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Abstract 

We use known finite support iteration techniques to present various examples 
of models where several cardinal characteristics of Cichon's diagram are pairwise 
different. We show some simple examples forcing the left-hand side of Cicho炉'sdia-
gram, and present the technique of restriction to models to force Cichon's maximum 
(original from Goldstern, Kellner, Shelah and the second author). We focus on how 
the values forced in all the constellations are obtained via the Tukey order. 

Introduction 

Let I be an ideal of subsets of X such that { x} E I for all x E X. We define cardinal 

characteristics associated with I by: 

Additivity of I: add(I) = min{l:JI : :J <;;; I, LJ :J ¢ I}. 

Covering of工： cov（エ） ＝min{l:JI : :J <;;; I, LJ :J = X}. 

Uniformity of工： non(I)= mi叫Al:A<;;;X, A¢ 工｝．

Cofinality of I: cof(I) = min{l:JI : :J <;;; I, ¥:/ A E□BE:J:A<;;;B}. 

cov(I) cof（エ）

ー一＜□＞•2|X|
non(I) IX 

Figure 1: Diagram of the cardinal characteristics associated with I. An arrow J→り

means that (provably in ZFC) J :s; I). 
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Figure 1 shows the natural inequalities between the cardinal characteristics associated 
with I. These cardinals have been studied intensively for M and N (see e.g. [BJ95, 
BlalO]), which denote the u-ideal first category subsets of罠 andthe u-ideal of Lebesgue 
null subsets of股， respectively.We denote, as usual, c := 2N。=|戦|,andrecall that ~1 is 
the smallest uncountable cardi叫

For f, g E ww we write 

fぐ g(which is read f is dominated by g) iff 3m ¥/n:;;, m: f(n) ~ g(n). 

In addition, we define 

The bounding number b = min{IFI : F <:;;凶wand~3y E ww ¥/x E F: x ~* y}, and 

the dominating number() = min{IDI : D匡 wwand ¥/ x E ww 3 y E D : xぐ y}.

The relationship between these cardinals is best illustrated by Cichon's diagram (see 
Figure 2), which is one of the most important diagrams in set theory of the reals and 
has been a relevant object of study since the decade of the 1980's. It is well-known that 
this diagram is complete in the sense that no other inequality can be proved between two 
cardinal characteristics there. See e.g. [BJ95] for a complete survey about this diagram 
and its completeness. 

cov(N) 

~1 • ) , 

add(N) 

non(M) cof(M) cof(N) __＿＿＿→f)  • c 
| 

bi -̀0 

addt応――二。てい孟(N)

Figure 2: Cichon's diagram. The arrows mean:::; and dotted arrows represent add(M) = 
min{b,cov(M)} and cof(M) = max{cl,non(M)}. 

In the context of this diagram, a natural question arises: 

Is it consistent that all the cardinals in Figure 2 (with the exception of the 

dependent values add(M) and cof(M)) are pairwise different? 

It turns out that the answer to this question is positive and was proved by Goldstern, 
Kellner and Shelah [GKS19], who used four strongly compact cardinals to obtain the 
consistency of Cichon's diagram divided into 10 different values, situation known as Ci-
chori's maximum. In this same direction. This was improved by Brendle and the au-

thors [BCM21] who used only three strongly compact cardinals; fi叫 ly,Goldstern, Kell-
ner, Shelah and the second author [GKMS21] proved that no large cardinals are needed 
for the consistency of Cichori.'s maximum. 



16

The previously cited work occurs in the context of finite support (FS) iterations of ccc 
posets. In fact, when calculating the values of the cardinals in Cichon's diagram in generic 
extensions, Tukey connections appear implicitly. This appears a bit more explicitly in 
[GKS19, GKMS21] with the notions of COB (Cone of bounds) and LCU (linear cofinally 
unbounded), but still the full power of the Tukey connections remained unexplored. 

To complement this last part, this work summarizes some of the techniques required to 
force Cichon's m認 imum,but making the role of the Tukey order very explicit. This allows 
to reformulate all technical results and main theorems in a very beautiful and concise way. 

1 Relational systems and cardinal characteristics 

Man> cardinal characteristics of the continuum and their relations can be represented by 
relational systems as follows. This presentation is based on [Voj93, BarlO, BlalO]. 

Definition 1.1. We say that R =〈X,Y,亡〉 isa relational system if it consists of two 
non-empty sets X and Y and a relationこ．

(1) A set F匡 X is R-bounded ifヨyEY'vxEF:xこ y.

(2) A set E匡 Yis R-dominating if V x EX :l y EE: xこ y.

We associate two cardinal characteristics with this relational system R: 

b(R) := min{IFI : F c::: Xis R-unbounded} the unbounding number of R, and 

ll(R) := min{IDI : D c::: Y is R-dominating} the dominating number of R. 

A very representative general example of relational systems is given by directed preorders. 

Definition 1.2. We say that〈s,桑〉 isa directed preorder if it is a preorder (i.e.,,;;8 is 
a reflexive and transitive relation on S) such that 

Vx,y ESヨzES: X 怠 zand y,,;;s z. 

A directed preorder〈S,,,;;s〉isseen as the relational system S =〈S,S,,,;;s〉,andtheir 
associated cardinal characteristics are denoted by b(S) and il(S). The cardinal il(S) is 
actually the cofinality of S, typically denoted by cof(S) or cf(S). 

Fact 1.3. If a directed preorder S has no maximum element then b(S) is infinite and 
regular, and b(S),,;; cf(il(S)),,;; il(S),,;; ISi. Even more, if L is a linear order without 

maximum then b(L) = il(L) = cof(L). 

The following list of examples are relevant for the main results of this paper. 

Example 1.4. Consider ww =〈ww,ぐ〉， whichis a directed preorder. The cardinal 
characteristics b := b(ww) and D := D(ww) are the well-known bounding number and 

dominating number, respectively. 
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Example 1.5. For any ideal I on X, we consider the following relational systems. 

(1) I:=〈エ，こ〉 isa directed partial order. Note that b（エ） ＝add（エ） and()（エ） ＝cof（エ）．

(2) Cy:=〈X,I,E〉.Notethat b(Cェ） ＝non(I) and叩(Cェ） ＝cov(I). 

Example 1.6. Let 0 be an infinite cardinal and X a set of size ~ 0. Then [X戸 isan 
ideal. We look at its associated cardinal characteristics. 

Its additivity and uniformity numbers are easy to determine: 

add([X]<0) = cf(0) and no叫xJ<0)= 0. 

For the covering number, we obtain 

COV(［X]<O) ＝ { |X| if |X| ＞ 0, 
cf(0) if IXI = 0. 

Therefore cov([X]<0) = IXI whenever 0 is regular, which is our case of interest. 

The cofinality number is more interesting. Under Shelah's Strong Hypothesis1 it follows 

that 

cof(［X]＜°) ＝ { |X| ifcf(|X|） > 0, 
1x1+ otherwise. 

In ZFC, we have cof([XJ<0) = IXI whenever IXl<0 = IXI, which is our case of interest. 

Inequalities between cardinal characteristics associated with relational systems can be 

determined by the dual of a relational system and also via Tukey connections, which we 
introduce below. 

Definition 1. 7. If R =〈X,Y,亡〉 isa relational system, then its dual relational system 
is defined by R_j_ ：＝〈Y,X,己〉 wherey己 X if ~(x 亡 y).

Fact 1.8. Let R =〈X,Y,亡〉 bea relational system. 

(a) (R_j_）_j_ =R. 

(b) The notions of R_j_-dominating set and R-unbounded set are equivalent. 

(c) The notions of R_j_-unbounded set and R-dominating set are equivalent. 

(d) cl(R_j_） ＝ b(R) and b(R_j_） ＝cl(R). 

Definition 1.9. Let R =〈X,Y,亡〉 andR'=〈X',Y'，亡'〉 berelational systems. We 
say that (w_，叫）： R → R'is a Tukey connection from R into R'if w _ : X → X'and 
此： Y’ → Yare functions such that 

V X E X Vy'E Y':叱（x)亡'y'⇒ X 亡叱(y').

The Tukey order between relational systems is defined by R 幻 R'iffthere is a Tukey 

connection from R into R'. Tukey equivalence is defined by R 号 R'iffR :ST R'and 

R':ST R 

1The failure of this hypothesis requires large cardinals. 
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Fact 1.10. Assume that R =〈X,Y,亡〉 andR'=〈X',Y'，亡'〉 arerelational systems and 
that (w_，叫） ： R → R'is a Tukey connection. 

(a) If D's;;; Y'is R'-dominating, then肌[D'] is R-dominating. 

(b)（此直）： （R’)J_ → R J_ is a Tukey connection. 

(c) If E s;;; X is R-unbounded then w _ [ E] is R'-unbounded. 

Corollary 1.11. (a) R ST R'implies (R')J_ ST RJ_. 

(b) R sT R'implies b(R'),s; b(R) and cl(R),s; cl(R'). 

(c) R号 R'impliesb(R') = b(R) and cl(R) = cl(R'). 

Example 1.12. The diagram in Figure 1 can be expressed in terms of the Tukey order 

since C:r ST I and CナSTI.

