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Abstract 

This is a survey on the amalgamated limit from [Br6], a limit construction for complete Boolean 
algebras in iterated forcing theory, which generalizes both the direct limit and the two-step amalga-
mation. We focus in particular on examples of the amalgamated limit from the literature and on the 
topological amalgamated limit for compact Hausdorff spaces. 

Introduction 

~imit c?nstructi~ns for comp(et~ Boolean a!gebras.(c_:Ba'.s for short) ~lay a ~ndament~l role in f~~ci~g 
theory because they are needed to set up iterated forcing constructions. The most important limits 

certainly are the direct limit and the inverse limit and both have been used for decades in a myriad of 

consistency proofs. The present note deals with a construction generalizing both the direct limit and 

the two-step amalgamation, the amalgamated limit, which has been introduced in [Br6] for ccc iterations 

adding random reals instead of Cohen reals in limit stages, called shattered iterations (see Example 5 

in Section 2). However, at least implicitly, the amalgamated limit has been used much earlier in work 

of Shelah ([Sh2], see also [Br4], [Br5, Section 1], and Example 4 in Section 2). Roughly speaking, the 
amalgamated limit Ag = limamal;EJA; of a system of cBa's (A; : i E J) is the natural "smallest" cBa 
into which all A; completely embed where I is a distributive almost-lattice (see Section 1 for a formal 
definition); the latter can be a fairly general structure, but for applications one can think of I as being a set 
of pairs of ordinals. Note the similarity to the direct limit here: the latter is the smallest cBa completely 

embedding all A; when I is a lattice -or just a directed set. Also notice that since distributive almost-
lattices are inherently two-dimensional objects, there is a close connection of the amalgamated limit with 

matrix iterations which will be made precise in Example 3 in Section 2. However, since matrix iterations 

work with finite support (i.e., direct limits are taken everywhere), the amalgamated limit framework is 

not necessary for them and in a sense just complicates things. 

The present note is a survey on the amalgamated limit. Most of the material presented here has 

appeared (or will appear) elsewhere, mostly in [Br6]，and to a lesser extent in • [Br5]．For this reason we 
refrain from giving proofs and just present the main notions and ideas. Section 1 contains the basics: 

correctness (originally from [Br3], see also [Br6, Section 1] and [Br5]) is reviewed, the amalgamated limit 
is defined, and its most important properties (in particular, complete embeddability, Theorem 3) are 
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stated. We kept this section brief because all the material can be found in [Br6]. Section 2 contains the 
most important examples we are aware of, and which are scattered through the literature. Again, we 
do not present concrete and detailed proofs (because they can be found elsewhere) but rather give the 
main ideas of the constructions and explain why they can be construed as amalgamated limits. Section 
3, finally, is the only section with completely new material: by Stone duality, the amalgamated limit can 
be redone for duals of cBa's -or actually, Boolean algebras in general -to yield a limit construction 
for compact zero-dimensional Hausdorff spaces. It turns out that zero-dimensionality is irrelevant here 
and that this construction even works for general compact Hausdorff spaces. The limit spaceふ isa 
subspace of the product space of the X;, i E J, where J is again a distributive almost-lattice, such that the 
projection mappings are open (see Theorem 6). The latter -corresponding to complete embeddability 
in the cBa setting of Theorem 3 -is the main point. In this last section we present detailed proofs. 
We assume familiarity with forcing theory, in particular with iterated forcing constructions and with 

the approach to forcing via cBa's. Basics can be found in the standard literature, e.g. [Je], [Ku], and [Ha]. 
Furthermore we will mention a number of standard cardinal invariants of the continuum along the way 
without definition, see [BJ], [Bl], or [Ha]. 

1 The amalgamated limit 

For complete Boolean algebras Ai C::釣， wewrite Ai <o Aj for "Ai is completely embedded in釣”.Recall
that this is equivalent to saying that the projection mapping h{ : Aj→釦 givenby 

尻(aj)= IJ{ai EA;: ai ::>_ aj} 

satisfies h;(aj) > 0 for all ai > 0. We need the following basic definition from [Br3] (see also [Br5] 
or [Br6, Definition 1]). 

Definition 1. Assume we have cBa's A。/¥1<o AiくoA。vi,i E {O, 1}. We say projections in the diagram 
的Vl

ー／ ＼ 
A:A。¥。fふ

are correct if either of the following three equivalent conditions holds: 

• h忙(ao)= h似 (ao)for all ao EA。,

• h屈(a1)= h恥 (a1)for all a1 E釦，

• whenever h恥(ao)= hい(a1)then ao and a1 are compatible in A。Vl・→
Notice this implies (but is not equivalent to) A。/¥1= A。n釦． Atypical example for a diagram with 
correct projections is given by letting A。/¥1= {O,:n.}and A。vithe usual product forcing, that is, the 
completion of（知＼ ｛0}) x（ふ＼ ｛O}). Another important example is obtained by letting A。/¥1くoA。
be arbitrary forcing notions and putting釦：＝ A。/¥1* Q and Aov1 := A。*Q,where Q is a Suslin ccc 
forcing notion (see [Br6, Example 3]). In both cases, correctness is straightforward. For an example of a 
non-correct diagram with A。/¥1= A。n釦 see[Br6, Counterexample 4]. More on correctness can be found 
in Section 1 of the latter work. 
Since dealing with limit constructions is one of the main goals of this work, we recall: 

Lemma 1 (embeddability of direct limits, see [Br5, Lemma 4] and [Br6, Lemma 4]). Let K be a directed 

index set. Assume（ふ： kEK) and（恥： kEK) are systems of cBa's such thatふく0位丘 <0[£, 
andふ <o[k for any k <:: R. Assume further projections in all diagrams of the form 

/［£¥ 
[K A£ 

¥A/ 
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are correct fork'.SI!. Then IA:= limdirkEK/Ak completely embeds into [ := limdirkEK[k. Furthermore, 
correctness is preserved in the sense that projections in all diagrams of the form 

［ 

／ ＼ 
恥;.A
¥A( 

for k E K are correct. 

