
mass at the slope failure location (Revellino et al., 2004;
Rodríguez-Morata et al., 2019; Schraml et al., 2015).
Although it can treat only the initiation type (1), it
requires fewer parameters than the second approach. For
a debris flow that develops by eroding the slope surface
material, initial landslide volume has a limited effect on
debris-flow discharge (Hussin et al., 2012). Then, the dis-
tance between the slope failure and damaged area will be
sufficiently large; therefore, accurate simulations should
be possible using this methodology, if sufficient slope fail-
ure location data are available.

Separately, many studies have aimed to obtain the
landslide susceptibility for landslide prediction.
Approaches for generating landslide susceptibility maps
include geomorphological mapping, analysis of landslide
inventories, heuristic or index-based approaches, process-
based (physically based) methods, and statistically based
modelling (Reichenbach et al., 2018). Of these, physically
and statistically based modelling are preferred for quanti-
tative evaluation (Reichenbach et al., 2018). Physically
based models afford advantages in terms of physical

validity; among them, the infinite slope stability model is
a simplified, widely used approach (An et al., 2016; Raia
et al., 2014). Although obtaining reliable results requires
accurately modelling complicated, heterogeneous under-
ground structures through field observation or parameter
fitting using landslide records, it is not always necessary
to use difficult-to-obtain physical parameters in statisti-
cally based approaches. Provided that reliable landslide
records are used to obtain the statistical relationships, no
abnormal results should be produced. If we can combine
the simulation of debris-flow initiated from landslide
mass with statistical landslide prediction, predictive
debris-flow simulation with the identification of the sus-
ceptible area might become possible.

1.2 | Study area and target event

A typical case involving multiple concurrent debris flows
and sediment-laden flood occurred on Northern Kyushu
Island, Japan, in July 2017. Heavy rains induced multiple
landslides, producing debris flows in the Akatani river
catchment, Asakura city, Fukouoka prefecture, Japan
(Figure 1). Subsequently, massive amounts of sediment
covered a residential area located at the bottom of the
valley. Sediment was also transported several kilometers
downstream and deposited to a �150-m width through a
10-m-width channel. The sediment-laden flood damaged
both channel sides and areas far from the main channels.
The disaster killed 33 people and damaged 1046 buildings
throughout Asakura city (Fukuoka Prefecture, 2018).
Notably, this event produced sediment from multiple
landslides and associated debris flows, which strongly
affected the inundation processes. Large topographic
changes around channels caused by the flood produced
severe damage (see Figure 2). Figure 3(a) shows the inun-
dation area and slope failure traces, and (b) shows a haz-
ard map (Fukuoka Prefecture, n.d.; Chikugo River
Office, n.d.) published before the disaster event that
included the inundation, slope failure, and debris-flow
areas. Inundation and slope failure/debris-flow areas in
this map were predicted separately, nothing is predicted
in the intermediate region. However, heavy inundation
occurred in the region because of the deposition of sedi-
ment transported from slope failures and associated
debris flows.

According to the disaster report (Kyoto University, 2018),
the slope failure depth was �1–3 m. The boundary of the
shallow landslides and debris flow is not clear; thus, this
value seems to express both the landslide depth and ero-
sion depth of the debris flow around the source. According
to radar observations, the maximum total rainfall exceeded
700 mm, and the area in which total rainfall exceeded
650 mm is roughly spatially comparable with the area of
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concentrated shallow landslides (Kyoto University, 2018).
Danjo et al. (2018) spatially analysed the relationship
between the slope failure source and topographic charac-
teristics and reported that the source areas of surface land-
slides are more likely to have occurred in ridge-like terrain
than in valley-like terrain.

Overall, the following phenomena can be assumed.
First, multiple landslides occurred in a short duration
(i.e., order of several hours). Each slope failure mass was
transformed into a debris flow and developed by eroding
sediments on the slope surface. Therefore, almost all sedi-
ment along the channels eroded completely. Conse-
quently, surface material erosion, and not initial
landslide mass volume, mainly accounted for the sedi-
ment volume transported by debris flow. Compared to
the initial volume, the slope failure location should
greatly influence the total volume because the amount of
erodible sediment changes depending on how upstream/

downstream debris flow initiates. However, in events
with multiple debris flows, the effect of location can be
reduced as downstream flows converge. That is, the
watershed topography has a convergent characteristic;
tributaries aggregate as they flow downwards; thus,
debris flows of similar scales can result even if the initia-
tion points (i.e., landslide location) change within a
catchment. Therefore, the required accuracy of the initia-
tion points for debris-flow simulation is also an impor-
tant factor.

