SELECTIVE INDEPENDENCE AND ih-PERFECT TREE FORCING
NOTIONS

COREY BACAL SWITZER

ABSTRACT. Generalizing the proof for Sacks forcing, we show that the h-perfect
tree forcing notions introduced by Goldstern, Judah and Shelah preserve selective
independent families even when iterated. As a result we obtain new proofs of the
consistency of i = u < non(N) = cof(N) and i < u = non(N) = cof(N) as well as
some related results.

1. INTRODUCTION

A family Z C [w]¥ is said to be independent if for all finite subsets Xo, ..., X,,-1 € Z
and all g : n — 2 we have that X' n...n X" " is infinite where X?*) means X; if
g(i) =1 and w \ X; if g(¢) = 0. Such a set is said to be mazimal if it is not properly
contained in any other independent set. The independence number i is the least
size of a maximal independent family. Despite being one of the classical cardinal
characteristics, i is notoriously difficult to manipulate. Indeed many relatively simple
open questions remain surrounding i, most notably the consistency of i < a where a
is the almost disjointness number!. Part of the issue is that i has no known upper
bound, besides the trivial 2% while it has several lower bounds thus preserving
i small requires preserving the smallness of several other cardinal characteristics
simultaneously.

One of the first breakthroughs in studying i came in [14] where the consistency
of i < u was established®. There, a special independent family, now known as
a selective independent family was constructed under CH and it was shown that
under somewhat delicate conditions such a family’s maximality could be preserved
over a countable support iteration of length ws of certain proper forcing notions.
Since then selective independence has become one of the main tools in providing
models of i < 2% with interesting properties. See e.g [3, 5, 6]. In particular selective
independent families are Sacks indestructible.

All the published examples in the literature® of countable support iterations of
proper forcing notions which are shown to preserve selective independent families
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are such that the iterands all have the Sacks property. The Sacks property is used
throughout these proofs*. However the Sacks property is not needed and is overkill.
In this article we show that the h-perfect tree forcing notions® introduced by Gold-
stern, Judah and Shelah in [7] also preserve selective independence, though they
may, and often do depending on h, fail to have the Sacks property.

Main Theorem 1.1 (CH). (1) Let h : w — w be any function so that for all
n < w we have 1 < h(n) < w then the h-perfect tree forcing, PT), preserves
any ground model selective independent family.

(2) Let & be an ordinal and (Pa,Q, | oo < &) be a countable support iteration so
that for all o < § we have

o “ Qg is the h-perfect tree forcing for some h € w* with 1 < h(n) < w for
alln <w?’.

Then Ps preserves all ground model selective independent families.

This allows us to show that in the models obtained by iterating such forcing
notions there is a selective independent family of size Ny and, in particular, i = N;.
As a result we obtain the following consistency results.

Main Theorem 1.2. The following are consistent.
(1) i =u < non(N) = cof (N) = 2%
(2) i <u=non(N) = cof(N) = 2%

Finally riffing off work of Brendle, Fischer and Khomskii [3], Schilhan [13] and
Bergfalk, Fischer and the author [9] we can obtain that the cardinal characteristic
inequalities above are consistent with IT}-definable witnesses and a Al-definable well
order of the reals.

Main Theorem 1.3. The cardinal characteristic inequalities featured in Main The-
orem 1.2 are consistent with a A} well-order of the reals, a 11 witness to i = Ny
and, in the case of the first inequality, a 11} witness to u = R;.

The rest of this paper is organized as follows. In the next section we review the
basics of maximal independent families and selective independence. In the following
section we introduce the h-perfect tree forcing of [7] and prove Main Theorem 1.1.
In Section 4 we move on to applications and prove in particular Main Theorems
1.2 and 1.3. We also discuss the relation between independent families and strong
measure zero sets. Section 5 concludes with a discussion and some open questions.
Throughout most of our terminology is standard and conforms e.g. to that of [11]
and [10]. For combinatorial cardinal characteristics of the continuum we follow [2].

Let us finally stress that most of the results in this paper, in particular Main
Theorem 1.1 are probably not new and indeed were suggested to the author by

4Though note that the Sacks property is not enough to ensure that selective independence is
preserved: Silver forcing has the Sacks property but will kill the maximality of any ground model
independent family and, if iterated ws many times will result in a model of i = 2% > 8.