Correctness is crucial here. For a (non-correct) counterexample see [Br6, Counterexample 5]. The 
notion of correctness was originally singled out by the author [Br3] when he was grappling with Shelah's 
theory of iterations along templates ([Sh2], see also [Brl] and [Br2]). See [Br3] or [Br5] for how template 
iterations can be nicely described in the correctness framework. 
We next define the structure underlying the amalgamated limit (see Definition 3 below). 

Definition 2 (see [Br6, Definition 2]). Assume〈I,:','.〉isa partial order. Call I a distributive almost-lattice 
if 

(i) any two elements i,j E J have a greatest lower bound i八j,the meet of i and j, 

(ii) if i and j have an upper bound, then they have a least upper bound i V j, the join of i and j, 

(iii) if io, i1, i2 E J then there are j =J k such that ij and吐havean upper bound (so that ij Vik exists), 
that is, given any three elements, two of them have an upper bound, 

(iv) the distributive laws hold for八andV (as long as both sides of the law in question exist), 

(v) if i and j have no upper bound and j'is arbitrary, then illhfil: neither i,j'nor i,j八j'havean 
upper bound壁 iV j'= i V (j八j'),and 

(vi) if j,j'have no upper bound, then (i/¥j) V (i/¥j') = i for any i. 

The following is e邸 yto see: 

Lemma 2 (see [Br6, Observation 5]). Assume〈I,'.S〉satisfies(i) to (iv). Also assume I has no maximal 
element, let R r/: I, L = I U { £}, and stipulate i'.S R for all i E I. Then the following are equivalent: 

T
 

• I satisfies (v) and {vi). 

• The distributive laws hold in L, that is, L is a lattice. 

In fact, the only reason for having conditions (v) and (vi) in Definition 2 is that we want preservation 
of distributivity once we add a top element to a distributive almost-lattice. 
We are ready for the definition of the amalgamated limit. 

Definition 3 (see [Br6, Definition 31). Given a distributive almost-lattice〈I,:0::〉anda system（釦： iEI) 
of cBa's with complete embeddings id : Ai <o Aj for i < j such that projections in all diagrams of the 
form 

IAiv • 

ふ IA/ ¥ 

＼ ／ 
IAJ 

IAi/¥j 

are correct, we define the amalgamated limit !Ac = 1Aamal = lim amaliEI IA; as follows. First set IA = 

uiEI IAt ¥ ｛0}. 

• The set D of nonzero conditions consists of unordered pairs (p, q) E IA x IA (so (p, q) = (q,p)) such 
that there are i,j E J with p E IA;, q E杓 andh;,;/¥1(p) = h1,;/¥］(q). 

• The order is given by stipulating (p', q')::; (p, q) if either 
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-hい(p')S; p and h応(q')Sj q or 
-h{/¥，（q') Sip and h応(p')Sj q or 

-hf/¥，（p') S; p and hい(p')名 qor 
-h恥(q')S;p and h恥(q')Sj q 

where (i', j') witnesses(p'，q') ED. 

/At is the cBa generated by D, i.e.,/At = r.o.(D). T
 

Of course, the intention is that IAe is "larger" than all the IA; in the sense that they all completely 
embed into IAe so that we can use this concept to define an iterated forcing construction. This is indeed 
the case, see Theorem 3 below. Arguably, the definition of D -and thus of its completion IAe -looks 
complicated, in particular with respect to the order. However, that we need to consider several cases 
in its definition simply has to do with the fact that our conditions are unordered pairs. Also the use 
of projections in this definition is due to our considering the most general pattern for witnesses of the 
conditions (p, q) and(p冗）． Inpractice, when (p', q') <::'. (p, q) holds we will have i'2: i and j'2: j where 
(i,j) and (i八j')witness (p, q) E D and (p/，り） ED, respectively, if we are in the first of the four cases 
defining the order above. Note that then (p', q') <::'. (p, q) is equivalent to 

-p'Si'p and q'Si'q 

because hf (pりSipand p'<::'.;,pare clearly equivalent (and similarly for j and j'). Analogously we can 
simplify the other three cases. 
One of the first things one needs to check is that the order <::'. is transitive on D; this is easy, see [Br6, 
Observation 6] for details. However, the order on Dis in general not separative, that is, distinct members 
of D may be equivalent as conditions in the completion /Ag (see [Br6, Observation 9] for several situations 
when this occurs). Furthermore, we identify each IA; with a subset of D -and thus with a subalgebra 
of IAe -via the map p→ (p，p). Note in this context that for arbitrary conditions (p, q) E D we always 
have, by Definition 3, that (p, q) <::'. (p,p) = p and (p, q) <::'. (q, q) = q. 

Theorem 3 (see [Br6, Main Lemma 7 and Lemma 8]). If〈I,<::'.〉and(/Ai : i E I) are as in Definition 3, 
then all !Ai, i E I, completely embed into the amalgamated limit幻＝ limamal;EI/Ai. Furthermore, 
projections in all diagrams of the extended system (IA; : i E I U { £}) are still correct. 