1.3 | Objective

The first study objective is to achieve a predictive simula-
tion of the 2017 event using pre-disaster information. We
assume that only the disaster scale (i.e., how large the
disaster event will be, or how densely the debris flow

FIGURE 1 Geographical location of the target domain located in Asakura city, Fukuoka prefecture, Japan (OpenStreetMap

Contributors, 2020)
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initiate) in the target region is known, and the debris-
flow source location in the target region and area affected
by the debris flow and associated sediment-laden flood
are unknown. We statistically estimate the debris-flow
initiation location and simulate the transportation and
inundation of debris flow and sediment-laden flood from
this point. Notably, this is not a complete prediction
because it excludes the estimation of the disaster scale.
However, this can be predicted by a statistical approach
using past disaster records, observational precipitation
data, and so forth. Therefore, complete predictions could
become possible by integrating this approach herein.

The second objective is to quantify the effect of the
slope failure (i.e., debris-flow initiation points) location
on the predicted inundation area of debris flow and
sediment-laden flood. Thus, different slope failure pat-
terns generated by the same statistical model are
summarised and used as inputs for simulation. This study
discusses the required accuracy in terms of debris-flow
initiation location.

2 | SIMULATION METHODOLOGY

A supercomputer is used to simulate multiple simulta-
neous debris flows. Code availability and ease of editing
were important factors in this regard; although several sim-
ulation software is already available, we developed a new
simulation code. In general, debris-flow simulations can be

classified into Eulerian method employing shallow-water
equations (SWE) (e.g., RAMMS; Christen et al., 2010;
Hussin et al., 2012), FLO-2D (D'Agostino & Tecca, 2006;
O'Brien et al., 1993; O'Brien & Julien, 1985), and D-Claw
(George & Iverson, 2014; Iverson & George, 2014)) and
Lagrangian methods, such as smoothed particle hydrody-
namics (e.g., DAN3D; Hungr & McDougall, 2009). The
Eulerian method has an advantage in applicability for par-
allel computing. From a physical viewpoint, RAMMS
employs the Voellmy relationship, FLO2D employs the
Bingham fluid model, and D-Claw employs a quasi-two-
phase granular-fluid model. In Japan, a dilatant fluid
model, which assumes stony-type debris flows
(Takahashi, 2007), is usually applied for the simulation of
debris flow. Takahashi (2007) expanded his model to simu-
late not only debris flows but also the state of immature
debris and water flow including bed load transport. The
target event of the current study included heavy inunda-
tion in downstream areas, which has a relatively lower
density as compared to the upstream debris flow; therefore,
we employed the expanded model by Takahashi (2007).

2.1 | Governing equations

To treat a debris flow, we selected a two-dimensional
simulation model based on the widely used dilatant fluid
model developed by Takahashi (2007) (Nakatani
et al., 2016; Wu et al., 2013). The governing equation is

FIGURE 2 Damage in downstream area of Akatani river catchment (extracted from video captured by Geospatial Information

Authority of Japan, 2017). The location of this picture is indicated by the red arrow in Figure 3(a)
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∂U
∂t

þ ∂E
∂x

þ ∂F
∂y

¼S, ð1Þ

where U is the conservative variable vector; E and F are
the flux vectors in the x- and y-directions, respectively;
and S is the source vector. This equation is an integrated
form of SWE and sediment transport equation, compris-
ing the volumetric conservation law of fluids (debris
flow), momentum equations for x- and y-directions,

volumetric conservation law of sediment concentration
in fluid, and land-surface material conservation law.

The vectors are defined as

U¼

h
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0
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FIGURE 3 (a) Classification map of affected area produced by the 2017 Northern Kyushu Heavy Rainfall Disaster (Geospatial Information

Authority of Japan, 2017). Red arrow indicates the location shown in Figure 2. (b) Supposed inundation area and affected area of sediment-

related hazards in hazard map (Fukuoka Prefecture, n.d.; Chikugo River Office, n.d.). (c) 5-m-resolution elevations (Geospatial Information

Authority of Japan, n.d.) and debris-flow initiation points (n = 3721) in target area for input into reproductive simulation. Domain for the

quantitative evaluation in Section 3 is also shown here. Coordinate system on (a–c) follows Japan Plane Rectangular CS II (EPSG:2444)
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where h is the depth of water or water-sediment mixture
(m); u and v are the depth-averaged velocities (m/s) in
the x- and y-directions, respectively; C is the sediment
concentration in the fluid (�); zb is the land-surface ele-
vation (m); g is the acceleration due to gravity (m/s2); i is
the erosion speed (m/s) calculated using Equation (5); C*

is the sediment concentration (�) in the soil at the gro-
und surface. The topographical gradients in the x- and y-
directions are, respectively, calculated as S0x ¼ ∂zb=∂x
and S0y ¼ ∂zb=∂y. ϵ is the eddy momentum diffusivity
(m2/s) and is calculated as