5See Definition 3.1 for the definition of these posets.
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both Jorg Brendle and Vera Fischer®. However, they do not seem to ever have
been written down, at least not explicitly and this seemed worth while to do. In
particular, while the consistency of i < non(N') was shown in [4, Theorem 3.8], the
proof uses a short finite support iteration of ccc forcing notions over a model of MA
(a “dual iteration”) and hence is very different than the model constructed here.
Moreover in the model in [4] we do not know the value of u.

Acknowledgments. The author thanks Jorg Brendle for pointing out [7] to him and
suggesting that h-perfect forcing may preserve selective independent families. The
author thanks Vera Fischer for many very helpful conversations on this material and
sharing her wealth of knowledge on selective independence and the cardinal i.

2. SELECTIVE INDEPENDENCE

In this section we introduce the notion of a selective independent family. The
reader familiar with this idea, for example as presented in [3] or [5], can comfortably
skip this section as nothing is new. Selective independent families were introduced
implicitly in Shelah’s proof of the consistency of i < u in [14]. To facilitate the
discussion we utilize the following notation.

Notation 1. For T C [w]*,

e let FF(Z) denote the set of finite partial functions g from Z to {0,1}, and
o for g € FF(Z) write Z¢ for

[J{A| A€ dom(g) and g(A) = 1} N[ [{w\A| A € dom(g) and g(A) = 0}.
In this notation, a family Z C [w]* is independent if Z9 is infinite for all g € FF(Z).
An independent family Z is mazimal if
VX € [w]* 39 € FF(Z) such that Z9 N X or Z9\ X is finite,
We will need a slight strengthening of maximality.
Definition 2.1. An independent family Z is densely mazimal if
VX € [w]* and ¢ € FF(Z) 39 D ¢’ in FF(Z) such that 79 N X or Z9\ X is finite.

In other words, an independent family Z is densely mazimal if for each X € [w]*
the collection of ¢’s witnessing that Z U {X} is not a larger independent family is
dense in (FF(Z),D).

Definition 2.2. Let 7 be an independent family. The density ideal of Z, denoted
id(Z), is

{X Cw|V¢ € FF(Z) 39 D ¢' in FF(Z) such that Z9 N X is finite}.
Dual to the density ideal of Z is the density filter of Z, denoted fil(Z) and defined as
{X Cw|V¢ € FF(Z) 39 2 ¢’ in FF(Z) such that Z9\ X is finite}.

6Private communication.



66

SWITZER

Observe also that for an infinite independent family Z, none of the above defini-
tions” meanings change if we replace the word “finite” with “cmpty”. We have as
well the following from [9, Lemma 5.4].

Lemma 2.3. A family T C [w]“ is densely mazimal if and only if
P(w) =1il(Z) U(w\Z? | g € FF(Z))an-

Where for a set X C [w]“ the set (X)q, denotes the downward closure of X under

C*ie. A€ (X)gy if and only if there is an X € X with A C* X. Later on we will

similarly denote (X),, for the upward closure of X under C*.
The following are easily verified, see [9, Lemma 5.5].

Lemma 2.4. (1) If ' is an independent family and T C I' then fil(Z) C fil(Z');
(2) if Kk is a reqular uncountable cardinal and (Z, | o < K) is a continuous
increasing chain of independent families then fil(U, ., Za) = U, -, fil(Za);
(3) If T is an independent family then fil(Z) = J{ il(T) | J € [Z]=*}.

Recall that given a family F of subsets of w we say that

(1) Fis a P-set if every countable family {A, | n <w} C F has a psuedointer-
section B € F,
(2) Fis a Q-set if given every partition of w into finite sets {I,, | n < w} there
is a semiselector A € F ie. |[ANIT,| <1 forall n < w,
(3) F is Ramsey if it is both a P-set and a Q-set.
If Fis a filter and a P-set (respectively a @-set, Ramsey set) we call F a P-filter
(respectively a Q-filter, Ramsey filter).

Definition 2.5. An independent family Z is selective if it is densely maximal and
fil(Z) is Ramsey.

Fact 2.6 (Shelah, see [14]). CH implies the existence of a selective independent
famaly.

Under certain circumstances countable support iterations of proper forcing notions
over a model of CH will preserve that a given ground model selective independent
family is maximal. Towards clarifying the meaning of “certain conditions” recall
the following preservation result, due to Shelah, see [14, Lemma 3.2].

