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Abstract

We use known finite support iteration techniques to present various examples
of models where several cardinal characteristics of Cichont’s diagram are pairwise
different. We show some simple examples forcing the left-hand side of Cichori’s dia-
gram, and present the technique of restriction to models to force Cichon’s maximum
(original from Goldstern, Kellner, Shelah and the second author). We focus on how
the values forced in all the constellations are obtained via the Tukey order.

Introduction

Let Z be an ideal of subsets of X such that {z} € Z for all z € X. We define cardinal
characteristics associated with I by:

Additivity of Z: add(Z) = min{|J|: J < Z, JJ ¢ I}.

Covering of Z: cov(Z) =min{|J|: T <Z,JJ = X}.

Uniformity of Z: non(Z) = min{|A|: A< X, A¢ T}

Cofinality of Z: cof(Z) = min{|J|: J I, VAeZI3BeJ: A< B}.

cov(Z) cof(Z)
X >
non(Z) | X|

Figure 1: Diagram of the cardinal characteristics associated with Z. An arrow r —
means that (provably in ZFC) ¢ <.



Figure 1 shows the natural inequalities between the cardinal characteristics associated
with Z. These cardinals have been studied intensively for M and N (see e.g. [BJ95,
Blal0]), which denote the o-ideal first category subsets of R and the o-ideal of Lebesgue
null subsets of R, respectively. We denote, as usual, ¢ := 2% = |R|, and recall that N, is
the smallest uncountable cardinal.

For f,g e w¥ we write
f <* g (which is read f is dominated by g) it Am Yn = m: f(n) < g(n).
In addition, we define
The bounding number b = min{|F|: F € w* and —Jyew*” Yo e F': x <* y}, and
the dominating number ® = min{|D|: D € w*” and Yz e w* Jy e D: & <* y}.

The relationship between these cardinals is best illustrated by Cichori’s diagram (see
Figure 2), which is one of the most important diagrams in set theory of the reals and
has been a relevant object of study since the decade of the 1980’s. It is well-known that
this diagram is complete in the sense that no other inequality can be proved between two
cardinal characteristics there. See e.g. [BJ95] for a complete survey about this diagram
and its completeness.

cov(N) non(M) cof(M) cof(N)

N1= J# _____
add(N) add(M) cov(M) non(N)

Figure 2: Cichori’s diagram. The arrows mean < and dotted arrows represent add(M) =

min{b, cov(M)} and cof(M) = max{0,non(M)}.

In the context of this diagram, a natural question arises:

Is it consistent that all the cardinals in Figure 2 (with the exception of the
dependent values add(M) and cof(M)) are pairwise different?

It turns out that the answer to this question is positive and was proved by Goldstern,
Kellner and Shelah [GKS19], who used four strongly compact cardinals to obtain the
consistency of Cichon’s diagram divided into 10 different values, situation known as Ci-
chon’s mazimum. In this same direction. This was improved by Brendle and the au-
thors [BCM21] who used only three strongly compact cardinals; finally, Goldstern, Kell-
ner, Shelah and the second author [GIKMS21] proved that no large cardinals are needed
for the consistency of Cichont’s maximum.
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The previously cited work occurs in the context of finite support (FS) iterations of ccc
posets. In fact, when calculating the values of the cardinals in Cichoni’s diagram in generic
extensions, Tukey connections appear implicitly. This appears a bit more explicitly in
[GKS19, GKMS21] with the notions of COB (Cone of bounds) and LCU (linear cofinally
unbounded), but still the full power of the Tukey connections remained unexplored.

To complement this last part, this work summarizes some of the techniques required to
force Cichonrl’s maximum, but making the role of the Tukey order very explicit. This allows
to reformulate all technical results and main theorems in a very beautiful and concise way.

1 Relational systems and cardinal characteristics

Many cardinal characteristics of the continuum and their relations can be represented by
relational systems as follows. This presentation is based on [V0j93, Barl0, Blal10].

Definition 1.1. We say that R = (X,Y, =) is a relational system if it consists of two
non-empty sets X and Y and a relation .

(1) Aset FF< X is R-bounded if Jye Y Yo e F:z—y.

(2) Aset ECY is R-dominating if Ve e X Jye E: z c y.
We associate two cardinal characteristics with this relational system R:

b(R) := min{|F|: F < X is R-unbounded} the unbounding number of R, and

9(R) :=min{|D| : D <Y is R-dominating} the dominating number of R.

A very representative general example of relational systems is given by directed preorders.

Definition 1.2. We say that (S, <g) is a directed preorder if it is a preorder (i.e. <g is
a reflexive and transitive relation on ) such that

Ve,ye S3ze S:x<gszand y <g 2.

A directed preorder (S, <g) is seen as the relational system S = (9,5, <g), and their
associated cardinal characteristics are denoted by b(S) and 9(S). The cardinal 9(S) is
actually the cofinality of S, typically denoted by cof(.S) or cf(S).

Fact 1.3. If a directed preorder S has no maximum element then b(S) is infinite and
regular, and b(S) < cf(0(S)) < o(S) < |S]. Even more, if L is a linear order without
mazimum then b(L) = (L) = cof(L).

The following list of examples are relevant for the main results of this paper.

w

Example 1.4. Consider w* = (w*, <*), which is a directed preorder. The cardinal
characteristics b := b(w*) and ? := d(w”) are the well-known bounding number and
dominating number, respectively.



Example 1.5. For any ideal Z on X, we consider the following relational systems.

(1) Z:=(Z,<) is a directed partial order. Note that b(Z) = add(Z) and ?(Z) = cof(Z).
(2) Cz:=(X,Z,€). Note that b(Cz) = non(Z) and 9(Cz) = cov(Z).

Example 1.6. Let 6 be an infinite cardinal and X a set of size > 6. Then [X]<? is an
ideal. We look at its associated cardinal characteristics.

Its additivity and uniformity numbers are easy to determine:

add([X]=%) = cf(#) and non([X]=%) = 0.

For the covering number, we obtain
<oy _ | 1X[ X[ >0,
cov(IX]™) = { of(6) if [X| = 6.
Therefore cov([X]<?) = | X| whenever 6 is regular, which is our case of interest.

The cofinality number is more interesting. Under Shelah’s Strong Hypothesis® it follows

that
| X if (] X]) = 0,

| X|*  otherwise.

ol (X1) - |
In ZFC, we have cof([X]<?) = | X| whenever |X|<Y = |X|, which is our case of interest.

Inequalities between cardinal characteristics associated with relational systems can be
determined by the dual of a relational system and also via Tukey connections, which we
introduce below.

Definition 1.7. If R = (X,Y,C) is a relational system, then its dual relational system
is defined by R* := (Y, X, =t) where y =+ z if —(z = y).

Fact 1.8. Let R = (X, Y, =) be a relational system.
(a) (RY)* = R.
(b) The notions of R*-dominating set and R-unbounded set are equivalent.
(c) The notions of R*-unbounded set and R-dominating set are equivalent.
(d) 9(R*) = b(R) and b(R*) = 2(R).

Definition 1.9. Let R = (XY, =) and R’ = (X", Y’,’) be relational systems. We
say that (U_,W,): R — R’ is a Tukey connection from R into R"if U_: X — X’ and
U, : Y’ — Y are functions such that

Vee XVy eV U(x) = v =z = Us(y).

The Tukey order between relational systems is defined by R <t R’ iff there is a Tukey
connection from R into R/. Tukey equivalence is defined by R ~1 R’ iff R <t R’ and
R’ <r R

IThe failure of this hypothesis requires large cardinals.
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Fact 1.10. Assume that R = (X,Y,c) and R’ = (X" Y’ ') are relational systems and
that (U_, ¥, ): R — R’ is a Tukey connection.

(a) If D' €Y' is R'-dominating, then U [D'] is R-dominating.

(b) (U, ¥ ): (R)* — R* is a Tukey connection.

(¢) If E < X is R-unbounded then ¥_[E] is R'-unbounded.
Corollary 1.11. (a) R <7 R implies (R')* <1 R*.

(b) R <1 R’ implies b(R’) < b(R) and d9(R) < d(R/).

(¢) R =1 R’ implies b(R') = b(R) and 9(R) = d(R).