ϵ¼ 1
6
κu*h, ð3Þ

where κ is von Karmans' constant (�); u* is the frictional
velocity (m/s); Sfx and Sfy are frictional gradients between
the fluid and bed surface in the x- and y-directions (�),
respectively. To consider both debris flow and sediment-
laden flooding, the three-phase (stony debris, hyper-
concentrated, and water flow) model proposed by Taka-
hashi and Nakagawa (1991) is used:

Sfx ¼

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where d is the representative sediment diameter (m) and
nm is Manning's roughness coefficient (m�1/3s). The three
phases are treated separately by comparing the sediment
densities in fluid C and river bed C*. The erosion/

deposition velocity in the vertical direction i is calcu-
lated as

i¼
δe

C∞�C
C*�C∞

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

p

d
, C∞ ≥C

δd
C∞�C
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p
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8>><
>>:

ð5Þ

where δe and δd are the empirically defined coefficients
for erosion and deposition (�), respectively, that provide
the time required for transition to the equilibrium condi-
tion (i.e., C¼C∞) (Takahashi, 2007). ρ and σ are the spe-
cific weights of water and sediment, respectively.
Positively valued i expresses the erosion speed (m2/s),
where C∞ is the equilibrium sediment concentration (�)
obtained by

C∞ ¼

0:9C*, tanθw ≥ tanϕ
ρtanθw

σ�ρð Þ tanϕ� tanθwð Þ , tanϕ> tanθw ≥ 0:138

6:7 ρtanθw
σ�ρð Þ tanϕ�tanθwð Þ

n o2
, 0:138> tanθw ≥ 0:03

ρ 1þ5tanθwð Þ
ρ�σ

1�α2c
τ*c
τ*

	 

1�αc

ffiffiffiffiffiffi
τ*c
τ*

r	 

, tanθw ≤ 0:03^ τ* > τ*c

0, tanθw ≤ 0:03^ τ* ≤ τ*c

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

where θw is the water surface gradient (�). In this study,
we used the gradient in the downstream direction. ϕ is
the internal friction angle (�); τ*c is the critical non-
dimensional tractive force (�) calculated as

τ*c ¼ 0:04�101:72tanθw , ð7Þ

where τ* is the nondimensional tractive force calcu-
lated as

τ* ¼ ρ

σ�ρ

htanθw
d

, ð8Þ

where αc is calculated as

α2c ¼
2 0:425� σtanθw

σ�ρ

� �
1� σtanθw

σ�ρ

ð9Þ

2.1.1 | Numerical modelling

To prevent numerical instability at the boundary of
supercritical and subcritical flows, the MacCormack
scheme with artificial viscosity (Hinokidani, 1998a) is
used to implement the discretisation equations. Calcula-
tions are performed in two steps: prediction and
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correction. If backward and forward differences are used
for the predictor and collector steps, respectively, the
MacCormack scheme can be expressed as follows:

Predictor:

Ui,j ¼Un
i,j�

Δt
Δx

En
i,j�En

i�1,j

� �
� Qx

n
i,j�Qx

n
i�1,j

� �n o

�Δt
Δy

Fn
i,j�En

i,j�1

� �
� Qy

n
i,j�Qy

n
i,j�1

� �n o
þΔtSni,j:

ð10Þ

Corrector:

Unþ1
i,j ¼ 1

2
Un

i,jþUi,j

� �

� Δt
2Δx

Eiþ1,j�Ei,j
� �þ Qxiþ1,j�Qxi,j

� �n o

� Δt
2Δy

Fi,jþ1�Fi,j
� �þ Qyi,jþ1�Qyi,j

� �n o
þ1
2
ΔSi,j,

ð11Þ

where

Qxi,j ¼
u*h
Δx

Kv Un
iþ1,j�2Un

i,jþUn
i�1,j

� �
,

Qyi,j ¼
u*h
Δy

Kv Un
i,jþ1�2Un

i,jþUn
i,j�1

� �
ð12Þ

where Kv is the coefficient vector for artificial viscosity;
Kv ¼ 2:5,2:5,2:5,1,1½ � was used in this study
(Hinokidani, 1998b).

As the initial condition, a debris-flow mass consisting
of water and sediment was set at four nearest grid cells
(i.e., 10 m � 10 m) corresponding to the debris-flow initi-
ation points. The mass has depth h and concentration C,
and does not have momentum (i.e., u¼ v¼ 0). First, the
initial vectors Un0, En0, Fn0 in timestep n¼n0 are set
using Equation (2). Further, S and Q are calculated using
the components of U (i.e., u, v, h, C, and zb) using Equa-
tions (3)–(9) and (12). Next, in the predictor step, vector
U is calculated by Equation (10). U is calculated by
substituting it into U in Equation (2), and E, F, S, and Q
are calculated using U and its components similar to the
previous step. In the corrector step, vectors Un0þ1 are
obtained using Equation (10) and the above vectors.
Then, time t (s) is incremented by Δt. Debris flow trans-
portation and erosion/deposition is calculated in such
time steps.