Theorem 2.7. Assume CH. Let § be a limit ordinal and let (P,,Q, | o < 0) be
a countable support iteration of “w-bounding proper posets. Let F C P(w) be a
Ramsey set and let H be a subset of P(w)\(F)up. If VFe E P(w) = (F)up U (H)dn
for all < & then V5 E P(w) = (F)up U (H)an as well.

We will also need the notion of Cohen preserving.

Definition 2.8. Let P be a forcing notion. We say that P is Cohen preserving if
every every new dense open subset of 2<“ (or, equivalently w<¥, ...) contains an old
dense subset. More formally, P is Cohen preserving if for all p € I and all P-names
D so that p IF “D C 2<% is dense open” there is a dense E C 2<% in the ground
model and a ¢ <p p so that ¢ |- E C D.
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Being Cohen preserving is preserved by countable support iterations of proper
forcing notions.

Theorem 2.9 (Shelah, See Conclusion 2.15D, pg. 305 of [15], see also [5], Theorem
27). If 6 is an ordinal and (Qu, R, | o < 8) is a countable support iteration of forcing
notions so that for each o < § we have Ik, ‘R, is proper and Cohen preserving” then
Qs is proper and Cohen preserving.

3. h-PERFECT TREES PRESERVE SELECTIVE INDEPENDENT FAMILIES

In this section we prove Main Theorem 1.1. First, recall the definition of h-perfect
tree forcing from [7].

Definition 3.1. Given a function h : w — w with 1 < h(n) < w for all n < w, the
h-perfect tree forcing, denoted PTy, is the forcing notion consisting of trees p C w<¥
so that the following hold:

(1) For all t € p and all I € dom(t) we have t(l) < h(l).

(2) Every t € p has either one or h(l(t))-many immediate successors in 7.

(3) For every t € p there is a ¢’ O t with t' € p and there are h(I(t')) many
immediate successors of ' in p.

The order is inclusion.

Note that the case where h(n) = 2 for all n < w is simply Sacks forcing, while
for a fast growing h : w — w this forcing will make the ground model reals measure
zero so which h we choose can affect the properties of the forcing significantly. This
forcing notion was first considered in [7]. In [7] the following is shown.

Fact 3.2 ([7]). For any h : w — w with 1 < h(n) < w for all n < w the following
hold.

(1) PTy, is proper, and in fact satisfies Azxiom A.
(2) PT), is w*-bounding.
(3) PT}, preserves P-points.

For the rest of this section fix an arbitrary function i : w — w so that 1 < h(n) <
w for all n < w. We will prove first that forcing with PT}, preserves a ground model
selective independent family. Then we will show that under CH arbitrary countable
support iterations of h-perfect tree forcings (where the h can change and need not
even be in the ground model) will preserve selective independent families. First we
introduce some arboreal terminology. If p € PT),, and n < w then a node t € p is an
n'-gplitting node if it has h(I(t)) many immediate successors and it has the n — 1
predecessors with this property. Denote by Split, (p) the set of n-splitting nodes.
We say that for two h-perfect trees p,q € PT) that ¢ <, p if ¢ < p and for all
i < n+ 1 Split,(p) = Split;(¢). Given any p € PT), and any node t € p we let p,
denote the tree {s € p | s C tort C s}. Note that p, € PT), and p; < p for any
tep.
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Lemma 3.3. Let p € PT), and let X be a PTy-name for an infinite subsel of w.
There is a ¢ < p so that for all n < w and any n-splitting node t € q we have that
q; decides X N .

Such a ¢ is called preprocessed for X.

Proof. This is a standard fusion argument but we sketch it for completeness Fix
p and X as in the lemma. Inductively define a fusion sequence ... <, p, <,_1
Pr-1 Znes ... <1 p1 <o po = p as follows. Given k < w and py, for each k™ splitting
node ¢ € Split, (p) let p) < (pi)e decide X Nk. Let ppyq = Utesplitk(pk)pi. Clearly
D1 <k P and the fusion ¢ := (,_, pr is as needed. O

We now move to the first substantial lemma.
Lemma 3.4. PTy is Cohen preserving.

Proof. Fix p € PT;, and suppose that D is a PTy-name for a dense open subset
of 2<¢“. Enumerate 2<“ as {s, | n < w}. We will inductively construct sequences
{pn|n< w} and {t,, | n < w} so that the following hold.

(1) p

(2) an <n p, for all n < w.

(3) tn 2 sy, forall n < w.
(4) posr - £, € D.