Example 1.12. The diagram in Figure 1 can be expressed in terms of the Tukey order
since Cz <t 7 and C% <t T

Example 1.13. If ¢’ < 6 are infinite cardinals, and ¢ < |X| < |X’|, then Cxj<o <r
Ciy<o- On the other hand, for any regular cardinal y, Cpy<n =7 [p]™" =1 p, so
add([p]=") = cof([u]=") = u. As a consequence:

Fact 1.14. Assume that 0 < X are infinite cardinals. Then, for any reqular u € [0, )],
n =<7 C[A]<9.

In fact, the inequalities in Cichori’s diagram (Figure 2) are obtained via the Tukey con-
nections illustrated in Figure 3.

Cy Ciy M N Crrj=n

(ww)L > W

Cf]k]<)~t1 /\/’L ./\/li Cum Cjiv

Figure 3: Cichon’s diagram via Tukey connections. Any arrow represents a Tukey con-
nection in the given direction.

In this paper, when we force a value of a cardinal characteristic via ccc posets, we actually
force Tukey connections with relational systems of the form Cpyj<o and [A]< for some
cardinals 6 < A\ with 6 uncountable regular. For instance, if R is a relational system and
we force R =1 Cjyj<s, then we obtain b(R) = non([A]=?) = 6 and 9(R) = cov([A]=?) = A.
In the case when A</ = )\, we obtain the same values when forcing R ~¢ [A]<Y; also
because of the following result.

Lemma 1.15. If  is a regular cardinal and |X |~ = |X|, then Cjxj<o = [X]=’.



Proof. The relation <t is immediate from Example 1.12. For the converse, since Z :=
[X]=? has the same size as X, we get Ciz<0 =1 Cxj<o and [Z]=¢ =1 [X]<Y by using
a bijection from X into Z, so it is enough to show that [X]</ <r Ciz1<o. The Tukey
connection is given by the identity map from [X]<? into Z, and by the map ¥, : [Z]<¢ —
[X]<¢ defined by ¥, (A) := JA. O

Motivated by the previous explanation, we look at characterizations of the Tukey order
between Cjx<s and other relational systems.

Lemma 1.16. Let 0 be an infinite cardinal, I a set of size = 6 and let R = (XY, =) be
a relational system. Then:

(a) If |X]| = 6, then R <1 Cixj<o iff VA€ [X]* Fys €Y Vo e Atz = ya, ic. any
subset of X of size <0 is R-bounded.

In this case, when 0 is reqular, < b(R) and 9(R) < | X]|.

(b) Cip=e <o Riff 3w ie )= XVyeY: {iel: n,cy}| <0.
In this case, when 0 is reqular, 6(R) < 0 and |I| < d(R).

Proof. (a): The implication from right to left is immediate by using the maps = — x
(identity on X) and A — ya as a Tukey connection. For the converse, assume R <t
Cixj=s, i.e., there is a Tukey connection (F,G): R — Cjxj<s. For A € [X]<0, ya :=
G(F[A]) is as desired. The latter part uses Example 1.6.

(b): The implication from right to left follows by using the maps i — z; and y — {ie I :
r; © y}. To see the converse, assume that (F,G): Cy<e — R is a Tukey connection. For
iel, let x;:=F(i),so{iel: z;=y} < G(y) and |G(y)| < 0. O

When forcing constellations of Cichon’s diagram via ccc posets, we look at simpler char-
acterizations of the relational systems of its cardinals by coding with reals.

Definition 1.17. We say that R = (XY, =) is a definable relational system of the reals
if both X and Y are non-empty and analytic in Polish spaces Z and W, respectively, and
C is analytic in Z x W.

Remark 1.18. In the previous definition indicates that any definable relational system is
Tukey equivalent to a relational system of the form (w*”, w*, =) for some analytic relation
C on w*. Indeed, if R is as in Definition 1.17, then Tukey connections are obtained by
some Borel isomorphism from w* onto Z.

To characterize the relational systems of Cichon’s diagram, we use relational systems with
better definitions.

Definition 1.19. We say that R = (XY, ) is a Polish relational system (Prs) if the
following is satisfied:

(i) X is a perfect Polish space,
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(ii) Y is a non-empty analytic subspace of some Polish space Z and

(ili)) = n(X x Z) = |J,-, =n where (=, )n<, is some increasing sequence of closed
subsets of X x Z such that (=,)¥ = {x € X : z —, y} is closed nowhere dense for
any n <w and y € Y.

By (iii), we obtain:

Fact 1.20. If R is a Prs then (X, M(X),e) <t R. Therefore, b(R) < non(M) and
cov(M) <o(R).

Example 1.21. The following are Prs that describe the cardinal characteristics of Ci-
chon’s diagram.

(1) Define the relational system Mg := (2¥ =, €*) where
Ei={f:27Y 52" :Vse2: 5 f(s)}
and z € fiff [{s €2 : z D f(s)}| < Ny. This is a Prs and Mg =1 C,s. Hence
b(Mg) = non(M) and 2(Mg) = cov(M).
(2) The relational system w® := {(w”,w*, <*) is already Polish.
(3) Define Q, := {a € [2=“]=8 : Lby(J.,[s]) < 27"} (endowed with the discrete
topology) where Lb, is the Lebesgue measure on 2*. Put Q := [] _ €, with

the product topology, which is a perfect Polish space. For every =z € 2 denote
N7 = (Ve Usea(m 8] which is clearly a Borel null set in 2¢.

Define the Prs Cn := (Q,2% =) where z = z iff z ¢ N*. Recall that any null set in
2¢ is a subset of N for some z € ©, so Cn =1 Cj,.. Hence, b(Cn) = cov(N) and
9(Cn) = non(N).

(4) For each k < w let id*: w — w such that id*(i) = * for all i < w, and H := {id**" :
k < w}. Let Le* := (w¥, S(w, H),€*) be the Polish relational system where

Sw,H) i={p:w—[w]™: IheHVi<w:|p@) <h()}
and x € ¢ iff 2(i) € (i) for all but finitely many 7. As consequence of [Barl0)],
Lc* =1 N, so b(Lc*) = add(N) and 9(Lc*) = cof(N).

To conclude this section, we review products of relational systems.

Definition 1.22. Let R = (XY, =) and R/ = (X', Y’, ') be relational systems. Define
the relational system R x R :=(X x X" Y x Y’ =) by

(z,2") Ex (y,¥) & xcyand 2’ 'y
Fact 1.23. For relational systems R and R/':
(a) R<rRxR and R <t R xR
(b) B(R x R’) = min{b(R), b(R/)} and max{d(R),0(R")} < (R xR') <d(R) - d(R/).
(c) If S and S" are directed preorders, then so is S x S'.

In Section 5 we use relational systems of the form A := [],_, v; for limit ordinals v; and
n < w. Note that b(A) = min{cf(r;) : i <n} and 9(A) = max{cf(v;) : i < n}.



2 Forcing and Tukey connections

We present general results illustrating the effect of FS iterations of ccc posets on the
cardinal characteristics associated with a definable relational system of the reals. More
concretely, if R is such a relational system, we show how to force statements of the form
R <7 C[1]<6 and C[[]<9 <r R.

We start by looking at special types of generic reals.

Definition 2.1. Let R = (X, Y, =) be a relational system and let M be a set (commonly
a model).

(1) Say that y € Y is R-dominating over M if Ve e X n M: x c y.

(2) Say that x is R-unbounded over M if it is R*-dominating over M, that is, Vy €
YnM:—(zcy).

Example 2.2. The following are examples of very typical Suslin ccc forcing notions and
the type of dominating (or unbounded) reals they add over the ground model. For precise
definitions, see e.g. [BJ95].

(1) Cohen reals are precisely the Cp-unbounded reals, which are precisely the Mg-
unbounded reals in the context of 2¢. We denote Cohen forcing by C.

(2) Random reals are precisely the Cy-unbounded reals, which are precisely the Cn™-
dominating reals. We denote random forcing by B.

(3) The eventually different real forcing I adds a Cp-dominating real in w*, which can
be transformed into a Mg-dominating real (in 2¢).

(4) Hechler forcing D adds an w*”-dominating real (usually called dominating real).
(5) LOC adds an Lc*-dominating real, which also adds an A/-dominating real.

Definition 2.3. Let v be an ordinal. An iteration <IP5,QE : £ < v) has finite support
(F'S for short) if

(1) §<6<V©]P£<IP5,
(11) IP§+1 = IPf * Q& and
(iil) Py = U§<5 P, for all limit 6 < v.
We usually denote Vg := V¢ for all £ < v.