We do not give a proof here because this is explained in detail in the reference [Br6]. However, we 

shall later prove a more general theorem in a topological context, Theorem 6 in Section 3, from which 
Theorem 3 can be derived. 
Condition (iii) in Definition 2 looks rather stringent, and one may wonder whether we can amalgamate 
if we relax this condition. Counterexample 8 in [Br6] shows that this is not the case in general, though 
there may be situations when this can be done. Of course, we could still define IAe in such a more general 
context, but complete embeddability (Theorem 3) may not hold anymore, and the definition would thus 
be useless for iteration theory. 

2 Examples for the amalgamated limit 

After two basic examples (Examples 1 and 2) explaining in what sense the amalgamated limit generalizes 
the two-step amalgamation and the direct limit, we will stress the similarity of three quite distinct 
constructions from the literature, namely, matrix iterations [BS], iterated ultrapowers [Sh2], and shattered 
iterations [Br6], by putting all of them into the amalgamated limit framework, in Examples 3 to 5. 

Example 1 (Two-step amalgamation, see [Br6, Examples 2 and 6]). Let I= {O, 1, 0/¥1} be the three-
element distributive almost-lattice. Let釦withi E J be cBa's such that A。Al<o A; for i E {O, 1}. We 
consider amal/A。A1(A。,Aり：＝At= lim amaliEI釦， theamalgamation ~几o and A1 over A。Al.By definition 
of the amalgamated limit, we see that a dense subset of At consists of pairs(p,q) with p EA。,qE釦
and h8A1(p) = h5Al(q) EA。Al,and that the ordering is given by (p', q'):S (p,q) ifp':Sp and q':S q. 
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If A。/¥l= {O:l, 11} is the trivial forcing, Ae is simply the product of the two forcing notions A。andA1・
Furthermore, in the general case, we may construe Ae as forcing first with A。/¥land then with the product 
of the quotients A。/G。/¥landふ/G。/¥lwhere G。/¥lis the A。/¥1 -generic filter. 
Amalgamations have not been used much in forcing theory. The best-known constructions involving 

them is Shelah's consistency proof of the projective Baire property on the basis of the consistency of 

ZFC [Shl]. 

Example 2 (Direct limit, see [Br6, Example 7]). Let I be a distributive lattice (so any two elements 
i and j of I have a least upper bound i V j). Let (/Ai : i E I) be a system of cBa's with complete 
embeddings and correct projections (in the sense of Definition 3). Then/Ae = lim amal;EJ幻 iseasily 
seen to be the usual direct limit lim dir;EJ/A,.The point is that if (p, q) belongs to the dense set in the 
definition of the amalgamated limit, as witnessed by i and j -this means that p E/Ai, q E/Aj, and 

h:/¥j(P) = h勾(q)E/A9/¥J―,then p ・ q E/Aivj is a non-zero condition by correctness and clearly the pair 
(p．q,p ・ q) (which is identified with p ・ q in/Ae) is a condition stronger than (p, q) (in fact, it is even 
an equivalent condition in/Ae, see [Br6, Observation 9 (iv)]). Therefore conditions of the latter kind are 

dense in/Ae -and they constitute exactly the standard dense subset of the direct limit. 

Notice that in the special case I has a maximum io,/Ae is simply the same as/Aio ・ 

The direct limit construction plays a fundamental role in iterated forcing theory and harks back to 

Solovay and Tennenbaum's consistency proof of Martin's axiom and Souslin's hypothesis [ST]. ---j 

Example 3 (Matrix iterations). Roughly speaking, a matrix iteration consists of a well-ordered system 

of parallel finite support iterations (fsi's); thus one may think of it as a two-dimensional system of cBa's 

with complete embeddings between them. There are many different examples, but the general pattern is 

as follows. Let入andμ be ordinals. By simultaneous recursion on a ::;入 definefsi's炉＝ （IPふ娼： aこ
入，9<入） ofccc forcing, 1 ::; μ, such that 

(*) for every a and 1 < i5'.'::'. μ,闘 forcesthat位isa subset of偲andthat every maximal antichain 
of匁belongingto V閃 isstill a maximal antichain of続

Then one shows by induction on a ::;入 thatfor any 1 < i5 ::; μ, IP2 <o IP~ (and, a fortiori, IP2 <o IP虚for
any 1 < i5 and a ::; (3). Indeed, this is trivial in the basic step a=  0 (because all forcings IPJ are trivial). 
In the successor step (3 = a+  1, IPJ <o IPi follows easily from the induction hypothesis IP2 <o IP~ and 

(*). If a is a limit ordinal, IP2 <o IP~ follows from the induction hypothesis by Lemma 1. The point 
is that by the way fsi's are defined, correctness trivially holds an~ therefore th~ lemma can be applied. 
(Indeed, if a < (3 and 1 < i5, and if pJ = (pふ低，/3))E IPJ = IP2 *鰐，/3)(where IPi:,,/3）is the IP2-name for 
the remainder forcing) then h~;~(pJ) = Pl and if we now have a condition p~ E IP~ with h{：心 (p~) =pふ

then (pふd『a,/3）)EIPi clearly is a common extension, as required.) 
Let us now shift the perspective: suppose (3 ::;入 isa limit ordinal and i5 ::; μ is arbitrary. Suppose all 
IPi have been defined for 1 ::; i5 and a ::; (3 such that at least one of the inequalities is strict, and we want 
to define IPi. Note that 

I= {(a,1): 1::; i5 and a'.'::'. (3 and (either 1 < i5 or a< (3)} 

is a distributive almost-lattice. Also recall from the previous paragraph that all projections are correct. 