2.1.2 | Code parallelisation

A Fortran numerical simulation code was used for per-
forming the above calculations. As applying this programme

at a watershed scale could incur high computational costs,
we parallelised the code to enable the use of high-
performance computing techniques (supercomputing).

Hence, we introduced thread-parallelisation to the
programme using OpenMP, a technique for parallelising
programme loops. This enabled the parallelisation of
most loops without causing dependency problems. To
execute the programme on supercomputers comprising
multiple nodes, we implemented message passing inter-
face (MPI) parallelisation, in which a target area is
decomposed into multiple areas overlapping two arrays
of numerical grids. In this study, the target area is sepa-
rated into 288 square areas of 100 � 100 computing cells
(i.e., 500 � 500 m); we then added overlapping cells
along the boundary of the decomposed area. Each area is
allocated to corresponding nodes, and the simulation is
executed independently on each node. Using MPI, the
variables on overlapping grids were synced just after the
predictor and collector steps to retain collective variables
on the boundary area. Through this hybrid parallelisation
process, a one-case simulation of a rectangular domain of
8 km � 9 km could successfully be conducted on 2304
CPU cores (288 nodes, eight cores per node) in less than
2000 s; for the full study, a 60-case parallel simulation
was conducted using 138,240 cores (17,280 nodes, eight
cores per node). This simulation was performed on the K
computer at the RIKEN Center for Computational Sci-
ence, Kobe, Japan.

3 | REPRODUCTIVE SIMULATION

3.1 | Calculation condition

To validate the proposed simulation scheme, we applied
it to an actual disaster that occurred on Northern Kyushu
Island, Japan, in 2017. The target region was an area
spanning 9 and 8 km in the east–west and north–south
directions, respectively, around the Akatani river catch-
ment area. The simulation is conducted in a 5 m-
resolution spatial discretization; thus, number of grid
cells was 2,880,000. While a 10-m resolution DEM was
fully available in the target domain, a 5-m resolution
DEM was partially available in the residential area.
Therefore, we upscaled the 10-m-resolution DEM by
bicubic interpolation to complement the 5-m DEM. We
also converted the polygonal debris-flow traces provide
by Geospatial Information Authority of Japan (2017) into
a point dataset of debris-flow initiation as follows. We
defined the debris-flow initiation point in each debris
flow trace as the highest point. As most debris-flow traces
joined each other, we assumed that the highest-elevation
cells were the high points within a specific diameter for
the debris-flow trace. Figure 3(c) shows the resulting
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debris-flow initiation points (n = 3721) and elevation
data for the simulation. For other parameters, pure water
and general sediment condition (ρ¼ 1:0,C* ¼ 0:6,
σ¼ 2:65,ϕ¼ 35�) were used. The target area has a wide
grain size distribution of 0.04–100.00mm (Kyoto
University, 2018); however, we assumed d¼ 5 cm as a
representative diameter of the debris flow, which is
located in the upper range of reported values. To avoid
stopping the debris flow just after initiation, the initial
density Cini was set as 0.5 (slightly smaller than C*). δd
and δe values were set as 0.05 and 0.0007, respectively,
according to previous research (Wada et al., 2008). The
depth of each initial landslide depth hini is not dominant
for the debris flow scale at the outlet because each debris
flow mass develops by eroding 1m of surface erodible
soils and water in the pores. Therefore, hini was set as
1m. The initial debris-flow mass was set in the nearest
four (2� 2) cells of the debris-flow initiation point. The
simulation duration is set as 3600 s. The time step Δt
was set adaptively using the CFL condition
Δt<CmaxΔx=max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

p þ ffiffiffiffiffiffiffiffi
2gh

p� �
, where Cmax is the

maximum Courant number. Because this numerical
method employs the explicit method, Cmax ¼ 0:1 was
adopted to avoid numerical instability.

Several assumptions are made in this simulation: all
debris flows initiate simultaneously; all soils are initially
completely saturated; erodible soil depth is limited to 1 m
in all regions; debris flow material has homogeneous
grains; and only water, and not additional rainfall, in the
soil layer is considered.

3.2 | Calculation results

The maximum water level wlmax and topographic change
Δzb (i.e., erosion/deposition) are critical variables for rep-
resenting the effect caused by the inundation of
sediment-laden flood. These factors were determined by
the relative water level and ground surface elevations
from the initial ground surface, respectively. Figure 4(a,
b) shows the maximum water level during the simulation
and final topographic change, respectively. A rough com-
parison reveals that the distribution of each variable
agrees with the disaster trace shown in Figure 3(a).