It is important to have a reasonably good picture of a FS iteration before plunging into
technical facts, see Figure 4.

Remark 2.4. For limit § < v, V5 # [J._; Ve in general.
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Qe Qer1 Qe

V=Ve--——> -————>0—————>e

Ve Vet Ve Veis Vs Vi

Figure 4: FS iteration of length v.

Below, we state some well-known facts (most of them without proofs) for FS iterations
of forcing notions. The following lemma states that, in F'S iterations of certain forcing
notions (e.g. ccc forcing notions), no new reals are added at limit stages of uncountable
cofinality, a result which will be used often in forthcoming results.

Lemma 2.5. Let 0 be a regular uncountable cardinal. If (Pg, Q5 2 € < vyisa FSiteration
of O-cc posets, i.e. -p, Q¢ is 0-cc for all § < v, then P, is f-cc.

If, in addition, cf(v) = 0, then v NV, = w* n e, Ve

FS iterations add Cohen reals, which is sometimes considered as a limitation of the
method.

Lemma 2.6. Assume that P, = (P, Q§ 2 & < vy is a FS iteration of non-trivial posets.
If ¢ <v and v is limit, then P, adds a Cohen real over V.

Corollary 2.7. Let v be a limit ordinal of uncountable cofinality and let P, = (Pg, Qg :
& < vy be a FS iteration of non-trivial cf(v)-posets. Then P, forces v <r Mg. In
particular, P, forces non(M) < cf(v) < cov(M).

Proof. Since L ~1 v for any cofinal subset L of v, it is enough to show that L* <1 Cyy
where L* is the set of limit ordinals smaller than v. For each i € L* let ¢; € V.., be a
Cohen real over V; (which exists by Lemma 2.6). Then the Tukey connection is given by
the maps 7 — ¢; and B — jp, the latter defined by: whenever B is a Borel meager set of
reals, jp € L* is chosen such that B is coded in V;, (which exists by Lemma 2.5). O

One starting point to force a statement of the form Cj<s <1 R is the following result.
Fact 2.8. Let C; be the poset that adds Cohen reals indexed by I. If I is uncountable
then Cr forces Cpp=ny <1 Mg.

Proof. Apply Lemma 1.16 (b) to the sequence {c; : i € I') of Cohen reals added by C;. O

The following results illustrates the effect of adding cofinally many R-dominating reals
along a FS iteration.

Lemma 2.9. Let R be a definable relational system. of the reals, and let v be a limit
ordinal of uncountable cofinality. If P, = (Pe, Qe : € < v) is a FS iteration of cf(v)-cc
posets that adds R-dominating reals cofinally often, then P, forces R <7 v.

In addition, if R is a Prs and all iterands are non-trivial, then P, forces R ~r Mg ~r v.

In particular, P, forces b(R) = d(R) = non(M) = cov(M) = cf(v).



Proof. Let L be the set of ¢ < v such that Qg add an R-dominating real over V. Since
L is cofinal in v, L ~p v. We show that, in V,,, R <t L. Consider the maps F': X" — L
such that z € Vp(,), and G: L — Y such that G(£) is R-dominating over V;. Clearly,
(F,G) is a Tukey connection.

The second part follows from Fact 1.20 and Corollary 2.7. O

In most of the cases, we force a Tukey connection between a definable relational system
of the reals and some relational system R fixed in the ground model. To calculate the
cardinal characteristics in the extension, we need to know when b(R) and d(R) stay the
same in generic extensions.

Lemma 2.10. Let 6 > X, be a regular cardinal and let R = (A, B,=) be a relational
system.

(a) If V =0(R) = 0 then, in any 0-cc generic extension of V, 9(R) = d(R)Y .
b(R)".

(b) If V = b(R) = 0 then, in any 0-cc generic extension of V', b(R)

Here, R is considered as the same object in both V' and in the generic extension (not an
interpretation).

Proof. We show (a) (note that (b) follows by (a) applied to RY). In V, assume that
A :=0(R) > 0 and that D < B is an R-dominating family of size \. Let W be a 6-cc
generic extension of V. In W, it is clear that D is R-dominating, so d(R)" < A. Now
assume, in W, that £ € B has size <A. Since W is a 6#-cc generic extension of V' and
A =0, we can find E' € V of size <\ such that E € E' < B. In V, |E'| < A = d(R), so
£’ is not R-dominating, hence there is some x € X which is R-unbounded over E’. Tt is
clear that, in W, z is R-unbounded over E. This concludes that d(R)" > . d

In our applications, R will be a directed set like [X]<¢ n V, or a relational system of the
form Cpyj<oy. In terms of Tukey equivalence, this will be the same as looking at [X 1<¢
and Cjx)<s, respectively, in the generic extension.

Lemma 2.11. Let 0 > Xy be a regular cardinal and assume |X| = 0. Then, in any
0-cc generic extension, [X]™ =1 [X]™ AV and Cyxj<o =1 Cixj<ony. Moreover,
add([X]=%) = add([X]=9)Y, likewise for the other cardinal characteristics associated with
the ideal [X]<°.

Proof. This follows because, in any #-cc generic extension of V', any member of A €
[X]<% is contained in some member of [X]|<¢ A V. The “moreover” is a consequence of
Lemma 2.10 applied to [X]<? n V and Cixj<onv- |

The following result is a general criteria to force statements of the form R <t Cjx}<s.

Theorem 2.12. Let R = (X,Y,=) be a definable relational system of the reals, 0 an
uncountable reqular cardinal, and let P, = (P¢, Q¢ : £ < v) be a FS iteration of 8-cc
posets with cf(v) = 0. Assume that, for all € < v and any A € [X]= AV, there is some
n = & such that Qn adds an R-dominating real over A. Then P, forces R <1 Cixj<e =t
Cix<onv =<1 [X]™ =1 [X]=Y, in particular, < b(R) and d(R) < |X| =c.
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Proof. In V,,: for A € [X]=Y we have that A € V for some £ < v, so it is R-bounded by
the hypothesis. Hence R <t Cjxj<¢ by Lemma 1.16. The rest follows by FExample 1.12
and Lemma 2.11. O

Remark 2.13. In connection with the theorem above, [GKS19] defines the following
property:

COB(R, P, \,?) states that there are a directed preorder S of size v and with b(S) = A,
and a sequence (y; : s € S) of P-names of members of Y such that, for every P-name
2 of a member of X, there exists an s; € S such that, for all ¢t =g s;, -2 = ;.

This property implies that there exist a directed preorder S in the ground model such
that A < b(S), 9(S) < ¥ and I-p R <1 S. Even more, equivalence holds when P is A-cc
and A is uncountable regular.

We conclude this section with general results to force statements of the form Cin<r =1 R.
For this purpose, we restrict to Polish relational systems and use Judah’s and She-
lah’s [JS90] and Brendle’s [Bre91] preservation theory.

Definition 2.14. Let R = (X, Y, =) be a Prs and let ¢ be an infinite cardinal. A poset
P is #-R-good if, for any PP-name h for a member of Y, there is a non-empty set H € Y
(in the ground model) of size <@ such that, for any « € X, if 2 is R-unbounded over H
then |-z &£ h.

We say that P is R-good if it is X;-R-good.

Good posets allow us to preserve the Tukey order as follows.

Lemma 2.15. Let 0 be reqular uncountable, and let R be a Prs. Assume that P is a 0-cc
§-R-good poset. If pu is a cardinal, cf(p) = 0, |I| = p and Cip<x <7 R, then P forces that
C[[]<u <t R.

Proof. Choose a sequence {x; : i € Iy as in Lemma 1.16 (b). We show that P forces
Hiel: z; =y} <pforallyeY. Let y be a P-name of a member of Y and choose
H as in Definition 2.14. Let B := {J,cpfi € I+ 2 © '}, so [B| < p. Since P forces
x; =y =>1i€ B, then P forces |{i e I : z; = §}| < p. O

We now present some examples of good posets. A general one is:

Lemma 2.16. If 0 > ¥y regular and |P| < 6, then P is 6-R-good. In particular, Cohen
forcing is R-good.

Proof. See e.g. [Mej13, Lemma 4]. O

Example 2.17. We indicate the type of posets that are good for the Prs of Cichon’s
diagram, namely, those of Example 1.21.

(1) Miller [Mil81] showed that E is w“-good. Also, random forcing is w“-good. More
generally, any p-Fr-linked poset is p-D-good (see [Mej19, BCM21] for details).