Example 1.13. If 0',(0 are infinite cardinals, and 0,(IXI,(IX'I, then C[xJ<0 ST が`． Ontheother hand, for any regular cardinal μ, C[μl<μ 号[μ]<μ号μ,so 
add([μ]<μ)= cof([μ]<μ) = μ. As a consequence: 

Fact 1.14. Assume that 0 ~：入 are infinite cardinals. Then, for any regularμ E [0,入］，
μ 幻 C［入]<0.

In fact, the inequalities in Cichon's diagram (Figure 2) are obtained via the Tukey con-
nections illustrated in Figure 3. 

CN―C幻 M—N— C[IR] ＜町

(W!)J_ /w 

囁<R1----->NJ_ -」J_ l CM —ci 

Figure 3: Cichon's diagram via Tukey connections. Any arrow represents a Tukey con-
nection in the given direction. 

In this paper, when we force a value of a cardinal characteristic via ccc posets, we actually 
force Tukey connections with relational systems of the form C［入J<eand［入］く0for some 
cardinals 0,s;入with0 uncountable regular. For instance, if R is a relational system and 

we force R ~T C[>.J<e, then we obtain b(R) = non(［入]<8)= 0 and il(R) = cov(［入l<°)＝入

In the case when入<0=入， weobtain the same values when forcing R 号［入］＜0,also 
because of the following result. 

Lemma 1.15. If 0 is a regular cardinal and IXl<0 = IXI, then C[x]<e号 [X]辺
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Proof. The relation ST is immediate from Example 1.12. For the converse, since Z := 

[XJ<0 has the same size as X, we get C[zJ<e ~T C[xJ<0 and [Z]<0 ~T [X]<0 by using 
a bijection from X into Z, so it is enough to show that [XJ<0 ST C[zJ<0. The Tukey 
connection is given by the identity map from [XJ<0 into Z, and by the map叫： ［zJ<0→ 

[ X] <0 defined by肌 (A):=LJA. ロ

Motivated by the previous explanation, we look at characterizations of the Tukey order 
between C[x]<e and other relational systems. 

Lemma 1.16. Let 0 be an infinite cardinal, I a set of size ~ 0 and let R =〈X,Y,亡〉 be
a relational system. Then: 

(a) If IXI ~ 0, then R ST C[x]<O ~.ff\/ A E [ X] <0 :3 YA E Y ¥/ X E A: X 亡 YA,i.e. any 
subset of X of size <0 is R-bounded. 

In this case, when 0 is regular, 0,s;; b(R) and ll(R),s;; IXI. 

(b) C[I]<0土TR i.ffヨ〈Xi:i E /〉<;;;;X ¥/ y E y: I { i E J : Xi亡 y}I< e. 

In this case, when 0 is regular, b(R),(0 and III,(ll(R). 

Proof. (a): The implication from right to left is immediate by using the maps x e-+ x 

(identity on X) and A→ YA as a Tukey connection. For the converse, assume R 奇

C[xJ<o, i.e., there is a Tukey connection (F, G): R → C[xJ<O. For A E [X]<0, YA := 
G(F[A]) is as desired. The latter part uses Example 1.6. 

(b): The implication from right to left follows by using the maps i→ x; and y← {i EI: 

X;亡 y}. To see the converse, assume that (F, G): C[JJ<o→ R is a Tukey connection. For 
i EI, let x; := F(i), so {i EI: x;亡 y}s; G(y) and IG(y)I < 0. ロ

When forcing constellations of Cicho丘'sdiagram via ccc posets, we look at simpler char-
acterizations of the relational systems of its cardinals by coding with reals. 

Definition 1.17. We say that R =〈X,Y,二〉 isa definable relational system of the reals 
if both X and Y are non-empty and analytic in Polish spaces Zand W, respectively, and 
亡 isanalytic in Z x W. 

Remark 1.18. In the previous definition indicates that any definable relational system is 
Tukey equivalent to a relational system of the form〈ww,w竺亡〉 forsome analytic relation 
亡 onww. Indeed, if R is as in Definition 1.17, then Tukey connections are obtained by 
some Borel isomorphism from ww onto Z. 

To characterize the relatio叫 systemsof Cichon's diagram, we use relational systems with 
better definitions. 

Definition 1.19. We say that R =〈X,Y,亡〉 isa Polish relational system (Prs) if the 
following is satisfied: 

(i) X is a perfect Polish space, 
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(ii) Y is a non-empty analytic subspace of some Polish space Z and 

(iii)亡 n(XX Z) = LJn<w 亡nwhere〈亡n〉n<wis some increasing sequence of closed 
subsets of X x Z such that (c:::玉）Y= {x EX: x亡ny} is closed nowhere dense for 
any n < w and y E Y. 

By (iii), we obtain: 

Fact 1.20. If R is a Prs then〈X,M(X),E〉五 R. Therefore, b(R),,;; non(M) and 
cov(M),,;; cl(R). 

Example 1.21. The following are Prs that describe the cardinal characteristics of Ci-
cho丘'sdiagram. 

(1) Define the relational system Mg :=〈2w,：：：，ざ〉 where

3 := {J: 2<w→ 2<w : ¥/ S E 2<w : S <;;; J (S)} 

and xざ fiff I { s E rw : X ::::;> f (s)} I < N。.Thisis a Prs and Mg ~T CM. Hence 
b(Mg) = non(M) and cl(Mg) = cov(M). 

(2) The relational system ww :=〈W竺w竺<*〉 isalready Polish. 

(3) Define Dn := {a E [rwJ<N。:Lb2(LJsEJs]):(2打 (endowedwith the discrete 

topology) where Lb2 is the Lebesgue measure on 2竺 PutD := fln<w Dn with 
the product topology, which is a perfect Polish space. For every x E D denote 

N; : = nn<w UsEx(n) [ s], which is clearly a Borel null set in 2竺

Define the Prs Cn :=〈D,2竺亡〉 wherex亡ziff z ¢ N;. Recall that any null set in 
2w is a subset of N; for some x E D, so Cn号 C1.Hence, b(Cn) = cov(N) and 

cl(Cn) = non(N). 

(4) For each k < w let id杞w→ w such that id勺i)＝抄 forall i < w, and 1{, := {idk+l : 
k < w}. Let Le* :=〈ww,s(w且），e＊〉 bethe Polish relational system where 

S(w紅） ：＝ ｛cp:w→ [w]咽 O:j h E 1{, Vi< w: lcp(i)I,(h(i)} 

and x E cp iff x(i) E cp(i) for all but finitely many i. As consequence of [BarlO], 
Le*号 N,so b(Lc*) = add(N) and cl(Lc*) = cof(N). 

To conclude this section, we review products of relational systems. 

Definition 1.22. Let R =〈X,Y,亡〉 andR'=〈X',Y'，亡'〉 berelational systems. Define 
the relational system Rx R':=〈XXX',Y X Y',二x〉by

(x,x'）亡 X (y, y'）⇔ X亡yand x'亡'y'.

Fact 1.23. For relational systems R and R': 

(a) R幻 RxR'andR'向 RxR'.

(b) b(R x R') = min{b(R), b(R')} and max{cl(R), cl(R')},,;; cl(R x R'),,;; cl(R) ・ cl(R'). 

(c) If S and S'are directed preorders, then so is S x S'. 

In Section 5 we use relational systems of the form A : = Tii<n V; for limit ordinals V; and 
n < w. Note that b(A) = min{cf(v』:i< n} and cl(A) = max{cf(v』:i< n}. 
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2 Forcing and Tukey connections 

We present general results illustrating the effect of FS iterations of ccc posets on the 

cardinal characteristics associated with a definable relational system of the reals. More 

concretely, if R is such a relational system, we show how to force statements of the form 

R臼 c[J]<0and c[J]<0 ~T R. 

We start by looking at special types of generic reals. 

Definition 2.1. Let R =〈X,Y,亡〉 bea relatio叫 systemand let M be a set (commonly 

a model). 

(1) Say that y E Y is R-dominating over M if V x E X  n M: x亡 y.

(2) Say that x is R-unbounded over M if it is R囁 ominatingover M, that is, Vy E 

YnM:→（X 亡 y).

Example 2.2. The following are examples of very typical Suslin ccc forcing notions and 

the type of dominating (or unbounded) reals they add over the ground model. For precise 

definitions, see e.g. [BJ95]. 

(1) Cohen reals are precisely the CM-unbounded reals, which are precisely the Mg-
unbounded reals in the context of 2w. We denote Cohen forcing by C. 

(2) Random reals are precisely the CN-unbounded reals, which are precisely the Cn上一

dominating reals. We denote random forcing by IB. 

(3) The eventually different real forcing E adds a CM-dominating real in w竺whichcan 
be transformed into a Mg-dominating real (in 2w). 

(4) Hechler forcing ID adds an ww-dominating real (usually called dominating real). 

(5) JLOC adds an Le* -dominating real, which also adds an N-dominating real. 