Thus we may set 

鱈＝ limamalca,7)EIIP~.

While this is formally different from the standard definition of鱈， namely

吟＝ limdira<f31P~,

it is e邸 yto see that the two partial orders are forcing equivalent. Obviously, limdira<f3IP~ is a subset of 
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limamal(a，咋）EIIPふ

μ
 

戸

p'Y 

su 

p~ E IP~ 8
B
 

IP 

| 

7トー―---hば(p~)';'h如(p砂ーー一髯 E IP>

_

1

上

a B
 ヽ^

On the other hand, given a condition (p~,pJ) in the dense set defining the amalgamated limit, that is, 

p~ E IPふpJE 1PJ, and h~:~(pい＝ h~名 (pJ) E IP1 where a < {3 and'Y < 8, we see that since IPJ is the 
direct limit of the r:,, a'< {3, there is a'< {3 with a'2: a such that pJ E r:,. This means, however, 

that the product p~ ・ pJ belongs to IPふ， andthis product clearly is a strengthening of (pふ叫） （in fact, 
the two conditions are equivalent by [Br6, Observation 9 (iv)]). 
While this gives us a natural description of matrix iterations in the amalgamated limit framework, it 
is also clear that this approach is redundant. 
Matrix iterations were originally_ introduced in work of Blass and Shelah [BS] _for showi~~ the con-

. 6 
sistency of u < D (in this case the位 areMathias forcing with some ultrafilter 7)ふwithug carefully 
extending叩for'Y< 8 so that complete embeddability (*) is guaranteed) and have been used since for 
a plethora of consistency results; see e.g. our joint work with Fischer [BF] which is to some extent dual 
to [BS], the consistency of singular splitting number,s due to Dow and Shelah [DS], and a construction 
of Fischer, Friedman, Mejia, and Montoya [FFMM], which uses three-dimensional matrices in a special 
case. 

Example 4 (Iterating iterations, see [Br5, Section 1]). We now come to a construction which is in a 
sense orthogonal to matrix iteration -and for which interesting examples with non-trivial amalgamated 
limit exist. Recall that in the matrix approach we use the same recursion to simultaneously build 
many iterations which completely embed one into the other. Let us now instead use a recursion to 
produce iterations, one in each step, so that the earlier iterations embed into the later ones. We call 
this set-up iterating iterations. Again let μ and入beordinals. By recursion on a ~入 define iterations 

凡＝（IP2鯰： 'Y~ μ, o < μ) such that 

(*i) for every'Y and a< f3 ~入，尻 <o IPJ. 

Notice we do not require that the冗 havedirect limits and for the general construction it does not 
matter what IPもforlimit o is. In the application we have in mind, lim dir"1<6IP2 <o IP~ and depending 
on o equality may hold (the direct limit case) or fail. We will require that 

（切） forevery'Y and a < f3 ~入， IPJ forces that位 isa subset of娼andthat every maximal antichain 
of匁inV冗 isstill a maximal antichain of娼・

Note the similarity to(*) in Example 3. Clearly(＊叫 issufficient to guarantee (*i) in the successor step -
叶 1that is, if尻 <o1PJ, then also r;r+1 <o IP/3so that the issue in (*i) is the case o ~µis a limit ordi叫

If /3 = a+ 1 is a successor, the choice of P/3from P" will guarantee (*1) so that it suffices to consider 
limit {3 ~入．
Exactly as in the previous example we now obtain a distributive almost-lattice 

I= {(a,,y):'Y ~ o and a~ f3 and (either'Y < o or a< {3)}. 
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Assume projections in all diagrams indexed by members of I are correct. Then we may define the 
amalgamated limit 

IP>= limamal(a,,y)EIIP~ 

and, by Theorem 3, we see that (*1) still holds, i.e. IP~ <o IPi for aく (3,thatIPJ <o [Pi for'Y < o 
so that P(3eventually will be an iteration, and that correctness is preserved. For a direct proof of this 
(and more) in this special case, see [Br5, Lemma 13] (alternatively this can be found in [Br4, Lemma 7], 

though this paper unfortunately has a number of minor mistakes). 

μ
 
6
 

Pt E IPも 8
B
 

IP 

| 

'Y f--------h：：：喜（p~) 7 犀(p訃ーー一 ~pJ E IPJ 

ー

上

a ヽ^
Pa B

 

B
,
p
 

Of course, conditions in a dense subset of IP~ are again pairs (pふ的） suchthat p~ E IPふPhE IPJ, and 
h訊(p~) = h訳(pJ)E IP~ where a < f3 and"(<ふ
This construction has been used by Shelah [Sh2] to show the consistency of () < 11 and of u < 11 using 
the consistency of a measurable cardinal. We briefly sketch the () < 11 case (see [Br5, Section 1] for 

details): let 1,, be measurable, let D be a屈 completeultrafilter on 1,,, and let炉＝入＞μ> 1,, be regular 
cardinals. P,。isa finite support iteration of Hechler forcing of lengthμ. For f3 = a+ l successor, P/3is 
the ultrapower of凡 viaD. Then the娼，？くμ,can still be construed as Hechler forcing. For limit f3 