(2) Any p-centered poset is u*-Cn-good (see e.g. [Bredl]). In particular, IE and D are
Cn-good.

(3) Any p-centered poset is p*-Le*-good (see [Bre9l, JS90]), so, in particular, |E and
D are Le*-good.
Besides, Kamburelis [Kam89] showed that any Boolean algebra with a sfam (strict
finitely additive measure) is Lc*-good. In particular, any subalgebra of random
forcing is Le*-good.

Good posets are preserved along FS iterations as follows.

Theorem 2.18. Any FS iteration of 0-cc 0-R-good posets is again 0-R-good, when 0 is
reqular uncountable.

Proof. See e.g. [CM19, Thm. 4.15]. O

As a consequence, we get the following main result.

Theorem 2.19 (Fuchino and the second author). Let 6 be an uncountable reqular cardi-
nal. If P = (P¢, Qe : £ <v) is a FS iteration of 0-cc 8-R-good posets, and v = 0, then P
Jorces Cp<0 <1 R.

In particular, P forces ¥ <t R for any reqular 6 < 9 < |v|.
Proof. We only prove the particular case when v = \ + § where A := |v| and QE =
for all & < A. By Fact 2.8, Py forces Cpj<x; <7 Mg, which implies Cp,j<o <1 R by

Example 1.13 and Fact 1.20. Since the remaining of the iteration is 6-cc and 6-R-good,
by Lemma 2.15 IP forces Cp,j<0 <1 R.

The “in particular” follows by Fact 1.14. O
Remark 2.20. In connection with the previous result, [GKS19] defines the following

property when 9 is a limit ordinal:”

EUB(R, P,¥) states that there is a sequence (&, : a < ) of P-names of members of X
such that, for every P-name y of a member of Y, there exists an a; < o such that

VB = ay: —(t5 = y).

This property is equivalent to COB(RL, P, cf(d), cf(¥9)), so it implies - ¥ <t R (see
Remark 2.13). In fact, equivalence holds when P is cf(d))-cc

3 Applications to the left side

This section is dedicated to forcing many values in Cichori’s diagram, particularly for the
left side, by applying the methods of the previous sections.

From now on, we denote the Prs introduced in Example 1.21 by Ry := Lc* =t N,
R, :=Cn >~ Cf\'[, R; = w”, and Ry := Mg =7 CM

2The original notation is LCU. The notation EUB (eventually unbounded) comes from [Bre22].
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3.1 Warming up

In this section, we present the effect on Cichoni’s diagram after the FS iteration of the
posets of Example 2.2. We fix a cardinal A = AR,

Cohen forcing

After iterating Cohen forcing A-many times, we obtain C,. This forces A = ¢ and, by
Fact 2.8, Cpy<ny <7 Ry4. On the other hand Ry <1 Cppjeny =1 Cpyyon (see Figure 3).
Therefore, C, forces R; ~ C[,\]<N1 for all 1 <i < 4. In particular, it forces the constel-
lation of Figure 5.

b(Rz) b(R4l_ o D(Rl) .
I
I
N; b(R3) d(R3) A
I
b(Ry) o(Ry) b(Ry)

Figure 5: Cichon’s diagram constellation in Cohen’s model.

Random forcing

Let P be the FS iteration of B of length A. Then P forces

(i) Ry =1 Ry =t A, hence cov(N) = non(M) = cov(M) = non(N) = cf(\); and
(ii) Ry =1 Ry =p Cpyjx, =1 Cpgjex,, hence add(N) = b = Ry and 9 = cof(N) = ¢ = \.

In particular, when A is regular, P forces Figure 6.

b(Rz) b(R4l____ D(Rl) .
I
I
INeY b(R3) o(R3) A
I
R S
b(Ry) o(Ry) b(Ry)

Figure 6: Constellation of Cichon'’s diagram after a FS iteration of random forcing of
length A regular.



Indeed, (i) follows by Lemma 2.9, while (ii) follows by Example 2.17 (1) and by Theo-
rem 2.19, also because P forces ¢ = A.

Eventually different reals forcing

Let P be the FS iteration of E of length A. Then P forces

(i) Ry =1 A, so non(M) = cov(M) = cf(A); and

(ii) Ri =p Cpyeny 21 Cpgyeny for 1 < i < 3, hence cov(N) = b =R, and 9 = non(N) =
c= A

In particular, when A is regular, P forces Figure 7.

b(R.) bR) o(Ry) c
I
I
Nl b(Rii) D(RZS) A
|
b(Rq) o(Ry) b(R4)

Figure 7: Constellation of Cichonii’s diagram after a F'S iteration of I of length A regular.

Hechler forcing

Let P be the FS iteration of D of length A\. Then P forces

(i) Ry =1 Ry =1 A, so add(M) = cof(M) = cf(N); and

(11) R1 =7 R2 =7 C[/\]<><1 =7 C[R]<N1.

In particular, when X is regular, P forces Figure 8.

Localization forcing

Let P be a FS iteration of LOC of length A. Then IP forces ¢ = A\ and R; =1 A, hence
add(N) = cof(N) = cf(\). In particular, when X is regular, P forces Figure 9.

3.2 More values

We now present examples of more different values in Cichon’s diagram. All the results
cited from [Mej13] are due to Brendle.
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b(Rs) b(Ry4) o(Ry) .
_____ T
I
I
Xy b(Ro) 2a(Ry) A
!
M b(ky) TTTTI®) bRy

Ny b(R3) o(Rs) A

Figure 9: Constellation of Cichonl’s diagram after a FS iteration of LOC of length A
regular.

Theorem 3.1 ([Mej13, Theorem 3]). If X; < A; < A < A3 < Ay are regular cardinals and
A5 = A\ is a cardinal such that A;As = A5, then there is a ccc poset forcing, for 1 <1 < 3,

((],) RL =7 C[)\5]<>‘i =7 [)\5]<>\i,' and
(b) R4 =7 )\4.

In particular, we obtain the consistency of Figure 10.

b(Ry) bRy | o(Ry) ]
Ao w | )
b(Rs) oRy)
e As 1
% b(Ry) : 177 3Ry b(Ry)

Figure 10: Six values in Cichonil’s diagram.



Proof. We shall perform a FS iteration P = (P, Qg : & <) of length v := A\ (ordinal
product) as follows. Fix a partition (C; : 1 < i < 3) of A5 \ {0} where each set has size
As. For each p < A4 denote 1, := Asp. We define the iteration at each £ = 7, + ¢ for
p <Ay and € < A5 as follows (see Figure 11):

E ife =0,
LOCYs ifce O,
BY  ifee Oy,
DY ifee Oy,

Q¢ =

where Ng is a Pe-name of a transitive model of ZFC of size <)A; when ¢ € C;.

Additionally, by a book-keeping argument, we make sure that all such models N¢ are
constructed such that, for any p < A\4:

(i) if A eV, is a subset of w” of size <)y, then there is some ¢ € C; such that
Ac an+s§
(i) if AV,

ue 15 asubset of € of size <)y, then there is some € € Cy such that A = N, .;
and

(iii) if A € V;, is a subset of w*” of size <\3, then there is some ¢ € C3 such that
ACS Ny e

E LOCNet!  BNet2 DNe+3

VCVye—-——-—- -———>0———>e

Ve Vet Veyo Veys Vera Vs V.

Figure 11: A FS iteration of length v of ccc partial orders, going through IE cofinally
often, as well as through all subforcings of localization forcing of size <\, all subforcings
of random forcing of size <Ay, and all subforcings of Hechler forcing of size <.

We prove that PP is as required. Clearly, P forces ¢ = |v| = As.

Fix 1 <i < 3. Note that all iterands are A\;-R;-good (see Lemma 2.16 and Example 2.17),
hence, by Theorem 2.19, P forces Cp <x; <7 R;. On the other hand, P forces R <t
Cgj=» by Theorem 2.12. Therefore, since |[R| = |v| = A5, we conclude (a).

Finally, since cf(v) = Ay, by Lemma 2.9 P forces Ry =1 A4. |

Theorem 3.2 ([Mejl13, Theorem 2|). If Xy < A\; < Ay < A3 are regular cardinals and

Ay = A3 is a cardinal such that )\f‘3 = M4, then there is a ccc poset forcing, for 1 <1 < 3,

(@) Rz =7 C[)\4]<M >7 [)\4]<)\,v7_ and

(ii) Ry =r R3 =7 C[A4]<%3 =T [/\4]<)\3'
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b(R») b(R4) (Ry)
CA ¢
b(R3) o(R3) Ay
A1 :
R b(Ry) ] R b(R4)

Figure 12: Five values in Cichon’s diagram.