Definition 2.3. Let v be an ordinal. An iteration〈JP{,Q€ : ~ < V〉hasfinite support 
(FS for short) if 

(i) ~ < 6 ~ V⇒ lPg < lPふ

(ii) JP {+l = JPく＊紐， and

(iii) 巳＝ u€<8JP€ for all limit 8 ~ V. 

We usually denote¼:= VIP1; for all~~ v. 

It is important to have a reasonably good picture of a FS iteration before plunging into 

technical facts, see Figure 4. 

Remark 2.4. For limit 8 ~ v, ½ =I-LJぃ¼ in general. 
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V 
QE Q£+1 Qg+2 

=Vo..---―→・ J • J ● J.. - - -―→.. ---—• • 
怜怜＋1 怜＋2 怜＋3 Vo Vv 

Figure 4: FS iteration of length v. 

Below, we state some well-known facts (most of them without proofs) for FS iterations 

of forcing notions. The following lemma states that, in FS iterations of certain forcing 

notions (e.g. ccc forcing notions), no new reals are added at limit stages of uncountable 

cofinality, a result which will be used often in forthcoming results. 

Lemma 2.5. Let 0 be a regular uncountable cardinal. If<JP€, QE: (< V〉isa FS iteration 

of 0-cc posets, i.e. lf-JPe QE is 0-cc for all (< v, then JP,,, is 0-cc. 

If, in addition, cf(v) ;:, 0, then ww n V,ッ＝ WW('¥u€＜ツ怜．

FS iterations add Cohen reals, which is sometimes considered as a limitation of the 

method. 

Lemma 2.6. Assume that JP,,, =<JP€, Q€ : (< V〉isa FS iteration of non-trivial posets. 

叩 <vand v is limit, then JP,,, adds a Cohen real over怜

Corollary 2. 7. Let v be a limit or-dinal of uncountable co finality and let JP,,, =〈lPc，似：
ぐ<V〉bea FS iteration of non-trivial cf(v)-posets. Then JP,,, forces v ST Mg. In 
particular, JP,,, forces non(M)::;; cf(v)::;; cov(M). 

Proof. Since L号 vfor any cofinal subset L of v, it is enough to show that L* ST CM 

where L* is the set of limit ordinals smaller than v. For each i E L* let c; E ¼+w be a 

Cohen real over¼ (which exists by Lemma 2.6). Then the Tukey connection is given by 

the maps i ~ c; and B→ ]iB, the latter defined by: whenever B is a Borel meager set of 

reals, JB EL* is chosen such that Bis coded in ½s (which exists by Lemma 2.5)．ロ

One starting point to force a statement of the form C[rJ<0 ST R is the following result. 

Fact 2.8. Let Cr be the poset that adds Cohen reals indexed by I. If I is uncountable 

then Cr forces c[I]＜刈 STMg. 

Proof. Apply Lemma 1.16 (b) to the sequence〈C;:i EI〉ofCohen reals added by Cr. ロ

The following results illustrates the effect of adding cofinally many R-dominating reals 

along a FS iteration. 

Lemma 2.9. Let R be a definable relational system of the reals, and let v be a limit 

ordinal of uncountable co finality. If JP,,,=〈lPt,Q€ : (< V〉isa FS iteration of cf(v)-cc 

posets that adds R-dominating reals co finally often, then JP,,, forces R ST v. 

In addition, ifR is a Prs and all iterands are non-trivial, then JP,,, forces R臼 Mg三 V.

In particular, JP,,, forces b(R) = i'l(R) = non(M) = cov(M) = cf(v). 
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Proof. Let L be the set of (< v such that Qe add an R-dominating real over怜． Since
L is cofinal in v, L釘 v.We show that, in Vv, R臼 L.Consider the maps F: xvv→ L 
such that x E VF(x), and G: L→ yvv such that G(() is R-dominating over尺． Clearly,
(F, G) is a Tukey connection. 

The second part follows from Fact 1.20 and Corollary 2. 7. 仁l

In most of the cases, we force a Tukey connection between a definable relational system 
of the reals and some relational system R fixed in the ground model. To calculate the 
cardinal characteristics in the extension, we need to know when b(R) and cl(R) stay the 
same in generic extensions. 

Lemma 2.10. Let 0 > ~。 be a regular cardinal and let R =〈A,B,こ〉 bea relational 
system. 

(a) If VF  ll(R) ~ 0 then, in any 0-cc generic extension of V, ll(R) = ll(R)v. 

(b) If VF  b(R) ~ 0 then, in any 0-cc generic extension of V, b(R) = b(R)v. 

Here, R is considered as the same object in both V and in the generic extension (not an 
interpretation). 

Proof. We show (a) (note that (b) follows by (a) applied to RJ_). In V, assume that 
入：＝ ll(R)~ 0 and that D こ Bis an R-dominating family of size入． LetW be a 0-cc 
generic extension of V. In W, it is clear that D is R-dominating, so ll(R)w,;;;入.Now
assume, in W, that E <;; B has size＜入． SinceW is a 0-cc generic extension of V and 

入~ 0, we can find E'EV of size＜入 suchthat Eこ E'こ B.In V, IE'I＜入＝ ll(R),so 
E'is not R-dominating, hence there is some x EX  which is R-unbounded over E'. It is 
clear that, in W, xis R-unbounded over E. This concludes that ll(R)w ~入口

In our applications, R will be a directed set like [X]<0 n V, or a relational system of the 

form C[x]<env• In terms of Tukey equivalence, this will be the same as looking at [X]<0 
and C[xJ<e, respectively, in the generic extension. 

Lemma 2.11. Let 0 > ~。 be a regular cardinal and assume IXI ~ 0. Then, in any 
0-cc generic extension, [X]<0 号 [X]<0n V and C[x]<e 号 C[x]<env・ Moreover, 
add([X]<0) = add([X]<0)v, likewise for the other cardinal characteristics associated with 
the ideal [ X]叫

Proof. This follows because, in any 0-cc generic extension of V, any member of A E 
[X戸 iscontained in some member of [X]<0 n V. The "moreover" is a consequence of 

Lemma 2.10 applied to [X]<0 n V and C[xJ<0nv• ロ

The following result is a general criteria to force statements of the form R幻 C[xJ<e.

Theorem 2.12. Let R =〈X,Y,亡〉 bea definable relational system of the reals, 0 an 
uncountable regular cardinal, and let JP v =〈lPg,Qg:t < V〉bea FS iteration of 0-cc 
posets with cf(v) ~ 0. Assume that, for all t < v and any A E [X]<0 n怜， thereis some 

77 ~ t such that Q,-, adds an R-dominating real over A. Then JP v forces R奇 C[xJ<e号

C[XJ<OnV ST [X]<0号 [X]<0,in particular, 0 ~ b(R) and i'J(R) ~ IXI = c. 
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Proof. In Vv: for A E [X]<0 we have that A E怜forsome~< v, so it is R-bounded by 
the hypothesis. Hence R 幻 C[x]<eby Lemma 1.16. The rest follows by Example 1.12 
and Lemma 2.11. ロ

Remark 2.13. In connection with the theorem above, [GKS19] defines the following 
property: 

COB(R,lP,入，'19)states that there are a directed preorder S of size v and with b(S) ~入，
and a sequence〈広： S E S〉ofJP-names of members of Y such that, for every JP-name 
わofa member of X, there exists an Bx ES such that, for all t ~s sゎ， 1卜わこ肌

This property implies that there exist a directed preorder S in the ground model such 
that入,;;;b(S), ()(S) ::;; fJ and If-JP R :ST S. Even more, equivalence holds when JP is入-CC

and入isuncountable regular. 

We conclude this section with general results to force statements of the form C[J]<" :ST R. 
For this purpose, we restrict to Polish relational systems and use Judah's and She-
lah's [JS90] and Brendle's [Bre91] preservation theory. 

Definition 2.14. Let R =〈X,Y,亡〉 bea Prs and let()be an infinite cardinal. A poset 

JP is 0-R-good if, for any JP-name h for a member of Y, there is a non-empty set H c::: Y 
(in the ground model) of size <0 such that, for any x E X, if x is R-unbounded over H 

then If-xヰii.
We say that JP is R-good if it is N1-R-good. 

Good posets allow us to preserve the Tukey order as follows. 

Lemma 2.15. Let 0 be regular uncountable, and let R be a Prs. Assume that JP is a 0-cc 

0-R-good poset. Ifμ is a cardinal, cf(μ) ~ 0, III ~ μ and C[J]<" :ST R, then JP forces that 

c[JJ<" :sT R. 

Proof. Choose a sequence〈X; : i EI〉asin Lemma 1.16 (b). We show that JP forces 
l{i E I : X;亡 y}I < μ for all y E Y. Letりbea JP-name of a member of Y and choose 

H as in Definition 2.14. Let B := LJ炸 H{iE I : X;こ y'},so IBI < μ. Since JP forces 
Xi亡り ⇒ iEB, then JP forces l{i EI: x;亡iJ}I< μ. ロ

We now present some examples of good posets. A general one is: 

Lemma 2.16. If 0 ~ N1 regular and IJPI < 0, then JP is 0-R-good. In particular, Cohen 
forcing is R-good. 