For quantitative comparisons, we selected domain
1, shown in Figure 3(c), as the whole domain, except for
the area which has an external catchment, to neglect any
areas outside the target area that might be affected by the
phenomenon. Note that the cloud area that lacks ground
truth is also neglected here. Domain 2, the Akatani river
catchment, the main internal catchment in the target
domain, was also selected as the target. The available
trace data (shown in Figure 3(a)) were categorised into
flooded and landslide areas. The trace was obtained by

manual categorisation by interpreting an aerial photo-
graph provided by the Geospatial Information Authority
of Japan (2017), suggesting that the data included areas
with decreases and increases in elevation (erosion and
deposition, respectively) and water-covered (inundated)
areas. It is unknown how “landslide” and “flood” area
were separated on these aerial photographs. However,
according to the data, classification may have relied on
the original land use, that is, traces on mountain slope
are termed “landslide” and traces on plane areas are ter-
med “flood.” To account for this, three binary maps
(flooded, landslide, and both) were compared to obtain
the “true” map. To obtain a predictive map, three thresh-
olds using the maximum water level and terrain surface
deformation were used to produce flooded, landslide, and
damaged areas. For each comparison, we calculated the
areas for TP (true positive; predicted and occurred), TN
(true negative; not predicted and not occurred), FP (false
positive; predicted and not occurred), and FN (false nega-
tive; not predicted and occurred). Using these values,
recall, precision, and threat scores were calculated as
TP/(TP + FN), TP/(TP + FP), and (TP + TN)/(TP + FP
+ FN), respectively. The summary results are shown in
Table 1.

The landslide area was first compared to the area in
which the simulated absolute terrain deformation value
was greater than a threshold value of 0.01 m, as shown in
Figure 4(c). The comparison produced a recall value
greater than 0.7, both in domains 1 and 2, indicating that
the simulated and actual landslide areas mostly coincided.

The flooded area was then compared with the area in
which the simulated maximum water level was greater
than the threshold value (0.01 m), as shown in Figure 4
(d). This result also produced a high recall value (0.741)
in domain 2, indicating that the simulated high water
level and inundated areas in the internal basin mostly
coincided. On the contrary, in domain 1, the recorded
recall value (0.570) was much smaller than that domain
2. We note that precision and threat scores cannot be dis-
cussed only for landslide or flooded area because there
are many FP areas because flooded and landslide areas
cannot be separately identified in the simulation.

Finally, the damaged area was determined by com-
paring the combined flood and landslide area with the
area in which the absolute value of Δzb was greater than
0m, as this should correspond to locations in which
water was present at least once (Figure 4(e)). The recall
value was 0.719 in domain 1 and 0.809 in domain
2, where 70–80% of the affected area were actually
predicted in the simulation. The precision value was
larger than 0.5 in both domains 1 and 2; therefore, the
proportion of the actually affected area in the predicted
area was smaller than 50%. The threat score, the ratio of
TP among TP, FP, and FN, was 0.422 in domain 1 and
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FIGURE 4 Calculated reproductive simulation results for (a) maximum water level and (b) topographic change. (c–e) Binary
classification results for the quantitative evaluation of simulated results for landslide, flooded, and both (water-covered) areas, respectively.

Accuracy, recall, and precision are calculated as (TP + TN)/(TP + TN + FP + FN), TP/(TP + FN), and TP/(TP + FP), respectively.

Evaluation domain 1 indicates the area which excludes areas lacking ground truth data and the area that has an external catchment.

Evaluation domain 2 indicates the largest internal basin in domain 1
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0.490 in domain 2. According to Figure 4(e), FP and FN
areas were categorised into three regions. First, the FP
areas appeared along the debris flow traces at the moun-
tain slopes. This is because the debris flow was calculated
to be broader than the actual flow. In addition, some
debris flows that stopped without further development
could not be well reproduced. Second, the FN region
appeared along the valleys in the middle stream areas.
This result seems to be due a smaller simulated water
volume for inundation than that of the actual flow
because the simulation considers only water in the soil,
but no additional rainfall before or after the debris flow.
Finally, both FN and TP areas appeared in the lowland
area at the outlet of the valleys. This is also affected by
additional rainfall and debris flow stoppings. Addition-
ally, a report pointed out that driftwood and its aggrega-
tion (i.e., driftwood jams) at bridges strongly affected the
inundation process (Kyoto University, 2018). If we added
such processes into the simulation model, the threat
score might increase. Notably, the accuracy of the obser-
vation area cannot be precisely measured because it was
interpreted with the naked eye based on the colours of
disaster traces in aerial photograph.