In particular, we obtain the consistency of Figure 12.

Proof. Perform a FS iteration P = (P, Qg 2 € < Ay as follows. Fix a partition (C; : 1 <
i < 3) of \ into cofinal subsets of size \y. For each £ < A5 define:

. LOCY if €€ Oy,
Q¢ = B if € € Oy,
DNe if § S 037

where N is a Pe-name of a transitive model of ZFC of size <); when ¢ € C;. Additionally,
by a book-keeping argument, we make sure that all such models V¢ are constructed such
that conditions similar to (i)—(iii) of the proof of Theorem 3.1 are satisfied. Concretely, if
we denote R; := (X;,Y;, =%, we guarantee that, for any ¢ < X\ and A < Xivf of size <\;,

there is some 1 > £ in C; such that A < NN,. Then, PP is as required. |
Theorem 3.3 ([Mejl3, Theorem 4]). If 8y < A\ < Ay < A3 are regular cardinals and
A4 = A3 18 a cardinal such that )\Z’\Q = M4, then there is a ccc poset forcing

(Z) R1 =7 C[/\4]</\1 =7 [)\4]<)\1, Rd =7 C[/\4]</\2 =7 [)\4]</\2, and

(ZZ) Ry =1 Ry =1 5.

In particular, we obtain the consistency of Figure 135.

b(R2) b(Ry) o(Ry) ]
_____ T Y
As | A
e A |
B b(R,) : T ARy b(Ry)

Figure 13: Five values in Cichon’s diagram.



Proof. Perform a FS iteration <IP5,Q5 o & < vy of length v := A\j\3 as follows. Fix a
partition (C; : 1 < i < 3) of Ay \ {0} into cofinal subsets of size A\y. For each p < A3
denote 7, := Ayp. We define the iteration at each £ = 17, 4+ € for p < A3 and € < A4 as
follows: )
. LOC™ ifee Cy,
Qe := < DM if e € Oy,
IB ifee Cg,

where Ng is a Pe-name of a transitive model of ZFC of size <A; when € € C;. We use
book-keeping as in (i)—(iii) of Theorem 3.1. The poset P is as required. O

Theorem 3.4 ([Mejl3, Theorem 5]). If Xy < Ay < Ay < A3 are regular cardinals and
Ay = A3 is a cardinal such that )\Z’\Z = M4, then there is a ccc poset forcing, for 1 <1< 2

(Z) R; =7 C[)\4]<Ai =7 [)\4]<>\i,' and
(Zl) R3 =7 R4 =7 )\3

In particular, we obtain the consistency of Figure 14.

b(Rg) b(R4l____ D(Rl) ¢
AQ )\3 :
b(R3) (R A4
/\1 :
Ny - —————
b(R1) o(Ry) b(Ry)

Figure 14: Five values in Cichon’s diagram.

Proof. Perform a FS iteration P = <IP§,Q5 o & < vy of length v := A3 as follows.
Consider the same preparation as in the proof of Theorem 3.3. Using book-keeping as
in previous proofs, we define the iteration at each & = 7, + ¢ for p < A3 and ¢ < A4 as

follows: .
]L(DGJN€ ifee Cl,

Q=3 BY%  ifce(y,
D ifee Cg,
where NE is a Pe-name of a transitive model of ZFC of size <)A; when ¢ € C;. O

We conclude this section by presenting three important results of the left-hand side of
Cichon’s digram, which uses sophisticated techniques such as finitely additive measures
as well as ultrafilters along FS iterations, and ultrafilters along matrix iterations.
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Theorem 3.5 ([GCMS16, GIKS19]). Let \; < Ay < A3 = \3™ < Ay be uncountable regular
cardinals, and assume that Ay < /\5<’\4 and Ay is Wy -inaccessible.® Then there is a ccc poset
that forces ¢ = X5 and R; =1 Cpyjon =1 [Ms]™ =qp [As]M AV forall1 <i < 4. In
particular, it forces the constellation in Figure 15.

cov(N) non(M) cof(N)
S ¢
Az Aq !
b [.Y
A1 A3 :
Nl & - T
add(N) cov(M) non(N)

Figure 15: The left side of Cichori’s diagram.

Theorem 3.6 ([KST19]). Let \; < Ay = \;™ < \g < Ay be regular cardinals, and assume
that A3 and Ay are Ny-inaccessible, and \s = )\5<’\4 > X\;. Then there is a ccc poset that
forces ¢ = X5, Ry =1 [As]=Y NV fori= 1,4, Ry =1 [As]™ AV and R3 =1 [X\s]"2 n V.
In particular, it forces the constellation in Figure 10.

cov(N) non(M) cof(N) .
A3 A4 ?
b 0 A5
)\1 )\2 :
R YOS
add(WNV) cov(M) non(N)

Figure 16: Alternative left side of Cichoii’s diagram.

Theorem 3.7 ([BCM21]). Let A\g < A\ < Ay < A3 < Ay < X5 be uncountable regular
cardinals and let A\¢ = N5 be a cardinal such that )\g& = \g, then there is a ccc poset that
forces

(a) R; =qp Cpyjoniny =1 [Ne]™ 0V for 1 <i <3, and

(b) )\4 <7 R4, )\5 <7 R4 and R4 <7 )\5 X )\4.

In particular, it forces the constellation in Figure 17.

3A cardinal \ is f-inaccessible if p¥ < \ for any p < X and v < 6.



cov(N) non(M) cof(N)
el ¢
Az Ag L e
b 0
M As | Xs
Nl & - =T
add(NV) cov(M) non(N)

Figure 17: Seven values in Cichont’s digram.

We remark that, in Theorem 3.7, we cannot force Ry =1 Gy j<n, because, in the ground
model, Cpy;j<xs £ As x Ay in the case when \; < As. To see this, note that if {a, by) -
i < A5y € A5 X Ay, then there is some L © A5 of size A5 such that the sequence {b; : i€ L)
is constant with value some b < A4. Then, it is possible to find some a < A5 such that
{ieL: (a;b;) < (a,b)} has size =\,, so we conclude that there is no Tukey connection
by Lemma 1.16 (b). On the other hand, we can say that Ry <1 Cjy,j<ny because, in
the ground model, A5 x Ay <1 Cp;yx)<0-

4 Restriction to submodels

We present the general theory of intersection of posets with o-closed models. This is the
main tool in [GKMS21] to force Cicholt’s maximum without using large cardinals. In this
section we do not only review this method, but we analyze its effect on the Tukey order.
For this section, we fix:

(F1) a ccc poset P;

(F2) a definable relational system R = (X,Y, =) of the reals, here wlog X =Y = w¥;
and

(F3) a large enough regular cardinal y such that P € H,, and H, contains all the param-
eters defining R.

Definition 4.1. A model N < H, is <k-closed if N=" < N. We write o-closed for
<N;-closed.

When intersecting a ccc poset with a o-closed model, we obtain a completely embedded
subforcing.

Lemma 4.2. If N < H, is o-closed and P € N, then P n N < P.

Semantically, there is a correspondence between some P n N-names a P-names belonging
to IV, and we can also have a correspondence for the forcing relation for some formulas.
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Fact 4.3. If k > Nq is reqular and N is <k closed then there is a one-lto-one correspon-
dence between:

(i) P-names T € N and
(ii) P n N-names o

of members of H,, (in particular, reals). Thus, if G is P-generic over V' then N[G] n
HX[G] _ H,L/[GHN].

Corollary 4.4. For absolute p(Z) (e.g. Borel on the reals) if pe P n N and 7 € N is a
finite sequence of P-names of members of H,., then

plrp o(T) = plrpan ©(7).

The following result illustrates the main motivation to intersect ccc posets with o-closed
models, since it affects the Tukey relations forced by the posets.

Lemma 4.5. Let N < H, be o-closed and let K = (A, B, <) be a relational system.
Assume that P, K and the parameters of R are in N.

(a) IfPI-FR <t K then PN |- R <1t K n N where K n N :={(An N,Bn N,<).
(b)) fPI-FK <t R thenPn NI KnN <rR.