Given such sequences, let ¢ = (), pn and E = {t, | n <w}. Clearly ¢ I ECD
and FE is dense so, assuming we can construct such sequences we will be done. This
is done by induction. Given py, enumerate Split,(px) as {u; | ¢ < l}. Note that
[ € w depends not just on h but also on p; but what matters here is that it is finite
(which it is). Now let pj, o < (pr)u, decide some ¢ D s to be in D (since D is forced
to be dense this is possible). Next, let pj; < (pi)u, decide some t;; 2 t) to be in D.
Continuing this way, inductively,let for all 0 < i < 1 let Pri < (Pr)u; decide some
ti D i to be in D. Let pry1 = U, Pl; and fy be £, Since D is forced to be
open we have that pyyq IF {4e1 € D so we're done. O

Fix a selective independent family Z in the ground model.

Lemma 3.5. If G C PT, is generic over V then in V[G] the ideal id(Z) is generated
by id(Z) N V.

Note that dually this lemma implies that in V[G] the filter fil(Z) is generated by
fl(Z)nV.

Proof. Let p € PTy, let X be a PT,-name for an infinite subset of w and suppose
that p IF X € id(Z). We need to find a ground model Y € [w]* and an r < p so
that r IF X C Y. Towards this, via a fusion argument, or just using the properness
of PTy, find a ¢ < p and a countable J C 7 so that ¢ IF X ¢ id(7). Since J is
countable, we can associate FF(J) with 2<¢. Let D be the PT),-name for the dense
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open subset of 2<¢ defined by ¢ IF g € D if and only if 79N X = (. Since PT), is
Cohen preserving there is an 7 < ¢ and a dense E C 2<¢ so that r I+ E C D. Let
Y = Mpep(w \ J"). Observe that Y € id(J) and hence Y € id(Z). To see this, let
¢ € FF(J) be arbitrary and let ¢ O ¢’ be in £. We have that Y C w \ J¢ and
hence Y N 79 = () which by definition means that Y is in the ideal. The following
claim now completes the proof.

Claim 3.6. rIF X C Y.

Proof. Let r € G be PTj-generic over V. Note that by the way DS is defined we
have that X = cpe(w \ BY) and since £ C DY we're done. O

O

Theorem 3.7 (CH). If T is a selective independent family and G C PTy, is generic
over V' then V(G| = “T is a selective independent family”.

Proof. There are three things to check. We need to show 1) that fil(Z) is a P-filter,
2) that fil(Z) is a Q-filter and 3) that Z is densely maximal. We take these one at a
time. First though, since we assume CH in V', note that the fact that fil(Z) is a P-set
implies that we can assume that fil(Z) is generated by an w; length C*-descending
sequence {B, | @ < wy}. In other words for all & < 8 < w; we have Bs C* B, and
every A € fil(Z) is almost contained in some (equivalently a tail of) B,. Fix such a
sequence {B, | a@ < w; }.

To see that fil(Z) is a P-filter in V/[G] then, note that if {4, | n < w} C fil(Z) in
V[G] by Lemma 3.5 there are countable ordinals {7, | n < w} so that for all n < w
we have B, C* A,. Let v > sup, ., 7,. We have B, C* A, for all n < w so fil(Z) is
a P-filter in V[G]

The fact that fil(Z) is a Q-filter still in V[G] follows immediately from the fact
that PT}, is w*-bounding.

Thus it remains to see that Z remains densely maximal in V[G]. Suppose not
and let X be a PT,-name for an infinite subset of w so that in V[G] X is not in
fil(Z) and for all g € FF(Z) we have X ¢ w\ Z¢. Let p € G force this. Without
loss of generality we may assume that p is preprocessed for X ie. for each n < w
and every ¢ € Split,,(p) we have that p, decides X Nn. For each split node ¢ of plet
Y; = {n| p: ¥ n ¢ X}. Note that for all split nodes ¢ we have that p, IF X C V;.

Claim 3.8. For all split nodes t of p we have Y; € fil(Z).

Proof. Otherwise there is a t € Split(p) so that Y; C w \ Z¥ for some g € FF(Z) but
since p; - X C Y, we have that P I X Cuw \ Z9. However this contradicts the
choice of p. O

Since fil(Z) is a P-filter generated by ground model elements there is a C' €
fil(Z) NV so that C C* Y} for all ¢ € Split(p). Let f € w* be a strictly increasing
function such that for all n < w we have C'\ f(n) C (Y, | t € Split;(p), j < n+2}.
The following is proved in [14], as well as [6, Lemma 3.15] but we include it for
completeness.
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Claim 3.9. There is a C* C C so that C* € G1(Z) NV and, letting {k, | n < w} be
a strictly increasing enumerate of C*, we have that f(k,) < kpy1 for alln < w and

f(].) < kl.