Proof. See e.g. [Mej13, Lemma 4]. ロ

Example 2.17. We indicate the type of posets that are good for the Prs of Cicho恥
diagram, namely, those of Example 1.21. 

(1) Miller [Mil81] showed that Eis ww-good. Also, random forcing is ww-good. More 

generally, any μ-Fr-linked poset is μ+-D-good (see [Mej19, BCM21] for details). 
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(2) Any μ-centered poset is μ+-en-good (see e.g. [Bre91]). In particular, lE and][)are 
Cn-good. 

(3) Any μ-centered poset is μ+-Lc*-good (see [Bre91, JS90]), so, in particular, lE and 
ID are Le* -good. 

Besides, Kamburelis [Kam89] showed that any Boolean algebra with a sfam (strict 
finitely additive measure) is Le* -good. In particular, any subalgebra of random 
forcing is Le* -good. 

Good posets are preserved along FS iterations as follows. 

Theorem 2.18. Any FS iteration of 0-cc 0-R-good posets is again 0-R-good, when 0 is 
regular uncountable. 

Proof. See e.g. [CM19, Thm. 4.15]. 仁l

As a consequence, we get the following main result. 

Theorem 2.19 (Fuchino and the second author). Let 0 be an uncountable regular cardi-

叫． IJJP=〈JPE,QE: ~ < v〉isa FS iteration of 0-cc 0-R-good posets, and v;,, 0, then JP 

forces C[,,］く。 STR. 

In particular, JP forces rJ ST R for any regular 0,s;; rJ,s;; lvl. 

Proof. We only prove the particular case when v＝入＋ r5where入:=|vi and QE = C 

for all ~ <入． ByFact 2.8, JP入 forcesc[v］叫 STMg, which implies C[,,］咽向 R by 
Example 1.13 and Fact 1.20. Since the remaining of the iteration is 0-cc and 0-R-good, 

by Lemma 2.15 JP forces C抄]<0奇 R.

The "in particular" follows by Fact 1.14. 仁l

Remark 2.20. In connection with the previous result, [GKS19] defines the following 
property when {) is a limit ordinal:2 

EUB(R,JP』)statesthat there is a sequence〈ぬ： a< {)〉 ofJP-names of members of X 
such that, for every JP-nameりofa member of Y, there exists an °'ii < {) such that 

v/3 > ％:|卜→(x/3亡 iJ).

This property is equivalent to COB(R.l，JP, cf(rJ), cf(rJ)), so it implies|卜 0幻 R (see 
Remark 2.13). In fact, equivalence holds when JP is cf(rJ)-cc. 

3 Applications to the left side 

This section is dedicated to forcing many values in Cichon's diagram, particularly for the 

left side, by applying the methods of the previous sections. 

From now on, we denote the Prs introduced in Example 1.21 by R1 := Le＊号 M
R2 := Cn号 CJJ,R3 := w竺andR4 := Mg号 CM・

2The original notation is LCU. The notation EUB (eventually unbounded) comes from [Bre22]. 
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3.1 Warming up 

In this section, we present the effect on Cicho丘'sdiagram after the FS iteration of the 
posets of Example 2.2. We fix a cardinal 入＝入~o.

Cohen forcing 

After iterating Cohen forcing入-manytimes, we obtain C入． Thisforces入＝ cand, by 

Fact 2.8, C［入］… :STR4. On the other hand R1幻 C[IR戸 1号 C［入］＜><1(see Figure 3). 
Therefore, C入forces凡号 C［入戸1for all 1,(i,(4. In particular, it forces the constel-
lation of Figure 5. 

b(R2) b(R4) o(R1) 

~1 
b(R1) il(Rり b(R4) 

Figure 5: Cichori's diagram constellation in Cohen's model. 

Random forcing 

Let JP be the FS iteration of lB of length入． ThenJP forces 

(i) R2号 R4号入， hencecov(N) = non(M) = cov(M) = non(N) = cf（入）； and

(ii) R1 釘~ R3号 C［入戸1号 C[IR戸 1,hence add(N) = b = N1 and i'l = cof(N) = c =入．

In particular, when入isregular, JP forces Figure 6. 

b(R叫 b(R4) il(R1) 

N1 

Figure 6: Constellation of Cichori.'s diagram after a FS iteration of random forcing of 
length入regular.
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Indeed, (i) follows by Lemma 2.9, while (ii) follows by Example 2.17 (1) and by Theo-
rem 2.19, also because IP forces c =入

Eventually different reals forcing 

Let JP be the FS iteration of IE of length入． ThenJP forces 

(i) R4号入， sonon(M) = cov(M) = cf（入）； and

(ii) 凡 ~T C［入戸1 ~T C[IR戸 1for 1 ~ i ~ 3, hence cov(N) = b = N1 and () = non(N) = 
C=入．

In particular, when入isregular, JP forces Figure 7. 

N1 

Figure 7: Constellation of Cicho五'sdiagram after a FS iteration of lE of length入regular.

Hechler forcing 

Let JP be the FS iteration of ID of length入． ThenJP forces 

(i) R3号 R4号入， soadd(M) = cof(M) = cf（入）； and

(ii) R1号 R2号 C［入戸1 号 C[IR]叫・

In particular, when入isregular, JP forces Figure 8 . 

. 
Localization forcing 

Let JP be a FS iteration of lLOC of length入． ThenJP forces c =入 andR1 ~T 入， hence

add(N) = cof(N) = cf（入）． Inparticular, when入isregular, JP forces Figure 9. 

3.2 More values 

We now present examples of more different values in Cichori's diagram. All the results 
cited from [Mej 13] are due to Brendle. 
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b(R2) b(Rり D(R1) 

~l 
b(R1) il(R4) b(Rり

Figure 8: Constellation of Cicho丘'sdiagram in Hechler's model when入isregular. 

b(R2) b(Rり ll(R1) 

N1 

N1 
b(R1) il(R4) b(R4) 

Figure 9: Constellation of Cicho丘'sdiagram after a FS iteration of JLOC of length入

regular. 

Theorem 3.1 ([Mej13, Theorem 3]). If N1,;;;入1,;;;入2,;;;入3,;;;心 areregular cardinals and 

入5~ ふ is a cardinal such that入戸＝ふ， thenthere is a ccc poset forcing, for 1,;;; i,;;; 3, 

(a) 凡巧 C［ふl ＜入， ~T ［ふ］汽: and 

(b) R4号心．

In pa廿icular,we obtain the consistency of Figure 10. 

~] 

Figure 10: Six values in Cichon's diagram. 
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Proof. We shall perform a FS iteration JP =〈lPも紐： t<v〉oflength v:＝入山 (ordinal
product) as follows. Fix a partition〈Ci:1 < i::;; 3〉ofふ＼ ｛0} where each set has size 
ふ． Foreach p <ふ denote伽：＝ふp.We define the iteration at each t =ル＋ cfor 
p<ふ andsくふ asfollows (see Figure 11): 

梨＝｛ ：：く<c芯：ロ
where NE is a JP己―nameof a transitive model of ZFC of size<入iwhens E Ci. 

Additionally, by a book-keeping argument, we make sure that all such models NE are 
constructed such that, for any p <心

(i) if A E v,,,p is a subset of WW of size＜ふ， thenthere is some s E 01 such that 

A<;;;;N,,,p＋ふ

(ii) if A E v,,,p is a subset of D of size＜ふ， thenthere is some s E 02 such that A<;;;; N,,,p+e; 
and 

(iii) if A E v,,,p is a subset of WW of size＜ふ， thenthere is some s E 03 such that 

A<;;;; N,,,p+e• 

lE lLOが,+l ]BN,+2 ])N,+3 
Vこvo...＿＿＿＿→● ） ● ）● ） ● ） ... ＿＿→• ーー→●

Ve Ve+1 Ve+2 怜＋3 怜＋4 V0 V,, 

Figure 11: A FS iteration of length v of ccc partial orders, going through E cofinally 
often, as well as through all subforcings of localization forcing of size＜入1,all subforcings 

of random forcing of sizeく極 andall subforcings of Hechler forcing of sizeくぶ

We prove that JP is as required. Clearly, JP forces c = lvl＝入5・

Fix 1,(i,(3. Note that all iterands are入i-R;-good(see Lemma 2.16 and Example 2.17), 
hence, by Theorem 2.19, JP forces C[v]＜入iST R;. On the other hand, JP forces R :ST 

c[JFt]<入,byTheorem 2.12. Therefore, since IRI = lvl＝ふ， weconclude (a). 

Finally, since cf(v) =ふ， byLemma 2.9 JP forces R4号入4・ 仁l

Theorem 3.2 ([Mej13, Theorem 2]). If ~1 ::;;入1::;;.¥2 ::;;.¥3 are regular cardinals and 
入4),ふ isa cardinal such that入戸＝入4,then there is a ccc poset forcing, for l ::;; i ::;; 3, 

(i)凡 号 Cい］＜入9 号［ふ］汽・ and 

(ii) R4号 R3号 Cい］＜入3号 ［ふ］＜入釘
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b(R2) b(Rり D(R1) 

~l 
b(R1) il(R4) b(Rり

Figure 12: Five values in Cichon's diagram. 