Proof. (a): Find a sequence (y; : j € B) € N of P-names of members of w* such that
pVoeew” Ji,e AVjeB:i, <) =xCy;.
For j € Bn N, y; can be seen as a IP n N-name of a member of w®.
We claim that Fpoy Vo ew” Ji, e ANNYjeBnN:i,dj=a2cCy;. LetpePn N
and let  be a P n N-name of a real. Then z € N and
NEpkpiize AVjeB: i, <j=2Cy,.
Find ¢ < pin N and i; € A n N such that
VieBnN:i;<j= NEqlpiCy.
But NEgllpitcy<qleic y<qlpy 2=y, Thus{y; : j € BnN)
witnesses PN N |- R <1t K n N.

(b): If P - K <r R then P |- Rt <t K*. Although R is not as in Definition 1.17,
the relation = is absolute enough to prove P |- R* <p Kt n N as in (a). Note that
K+tnN=(BnN,AnN,%)= (K n N)*, so we can conclude that PAn N |- K n N <t
R. O

As a consequence, if P | R =~ K then PA N |- R =r K n N. Hence, to know the values
that P~ N force to b(R) and 9(R), we need to calculate the cardinal characteristics of the
relational system K n N (recall Lemma 2.10), or find natural Tukey equivalent relational
systems. The theory developed from now on has the purpose to understand K n N in
some specific contexts. In the applications, K is often a directed preorder.



Fact 4.6. Let N < H, be o-closed and let K = (A, B, <) e N be a relational system.

(a) 6(K " N) < |b(K)n N| andd(K n N) < [o(K) n N|.

(b) If N is <r-closed then b(K n N) = min{b(K), }. In particular, if N is <b(K)-
closed then b(K n N) = b(K).

(¢) Property (b) holds for the d-numbers.
(d) If S € N is a directed preorder and 9(S) < N, then S n N =1 S.
Proof. (a) Find f e N, f: 9(K) — B where f[0(K)] is K-dominating. So {f(a): a €

3(K)nN} < BnN is K n N-dominating. Thus (K n N) < [0(K) n N|. The inequality
of the b-number follows by applying the previous to K*.

(b): If F < A~ N has size <min{b(5),x} then Fe N and N FJye BVaxe F: x <y,
so such a y can be found in B n N.

(c): Apply (b) to K*.

(d): If9(S) = N then f[0(S)] € N where f is as in (a), so S n N is cofinal in S and
SnN =7 S. O

Figure 18 illustrates the situation of Fact 4.6 when K = S is a directed poset, oy :=
min{d € On: 6 ¢ N} and |N| < oy (the latter will hold in our applications).

b(S)=b(SNN 0(S)=0(SnN
()) ( ) (l) ( )‘ on

Y
b(S) = b(S N N) SN (s)
; | I +— »On
K ON
6(S A N)TB(S) 2(S A N To(S)
| i —— »On
K O:\*’

Figure 18: Effect on b(S) and 9(S) after intersecting with NV as in Fact 4.6 when |N| < dy
and S = K is a directed preorder. The situation on the top corresponds to (d), where the
cardinal characteristics do not change; the middle corresponds to (b), where b(S N N) =
b(S) but 9(S N N) gets smaller; and the situation at the bottom indicates that (S n V)
gets smaller and that b(S n N) may become smaller.

The effect on the relational systems depends very much on the structure of the model.
We look at models constructed from directed systems of models, as follows.
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Definition 4.7. Let £ and 6 be infinite cardinals, £ uncountable regular, and let 7' be a
directed partial order without maximum. A sequence N := (N, : t € T) of elementary
submodels of H, is a (T, k, 0)-directed system if, for all t € T

(1) Ny is <k-closed and |N;| = 0;
(2) if t <t in T then N, € Ny;

(3) 0U{0.T} < N,.

In this context, we usually denote N := | J,. N,. Clearly N < H,.

Fact 4.8. If N := (N, : teT) is a (T, k, 0)-directed system then:

(a) 0=F =6 (sok<0).
(b) N is <min{x, b(T)}-closed.
(¢c) 0 <|N|<6-d(T).

Proof. To see (c¢) note that, if 7" < T witnesses 0(7T'), then N = (J,.;v Ne. O

In our applications |T'| < 6, in which case (c) implies |N| = 6.

The remaining results in this section are the main tools to understand K n N when N is
obtained from a directed system.

Lemma 4.9. Let N = (N, : t e T) be a (T, x,0)-directed system. If K = (A, B, <) is a
relational system, K € N, and

(©) An N, is K n N-bounded for all t €T,
then K n N <t T.

Proof. Define f: AnN — T such that i € AnNy(;) fori e AnN, and define g: T'— BN N
such that Vi e An Ny:i<g(t) (by (9)). If f(i) <y t thenie An Nyzy < An Ny, so
i <qg(t). O

Fact 4.10. In Lemma 4.9, we must have b(K) > 6.

Proof. Since K € N, 3t € T: K € N, so we can find a witness F' € N, of b(K). If
|F| = b(S) < 0 then F <€ An N, (because § < N;), so A n N, is unbounded, which
contradicts (9). O

Fact 4.11. Ifb(K) > 6 and Ny € N for allt € T, then (V) follows.

Corollary 4.12. Under the assumptions of Lemma 4.9, if in addition S = K is a directed
preorder without mazimum and T is a linear order, then S " N =~ T.



Proof. Consider the functions f and ¢ from the proof of Lemma 4.9. Since S does not
have a maximum, we can even define g such that i <g ¢(t) for all i € S n N;. Thus,
(9, f): T — SN is a Tukey connection: if g(t) <s jin SN N, thenVie SnN,: i <g 7,
s0 J ¢ Ny, hence t <7 f(j). |

Figure 19 illustrates the situation of Lemma 4.9 when K = S is a directed preorder and
IT| <6 (so |on| = |N| = 0), while Figure 20 illustrates Corollary 4.12.

6(T)  6(SAN) 2(S~N) AT b(S)
i i I —— >»On

Figure 19: When K = S is a directed preorder and |T| < 6, according to Lemma 4.9
S n N <7 T, so the cardinal characteristics associated with S n N lie between those
associated with T

b(SAN)=0(5nN)=cof(T) b(5)
—— >On
ON

Figure 20: In the situation of Corollary 4.12 (when |T'| < ), SN =1 T, so the cardinal
characteristics associated with S n N collapse to cof(T").

We finish with a result about the intersection of a directed system of models with a chain
of models.

Lemma 4.13. Let N° = (N} : t € T) be a (T,k°,6°)-directed system, and let N' :=
(NL: <)) bea (N k! 0")-directed system with X\ a limit ordinal. Assume:

(i) N°e N} and ' < k° (which implies k' < 6* < k° < 0°),
(ii) N} e N for all o < A, and

(iii) T < N (which implies |T| < 6,).
Then:

(a) N :={(N,:nel)isa (A k' 0)-directed system, where
e A:=T x )\,
o N, := Ng(m o) Ni(l) forne A. Hence, N = N° A N1,

(b) If K = (A, B,<) € NN} is a relational system and b(K) > 0" then K "N <t A.
In particular min{b(T), cf(N)} < b(K n N) and 9(K n N) < max{d(T), cf(\)}.

N;(l) < H, and Nr(])(O) €

and [Ny | = 0%, we get

Proof. (a): Fix n € A. Note that N, < H, because Njg,
N;(U by (i) and (iii). On the other hand, since NS(O) € Né(l)
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[Npoy 0 Nyl = 107 0 Ny = 0. Clearly, N, is <'-closed, so we can easily conclude

that N is a (A, k', 0)-directed system. Note that N :=(J, ., N, = N° n N,

nen

(b): Let n e A, wlog K € NS(O) (by increasing 1(0)). Since b(Kme]’(o)) = min{b(K), Ko} >
0* by Fact 4.6 (b) and (i), and A n N, € N* (by (ii)) has size <6,

N'E3dye BAN)g Ve An N,z <y,

so we can pick such y € B n Ny n N' © N. Hence () of Lemma 4.9 holds, thus
KnN <1 A O

5 Cichon’s maximum

We fix cardinals ordered as in Figure 21, all of them regular with the possible exception
of A*. Applying Theorem 3.5, we first construct a ccc poset P forcing ¢ = 0, and the
constellation at the top with Tukey connections, namely, R; =t 5; for all 1 < i < 4,
where S; := [0,]<% N V is a directed partial order.