Proof. This follows from the fact that fil(Z) is a Q-filter”. Inductively find a sequence
{ni}1ew so that ng = 0 and

ni41 = min{n | ny < nandforallm < n; f(m) < n}

. Consider the interval partition & = {[ng;, n3i+3) }iew. Since fil(Z) is a Q-set and
a filter there is a C; C C' so that for all [ < w we have |Cy N [ng, n3y3)| < 1. Now
define an equivalence relation £ on w by

m=g kifm=kvmkeCiAm<k<fim)VE<m< f(k)).

In words, this says that every element of w \ C] is in their own equivalence class
and distinct elements m,k € Cy are &-equivalent just in case applying f to the
smaller one is greater or equal to the bigger one. Every & equivalence class has
at most two members. To see this, suppose m; < ms < mgz € Cy were all in the
same equivalence class. By definition of & we have m; < mgy < ms < f(my).
However, since (' is a semiselector for the interval partition & there are distinct
ly < ly < I3 so that for all 7 € {1,2,3} we have m; € [ng,,ng,,,). Thus we get
my < ng, < mg < ng, < mg < f(my) but by the definition of the n; sequence we
also have f(mi) < ng,4+1 < ng, which is a contradiction.

Now let Cy C C be a semiselector for & in fil(Z). Without loss of generality
0 € Cy. Let {k,} be an increasing enumeration of Cy. For all n < n’ we have that
n and n’ are not in the same & equivalence class and therefore f(n) < n’. As such
Cy = C* is as needed.

For the final point note that fil(Z) is closed under finite changes to elements so
we can augment C* to get f(1) < ky as needed. O

We will find a ¢ < p forcing that C* C X which contradicts the choice of X.
Obviously this will be a fusion argument. Let t* = Stem(p) and let py = p = ps=.
Now for each i € h(I(t*)) let w(t*,i) € py be a 1-splitting node extending (t*) 1.
Since k1 > f(1) we have that ky € ({Yuwes | ¢ € A(I(t*))}. This means that
for each i € h(l(t*)) there is a w'(t*,4) € Splity, ,1(po) extending w(t*,7) which
forces that k; € X since p is preprocessed. Let p; = Uieh(l(t*)) Puw'(t+,i)- Note that

p1 <o po and forces that k; € X. Also note that Split, (p1) € Splity, 1 (po) and, by
construction, for each m we have that Split,,(p1) C Splity, ,,,(po)

Now proceed inductively defining p,y;1 as follows. Assume p, has been defined
and that for all m < w we have Split,, ., (pn) C Split, ,,,(po). Observe that we have
kni1 € (WY: | t € Split, (pn) since k,i1 > f(k,) and hence we can find for each
t € Split,, (p,) and each i € h(l(t)) a w(t, i) € Splity, , 1(po) in p, which contains

"In fact a family F C [w]“ is a Q-filter if and only if for each increasing f € w“ there is a
C* ={k, | n <w} € F such that f(k,) < kn41, see [6, Lemma 3.15].
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t74 50 that (pn)w(e) IF kny1 € X. Let ppyg = Utespmn(pn) Uieh(l(t))(pn)w(t,i)' Clearly
this is as needed. .

Let ¢ be the fusion of the p,’s. We have that ¢ IF C* C X contradicting the fact
that X is forced not to be in fil(Z) so we're done. O

Now we show how to lift the above proof to show that iterations of h-perfect tree
forcing notions preserve selective independent families.

Theorem 3.10 (CH). Let ¢ be an ordinal and Z be a selective independent family.
Let (P, Qa | @ < 0) be a countable support iteration of posets so that for all a < §
we have ko “Qn is PTy, for some h € w® with 1 < h(n) < w for all n < w”. If
G C Py is generic over V then V|G| = ‘L is a selective independent family”.