As aforedescribed, the affected area in the simulation
showed differences to the actually affected area. How-
ever, from the viewpoint of application in disaster predic-
tion work, the recall value is empirically regarded to be
important. Because the simulation shows a high recall
value, especially in the internal basin (domain 2), we
believe that our results are sound, and we leave the
improvement of reproducibility for future work.

4 | PREDICTIVE SIMULATION
EMPLOYING STATISTICAL
LANDSLIDE PREDICTION

4.1 | Statistical landslide prediction
model for generating artificial landslide
dataset

Debris flow initiation points, that is, slope failures or land-
slides, are essential inputs in the proposed simulation.

Note that a fully predictive simulation requires data sou-
rced solely from pre-disaster information. However, we
assume that the statistical model described below can be
obtained in the pre-disaster period.

This study adopts a statistical approach. In selecting
the method in the statistical models, probabilistic
(i.e., nondeterministic) response variables are preferred
for treating variations in the predicted results. Therefore,
we used a logistic regression model to derive the initia-
tion point likelihood at each top point in the debris-flow
trace. To obtain high-quality predictions, many variables
are generally selected as explanatory variables, including
curvature, slope, aspect, flow accumulation, elevation,
lithology, and precipitation. However, for selecting input
variables, data availability is also important to establish
the model used for prediction. Additionally, the relation-
ship between landslide occurrence and aspect or eleva-
tion is highly location dependent. Therefore, we used
only four variables: slope, flow accumulation, and pro-
file/tangential curvature, as shown in Figure 5(a–d).
Here, we used 10-m resolution data for landslide predic-
tion to achieve the same quality of the used DEMs.

In this regression, cell by cell with 10-m resolution,
we extracted the set of slope θ, flow accumulation area
Aa, profile curvature Χp, tangential curvature Χt, and
binary value (1 or 0) that expresses whether debris-flow
initiation points exist in the corresponding cell. To reduce
noise in the elevation data, θ, Aa, Χp, and Χt were used
by taking the averages of 5� 5 cells (i.e., 50� 50m). The
entire target area contained 514,566 data points. Areas
with a drainage area outside the target area, or whose
land use is not forest, were neglected because landslides
generally rarely occur in such areas. The 10-m resolution
land use and land cover map (Japan Aerospace Explora-
tion Agency, 2016) are used for this classification. In the
logistic regression, possibility p that debris flow initiates
at the corresponding cell is calculated as

p¼ eα0þα1θþα2Aaþα3Xpþα4Xt

1þ eα0þα1θþα2Aaþα3Xpþα4Xt
ð13Þ

From the regression for the entire domain of the target
area, α0 – α4 were obtained as shown in Table 2. In Wald's

TABLE 1 Summary of results on simulation reproducibility

Comparison type Evaluation domain Recall Precision Threat score

Landslide area Domain 1 0.723 0.365 0.320

Landslide area Domain 2 0.785 0.252 0.235

Flooded area Domain 1 0.570 0.166 0.148

Flooded area Domain 2 0.741 0.325 0.292

Landslide and flooded area Domain 1 0.719 0.506 0.422

Landslide and flooded area Domain 2 0.809 0.555 0.490

10 of 18 YAMANOI ET AL.



FIGURE 5 Input (a–d) and output (e) variables of logistic regression: (a) terrain slope (�), (b) tangential and (c) profile curvature,

(d) common logarithm of flow accumulation area (m2), and (e) by-point regression-obtained spatial probability of debris-flow initiation. (a–
d) are calculated using 10-m-resolution DEM. Each value is the average of all neighbours within a five-cell range
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test, the p value was small, implying that θ, Aa, Χp, and
Χt are dominant for p. Figure 5(e) shows the predicted
probabilities at the 10-m resolution. They ranged from
0.001 to 0.035, which does not predict a specific location;
nonetheless, we use this result for debris-flow prediction
considering the hypothesis that the required landslide-
prediction accuracy is not high. The estimated p was rela-
tively low in the bottom of channel streams and relatively
high in the lower portion of slopes besides the streams.
This is due to the larger value of slopes θ and profile cur-
vatures Χp at the portion. The estimated coefficient for
tangential curvature α3 was positive, thus agreeing with
the fact that landslides likely occurred in ridge-like ter-
rains (Danjo et al., 2018).

The receiver operating characteristic curve for this
model can be obtained as shown in Figure 6, by plotting
the sensitivity (TP/[TP + FN]) and 1-specificity (1-TN/
[TN + FP]) as the change in the cut-off probability. Here,
TP, TN, FP, and FN were obtained cell-by-cell. The area
under curve (AUC) value was 0.589; therefore, the perfor-
mance of this model in predicting the specific location
was lower than that reported in previous studies

(e.g., 0.80–0.84; Gorsevski et al., 2006; 0.78 ± 0.03; Ozturk
et al., 2021). This is not surprising because this simple
model employs relatively small training domains,
neglects climate- and geography-related variables, and
employs a relatively high resolution (i.e., 10 m).
According to the AUC the presented model is better than
the random classifier (AUC = 0.5). We used this model
to show that high-performance models for landslide pre-
diction are not always required for application in debris-
flow prediction.