92\\ 94 e 900 930
\é:\\%ﬂ T
05 3 93\—\\>€w
0 e=— I 61) oo
R
/\‘5\ S . A —T=5 )¢
e T |
N A
[ I
¥ AY . Ad A3

Figure 21: Strategy to force Cichon’s maximum: we construct a ccc poset P forcing
the constellation at the top, and find a o-closed model N such that P n N forces the
constellation at the bottom.

Afterwards, we apply the theory of Section 4 to construct a o-closed N < H,, where x is
chosen regular large enough, such that P n N forces the Cichon’s maximum constellation
at the bottom. By Lemma 4.5 we obtain that P n IV forces R; =1 S; n IV, so we need to
construct N such that b(S; 0 N) = A? and 9(S; n N) = A2. We will have |[N| = \°, so
P n N will force that ¢ = \°.

The strategy is to construct several chains of elementary submodels of /1, and intersect
them. To proceed, we fix the following assumptions and conventions:

(H1) Cardinals ordered as in Figure 21, non-decreasing up to A° and increasing from
there.



(H2) With the possible exception of A, all cardinals are regular. But we assume (\9)% =

A
(H3) The cardinals 6; (1 < i < 4) and 6, satisfy the hypothesis of Theorem 3.5.
(H4) For every 1 <i <4, 67 =0, and (6;)<% = 6;.
(H5) All models from now on contain as elements all the cardinals in (H1).

(H6) Every new model contains, as elements, all the chains of models previously defined.

More concretely, we prove:

Theorem 5.1. Under assumptions (H1)-(HJ), there is a ccc poset forcing, for 1 < i < 4:

(a) RZ <T H4 A% x /\Jb,

J=i"J
(b) )\;’- <r R; and )\? <r R; when i < j <4, and
(c) ¢ =\

We present two proofs. The first one is a short compact proof, and the second is the
argument step by step, showing how cardinal characteristics are modified.

Proof (compact version). By (H3), find a ccc poset P as in Theorem 3.5, i.e. forcing ¢ = 0,
and R; =1 S; for all 1 < i < 4. On the other hand, we have Tukey relations of regular
cardinals with S; and the values of its associated cardinal characteristics as in Table 1.

(regular)
40 [04,05] 0, 0o
3 [0s.0c] 05 O
2| [62,0c] 0, 0o
1| [0, 0] 0y O

Table 1: Values of the cardinal characteristics of S; and Tukey connections from regular
cardinals (consequence of Fact 1.14).

By downwards recursion on 1 < ¢ < 4, we construct chains of models N :=(N}, s <
A and Nf = (N}, : a < \Y) satisfying:

(i) N?is a (A2, (0;)*, 0;)-directed system;

3

(i) NP isa (A, 6;,0; )-directed system;

1771

(iii) each N7, contains, as elements: the cardinals of Figure 21, P, (N7, : € < @), and
the sequences Nf and N]!’ for all i < j < 4;

(iv) each N}, contains, as elements: the cardinals of Figure 21, P, {(N/, : £ < a), and
the sequences N?, N; and N;’ for all i < j < 4.

3
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Assumptions (H2) and (H4) are what allow the construction of the models. Note that (iii)
and (iv) obey (H5) and (HG6), and these imply that the models contain, as elements, S;
and the parameters of the definition of R; for all 1 <i < 4.

Finally, let N < H, be a o-closed model of size A° containing, as elements, everything we
have so far (this is possible because (A)*0 = X, see (H2)). Welet N := N‘ﬁﬁ?=1 NPANY,
and show that PN is as desired. To show (a) and (b), note that PAN forces R; =1 S;nN

for all 1 < i < 4, hence it is enough to show that
() S;n N <t A H]Z)\gx)\b and

(b") )\?iTSiﬂNand)\ﬁﬁTS,»mehenigjgzl.

Item (c) follows because |P n N| = \°.
(a)): Let AL := \? x H] _i1 A x AP (when @ = 4, just let A} := \}), which is a relational
system. As in the proof of L(mma 4.13 (a), the intersection of the chain of models N?
with N? and N} for all i < j < 4 yields a (A}, (6;)",6;) directed system N/. Since
b(S;) = 6; > 0 , by Lemma 4. H applied to N° = N’ and N = Nh we obtain a

A 6.6, dlrected system N; such that S; n N; <p A; Where N, = N° N NP
( y

Now, by regressive induction on 1 < j < 7, we show that S; n NV; =¢ S N N;. Assume we
have the result for j + 1 (which we showed for j + 1 = 7). Slnce 0(S; N Njyp) <0(N) =
A < N}, by Fact 4.6 (d) we obtain S; n Njy1 n N} =1 S; n Njiqp =r S; 0 N;. For the
same reason, we get S; N N; = 5; mNHmNamN" >~1 S; mNHmN] ~1 S; N N;.

Finally, by applying Fact 4.6 (d), we conclude S; n N = S; n Ny n N® =1 S; n Ny =
S; nN; <1 A;.

(b7): For 1 < j < 4 we consider N} and N; as defined in the previous argument. Fix
i < j < 4. We have that §; <¢ S and 9J+1 <1 S; (denote 05 := 6), which imply
0; "N < 5; mNand9+1mN<TS N N. So1tlsenoughtoshowthat9 AN xp A
and 0700 0N =p A%

Since 6, > 04 = |NJ|, by Corollary 4.12 applied to N we get 6, n NI ~1 A}, showing
07,1 Nj =7 A} for j = 4; in the case j < 4, since 0, = [Nj 1|, weget 07, A N1 =7 0,
by Fact 4.6 (d) (even equality holds), but |N?| = 9 < 6., so Corollary 4.12 applied to
N? implies 67, N N} = AJ.

Back to j < 4: since ¢; = |N}| we have 6; n N} =t 0; by Fact 4.6 (d) (even equality holds).
Now 6; > 07 = [N?], so by C()I()Hdr\ 4. 12 apphed to N} we obtain f; n N; = AS. On the
other hand7 071 N Nj =1 0, 0 Nj =7 A} by Fact 4. 6 (d). Now, using Pact 4. 6 (d), it is
easy to show by decreasing recursion on 1 < k < jthat 0; "Ny, = )\ and 07, NNy, =1 Aj.

For the same reason, 0; " N = 0; n Ny n N® =1 0; le—TA and6+1mN T)\° D

G410

We now explain what occurs step by step when intersecting with the chain of models in
the previous proof. By Theorem 3.5 we obtain a ccc poset P that forces R; ~¢ S; for all
1 <7 < 4. Recall Table 1 about the values obtained for S;.

Step 1.1. Construct a (A}, (6;)",0)-directed system N? := (N2, : a < A}) such
that Nf, € Nf,., (using 944 = 6;). Thus N? is <Aj-closed and P§ := P n N? forces



R; =1 S° := Sy n N? (by Lemma 4.5). So the values forced to b(R;) and d(R;) are
according to Table 2.

(regular)
il 0<r S | b(SM) | (S
4 6, XN X 0,
350 5 | N |0
2 02, 0u, 0 | X2 Os
C1onol x| X | 0

Table 2: Values of the cardinal characteristics of S;l ® and Tukey connections from regular
cardinals.

To prove the values in Table 2, by Fact 4.6 (b) note that b(S;"°) > min{b(S;), A3} = \J.
On the other hand, since 6, > 6,, by Corollary 4.12 we obtain 6, "N =1 A}, so 0, <1 S;
implies A3 =1 6, N N2 <p S°. Therefore, b(S;"°) = A3.

By Fact 4.6 (d), for any regular 6 < 6, = |NJ|, we obtain 6§ n Nf =7 6, so § <r S; implies
0 <1 S;n N} = Sf’o. In particular, for § = 6, we obtain 0, < O(Sf’b). The converse
inequality holds by Fact 4.6 (a) as 9(S; n N?) < [0(S;) n N | = 0,.

Step 1.2. Construct a (A}, 0,6, )-directed system Nf := (NP, : a < AY) such that
N3, € Nf, i (using (6;)=% = 0;). Thus, Nj is <Af-closed and P§ := P} n N} forces
R; =1 S"* := 5° A N}. The values of the cardinals of S;"* are displayed in Table 3.

(regular)
il 6 <p S [ e(St) | a(st)
4 NS A A
3 [637ﬁf]a)‘25)‘?1 )‘i HI
2 ) 065,06, ], A5, A5 | AS 0y
1 :917 Hf:7 /\LL )‘g /\LI HI

Table 3: Values of the cardinal characteristics of 5’? * and Tukey connections from regular
cardinals.