Proof. The proof is by induction on d. Note first that by Theorems 2.7 and 2.9 and
Lemmas 3.4 and 3.5 we have that for each o < 9 that P, is Cohen preserving and
forces that fil(Z) is generated by ground model sets. This guarantees that P, forces
that fil(Z) is a P-filter. Moreover being w*-bounding ensures that fil(Z) is a Q-filter
hence fil(Z) is forced to be Ramsey by every P, for v < 0. Therefore we just need to
ensure that I-5“Z is densely maximal” under the assumption that for all & < § we
have that I, “Z is densely maximal”. To show this we will use the characterization
of dense maximality given by Lemma 2.3. We now consider two separate cases:
Case 1: § = f+ 1 for some B. The proof of this case is almost verbatim the same
as the proof of theorem 3.7 noting that, by the above, we can assume that ﬁl(I)V%
is generated by fil(Z) NV and the f and C* found in that proof can be assumed to
come from the ground model by w“-boundedness.

Case 2: ¢ is a limit ordinal. Inductively we have that if 5 < ¢ and Gg C Py is
generic over V' then

VIGs] | Pw) = (BUZ) N V)up U\ T? | g € FF(Z))an-
But then by Theorem 2.7 plus the fact that fil(Z) is a Ramsey filter in V¥ we get
ks P(w) = (fl(Z) N V)up U (w\ 27| g € FF(Z))an-
Which, by Lemma 2.3 is exactly what we needed to show. O

4. APPLICATIONS

We now turn to applications of the results from the previous section. The most
obvious of these is that there is a small independent family in any model obtained
by iteratively forcing with h-perfect tree partial orders. In particular we get the
following as a corollary to Theorem 3.10.

Corollary 4.1. It is consistent that i = Ny < non(N) = Ny.

As mentioned in the introduction this consistent inequality was first shown in [4,
Theorem 3.8], though by a very different construction.

In the models constructed in [7] many interesting properties hold with regards to
the structure of the strong measure zero sets, for example the consistency of “the

A
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additivity of the strong measure zero ideal is N, = 2%”. As a consequence all of
these are also consistent with i = X;. One thing to note as a consequence of this is
the following.

Corollary 4.2. It is independent of ZFC whether there is a mazimal independent
family of strong measure zero.

Proof. In the Laver model, [1, Model 7.6.13] every strong measure zero set is count-
able so no maximal independent family has strong measure zero. By contrast if the
additivity of the strong measure zero ideal is R, then in particular any set of reals of
size Ny will be strong measure zero, in particular any selective independent family
from the ground model.

O

We can also now iteration mixings of h-perfect posets with other proper partial
orders which iteratively preserve small selective independent families.

Theorem 4.3. The following are consistent.
(1) i =u < non(N)
(2) i <u=non(N)

Proof. For the first inequality, as noted above in Fact 3.2, for any h we have that
PT), preserves P-points hence in any model constructed by iterating h-perfect tree
forcings with countable support over a model of CH there will be a P-point base of
size ;. For the second inequality alternating between PT), for e.g. h(n) = 2" and
the forcing notions Q7 of [14] (alongside some bookkeeping device) will increase u
but preserves selective independent families. O

Finally we note some applications to definability.

Theorem 4.4. Both inequalities featured in Theorem 4.3 are consistent with a 11}
independent family of size Ny, a A} well order of the reals and, in the case of the
first inequality, a 11} wultrafilter base for a P-point of size Ny.

Proof. Schilhan [13] has shown that in L there is a I} ultafilter base for a P-point
and Brendle, Fischer and Khomskii [3] have shown that in L there is a ¥ selective
independent family and that if there is a X3 maximal independent family then there
is a I} maximal independent family. It follows that all of these objects can be
preserved by the iterations described in the proof of Theorem 4.3 assuming the
ground model is L. Finally for the Al-well order of the reals we apply the forcing
from [9] noting that the main theorem of that paper is precisely that such objects
can be preserved by this forcing, even when other forcing notions, such as PT), are
added to the iteration. ]

5. CONCLUSION AND OPEN (QUESTIONS

The proof of Main Theorem 1.1 are almost verbatim the same as those for Sacks
forcing [5], Shelah’s forcing for killing a maximal ideal used in [14] and very similar
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to the proof for the coding with perfect tree forcing from [9]. In particular really
only structural properties of the forcing are used. This suggests there should be
a general property of proper, w“-bounding forcing notions which imply that small
selective independent families are preserved. The following seems like the first place
to go to isolate such a property.

Question 1. Suppose J is an ordinal and <Pa,Qa | @ < 0) is a countable support
iteration of proper, w*-bounding, Cohen preserving forcing notions. Let Z is a
selective independent family in V = CH. If for all @ < 6 I-,“ Q, forces “fl(Z) is
generated by ground model sets” then does Ps preserve the maximality of Z7
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