do the following: if Ii="(+ 1 is successor, IPi = IPJ＊切 isthe iteration with Hechler forcing, and if /j is 
limit we take the amalgamated limit described in the previous paragraph. In the end we will have forced 
b = () = μ (because the Hechler generics form a scale) and 11 = c =入（becausethe ultrapower destroys 
mad families). For the -slightly more complicated -consistency of u < 11 see [Br4]. 
It turns out that in this particular construction, for limit Ii :S μ and any a, IP~ is the direct limit of the 
悶 for"(<Ii unless cf(li)＝ 1,,, and for limit f3 :S入andany "(, IP;¥ is the direct limit of the IP~ for a < f3 
unless cf(/3) = w, so that the amalgamated limit boils down to the direct limit in many cases (see [Br5, 
Lemma 14] for details). However, if cf(li)＝ 1,, and cf (/3) = w then IP i is a non-trivial amalg皿 ated
limit of the earlier forcing notions. We also notice that in this case, the preservation of the ccc (which 
is trivial in direct limits) becomes a central problem (see, again, Lemma 14 of [Br5]), for even two-step 
amalgamations are far from preserving the ccc (see [Br6, Counterexample 10]). ---j 

Example 5 (Shattered iterations [Br6]). Roughly speaking, a shattered iteration is a matrix-style two-
dimensional iteration adding random reals in limit stages instead of Cohen reals. This means we won't 
have finite supports and direct limits like in Example 3 anymore, and the amalgamated limit becomes a 
necessity. "Adding random reals in limit stages" here means that the basic forcing which embeds into the 
whole iteration is a large random algebra -this is indeed dual to the situation of finite support iterations 
into which a large Cohen algebra (which can be seen as the basic step of the iteration though this is not 
the usual point of view) embeds. In later steps of the iteration we want to add other reals r which are 
generic over some of the randoms while most of the randoms will still be random over r (and not just 
over the ground model). This is feasible by the commutativity of random forcing. 

It actually turns out that for such iterations we also need the amalgamated limit in the successor 
step -though if both ordinals in our two-dimensional system are successors this will boil down to the 
two-step amalgamation explained above in Example 1. It is illustrative to see why this is so. Suppose 
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we just have two random reals, bo and b~, added by the product measure algebra 1B。＊氏 whichis forcing 
equivalent (by commutativity) to 181 * 1B。.Nowwe also w皿 tto add two Cohen reals Co and c1, by C。
and C1, respectively, in such a way that c0 is Cohen over b。andc1 is Cohen over b1 but also -and 
this is the poin~ -that b1 remains random over co and b。 re~ains random over c1. So we need t? for~e 
with 1B。*C。*81(which is forcing equivalent to (18。x仰）＊氏） onthe one h皿 dand with 181 * C1 * B。
(equivalent to (181 x Ci)＊闘） onthe other. We obtain the diagram 

/ ＼ 
(IB。x仰）＊氏 (181X f1) * B。
/ ¥ / ¥ 
C。 ・IB。*IB1~ IB1 * 1B。 C1

IA 

in which the two-step amalgamation A = amal18。*Bl((IB。xCo)＊尉(181X C1) * 1B。)of(18。xCo)* 181 and 
(181 Xら）＊恥 over1B。＊庇 arisesnaturally. This is the basic building block for shattered iterations. 
Let us now look at the general situation, in a somewhat simplified way, in line with the two preceding 
examples. Assume again μ and入areordinals. Let μU入denotethe disjoint union of μ and入． Thebasic 
forcing IBμし入 isa measure algebra with index set μU入． Also assume/j:S μ and /3 :S入(thistime we do 
not require/jand /3 to be limit ordinals). Consider again the distributive almost-lattice 

I= {(a,ry): ry :S/jand a :S /3 and (either ry </jor a< /3)}. 

Assume we have constructed (by recursion on the well-founded set I) a system of cBa's（鯰： （a,ry) E J) 

with complete embeddings峠 <oA~'. for ry :S ry'and a :S a'such that 

A'!.=['!*IB a = LL°'-,: LD[,,li)U[a,/3) 

where 只 i~ som:.cBa cont~ining 1B叫。 asa complete subalgebra (so [： adds the“first'’TUa random reals 
and may also add some other generic objects, and the "next" b, /5)U[a, /3) random reals will be generic 
over the [J extension), and projections in all diagrams indexed by members of I are correct. Then we 
let 

鵡＝limamalca,,)EIAふ

By Theorem 3 we know all鱗 (a,ry) E J, completely embed into鱚andcorrectness is preserved. 

μ
 
su 

6
a
 

IA 
15B 

A
5
 

| 

| 

1 f-----------A1;r-------」鯰

|
 
l
 
a B

 
ヽ^

Note we explained here only what we do in the single step ((3,15). To set up the whole iteration a more 
complicated framework, using quadruples of ordinals instead of pairs as indices, is appropriate; see [Br6, 
Section 4] for details. Correctness is not trivial here (unlike for fsi), for we need to show that if a 
system has correct projections then this is still true if all cBa's of the system are iterated with random 
forcing [Br6, Lemma 3]. Last, but not least, as already hinted at in the previous example, preservation 
of the ccc is a central problem [Br6, Section 3]. 
Shattered iterations have been used in [Br6] to show the consistency of non(meager) > cov(meager) 
> N1. This is done with the shattered iteration of Cohen forcing, that is, for each pair of ordinals (a:, ry) 
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with aく入 and1 < μ a Cohen real Ca,"Y generic over 1Bau"Y is added -with the remaining random reals 
still random over this Cohen real. It is fairly easy to see that this will force cov(meager) = non(null) = μ 
and cov(null) = non(meager)＝入 whereμ<入areregular uncountable cardinals [Br6, Section 4, Facts 
23 to 26]. For more results see [Br6, Section 6]. -, 

