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ON THE CENTEREDNESS OF KUNEN’S SATURATED IDEAL

KENTA TSUKUURA

ABSTRACT. We show that Kunen’s saturated ideal over Ry is not centered.

1. INTRODUCTION
In [5], Kunen established

Theorem 1.1 (Kunen [5]). Suppose that j is a huge embedding with critical point
k. Then there is a poset P such that PxS(k, j(k)) forces that Xy carries a saturated
ideal.

This theorem has been improved by some ways. One is due to Foreman and
Laver [3]. They establised

Theorem 1.2 (Foreman-Laver [3]). Suppose that j is a huge embedding with crit-
ical point k. Then there is a poset P such that P* R(k,j(k)) forces that Xy carries
a centered ideal.

Centered ideal is one of the strengthenings of saturated ideal. See Section 2 for
the definition of centered ideal. Foreman and Laver introduced the poset R(k,\),
to obtain the centeredness, while Kunen used the Silver collapse S(x,\). In their
paper, it is mentioned that the ideal in Theorem 1.1 is not centered without proof.
We give a proof of this. That is,

Theorem 1.3. The saturated ideal on Ny in Theorem 1.1 is not centered.

The structure of this paper is as follows: In Section 2, we recall basic properties of
forcing and Silver collapses. In Section 3, we show Theorem 1.3. To show Theorem
1.3, we also recall the model of Theorem 1.1. In Section 4, we will give some
observations about collapsing posets. The contents in Section 4 are not directly
related to Theorem 1.3 but these were arisen by the context of centered ideal.

2. PRELIMINARIES

In this section, we recall some definitions. We use [4] as a reference for set theory
in general.

Our notation is standard. We use &, A, u to denote a regular cardinal unless
otherwise stated. We write [k, A) for the set of all ordinals between x and A. By
Reg, we mean the set of all regular cardinals. For k£ < A\, B2, and E2, denote the
set of all ordinals below A of cofinality > x and < &, respectively.
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Throughout this paper, we identify a poset P with its separative quotient. Thus,
p<qg+Vr<p(rllq) < plkqe G, where G is the canonical name of (V, P)-generic
filter.

We say that P is k-centered if there is a sequence of centered subsets (Cy, | o < &)
with P = J,., Ca. A centered subset is C' C P such that every X € [C]<“ has
a lower bound). We call such sequence a centering of P. It is easy to see that the
k-centeredness implies the xT-c.c.

We say that P is well-met if [[X € P for all X C P with X has a lower bound.
If P is well-met, the r-centeredness of P is equivalent to the existence of k-many
filters that cover P. Note that every poset that we will deal with in this paper is
well-met.

For a filter F C Q, by Q/F, we mean the subset {¢ € Q | ¥p € F(p | q)}
ordered by <q. For a given complete embedding 7 : P — @), Px (Q/T“G) is forcing
equivalent with Q. We also write @)/ G for Q/ 4G if T is obvious from context. If
the inclusion mapping P — @ is complete, we say that P is a complete suborder
of @, denoted by P < Q.

In this paper, by ideal, we mean normal and fine ideal. For an ideal I over s,
P(sT)/Iis P(kT)\ I ordered by A < B <> A\ B € I. We say that I is saturated
and centered if P(kT)/I has the KT T-c.c. and P(k™)/I is k¥ -centered, respectively.

Silver collapse S(k, \) is the set of all p with the following properties:

°pE H’yE[n"*’,A)ﬂReg <H’Y'
o p| < k.
e There is a £ < k with Vy € dom(p)(dom(p(v)) C &).

S(k, A) is ordered by reverse inclusion. The following properties are well known.

Lemma 2.1. (1) S(k,\) is k-closed.
(2) If X is inaccessible, then S(k, A) has the A-c.c. Therefore, S(k, A) IF kT = A.
(3) If uw < X then S(k, ) < S(k, \).

3. PROOF OF THEOREM 1.3

First, we recall about P and the ideal in Theorem 1.1. Let j be a huge embedding
j 'V — M with critical point . Fix u < k. Define P by the < u-support iteration
of (P, | o < k) such that

o PO = S(/,L, Iﬂ/)
P P, x SP="Va(a, k) a is good
[} = .
ot P, otherwise

Here, we say that « is good if P,NV,, < P, has the a-c.c. and « is inaccessible. The
set P,* ST~"a(q, k) is the set of all {p, ¢) such that p € P, and ¢ is a P,NV,-name
for an element of S¥~"V(a, k). Note that, for every p € P and good a, p(a) is
P,NV,-name. This P is called a universal collapse. P has the following properties:

Lemma 3.1. (1) P is p-directed closed and has the k-c.c.
(2) & is good for j(P). In particular, j(P), NV, =P < j(P)x.
(3) There is a complete embedding T : PxS(k, j(k)) — j(P) such that T(p, —) =
p for allp € P.