Note that b(S;"") = min{b(S/®),\} = A§ by Fact 4.6 (b). On the other hand, since
0, > 05, by Corollary 4.12 we obtain 6, N NI =5 A} so 6, <r S;° implies \§ ~p
0, N NP <p SM°. Therefore, b(S;"°) = A5

By Fact 4.6 (d), for any regular < 67 = |N?|, we obtain # n N? ~¢ 6, so § <p S*°
implies § <p S;° A NP = S'°. In particular, for § = A we obtain A} < 9(S}"), and for
i < 3and 6 = 0, we obtain 0] < D(Sf’h)A The converse inequality holds by Fact 4.6 (a)
as 0(S)° A NP) < [o(S)°) n NP| = 05

It remains to show that 9(S;°) < AJ. Note that the hypothesis of Lemma 4.13 holds for
NO = N? and N' = N!, so, since b(S,) = 6, > 65, we conclude that S3° = S, n N2 n
NP <1 A3 x A8, Therefore A§ < b(S;°) <0(S)°) < A3

Step 2.1. Construct a (A3, (65)", 03)-directed system N3 := (N3, : a < A3) such that
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N??a € N3, (using 6% — 6;). Thus N2 is <M-closed and P := P§ ~ N2 forces
i = S3D = S4 A N2. The values of the cardinals of S30 are displayed in Table 4.

(regular)
i 0 <p SH° b(S>®) | 9(5>)
4 AT, ] ]
31 05,205,230 Vi 05
2 [ [0z, 05, 25, 0, 0 | A8 65
L[ [01,05], A5 05,08 | AY 0

Table 4: Values of the cardinal characteristics of Sf *® and Tukey connections from regular
cardinals.

The values for 1 < i < 3 are calculated similarly to Steps 1.1 and 1.2, so we only explain
the values for i = 4. Smce 2(51°) = A < 63 = |N3|, by Fact 4.6 (d) we obtain S5° ~p S;°,
so the values of the cardinal characteristics stay the same.

Step 2.2. Construct a (\§, 65,05 )-directed system N§ := (NS, : o« < A5) such that
NS, € N5 ..y (using (05)% = 05). Thus N§ is <Aj-closed and P} := P§ n N3 forces
> S:b := 52° A N{. The values of the cardinals of S?’b are displayed in Table 5.

(regular)
i 6 <1 5" b(S7*) | 2(S7)
4 oY G X
3 A3 )\[},)\Z,/\D A3 AS
2 02,05 [, A5, AL AL | G 7,
1 [64,05], :),)\S,)\Z,)\a A5 05

Table 5: Values of the cardinal characteristics of Sf’ ** and Tukey connections from regular
cardinals.

This is similar to Steps 1.2 and 2.1, but 9(S5") < A} needs more details. As in the proof
of Lemma 4.13, N2 n N n N2 is obtalned by a (A3 x A§ x Y, (65 )+ 93) directed system

N}. So we apply Lemma 4.13 to N = Nj and N* = Nb to obtaln S <7 H] _g A} X /\b

We proceed in the same fashion for the remaining steps.

Step 3.1 Construct a (A3, (6;)7F, 6)-directed system N3 := (N3 : a < A}) such that
N3, € N3, (using 0 = ;). Thus N3 is <A3-closed and P§ := P§ n NJ forces
R; =7 51-2’D = Sf”b N N3. The values of the cardinals of Sf’a are displayed in Table 6.

Step 3.2. Construct a (A3, 05,05 )-directed system Nf := (N}, : o < A3) such that
Nj, € NSy (using (0;)=% = 60;). Thus NJ is <A%- closed and PY := Py n NJ forces
R, = 5'2 [’ S2 ® A N§. The values of the cardinals of S are displayed in Table 7, in

3
particular, we obtain Sy <t HJ L, AT X AL



(regular)
i 0 <r 57 b(S27) | 057
4 ALY Al Ad
2 Bz, A5, A5, A, Ag, A A5 )
1| [01,05], A5, A3, A9, A%, A8 A5 0y
Table 6: Values of the cardinal characteristics of S>° and Tukey connections from regular
cardinals.
(regular)
i 0 <1 R, b(S7°) | o(SPY)
4 ALY S A
3 g, AL, A, AS A3 A3
2 S AL AL AL NS AS AS
T [601, 05 ], 205, A5, AT AT, A, AS 05

Table 7: Values of the cardinal characteristics of Sf * and Tukey connections from regular
cardinals.

Step 4.1. Construct a (A}, (67)", 6;)-directed system NP := (N? : a < A}) such that

NY, € NY,., (using 0" = 6;). Thus N? is <X-closed and P := P§ A N? forces

R; =1 S1° := 57" A N?. The values of the cardinals of S} are displayed in Table 8.

(regular)
i 0 <1 R b(5;") | 2(5;")
4 AT A% A
2 ,/\};,/\[;7AZ,AS,)\3 )\S
1| 01, A5, A5 A5, A9, A3, A3, th

Table 8: Values of the cardinal characteristics of S}° and Tukey connections from regular
cardinals.

Step 4.2 Construct a (AY,0;,0; )-directed system NY := (N7, : a < A}) such that
NP, € N{ ..y (using (67)% = 07). Thus N} is <Aj-closed and P} := P] n N} forces
R; =1 S/° := S/° A NP. The values of the cardinals of S}* are displayed in Table 9, in
particular, we obtain S;° < szl AY x AB

Final step. Let N < H, be o-closed such that |[N¢| = X\* © N° (using (A)™ = X°).
Then Q := PY A N¢ forces R; = Sf := S/" A N¢ and ¢ = X By Fact 4.6 (d), the
values in Table 9 are still valid for S{. Then N := N n ﬂ;l N} n N;’ is as desired, and
Q=PnN.
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(regular)
i 0 <r R, b(S) | 2(SMY)
1 Y N N
3 AG AL AL A A3 Ay
2 S AL AL AL NS AS AS
1 JASL NS AL AL, NS, AS,

Table 9: Values of the cardinal characteristics of S,L.l’b and Tukey connections from regular
cardinals.

6 Discussion

In our Cichon’s maximum result we get Tukey connections with products of ordinals, but
it is unclear whether we actually have Tukey equivalence.

Question 6.1. Can we force Tukey equivalence in Theorem 5.1 (a)?

Similarly, in Theorem 3.7 (b), it is unclear whether we can force Ry =1 A5 x A4.

Recall that, in Corollary 2.7, we showed that the method of FS iterations restrict us to
constellations of Cichori’s diagram where non(M) < cov(M). There are four instances of
Cichont’s maximum under this condition: the one proved in Theorem 5.1, the one in Fig-
ure 22 (after applying the same arguments in Section 5 to the forcing from Theorem 3.6),
and the two addressed in the following open question.

b(Rz) b(R4') I D(Rl) .
. fa T‘ ps | o
(R3) (Rs
—ltl |® ] @
b(R1) o(Ra) (R2)

Figure 22: Another instance of Cichon’s maximum proved consistent with ZFC. Here
i < p; whenever ¢ < j.

Question 6.2. When p; < p; for i < j, are the constellations of Figure 23 consistent
with ZFC?

On the other hand, no instance of Cichoi’s maximum with cov(M) < non(M) has been
proved consistent so far.

We finish with some remarks about forcing singular values in Cichori’s diagram. In the
models presented in this paper only ¢ can be singular, but there are some models with two
singular values [Mejl19]. There are also some instances of Cichoit’s maximum with two
singular values, but their consistency use large cardinals [GIKMS22]. The latter reference
also presents interesting constellations in the random model.
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(R3) ?(R3)
X & ‘L M5 Hr
' b(Ry) T ey | o(Re)
b(Rz) b(R4-)‘___ D(Rl) .
12 fa T‘ ps | po
(R3) o(Rs
231 12
s s | @
b(Ry) o(Ry) ?(Rz)

Figure 23: Instances of Cichoii’s maximum in the context of non(M) < cov(M) that
have not been proved consistent with ZFC.

Recently, Goldstern, Kellner, Shelah and the second author proved, using large cardinals,
the consistency of Cichon’s maximum with the five cardinals on the right side possibly
singular. Concretely, with the notation of Theorem 5.1, it is forced R; =~ [N]<M for
1 < i < 4 by allowing A? to be singular. However, it is still unknown how to adapt the
methods of Section 4 and 5 to prove this result (without using large cardinals).
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