In particular, we obtain the consistency of Figure 12. 

Proof. Perform a FS iteration JP =〈lP遠：~<入4〉 as follows. Fix a partition〈C;:1 ~ 
i~3〉 of 入4 into cofinal subsets of size入4.For each~ ＜ふ define:

JLOい if~EC1,
Qg:＝ ｛ lBNCif< E C2, 

]1)N< if~ ECぁ

where芯isa JP €-name of a transitive model of ZFC of size<入;when~ EC;. Additionally, 
by a book-keeping argument, we make sure that all such models N€ are constructed such 
that conditions similar to (i)―(iii) of the proof of Theorem 3.1 are satisfied. Concretely, if 

we denote R; : =〈X;,~, ご〉， we guarantee that, for any~< 入 and A c:; xr< of size＜入，
there is some TJ ;;,, ~ in C; such that Ac:; N11. Then, JP is as required. ロ

Theorem 3.3 ([Mej13, Theorem 4]). If N1 ~ふ<入2 ~入3 are regular cardinals and 
入4?入3is a cardinal such that入戸＝心， thenthere is a ccc poset forcing 

(i) R1号 C囚］＜入1号［心］＜入1,R3号 C囚］賓号［心l＜入2, and 

(ii) R2号 R4号 ふ ．

In particular, we obtain the consistency of Figure 13. 

N1 

Figure 13: Five values in Cichon's diagram. 
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Proof. Perform a FS iteration〈lPe,Qe : ~ < v〉oflength v:＝ふふ asfollows. Fix a 

partition〈Ci:l::;;i::;;3〉ofふ＼ ｛O} into cofinal subsets of size入4. For each p＜ふ
denote伽：＝ふp.We define the iteration at each ~ ='f/p + c for p <ふ andcくふ as
follows: 

い

5

5

c
c
c
 

e

e

e

 

E

E

E

 

i
f
i
f
i
f
 

と
J『
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v

 

0
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く

、――
 ．．

 亡
J
↓

.
Q
 

where NE is a lPE-name of a transitive model of ZFC of size<入iwhen c E Ci. We use 
book-keeping as in (i)-(iii) of Theorem 3.1. The poset JP is as required. ロ

Theorem 3.4 ([Mej13, Theorem 5]). If N1 <入1 <入2 <ふ areregular cardinals and 

入4):ふ isa cardinal such that入戸＝ふ， thenthere is a ccc po set farcing, for 1 < i < 2 

{i)凡 号 C［心l<入，号［心］汽:and 

{ii) R3号 R4号 ふ ．

In particular, we obtain the consistency of Figure 14. 

b(R2) 

N1 

b(R4) D(R1) 

入4

b(R1) c>(R4) b(R4) 

Figure 14: Five values in Cichon's diagram. 

Proof. Perform a FS iteration JP =〈恥,QE:~<v〉 of length v:＝ふふ asfollows. 
Consider the same preparation as in the proof of Theorem 3.3. Using book-keeping as 

in previous proofs, we define the iteration at each ~ ='T/p + E for p <ふ andc <入4as 

follows: 

1
1
2
1
3
1
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where NE is a 恥—name of a transitive model of ZFC of size＜入iwhen E: E Ci・ロ

We conclude this section by presenting three important results of the left-hand side of 

Cicho丘'sdigram, which uses sophisticated techniques such as finitely additive measures 

as well as ultrafilters along FS iterations, and ultrafilters along matrix iterations. 
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Theorem 3.5 ([GMS16, GKS19]). Let入1::;;;入2::;;;入3=入;>-3::;;;ふ beuncountable regular 

cardinals, and assume thatふ＜炉 andふisN1 -inaccessible.3 Then there is a ccc poset 

that J orces c =ふ andRi号 C囚］＜入t 号［ふl＜入＇号 [.¥5]<入,nV for all 1 ::;;; i ::;;; 4. In 

particular, it forces the constellation in Figure 15. 

cov(N) I non(M) cof(N) 

~] 

add(N) cov(M) non(N) 

Figure 15: The left side of Cicho丘'sdiagram. 

Theorem 3.6 ([KST19]). Let入1,,;;ふ＝入；入2,,;;入3,,;;入4be regular cardinals, and assume 

thatふ and>.4 are ~1 -inaccessible, andふ＝入戸＞ふ． Then there is a ccc poset that 

forces c =ふ， R;~T ［ふl<入i n V for i = 1, 4, R2号［ふl→nV andR3号［ふl<,¥2nV. 

In particular, it forces the constellation in Figure 16. 

cov(N) I non(M) cof(N) 

N1 
add(N) cov(M) non(N) 

Figure 16: Alternative left side of Cicho丘'sdiagram. 

Theorem 3.7 ([BCM21]). Let入0,:;;入1,:;;入2,:;;入3,:;;.A4,:;;ふ beuncountable regular 

cardinals and let入6),,ふ bea cardinal such that入戸＝柚， thenthere is a ccc poset that 

forces 

(a) 凡 ~TC［柚l<入inV ~T ［心］＜入'n V for 1,:;; i,:;; 3, and 

(b)入4:ST凡，入5:ST凡 andR4 :STふ x入4・

In particular, it forces the constellation in Figure 17. 

3A cardinal入is0-inaccessible if忙＜入 foranyμ く入 andv < 0. 
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cov(N) I non(M) cof(N) 

~l 

Figure 17: Seven values in Cicho丘'sdigram. 

We remark that, in Theorem 3. 7, we cannot force R4臼 c[.,_5］＜入4because, in the ground 

model, C［ふ］＜入4 本T ふ xふ inthe case whenふくふ． Tosee this, note that if〈(ai,b』:
iくふ〉こふ x入4,then there is some L <;;入5of sizeふsuchthat the sequence〈bi:i EL〉
is constant with value some b <心． Then,it is possible to find some aくふ suchthat 
{i EL: (ai, bi),s; (a, b)} has size;:,入4,so we conclude that there is no Tukey connection 

by Lemma 1.16 (b). On the other hand, we can say that R4 :ST C［ふ］＜入•nv because, in 

the ground model,ふ X心幻 C［入訟M]＜入4.

4 Restriction to submodels 

We present the general theory of intersection of posets with a-closed models. This is the 
main tool in [GKMS21] to force Cichon's maximum without using large cardinals. In this 
section we do not only review this method, but we analyze its effect on the Tukey order. 
For this section, we fix: 

(Fl) a CCC poset JP; 

(F2) a definable relational system R =〈X,Y,亡〉 ofthe reals, here wlog X = Y = ww; 

and 

(F3) a large enough regular cardinal x such that JP E Hx, and Hx contains all the param-
eters defining R. 

Definition 4.1. A model N s H is <K,-closed if N＜れ匡 N. We write u-closed for 

<N1 -closed. 

When intersecting a ccc poset with a O'-closed model, we obtain a completely embedded 
sub forcing. 

Lemma 4.2. If N s Hx is び—closed and JP E N, then JP n N <:: JP. 

Semantically, there is a correspondence between some JP n N-names a JP-names belonging 
to N,皿 dwe can also have a correspondence for the forcing relation for some formulas. 
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Fact 4.3. If 1,, > N。isregular and N is <K closed then there is a one-to-one correspon-
dence between: 

(i) JP-names TEN and 

(ii) JP n N -names a 

of members of H" (in particular, reals). Thus, if G is JP-generic over V then N[G] n 

H氏

V[G] 
=H氏

V[GnN] 

Corollary 4.4. For absolute rp（元） （e.g. Borel on the reals) if p E JP n N andテENis a 

finite sequence of JP-names of members of H", then 

p If-JP rp（テ） ⇔ p |←IPnN rp(u). 

The following result illustrates the main motivation to intersect ccc posets with <J-closed 

models, since it affects the Tukey relations forced by the posets. 

Lemma 4.5. Let N s Hx be 五—closed and let K =〈A,B,<l〉bea relational system. 
Assume that JP, K and the parameters of R are in N. 

(a) If JP|f--R臼 K then JP n N If-R臼 Kn N where K n N :=〈AnN,BnN,<l〉．

(b) If JP If-K ST R then JP n N|←Kn  N ST R. 

Proof. (a): Find a sequence〈初： jEB〉ENof JP-names of members of ww such that 

圧 VxE wwヨ％ EA'cfj EB: ix<l j ⇒ x亡約・

For j EB n N,約canbe seen as a JP n N-name of a member of w竺

We claim that lhPnN V x E ww江％ EA n N V j E B n N: ix<lj ⇒ x亡初． LetpEJPnN
and letわbea JP n N-narne of a real. Then允ENand 

N巨plf--JPヨ％ EAV j EB: i;;<lj ⇒ とこ約．

Find q :(p in N and i;; E A n N such that 

V j EB n N: i;;<lj ⇒ N pqlf--JPわ亡約・

But Np== q|トIP力亡約⇔ q|トIP出亡切⇔ q |トIPnN出亡的． Thus〈約： jEB  n N〉
witnesses JP n N If-R奇 KnN.