Theorem 3.2 (Kunen [5] for 4 = w, Laver). P % S(k,j(k)) forces that ut = &
carries a saturated ideal I.
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Proof. See Section 7.7 in [2]. O
The ideal which we call “Kunen’s saturated ideal” is this I. Studying the satu-

ration of I will be reduced to that of some quotient forcing. Indeed, Theorem 1.3
follows by Lemmas 3.3 and 3.4. We give the proof of Lemma 3.4.

12

Lemma 3.3 (Foreman-Magidor-Shelah [1]). P x S(k,j(k)) forces P(ut)/I
j(P)/G« H. Here, G x H is the canonical name for generic filter.

Proof. See Claim 7 in [1]. O

Lemma 3.4. P S(k, j(k)) forces j(P)/G % H is not k-centered.

Proof. Note that {o < j(k) | o is good} is stationary in j(x). We fix a good o > k.
It is enough to prove that j(P)a41/G * H is not x-centered in the extension.

We show by contradiction. Suppose j(P)a11/G * H has a centering (C | € < k)
in some extension. We may assume that each CE is forced to be a filter. For
simplification of notation, we assume P % S(k,j(r)) forces the existence of such
centering.

By the r-c.c. of P, for every (p,q) € P S(x,j(r)), P I+ ¢ € S(x. ) for some
B < j(r). For each g € j(P)a+1, let p(g) be defined by the following way:

For £ < 6, let AS C P« S(k,j(k)) be a maximal anti-chain such that, for every
r € A5, r decides ¢ € CE~ Let p(q) be the least ordinal 5 < j(k) such that
P+ g e S(k, B) for every (p,q) € Ue A5

Let C C j(k) be a club generated by 8 — sup{p(q) | ¢ € Q * S¥(a, 3)}. Here,
Q = j(P)a NV,. Since j(k) is inaccessible, we can find a strong limit cardinal
seCnE AEIN (a+1).

Claim 3.5. P * S(n,é) forces that Q * SQ(a,é)/G « Hy is ri-centered. Here, Hy is
the canonical name for (V[G|, S(k,?))-generic.

Proof of Claim. Note that P*S(n §) forces Q* S (v, 8)/G* Hs = Q*SQ(a 8)/G*
H,. For every ¢ € Uges @ * S9(a, B), by p(q) < 6, the statement ¢ € Cg has been
decided by P % S(k,0) for all € < k. Let G H be an arbitrary (V, P * S(k, j(k)))-
generic filter. Note that G Hy = G« HN (P % S(k,0)) is (V, P x S(k,§))-generic.
Let D¢ be defined by

(p,q) € Dg if and only if (p,¢ I ) € C"g forced by G * Hs for every 3 < 0.

It is easy to see that Dy is a filter over Q * S9(a,d)/G * Hs. We claim that
{D¢ | € < &} covers Q * S9(a, 8)/G % Hs. For each (p,q) € Q * S(a,8)/G x Hy, in
VI[G][H], there is a & such that (p,§) € CE*H. Then (p,q [ B) € CE*H for every
£ < 9§, since CE*H is a filter. In particular, (p,q | 8) € Cg is forced by G * Hs for
every 8 < 0. By the definition of Dg, (p,q) € D¢ in V[G][Hs], as desired. O

On the other hand, this poset does not satisfy the kT -c.c. as follows:

Claim 3.6. (1) P S(k,8) forces (5+)V'2 KT
(2) P S(k,0) forces that Q * S?(a,8)/G * Hs has an anti-chain of size k*.
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Proof of Claim. (1) follows by P has the s-c.c. and P I-|S(x, )| = |d].

For (2), by (1), we have (6<©®)V > (§%)V > x* in the extension by P  S(x, ).
It is enough to find an anti-chain of size (6°1()V. We fix an increasing sequence
of regular cardinals (0; | ¢ < cf(0)) which converges to §. For each i, we let

pi = {(0,6)}. For every f € [Li<ct(s) 9i, define py by dom(py) = {&; | i < cf(5)}
and pr(0;) = p;(i). Then {pf | f € [licct(s) di}t is an anti-chain of S(a, ). It is
casy to see that P x S(k,8) - {(0,p7) | f € [Ticer(s) i} € @ = S59(a, 8)/G * Hg
witnesses. g

Claim 3.6 (2) shows that Q * S9(,8)/G * Hs does not have the x*-c.c. in the
extension. But this poset has the x*-c.c. by Claim 3.5. This is a contradiction.
The proof is completed. O

Lastly, we list other saturation properties of I.

Theorem 3.7. P x S(k,j(r)) forces that

(1) I s (j(k),j(r), < p)-saturated.
(2) I is not (j(K), p, p)-saturated. In particular, I is not strongly saturated.
(3) I is layered.
(4)

4) 1 is not centered. In particular, I is not strongly layered.