3 The topological interpretation of the amalgamated limit 

By Stone duality, all results about (complete) Boolean algebras have a topological interpretation, and it 
turns out that in case of the amalgamated limit this topological version is even more general. We first 

review basics of duality, and then describe the topological construction corresponding to Theorem 3. 
Given a Boolean algebra A (not necessarily complete), its Stone space X/Aconsists of all ultrafilters on 
A, with the topology given by the elements of A: for each a E A, Oa = { x E XA : a E x} is a basic open 

set, and every open set is a union of such sets. It is well-known thatふ isa compact zero-dimensional 
(= there is a basis consisting of clopen sets) Hausdorff space (indeed, since XA ¥ Oa = O_a all the 
Oa are clopen), and, dually, given such a space X there is a Boolean algebra A such that X = XA, 
so that there is a one-to-one correspondence between Boolean algebras and compact zero-dimensional 

Hausdorff spaces [Ko, Chapter 3]. Next, if A。こ釦 areBoolean algebras, then the projection mapping 
p = Po : xA1 →XIA0,x→xn恥 isa continuous surjection. Assume additionally A。andA1 are cBa's. 
The following is well-known but we include a proof for the sake of completeness. 

Fact 4. A。<0ふ iffp is an open mapping {that is, images of open sets are open). 
Proof. Leth= h5:人→A。bethe projection mapping corresponding to the embedding. For the forward 
direction, it clearly suffices to show that images of basic clopen sets are clopen. Let a1 E釦． Weclaim 

that p(O』 =Oh(ai)・ Indeed, let x E Oa,, that is a1 E x. Then, by completeness of the embedding, 
螂） Exand thusp(x) = xnA。EOh(a,)・ On the other hand, if y E Oh(a,), i.e. h(a1) E y, then yし｛叫
is a filter base on釦 andtherefore can be extended to an ultrafilter x. Clearly p(x) = y and therefore 

y Ep(Oa1). 
For the backward direction, assume the embedding is not complete. So there is a1 E A1 ¥ {V} such 
that h(a1) = Ql. Thus V{a0 EA。:ao・ a1 = Q) inふ｝ ＝11. in A。,andLJ{Oa。:aoEA。andao ・ a1 = V 
in釦｝ isopen dense in X/Ao・ Since this set clearly is disjoint from p(Oa,), the latter cannot be open in 
ふ。．ロ

We next reinterpret correctness in the topological context. 

Fact 5. Assume we have cBa's A。Al<o AiくoAov1, i E {O, 1 }. Projections in the diagram 

公：A(口ふ
are correct iff for all xa E X/A。andx1 EX/A1 such that p似(xo)= P6/¥1伍） thereis Xov1 E X/A。visuch 
that p炉(xov1)= Xi for i E {O, 1 }. 

Proof. For the forward direction, it suffices to check that x。Ux1 is a filter base on/A。v1,for we can then 
extend it to an ultrafilter Xov1, which obviously has the required properties. To see this, take ai E Xi, 
i E {O, 1}. Then hも/¥1(ai)E Ph/¥l(xi) (see the previous proof). In particular h8/¥1(ao) and h5/¥1(a1) 
must be compatible in/A。/¥lbecause they belong to the same ultrafilter. By correctness, a。anda1 are 
compatible in/A。v1,as required. 
For the backward direction, let ai E/Ai, i E {0,1}, be such that a。/¥l:= h似(ao)= hい(a1).By 
the argument in the previous proof, any ultrafilter x。/¥1E Oa0/¥1 can be extended to ultrafilters Xi E Oa, 
on/Ai and clearly Ph/¥l(x;) = xa/¥1・ Therefore, by assumption, there is an ultrafilter xav1 EX/A。viwith 
p忙(xov1)= Xi. Clearly Xov1 E Oa0 n Oa1 in X/A。vi.This means that ao and a1 must be compatible in 
/A。Vl・ ロ
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Let us now forget about the cBa's and move to the more general context of compact Hausdorff spaces 
(i.e. we do not require zero-dimensionality anymore). Then we obtain: 

Theorem 6. Let〈I,::;〉bea distributive almost-lattice, and let (X; : i E I). be non-empty compact 
Hausdorff spaces. Assume that for i ::; j there are continuous open suガections元： Xj →X; such that 

• i ::; j ::; k implies吠＝p{o P] (commutativity) and 

• if i V j exists then for all x; E X; and Xj E Xi with Pl/¥j (x;)＝p{/¥]巳） thereis X;yj E X;vj with 
iVj 
Pi (X叫

iVj 
= x; and P'/1 (x叫＝巧 (correctness).

Then there are a compact Hausdorff space Xg and continuous open surjections pf：ふ→ふ， iE I, such 
that 

• i ::; j implies Pi = pf o PJ (commutativity) and 

• for all x; E X; and Xj E Xi with Pi/¥j(x;)＝恥（巧） thereis Xt E Xt with p伍） ＝x; and 
Pパ叩） ＝巧 (correctness).

Proof. Let 

ふ：＝｛四 Eリ：P｛（叫））＝叩(i)for all i口｝こ町
equipped with the product topology. Note that if x E TiiEJ X; ¥ふ thenr;(x(j)) -=J x(i) for some i < j 
and since X; is Hausdorff, there is an open neighborhood of x disjoint from Xt. Therefore Xt is a closed 
subset of TiiEIふ andthus a compact Hausdorff space itself. Define the projection mapping 

pf: Xt→X;,X£ →四(i).