(b): If JP|f--K巧 Rthen JP If-R_lST K_l．Although R is not as in Definition 1.17, 
the relationこ isabsolute enough to prove JP|f--R_l奇 k_lnN as in (a). Note that 

k_lnN=〈BnN,AnNや〉＝ （KnN)_l,so we can conclude that JP n N|←KnN::sT 

R. ロ

As a consequence, if JP|rR号 Kthen lPnN Ir R号 KnN. Hence, to know the values 
that JP n N force to b (R) and i) (R), we need to calculate the cardinal characteristics of the 
relational system Kn  N (recall Lemma 2.10), or find natural Tukey equivalent relational 
systems. The theory developed from now on has the purpose to understand K n N in 
some specific contexts. In the applications, K is often a directed preorder. 
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Fact 4.6. Let N :s Hx be 炉—closed and let K =〈A,B,<l〉EN be a relational system. 

(a) b(K n N) ~ lb(K) n NI and i'l(K n N) ~ li'J(K) n NI. 

(b) If N is<代-closedthen b(K n N)): min{b(K), K}. In particular, if N is <b(K)-
closed then b(K n N) = b(K). 

(c) Property (b) holds for the i'l-numbers. 

(d) If SEN is a directed preorder and i'J(S)<;;;; N, then Sn N巧 s.

Proof. (a) Find f E N, f: i'J(K)→ B where f[i'J(K)] is K-dominating. So {!(a) : a E 
i'l(K) n N} <;;;; B n N is Kn  N-dominating. Thus叩(KnN) ~ I叩(K)n NI. The inequality 
of the b-number follows by applying the previous to K_j_. 

(b): If F <;;;;An N has size < min{b(S), K} then FEN and N FヨyEB'c/xEF:x<lY,
so such a y can be found in B n N. 

(c): Apply (b) to K_j_. 

(d): If i'J(S) <;;;; N then f[i'J(S)］<;;;; N where f is as in (a), so Sn N is cofinal in S and 
SnN号 s. ロ

Figure 18 illustrates the situation of Fact 4.6 when K = S is a directed poset,応：＝

min{o E On: o ¢ N} and INI < ON (the latter will hold in our applications). 

b(f!) = b(S n N) il(S) = il(S n N) 
| | 

ふr

On 

b(fj) = b(S n N) 

k 

r 
D(SnN) D(S) 

| | | 
ふr

On 

b(S n N)r'b(S) z,(S n N)r'()(S) 
| | | | | 
代 心

On 

Figure 18: Effect on b(S) and Zl(S) after intersecting with N as in Fact 4.6 when INI < 6N 
and S = K is a directed preorder. The situation on the top corresponds to (d), where the 
cardinal characteristics do not change; the middle corresponds to (b), where b(S n N) = 

b(S) but Zl(S n N) gets smaller; and the situation at the bottom indicates that Zl(S n N) 
gets smaller and that b(S n N) may become smaller. 

The effect on the relational systems depends very much on the structure of the model. 
We look at models constructed from directed systems of models, as follows. 
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Definition 4. 7. Let 1,, and 0 be infinite cardinals, 1,, unc_ountable regular, and let T be a 
directed partial order without maximum. A sequence N :=〈Nt:tET〉ofelementary 
submodels of Hx is a (T, K, 0)-directed system if, for all t ET: 

(1) Nt is <1,,-closed and INtl = 0; 

(2) if t ~ t'in T then Nt ~ Nt1; 

(3) 0 u {0, T} ~ Nt. 

In this context, we usually denote N := UtET Nt. Clearly N s Hx. 

Fact 4.8. If N :=〈Nt:tET〉isa (T, ;;,, 0)-directed system then: 

(a)炉＝ 0(so;;,~ 0). 

(b) N is< min{;;,, b(T)}-closed. 

(c) 0 < |N| < 0・叩(T).

Proof. To see (c) note that, if T'<;;;; T witnesses c'J(T), then N = UtET'Nt. 

In our applications ITI :(0, in which case (c) implies INI = 0. 

仁l

The remaining results in this section are the main tools to understand K n N when N is 

obtained from a directed system. 

Lemma 4.9. Let N =〈Nt:tET〉bea (T, 1,,, 0)-directed system. If K =〈A,B,<J〉isa 
relational system, K E N, and 

位） An Nt is K n N-bounded for all t E T, 

then Kn  N :ST T. 

Proof. Define f: AnN→ Tsuch that i E AnNf(i) for i E AnN, and define g: T→ BnN 

such that Vi E A n Nt : i<lg(t) (by (Q)). If f(i) <rt then i EA n N氏）匡 AnNt, so 
i <lg(t)．ロ

Fact 4.10. In Lemma 4-9, we must have b(K) > 0. 

Proof. Since K E N, :l t E T: K E Nt, so we can find a witness F E Nt of b(K). If 

IFI = b(S) < 0 then F c::; An  Nt (because 0 c::; Nt), so An  Nt is unbounded, which 
contradicts (Q)． ロ

Fact 4.11. If b(K) > 0 and Nt EN  for all t ET, then (Q) follows. 

Corollary 4.12. Under the assumptions of Lemma 4-9, if in addition S = K is a directed 
preorder without maximum and T is a linear order, then Sn N ~TT. 
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Proof. Consider the functions f and g from the proof of Lemma 4.9. Since S does not 
have a maximum, we can even define g such that i <s g(t) for all i E Sn Nt. Thus, 

(g,f): T→ Sn N is a Tukey connection: if g(t),;;;;8 j in Sn N, then Vi ES n Nt: i <s j, 

so j足Nt,hence t <r J(j)．ロ

Figure 19 illustrates the situation of Lemma 4.9 when K = S is a directed preorder and 
ITI,;:;; 0 (so|心|＝ |NI = 0), while Figure 20 illustrates Corollary 4.12. 

b(T) b(S n N) 叩(SnN)叩(T) b(S) 
| | | | | | 

心
On 

Figure 19: When K = S is a directed preorder and ITI,s;; 0, according to Lemma 4.9 
S n N ST T, so the cardinal characteristics associated with S n N lie between those 
associated with T. 

b(S n N)＝ 叩(SnN) = cof(T). b(S) 
| | | 
ふ「

On 

Figure 20: In the situation of Corollary 4.12 (when ITI,::; 0), Sn N 巧 T,so the cardinal 
characteristics associated with Sn N collapse to cof(T). 

We finish with a result about the intersection of a directed system of models with a chain 
of models. 

Lemma 4.13. Let R0  =〈Ntk:tET〉bea (T, r;,0, 0°)-directed system, and let炉：＝

<N~: a<入〉 bea（入，足，01)-directedsystem with入alimit ordinal. Assume: 

(i) R0 E NJ and 01 < r;,0 (which implies足 <O1 < k° < 0°)， 

(ii) N.↓E N1 for all a <入， and

(iii) Tc;; NJ (which implies ITI,::; 01). 

Then: 

(a) N :=〈Nn: n E A〉isa (A, K¥が)-directedsystem, where 

• A:= TX入，

• Nr, := N~(o) n N~(l) for rJ EA. Hence, N = N° n N1. 

(b) If K =〈A,B,<l〉EN° n NJ is a relational system and b (K)＞が thenKn N :ST A. 
In particular min{b(T), cf(入)｝ ,s;b(K n N) and cl(K n N),s; max{cl(T), cf（入）｝．

Proof. (a): Fix rJ E A. ~ote that Nr, :S Hx because N~(o), N~(l) :S Hx and N~(o) E 

N~(l) by (i) and (iii). On the other hand, since N~(o) E N~(l) and IN~(o)I = 0°, we get 
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is <K1-closed, so we can easily conclude 魔 o)_" N~(l) I = 10° n N~(o) I = 01. Clearly, NT/ is <K1 1J(O) 

that N is a (A,足，01)-directedsystem. Note that N := u1)EA的＝ N° n N1. 

(b): Let T/ EA, wlog KE Nico) (by increasing T/(0)). Since b(K nNi(o)) ;:, min{b(K), Ko} > 

01 by Fact 4.6 (b) and (i), and An NT/ E N1 (by (ii)) has size ~01, 

N1 F j y E B n Nico) I;/ X E A n NT/: X<lY, 

so we can pick such y E B n Nico) n N1 <;;;; N. Hence (<::?) of Lemma 4.9 holds, thus 
KnN臼 A. ロ

5 Cichoがsmaximum 

We fix cardinals ordered as in Figure 21, all of them regular with the possible exception 
of入'. Applying Theorem 3.5, we first construct a ccc poset JP forcing c = 000 and the 
constellation at the top with Tukey connections, namely, Ri ~T Si for all 1 :,;;; i :,;;; 4, 
where Si:=［似］＜0in V is a directed partial order. 

02、、 '04 ,● ÒOO - OOO 

02 l 、応‘ 、0i]3 ニヽ。［

01三三一0/
----

~— -----
入gご ―― 入t------> ． ------> 入f~ 入cl ‘‘‘‘‘A入§‘ニー;§、

R1 -入t------> l口；？二］g
Figure 21: Strategy to force Cichon's maximum: we construct a ccc poset JP forcing 
the constellation at the top, and find a a-closed model N such that JP n N forces the 
constellation at the bottom. 