Proof. For (1) and (2), we refer to [10]. (3) has been proven in [1]. (4) follows by
Lemma 3.4. Note that Shelah showed that every strongly layered ideal is centered
n [7]. Thus I is not strongly layered. O

Here, we say that ideal I over k™ is (a, 8, < 7)-saturated if P(k™)/I has the
(a, B, < 7)-c.c. Whenever T is (kT,sT T, k)-saturated, we say that I is strongly
saturated. A poset P has the (a,3,< 7)-c.c. if and only if VX € [P]*3Y €
[X]P¥Z € [Y]<7(Z has a lower bound). We say that I is layered and strongly
layered if P(k™*)/I is S-layered for some stationary S C E:fr and Eh’?fr-layered,
respectively. For a stationary subset S C A, P is S-layered if there is a sequence
(Py | @ < A) of complete suborders of P such that |P,| < A and there is a club
C C )X such that P, :U5<aPB forala e SNC.

4. ABSORPTION PROPERTY OF COLLAPSING POSETS
The proof of Lemma 3.4 is based on that of the following lemma.

Lemma 4.1 (Tsukuura [10]). If \ is inaccessible then Coll(r, < A) IF Coll” (a, < \)
is not k-centered for every o € [k1, ).

Here, Coll(k, < M) is the usual Levy collapse Hig[ﬁ’)\) <Fa. We cannot improve
[T, ) in Lemma 4.1 as we see in Proposition 4.3.

Lemma 4.2. Suppose that & is reqular, k<" = k, and {P, | « € K} is k-centered

posets. If | K| < 2" then HaGK W 1S K-centered.

Proof. The proof is due to Foreman—Laver [3]. For a € K, let F,, : P, — K be a
centering function, that is, F;*{¢} is a centered subset of P, for all & < k. Let
D: K — "2 be an 1nJection.

For each p € [[2x Pa. there is a § < & such that D(a) | § # D(B) | § for
all @ # f in dom(p). For D(a) [ § with a € dom(p), define a function J, by

o1
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Jp(D(a) | 6) = Fu(p()). Note that J, € Us_ . {x | d € [2°]F}. By 5<% = &,
X =Us {% | d € [2°]<"}isof size . Foreach J € X,let Cy = {qg € [[35x | Jq =
J}. Tt is easy to see that each C is a centered subset and U,Cs = H:gK P, U

Proposition 4.3. If X is inaccessible then Coll(k, < X) forces that Coll(k, < )V
is k-centered.

Proof. Note that Coll(x, < \) forces

L4 COH(H’ < )\)V = (HaE[er,)\)ﬂReg <KO{)V = H;g[n+,/\)ﬁRegV(<na)v and

o [<%a| =k for all a € [sF,\) N Reg".
Thus, Coll(k,< M)V is forced to be a < r-support product of A = 2%-many &-
centered posets. By Lemma 4.2, Coll(x, < )V is s-centered in the extension. [

Note that the same proof shows that Coll(xk,< \) forces Coll(c,< \)V is k-
centered for all o < k. This proposition shows the negation of absorption property
as follows. We say that ) absorbs P if there is a complete embedding from P to
Q.

Proposition 4.4. If A is inaccessible then Coll(k, < X) does not absorb Coll(cr, < \)
for every a € [T, ) N Reg.

Proof. Note that Coll(a, < A) forces that Coll(a, < \)V is a-centered. If Coll(x, <
A) absorbs Coll(cr, < A) then Coll(k, < A) forces Coll(ar, < A\)Y is |a| = k-centered.
This contradicts to Lemma 4.1. O

Note that we can replace Levy collapse by Silver collapse in the above observa-
tion.

Let us consider two collapses. One is the Foreman—Laver collapse R(k, \), which
was introduced in [3]. R(k, ) is the full support product [], R™(x,\). Here,
R (1, A) = T15E 0 nRes B (@A) and R°(k,A) = S(r,A). If A is Mahlo then
R(k,A) has the A-c.c. This forces kT = X. R(x, A) has the following properties:
Proposition 4.5. If A is Mahlo, then for every « € [k, A) N Reg,

(1) If k > wy then R(k,\) forces R(a, \)V is k-centered.

(2) R(k, ) absorbs R(a, \).
Proof. First, we show (2). By the definition of R™(k, \), R""1(k, \) absorbs R™(c, \)
for each n < w. Thus R(k, \) absorbs R(a, A).

For (1), by Lemma 4.2 and induction on n < w, we have R"*!(x, \) forces that
R™(a, \) is k-centered for all n < w. By (2), R(k,A) forces R" (v, A) is k-centered
for all n < w. Then Lemma 4.2 shows R(k,\) forces R(a,\) is k-centered by
K> wi. O

Another one is the Easton collapse E(s, \), which was introduced by Shioya [8].
E(k,A) is the Easton support product HE <Fa. Note that (2) in Propo-

ac[kt,\)NReg
sition 4.5 holds if we replaced Foreman—Laver collapse by Easton collapse.

Proposition 4.6. For every o € [k, \) NReg, E(k,\) absorbs E(a, ).

Proof. See Section 3 in [8]. O
But we don’t know for (1).

Question 4.7. Fora € [k1,)\), does E(k, \) force that E(a, \)V is not k-centered?



KENTA TSUKUURA

This question is related to

Question 4.8. Is Laver’s saturated ideal over Ny in [6] centered?
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