To enable simulation inputs, the spatial probability
map had to be converted into landslide maps. Hence, we
generated pseudorandom real numbers between zero and
one for all cells in target areas. For results smaller than
the corresponding cell probabilities, the cell was selected
as a debris-flow initiation point. For example, if a
10 m � 10 m cell had a probability value of 0.005 and the
generated pseudorandom number was 0.003 (<0.005), it
was selected as a debris-flow initiation point. By chang-
ing the random-seed generator, 60 sets of debris-flow ini-
tiation points were created; these are partially shown in
Figure 7(a,b). Consequently, the mean number of gener-
ated points was 3518.3, and the standard deviation
(SD) was 63.7 in the entire domain. The actual landslide
number was 3721, which is slightly larger than the statis-
tically estimated value. However, the actual number
includes landslides that occurred in nonforest areas or
areas with external catchments, which cannot be
predicted using this method. The number in the predict-
able area was 3598, which is approximately in the range
of the proposed estimation.

The abovementioned method can provide the proba-
bility distribution of debris-flow initiation points in a tar-
get area for a target event. This model can be considered
a probability model for a disaster of similar magnitude in
a similar region. Therefore, it cannot directly be applied
to different magnitudes or regions with different lithology
and/or climate characteristics. We do not discuss the
applicability of the proposed regression model. However,
similar disasters in other regions can yield a similar prob-
ability function through logistic regression. Therefore, by
archiving the debris-flow initiation point and topography,
lithology, and precipitation data, the quality of the regres-
sion model can be improved in the future. In Japan,

TABLE 2 Logistic regression

results (n = 514,566)
Estimated value Standard error z value p value for (>jzj) in Wald's test

α0 �6.517527 0.090660 �71.890 <2e-16

α1 0.043171 0.002619 16.484 <2e-16

α2 0.416436 0.035190 11.834 <2e-16

α3 24.769787 3.565543 6.947 3.73e-12

α4 21.979709 2.617267 8.398 <2e-16

FIGURE 6 Receiver operating characteristic (ROC) curve for

the presented logistic model for landslide prediction
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FIGURE 7 (a,b) Generated debris-flow initiation point datasets; (c,d) calculated maximum water level results (T = 3600 s); and (e,f)

calculated topographic change results (T = 3600 s). Only Cases 1–2 are shown
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similar sediment-related disasters occur almost every
year; therefore, this method could be applied widely for
prediction if we have sufficient data. We do not introduce
a precipitation-related index because slope failures are
evenly distributed in the target event. However, such an
index could be introduced theoretically. Additionally, the
required accuracy of the probability function is not
always high as described below.

4.2 | Multicase predictive simulation
using artificial landslide datasets

Sixty simulation cases (in light of available resources)
were analysed using the artificial debris-flow initiation
points as input data. Other than the initiation points, all
conditions, parameters, topographic conditions, simula-
tion models, and discretisation methods were the same as
those in the reproductive simulation described in
Section 3. Figure 7(c–f) shows some obtained maximum
water levels and topographic changes. Approximately
similar maximum water level and topographic change
values are found in the downstream area, suggesting that
damage here is not sensitive to the debris-flow initiation
point distribution. By contrast, high variability is
observed in the upstream area closer to the debris-flow
initiation points. The variability among the 60 results was
quantified using the averaged value (AVE) and SD; rela-
tive SD (RSD; =SD/jAVEj)) values were calculated for
maximum water level and terrain deformation
(Figure 8(a–d)).

Figure 8(a,c,e) shows the AVE, SD, and RSD for the
maximum water level, respectively. At the outlets of
debris-flow prone valleys, AVE is 0.5–1.0 m; at valley bot-
toms in downstream areas, AVE is 1.0–3.0 m, indicating
a general increase as streams flow downstream. By con-
trast, SD shows only modest variations between 0.0 and
0.2 m in Figure 8(c). Thus, RSD (=SD/jAVEj) is relatively
larger upstream and smaller downstream. By contrast,
areas around the outlets of small debris-flow-prone
streams have RSDs of �0.5–1.0, indicating a higher
degree of predicted-damage uncertainty. In the flood
plain along the mainstream of Chikugo river, RSD values
were higher in some portions, especially along the moun-
tain front. This mountain front does not have a
watershed-like topography; the debris flow effect, there-
fore, depends on whether landslides take place on the
nearby slope. Accordingly, water flow appeared only in a
small number of simulation cases among the 60 cases,
resulting in a large RSD value. Note that higher RSD
values appeared in the mainstream of Chikugo river. This
is because the simulated distance the flood water trav-
elled does not completely match each other in the

60 cases since the simulation stops after 3600 s. In an
actual situation, such areas should be filled with river
water, which, however, could not be simulated with our
approach. Figure 8(b,d,f) shows the SD, AVE, and RSD
values for topographic changes, respectively. Each index
follows a trend similar to the corresponding maximum
water level index, although RSD in the residential area at
the valley bottom is slightly larger than that for maxi-
mum water level.