Afterwards, we apply the theory of Section 4 to construct a a-closed N s Hx, where xis 
chosen regular large enough, such that JP n N forces the Cicho針smaximum constellation 
at the bottom. By Lemma 4.5 we obtain that JP n N forces Ri号 SinN, so we need to 

construct N such that b (Si n N)＝入fand叩(SinN)＝入？． Wewill have INI＝入',so 
JP n N will force that c = N. 

The strategy is to construct several chains of elementary submodels of Hx and intersect 
them. To proceed, we fix the following assumptions and conventions: 

(Hl) Cardinals ordered as in Figure 21, non-decre邸 ingup to入'andincreasing from 
there. 
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(H2) With the possible exception of入<,all cardinals are regular. But we assume（入予＝
入C.

(H3) The cardinals 0; (1 ~ i ~ 4) and 000 satisfy the hypothesis of Theorem 3.5. 

(H4) For every 1 ~ i ~ 4, 0::: = 0; and (0;)<0;―=  0,―・ 

(H5) All models from now on contain as elements all the cardinals in (Hl). 

(H6) Every new model contains, as elements, all the chains of models previously defined. 

More concretely, we prove: 

Theorem 5.1. Under assumptions (H1)-(H4), there is a ccc poset forcing, for 1 :;c;:: i :;c;:: 4: 

(a)凡臼 n;=i.AjX悶，

(b)悶臼 R;and入］臼凡 wheni,c;;: j,c;;: 4, and 

(c) c=A'. 

We present two proofs. The first one is a short compact proof, and the second is the 
argument step by step, showing how cardinal characteristics are modified. 

Proof (compact version). By (H3), find a ccc poset JP as in Theorem 3.5, i.e. forcing c = 000 
and恥 号 Sifor all 1,::; i,::; 4. On the other hand, we have Tukey relations of regular 
cardinals with Si and the values of its associated cardinal characteristics as in Table 1. 

.
2

―-
4
-
3
-
2
-
1
 

(regular) 

0 ST Si 

[O4, 0OOl 
[O3, 0OO] 
[O2, 0OOl 
[O1,0OOl 

‘‘,'ー，は一
04-03-02-ol

b
 

）
 

は一000-000-000-000

(
U
 

Table 1: Values of the cardinal characteristics of Si and Tukey connections from regular 
cardinals (consequence of Fact 1.14). 

By dowmvards recursion on 1 ::;; i ::;; 4, we construct chains of models沢：＝〈Nむ： a ＜ 

氾〉 and沢：＝〈Nぶ： a <埓〉 satisfying:

(i)沢 isa（入？，（0::)+,0i)-directed system; 

(ii)沢 isa（入f,0;―,e;)-directed system; 

(iii) each Nぷcontains,as elements: the cardinals of Figure 21, JP, <Ni~E:(<a>,and
the sequences NJ and沢forall i < j,:;; 4; 

(iv) each Ni~a contains, as elements: the cardinals of Figure 21, JP, <Ni~E:(<a>,and
the sequences沢， NJand沢forall i < j,:;; 4. 
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Assumptions (H2) and (H4) are what allow the construction of the models. Note that (iii) 

and (iv) obey (H5) and (H6), and these imply that the models contain, as elements, Si 
and the parameters of the definition of ~ for all 1 < i < 4. 
Finally, let N's Hx beau-closed model of size入'containing,as elements, everything we 
have so far (this is possible because（入予＝入',see (H2)). We let N := N'nn NOnNb j=1 J 

and show that lPnN is as desired. To show (a) and (b), note that lPnN forces Ri号 S;nN
for all 1 < i < 4, hence it is enough to show that 

(a') Sin N STふ：＝ HいjX 悶， and

(b'）入~ ST S; n N and入1ST S; n N when i,S: j < 4. 

Item (c) follows because IJP n NI＝入C.

(a'): Let A~ ：＝氾 x H4 +1入jX 入~ (when i = 4, just let A~ := >.~ J = t J J • 入~), which is a relational 

syste~ As in !he proof of Lemma 4.13 (a), the intersection of the chain of ~odels 沢
with NJ and NJ for all i < j < 4 yields a (A~, (0;—+, 0』directedsystem NI. Since （（） 
b(S,） ＝ 0t >釘， byLemma 4.13 applied to N° = NI and炉＝沢， weobtain a 

(Aぃ釘，0;)-directedsystem N; such that S; n Ni幻 A;where N; = n;=i NiD n Nt 

Now, by regressive induction on 1 < j < i, we show that S; n Nj号 Sin N;. Assume we 

have the result for j + 1 (which we showed for j + 1 = i). Since i'l(Si n NH1) < i'l（ふ） ＝ 

入？<;;;NJ, by Fact 4.6 (d) we obtain S; n Nj+l n NJ盲 S;n Nj+l巧 SinNi. For the 
same reason, we get S; n Nj = S; n Nj+l n NJ n Nf 釘 S;n Nj+l疇]釘 S;nN;.

Finally, by applying Fact 4.6 (d), we conclude Si n N = Sin N1 n N'~T Sin N1 ~T 
Sin Ni幻 Ai.

(b'): For 1 < j < 4 we consider N/; and Nj as defined in the previous argument. Fix 

i < j < 4. We have that化五 Siand 0;—+1 ST Si (denote 05 := 000), which imply 。jn N ST Si n N and 0;—+1 n N 幻 SinN. So it is enough to show that 0j n N号閲
and『J+1 nN~T 入°·

Since 000 >仇=|NJ I, by Corollary 4.12 applied to河 weget 000 n NJ号埒， showing

釘＋1nN/;~T 入1 for j = 4; in the case j < 4, since 0;—+1 = INj+il, we get 0;—+1 nNj+l 盲 °J—+1
b_Y Fact 4.6 (d) (even equality holds), but INJI＝化＜町＋i,so Corollary 4.12 applied to 
炉・/ implies 0;― j+l nNI ·号入~.

Backtoj < 4: since OJ = |N;| we have OJ nN；号化 bybFact4.6(d) （even equality holds)． 
Now化＞ 0;= INJI, so by Corollary 4.12 applied to兄 weobtain 0j n Nj号樗 Onthe 
other hand, 0丘1n Nj ~T 0;—+1 n N]号悶 byFact 4.6 (d). Now, using Fact 4.6 (d), it is 

easy to show by decreasing recursion on 1 < k < j that 0j n Nk号炉 and0-;+1nNk号j+l 入°.

For the same reason, 0j n N = 0j n N1 n N'号化 nN1 号入~ and 0i+l n N号j+l 入見 □ 

We now explain what occurs step by step when intersecting with the chain of models in 
the previous proof. By Theorem 3.5 we obtain a ccc poset JP that forces ~i ~T Si for all 
1 < i < 4. Recall Table 1 about the values obtained for Si. 

Step 1. 1. Construct a（入ぶ (0i)+,04)-directed system河：＝〈NJ,a: a く闘〉 such

that NJ,a E Nl,a+l (using外＝ 04).Thus NJ is ＜埓—closed and JP~ : = JP n NJ forces 
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R 号 S門：＝ S4n N! (by Lemma 4.5). So the values forced to b(R;) and il(R;) are 
according to Table 2. 

(regular) 
1、 0幻 S戸 b(S;'D) 0(S?） 
4 04, 入〗 入°4 04 
3 [03, 04]，入］ 入°4 04 
2 ［似叫，埒 入°4 04 
1 [01, 0』 ， 入〗 入〗 04 

Table 2: Values of the cardinal characteristics of S;'~ and Tukey connections from regular 
cardinals. 

To prove the values in Table 2, by Fact 4.6 (b) note that b(S?) ;:, min{b(Si)，入n=埒
On the other hand, since 000 > 04, by Corollary 4.12 we obtain 000 n Ni ~T 入ぶ SO 000 :ST Si 
implies 入~ ~T 000 n NJ :ST s?. Therefore, b(S?) =入ぶ

By Fact 4.6 (d), for any regular 0,(04 = INJI, we obtain 0 n Ni号 0,so 0 :ST Si implies 
0 :ST Si n Ni = S門 Inparticular, for 0 = 04, we obtain 04,(D(S?). The converse 
inequality holds by Fact 4.6 (a) as D(Si n N2),(ID(Si) n NJI = 04. 

Step 1.2. Construct a（入ぶ04,04)-directed system対：＝〈NJ,a:aく埒〉 suchthat 

Nl_a E NJ,a+l (using (04)<0i = 04). Thus, NJ is<入!-closedand JP! := JP~ n NJ forces 

凡号 s?:= S;'D n NJ. The values of the cardinals of s? are displayed in Table 3. 

(regular) 

1、 。土 S:，b b(S?) i'l(S?) 

4 闘，闘 入〗 入°4 
3 [03, 04］，刈，入］ 闘 0i 
2 [02, 0i]，入ぶ埒 入b4 町
1 [01，釘l，闘，入｝ 入b4 釘

Table 3: Values of the cardinal characteristics of S;・0 and Tukey connections from regular 
cardinals. 