By the definition of the product topology, pf clearly is continuous. Also, by definition ofふ andthe pf, 
we see 

尻（叫＝四(i)＝叶（四(j))＝月（竹（四））

so that commutativity holds. We next show that Xi -=J 0 and, in fact, all pf are surjective. To this end, 
say that F C::: I is closed if for all i,j E F, i /¥ j and i V j (if it exists) also belong to F. Clearly, if Fis 
finite, its closure cl(F) (the smallest closed set containing F) is finite as well. For finite closed F C::: I, let 

咋＝｛XE}Jふ：尻(x(j))= x(k) for all k幻 belongingto F} — 

Claim 6.1. Let F <;; G <;; I be finite closed sets and let x E YF. Then there is y E Ya extending x. 

Proof. Clearly it suffices to show this in case G is the closure of FU {j} where j E J ¥ F is arbitrary. 
Note that since I is a distributive almost-lattice and Fis closed, either F has a single maximal element 
Jo or it has two top elements Jo and J1 such that J。VJ1 does not exist. 

joVj 
In the former case, either Jo VJ exists and we let y(jo VJ) be such that p~。 (y(jo VJ))= x(Jo) and 
then extend y to G by projecting, or J。VJdoes not exist and there must be a second top element J1 of 
G with J1 :;:, J in which case we choose y(J') such thatぢ。^j'(y(j'))=ぢ:/¥j,(x(jo))and we extend again 
by projecting. 
In the latter case, either J。VJ or Ji V J exists or both exist. If only one exists, say J。VJ,let 

(joVj)/¥jl 
y((J。VJ)Aれ） ＝叶ぶVj)/¥ii(x(J1)) and note that p；ふ^J1(x(jo)） ＝ P30̂J1 (y(（j。VJ)A J1)) so that by 
correctness there is y(jo VJ) E XioVJ such that元ばVj(y(J。VJ))= x(jo) and叶ぶv:］）/¥］1(y(j。VJ))= 
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y((jo V j) /¥j1), 

/V□¥/J1  
Jo (jo V j) I¥ j1 

¥／ 
j。I¥jl 

Then extend y to the rest of G by projecting. 

If both exist, first let y(j。l¥j)= Vjぶj(x(jo))and y(j1/¥j) = p]い(x(j1))and note that p;悶；11¥j(y(j。I¥
j)) = p；嘉ぶ^j(y(j1/¥j)) so that by correctness we can find y(j) E Xj such that p;。/¥j(y(j)) = y(jo I¥ j) 
and ~,/\j(y(j)) = y(j1 l¥j). Next, again by correctness, find y(jo V j) E XjoVj and y(j1 V j) E Xj, Vj such 

that元ばVj(y(joV j)) = x(jo), p~oVj(y(jo V j)) = y(j),?りVj(y(j1 V j)) = x(ji), andぢ'Vj(y(j1 V j)) = y(j). 

Jo V J J.1 V j 

/ ＼／  ＼ 
Jo J Ji 

¥ ／ ¥  ／ 
... 
JoAj J1Aj 

¥／ 
jo ^ J.l ^ J. 

Finally extend to G by projecting. ロ

Claim 6.2. Let x; EX;. There is X£ E Xt such that叩 (i)= x;. More generally, if F C:: J is closed and 
y E YF, then there is Xt E Xt extending y. 

Proof. Clearly, the first statement is a special case of the second for F = { i}. The general statement 
follows from the previous claim by compactness: fix F and y E YF as required. For finite closed G ;;? F 
define 

恥＝｛X EIIふ：Yこxand p{ (x(j)) = x(i) for all i :e; j belonging to G}. 
iEI 

Clearly恥 isa closed subset of the product IliEI X;. By Claim 6.1, all Zc are non-empty. Therefore, 
using compactness, we see that n{ Zc : G ;;:i F is finite closed} is non-empty and any叩 inthis intersection 
belongs to XI! and extends y. ロ

Thus all pf are surjective. We next show correctness. Let i,j E I. If i V j exists, this follows from 
correctness of the original system and the previous claim. If i V j does not exist, F = {i,j,i/¥j} is a 
closed set, and if叩EXi and巧 EXj satisfy Pi/¥J（叩） ＝応凸）， thendefining y by y(i)＝叫， y(j)= Xj, 
and y(i/¥j) = Pi/¥3に）， wesee that y E YF. By the previous claim, there is Xe E Xe extending y, and 
this四 witnessescorrectness. 

We are left with showing the pf are open. To this end let A = Xg n (IJiEFにXrriEI¥F凡）こ Xg
be a basic open set with F ~ I being finite and Ui ~ Xi open for i E F. Without loss of generality, we 
may assume F is closed. Then F has either one m訟 imalelement io or two top elements io and i1. In 
the first case let 

v,。=n(p?)―1 (Ui）こに。 andV; = p)0 (V;。)こ U;
i<::io 
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-1 
for i E F. In the second case, first define v;ん＝n均 n(p:n)-i (U』こ瓜 forn E {O, 1}, and then let 

Yio/¥i1 =p悶/¥i1(v;ん） np:；I¥t1 (V311)こに。I¥り
and 

V9n = Vんn(Pい）―1(V;o/¥i1) c;;瓜 andV; = pド(V;n)c;;U;
for i E F with i :::; in, n E {O, 1} (it is easy to check that this is well-defined for i E F with i :::; i0 /¥ i1). 
We now claim: 

Claim 6.3. All V;, i E F, are open and for all i :'.':: j from F, V;＝月（り）．

Proof. Openness clearly follows from continuity and openness of the mappings p;. Furthermore, if j :'.':: i0, 

we have V; = p:0 (V;0) = p{ (pグ(V;o))＝月（v;).Similarly if j :'.':: i1 in the second case. ロ

Claim 6.4. A = Xe n (rriEF V; x rriEI¥Fふ）．
Proof. Since the V; are subsets of the U;, the set on the right-hand side clearly is a subset of A. We 
show the converse inclusion. First consider the case when we only have one maximal element io. Let 
xe EA. Then p¥0(xe(i0)) = xe(i) EU; for any i E F. In particular xe(i0) E (p¥0)-1(U;) for any i E F, 

and四(io)E V;。follows.Therefore叩 (i)= p?（四(io))E P:0 (V;い＝ V;as well, and叩 belongsto the 
right-hand side. 