5 | DISCUSSION

In the proposed method, debris flow inundation levels
and topographic changes were successfully simulated
from observed and statistically predicted slope failure
data. The results show that hazards, their affected areas,
and the uncertainty are predicted precisely from the sta-
tistical model. If such a statistical model is available
before the disaster, the affected area can be considered
predictable. Additionally, our results indicated that the
uncertainty (i.e., RSD) decreases as debris flows down-
stream in the watershed-like topography. Therefore,
inundation and topographic changes in the valley bottom
and downstream alluvial area can be simulated if the
landslide location changes. By contrast, large RSD values
appeared in upstream and flood plain areas near steep
slopes. This result implies that hazard predictability
highly depends on the topography, where valley bottoms
and downstream alluvial areas have relatively high pre-
dictability. This result also implies that the debris flow
effect in such areas might be predicted even if the land-
slide prediction accuracy is not remarkably high. This
conclusion is also supported by the fact that a simple
landslide prediction model with a relatively low perfor-
mance was used for this simulation.

However, this study has several limitations. First,
numerical experiments were conducted for dense land-
slides (>3000 debris-flow initiation points over 72 km2).
Tests under lower-density conditions might increase the
uncertainty, even in downstream areas, because not all
debris flows might accumulate. Further, as noted in the
Section 3, this simulation relies on several assumptions.
For example, all debris flows are considered to initiate
simultaneously in this simulation. If the initiation time
varies, the accumulation effect might change and
increase the uncertainty. Further studies are required to
clarify how such assumptions influence the uncertainty
and predictability of hazards. Despite these limitations, if
there is sufficient water to develop a debris flow, suffi-
cient density of slope failure for multiple debris flows to
join, and the range of debris-flow initiation timings is
small, precise simulations are possible. From a practical
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FIGURE 8 (a,c,e) Average value, standard deviation (SD), and relative standard deviation (RSD) for maximum water level, respectively.

(b,d,f) Average value, SD, and RSD for topographic change, respectively
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perspective, if an appropriate statistical model for the tar-
get scale is used, we can precisely and quantitatively esti-
mate the affected area, affected degrees, and uncertainty.
We believe that this represents significant progress in
disaster assessment studies.

It is important to note that this paper mainly dis-
cusses influences of the initiation point location to the
predicted affected area, not the simulation quality itself.
We neglect aspects such as additional rainfall, the effect
of driftwood, and buildings. Additionally, fundamental
soil properties, such as grain size, may also affect the pre-
diction. Simulations including such parameters should
improve predictability in some regions.

6 | CONCLUSIONS

This study proposed a 2D debris-flow simulation scheme
from initiation points and discussed the slope failure con-
dition settings needed to predict debris flows and
sediment-laden flooding. As accurate slope failure predic-
tion is difficult using current techniques, we proposed a
predictive simulation method that does not require accu-
rate landslide prediction (i.e., conventional statistics-
based landslide prediction). We generated artificial
debris-flow initiation points using the spatial probability
of slope failure and pseudorandom numbers to change
the slope failure location based on the random seed. In
convergent catchment topographies, individual debris
flows merge as they flow downstream. Under such condi-
tions, different debris-flow initiation points result in simi-
lar affected locations. To quantify the similarities, we
calculated the RSD of 60 cases with different random
seeds. The RSD decreased in downstream regions with
large drainage areas.

Our results suggest the following. The damage pro-
duced by debris flows or sediment-laden floods in the
downstream regions of watershed-like topographies is
predictable under the presented conditions regardless of
the location of sediment sources (slope failures). The
dominant factors in terms of predictability are the pres-
ence of a catchment-like concave topography, sufficient
water to develop a debris flow, and sufficient density of
slope failure for multiple debris flows to join. Thus, for
concave topographies, it is possible to predictively simu-
late the inundation when high rainfall yields multiple
slope failures and debris flows.

Further studies will be required to estimate how each
assumption in the simulation affects these conclusions.
However, this study demonstrated the effectiveness of
using high-performance computing for multicase simula-
tion to evaluate the effects of debris-flow initiation loca-
tions. A similar approach involving changing each

condition will be used in a future study to quantitatively
evaluate each assumption.
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