Note that b(S;•0) ;;;, min{b(S;•~), 入!} =刈 byFact 4.6 (b). On the other hand, since 

04 > 04, by Corollary 4.12 we obtain 04 n Ng号刈， so04 ST s? implies 入〗号
04 nNk幻 S;'°.Therefore, b(S州＝入b4・ 

By Fact 4.6 (d), for any regular 0 < 04 = INkl, we obtain 0 n Ng ~T 0, so 0幻 s?
implies 0 ST s? n Ng = S;-". In particular, for 0 =刈 weobtain 入〗< o(S24,b), and for 
i < 3 and 0 = 04, we obtain 04 < il(S;'°). The converse inequality holds by Fact 4.6 (a) 
as il(S? n N.り<lil(S門） nNkl = 04. 

It remains to show that il(S!•~) <入tNote that the hypothesis of Lemma 4.13 holds for 
4,b 

R0 = NJ and N1 = Rg, so, since b（ふ） ＝04 > 04, we conclude that名＝ S4n NJ n 
Nk臼 埒 x刈． Therefore入:< b(S!'0) <叩(S?）<入ぶ

Step 2.1. Construct a（入t(03) +, 03)-directed system沢：＝〈N各，a： aく闘〉 suchthat 
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°― 渭，aeNい (using肘＝島）． ThusN~ is ＜埓—closed and IP~ : = IP~ n N~ forces 
R =T S戸：＝ S，4,b n Nぼ． Thevalues of the cardinals of S戸aredisplayed in Table 4 . 

• 
t

―-
4
-
3
-
2
-
1
 

(regular) 
0臼 S3,0

2 

戸4, "4 

0ぁ刈，闘，埓
[O2，叫，刈，入］，埓
[O1，島］， 入ぶ入］，入§

ヽ
ー
，

F
 ，
 

閃―-埒
-03
-03
-03

,
1
、＂ 

Table 4: Values of the cardinal characteristics of S戸andTukey connections from regular 
cardinals. 

The values for 1 :(i :(3 are calculated similarly to Steps 1.1 and 1.2, so we only explain 

the values for i = 4. Sinc⑪ (S!'b)＝刈 <03= INgl, by Fact 4.6 (d) we obtain S戸三 Sド
so the values of the cardinal characteristics stay the same. 

Step 2.2. Construct a（入t03, 03)-directed system魯：＝〈Nla: a <猜〉 suchthat 

N含，"'ENla+l (using (03)<03 = 03). Thus NJ is ＜入~-closed and IP~ := IP~ n M;虔forces
3,b R号 S['b:= S戸nN点． Thevalues of the cardinals of S戸aredisplayed in Table 5 . 

• 
t

―-
4
-
3
-
2
＿ー

(regular) 
。土、S:，b

戸4, "4 

峙，入i，埒，入g
[02，町］，猜，闘，碍，埓
[O1，佐］，入ぶ猜，埒，入§

、1
,

b
 翌

闘
一埒
豆
碍

（
 

b
 

ヽ
ー
，

b
 sat闘

一闘
町
―仇J

（
 

、U

Table 5: Values of the cardinal characteristics of s;ふandTukey connections from regular 
cardinals. 

This is similar to Steps 1.2 and 2.1, but il(S~'b),;:;: 入g needs more details. As in the proof 
of Lemma 4.13, NJ n N! n NJ is obtained by a（入gX 入:X 入ぶ (03)+,03)-directed system 

況． Sowe apply Lemma 4.13 to炉＝況 andN1＝羽 toobtain s~,b :ST ni=3入jX 入；．

We proceed in the same fashion for the remaining steps. 

Step 3.1 Construct a（入ぶ(O;）+,02)-directed system隅 ：＝〈Nふ： a<羽〉 suchthat 

°― 渭，aeNい (using0名＝ 02). Thus N~ is ＜埒—closed and IP~ : = IP~ n ll名forces

R ミTS戸：＝ s;,bn N~. The values of the cardinals of S戸aredisplayed in Table 6. 

Step 3.2. Construct a（入t02, 02)-directed system魯：＝〈Nむ： a <羽〉 suchthat 

N含，°'ENt,a+l (using (0;,-)<02 = e;,-). Thus N.虔is<羽-closedand砂：＝ 1Pg n N含forces

凡三 S戸：＝ St2,° n N名． Thevalues of the cardinals of s;,b are displayed in Table 7, in 

particular, we obtain si,b :ST ni=2悶x入J.
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.t
―-
4
-
3
-
2
＿ー

(regular) 
0幻 S2,0， 
戸4, "4 

入いい いt
02，猜，闘，樗，埓，羽

[O1も］， 入ぶ 刈 ， 入］ ， 埒 ， 入〗

閤
刃
―A
訃
苅

b
 

`
'
|
＇
 

-0 ，
 

82t
闘
一闘
一02
-02

‘ヽ＼

＂ 

Table 6: Values of the cardinal characteristics of S戸andTukey connections from regular 
cardinals. 

(regular) 

0 :ST R; 
入b炉
4, "4 

炉 入b入° 入°3, "4, "4, "3 

入t ， 猜 ， 闘 ， 埒 ， 埓 ， 入〗
[01, 02]，入g，猜，入i，刈，埓，入g

~,b) 

ロ
Table 7: Values of the cardinal characteristics of S戸andTukey connections from regular 
cardinals. 

Step 4.1. Construct a（入t(en+, 01)-directed system吋：＝〈叫： a <闘〉 suchthat 
o-

Nf," E NL+ 1 (using肘＝ 01). Thus Nf is ＜入~-closed and IP~ : = IPt n Nf forces 

R号 Sド：＝ S戸nNf. The values of the cardinals of Sド aredisplayed in Table 8. 

(regular) 

OSTR 
入b 入°4, "4 

入｀， 入〗
入いいいいい〗

仇，入i，猜，入ぶ埒，入］，入］，入｝

~,D) 

ロ
Table 8: Values of the cardinal characteristics of s? and Tukey connections from regular 
cardinals. 

Step 4.2 Construct a（入t01, 0i-)-directed system吋：＝〈Nf_a: a <入t〉suchthat 

Nf.a E Nf.a+l (using (0i-)<01 = en. Thus Nf is<入~-closed and JP~ := JP~ n Nf forces 

R盲茫：＝ s?n Nf. The values of the cardinals of Sいaredisplayed in Table 9, in 
1,b 

particular, we obtain Si 幻 Hい悶 X 氾

Final step. Let N< s Hx be a--closed such that INcl =入C匡炉 (using(Nt。＝入<).

Then Q : = JP~ n Ne forces凡号均：＝ sl,bn NC and c = N. By Fact 4.6 (d), the 

values in Table 9 are still valid for S:. Then N :＝ Ne n nいN;n N} is as desir~], and 
Q=『 nN.
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(regular) 

0 :ST Ri 

4 埒，埒

口1 闘，入t，埒，猜，入｝，埓，入］，入f

□ ,b) 

>4
-b
3
-b
2
-b
1
 

ヽ^
ヽ^
ヽ^
ヽ^

Table 9: Values of the cardi叫 characteristicsof SいandTukey connections from regular 

cardinals. 

6 Discussion 

In our Cicho丘'smaximum result we get Tukey connections with products of ordinals, but 
it is unclear whether we actually have Tukey equivalence. 

Question 6.1. Can we force Tukey equivalence in Theorem 5.1 (a)? 

Similarly, in Theorem 3.7 (b), it is unclear whether we can force R4号 ふ x心

Recall that, in Corollary 2.7, we showed that the method of FS iterations restrict us to 
constellations of Cicho針sdiagram where non(M),:;; cov(M). There are four instances of 
Cichon's maximum under this condition: the one proved in Theorem 5.1, the one in Fig-
ure 22 (after applying the same arguments in Section 5 to the forcing from Theorem 3.6), 
and the two addressed in the following open question. 

b(R2) 

N1 
b(R1) 

b(Rり D(Rサ
• c 

Figure 22: Another instance of Cicho応'smaximum proved consistent with ZFC. Here 
佑く μjwhenever i < j. 

Question 6.2. When μiく灼 fori < j, are the constellations of Figure 23 consistent 
with ZFC? 

On the other hand, no instance of Cichon's maximum with cov(M) < non(M) has been 
proved consistent so far. 

We finish with some remarks about forcing singular values in Cicho応'sdiagram. In the 
models presented in this paper only c can be singular, but there are some models with two 
singular values [Mej19]. There are also some instances of Cicho恥'smaximum with two 
singular values, but their consistency use large cardinals [GKMS22]. The latter reference 
also presents interesting constellations in the random model. 
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b(R2) b(R4) ll(R1) 
• c 

N1 

• c 

~l 
b(R1) 

Figure 23: Instances of Cicho丘'smaximum in the context of non(M),(cov(M) that 
have not been proved consistent with ZFC. 

Recently, Goldstern, Kellner, Shelah and the second author proved, using large cardinals, 
the consistency of Cichon's maximum with the five cardinals on the right side possibly 

singular. Concretely, with the notation of Theorem 5.1, it is forced凡号［入？］匁 for
1,(i,(4 by allowing入？ tobe singular. However, it is still unknown how to adapt the 
methods of Section 4 and 5 to prove this result (without using large cardinals). 
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