When we have two top elements i。andi1, we basically argue in the same way. First argue that 
Xt(in) E V,んforn E {O, 1}. Thus Xt(io I¥ i1) = p：ば^;1(xe(io)) = p:；バ1(xt(i1)) E V;゚^ ;1and therefore 
四(in)E V;n for n E {O, 1}. Hence四(i)= p：れ（四(in))E p『(V;J= V; for i :'.':: in, n E {O, 1}, as well, and 
四 belongsto the right-hand side. ロ

Claim 6.5. Given i E F and叩 Ev; there is y E YF n (rrjEF v;) such that y(i) = X;. Therefore 
pf (A) = V; for all i E F. 

Proof. First assume we have one maximal element io in F. Soi:'.':: io and V; = p¥0(V;0). Thus we can 
find y(io) Ev;。suchthat p¥0 (y(i0)) = x;. Now extend y to all of YF by projecting. 
If we have two top elements i0 and i1 in F we may assume without loss of generality that i :'.':: i0. As 
in the previous paragraph we find y(io) E V;0 such that p¥0(y(io)) = x;. Let y(io I¥ i1) = p：ば^;1(y(io)) E 
p:t̂21 (V'。） ＝ Vto/¥;1. Since V;゚^ i1=p芯^＂（V;,), we can find y(i1) E V;1 such that p芯^;1(y(i1)) = y(io/¥i1)-
Again extend y to all of咋 byprojecting. 
For the second statement, note that pf (A) <;;; V; is immediate by the previous claim (Claim 6.4), while 
V; <;;; pf (A) follows from the first part and Claim 6.2. ロ

Thus the maps pf are all open, and the proof of the theorem is complete. ロ

Acknowledgment. We thank David Fremlin for having pointed out the topological connection to 

us many years ago. 

References 

[BJ] T. Bartoszynski and H. Judah, Set Theory, On the structure of the real line, A K Peters, 
Wellesley, 1995. 

[Bl] A. Blass, Combinatorial cardinal chamcteristics of the continuum, in: Handbook of Set Theory 
(M. Foreman and A. Kanamori, eds.), Springer, Dordrecht Heidelberg London New York, 2010, 
395-489. 

[BS] A. Blass and S. Shelah, Ultmfilters with small genemting sets, Israel J. Math. 65 (1989), 259-271. 

[Brl] J. Brendle, Mad families and itemtion theory, in: Logic and Algebra (Y. Zhang, ed.), Contemp. 
Math. 302 (2002), Amer. Math. Soc., Providence, 1-31. 



13

[Br2] J. Brendle, The almost disjointness number may have countable cofinality, Trans. Amer. Math. 
Soc. 355 (2003), 2633-2649. 

[Br3] J. Brendle, Templates and iterations: Luminy 2002 lecture notes, RIMS Kokyuroku 1423 (2005), 
1-12. 

[Br4] J. Brendle, Mad families and ultrafilters, Acta Universitatis Carolinae -Mathematica et Physica 
48 (2007), 19-35. 

[Br5] J. Brendle, Modern Forcing Techniques related to Finite Suppo仕 Iteration:Ultrapowers, tem-
plates, and submodels, preprint, arXiv:2101.11494. 

[Br6] J. Brendle, Shattered iterations, preprint. 

[BF] J. Brendle and V. Fischer, Mad families, splitting families, and large continuum, J. Symb. Log. 
76 (2011), 198-208. 

[DS] A. Dow and S. Shelah, On the cofinality of the splitting number, Indag. Math. 29 (2018), 382-395. 

[FFMM] V. Fischer, S. Friedman, D. Mejia, and D. Montoya, Coherent systems of finite support item-
tions, J. Symb. Log. 83 (2018), 208-236. 

[Ha] L. Halbeisen, Combinatorial Set Theo可． Witha Gentle Introduction to Forcing, 2nd edition, 
Springer, London, 2017. 

[Je] T. Jech, Set Theory, The Third Millenium Edition,詑 visedand expanded, Springer, Berlin, 2003. 

[Ko] S. Koppelberg, General Theo可 ofBoolean Algebras, in: Handbook of Boolean Algebras (J. D. 

Monk and R. Bonnet, eds.), Vol. 1, North-Holland, Amsterdam New York Oxford Tokyo, 1989. 

[Ku] K. Kunen, Set theory, Studies in Logic 34, College Publications, London, 2011. 

[Shl] S. Shelah, Can you take Solovay's inaccessible away? Israel J. Math. 48 (1984), 1-47. 

[Sh2] S. Shelah, Two cardinal invariants of the continuum V < a and FS linearly ordered iterated 
forcing, Acta Math. 192 (2004), 187-223. 

[ST] R. Solovay, S. Tennenbaum, Iterated Cohen e叫ensionsand Souslin's problem, Ann. of Math. (2) 
94 (1971), 201-245. 


