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SELECTIVE INDEPENDENCE AND h-PERFECT TREE FORCING 
NOTIONS 

COREY BACAL SWITZER 

ABSTRACT. Generalizing the proof for Sacks forcing, we show that the h-perfect 
tree forcing notions introduced by Goldstern, Judah and Shelah preserve selective 
independent families even when iterated. As a result we obtain new proofs of the 
consistency of i = u < non(N) = cof(N) and i < u = non(N) = cof(N) as well as 
some related results. 

1. INTRODUCTION 

A family 工~ [w]w is said to be independent if for all finite subsets X。,…,Xn-1EI 
g(O) g(n-1) 

and all g: n→2 we have that X。n…nx,;(nl-l)is infinite where xti) means xi if 

g(i) = 1 and w ¥ Xi if g(i) = 0. Such a set is said to be maximal if it is not properly 
contained in any other independent set. The independence number i is the least 
size of a maximal independent family. Despite being one of the classical cardinal 
characteristics, i is notoriously difficult to manipulate. Indeed many relatively simple 
open questions remain surrounding i, most notably the consistency of i < a where a 
is the almost disjointness number1. Part of the issue is that i has no known upper 
bound, besides the trivial 2l-l。whileit has several lower bounds thus preserving 
i small requires preserving the smallness of several other cardinal characteristics 
simultaneously. 

One of the first breakthroughs in studying i came in [14] where the consistency 
of i < u was established2. There, a special independent family, now known as 
a selective independent family was constructed under CH and it was shown that 
under somewhat delicate conditions such a family's maximality could be preserved 
over a countable support iteration of length四 ofcertain proper forcing notions. 
Since then selective independence has become one of the main tools in providing 
models of i < 2l-l。withinteresting properties. See e.g [3, 5, 6]. In particular selective 
independent families are Sacks indestructible. 

All the published examples in the literatur忍ofcountable support iterations of 
proper forcing notions which are shown to preserve selective independent families 

2000 Mathematics Subject Classification. 03El 7, 03E35, 03E50. 
Acknowledgements: The author would like to thank the Austrian Science Fund (FWF) for the gen-
erous support through grant number Y1012-N35. This paper was written for the RIMS Kokyuroku 
volume on RIMS set theory workshop 2021. The author thanks the organizers of that conference. 
1See the appendix of [6] for a discussion of this problem. 
2The cardinal u, the ultmfilter number is the least size of an ultrafilter base on w. 
3 At least all examples the author is aware of. 
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are such that the iterands all have the Sacks property. The Sacks property is used 
throughout these proofs4. However the Sacks property is not needed and is overkill. 
In this article we show that the h-perfect tree forcing notions5 introduced by Gold-
stern, Judah and Shelah in [7] also preserve selective independence, though they 
may, and often do depending on h, fail to have the Sacks property. 

Main Theorem 1.1 (CH). (1) Leth : w→w be any function so that for all 
n < w we have l < h(n) < w then the h-perfect tree forcing，江 preserves
any ground model selective independent family. 

(2) Let 8 be an ordinal and〈氏，0|a ＜ 6〉bea countable support iteration so 
that for all a < 8 we have 

I后 “Q°'isthe h-perfect tree forcing for some h E ww with l < h(n) < w for 
alln<w". 

Then恥 preservesall ground model selective independent families. 

This allows us to show that in the models obtained by iterating such forcing 
notions there is a selective independent family of size N1 and, in particular, i = N1・

As a result we obtain the following consistency results. 

Main Theorem 1.2. The following are consistent. 

(1) i = u < non(N) = cof(N) = 2N。
(2) i < u = non(N) = cof (N) = 2N。

Finally riffing off work of Brendle, Fischer and Khomskii [3], Schilhan [13] and 
Bergfalk, Fischer and the author [9] we can obtain that the cardinal characteristic 
inequalities above are consistent with Ili-definable witnesses and a • ½-definable well 
order of the reals. 

Main Theorem 1.3. The cardinal characteristic inequalities featured in Main The-
orem 1. 2 are consistent with a△i well-order of the reals, a IIi witness to i = N1 
and, in the case of the first inequality, a IIi witness to u =図

The rest of this paper is organized as follows. In the next section we review the 
basics of maximal independent families and selective independence. In the following 
section we introduce the h-perfect tree forcing of [7] and prove Main Theorem 1.1. 
In Section 4 we move on to applications and prove in particular Main Theorems 
1.2 and 1.3. We also discuss the relation between independent families and strong 
measure zero sets. Section 5 concludes with a discussion and some open questions. 
Throughout most of our terminology is standard and conforms e.g. to that of [11] 
and [10]. For combinatorial cardinal characteristics of the continuum we follow [2]. 

Let us finally stress that most of the results in this paper, in particular Main 
Theorem 1.1 are probably not new and indeed were suggested to the author by 

4Though note that the Sacks property is not enough to ensure that selective independence is 
preserved: Silver forcing has the Sacks property but will kill the maximality of any ground model 
independent family and, if iterated w2 many times will result in a model of i = 2No > ~1. 

5See Definition 3.1 for the definition of these posets. 
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both Jorg Brendle and Vera Fischerり However,they do not seem to ever have 
been written down, at least not explicitly and this seemed worth while to do. In 
particular, while the consistency of i < non(N) was shown in [4, Theorem 3.8], the 
proof uses a short finite support iteration of ccc forcing notions over a model of MA 
(a "dual iteration") and hence is very different than the model constructed here. 
Moreover in the model in [4] we do not know the value of u. 

Acknowledgments. The author thanks Jorg Brendle for pointing out [7] to him and 
suggesting that h-perfect forcing may preserve selective independent families. The 
author thanks Vera Fischer for many very helpful conversations on this material and 
sharing her wealth of knowledge on selective independence and the cardinal i. 

2. SELECTIVE INDEPENDENCE 

In this section we introduce the notion of a selective independent family. The 
reader familiar with this idea, for example as presented in [3] or [5], can comfortably 
skip this section as nothing is new. Selective independent families were introduced 
implicitly in Shelah's proof of the consistency of i < u in [14]. To facilitate the 
discussion we utilize the following notation. 

Notation 1. Forエ<;;;;[w]竺

• let FF（エ） denotethe set of finite partial functions g from I to {O, 1 }, and 
• for g E FF（エ） write四 for

n{A I A E dom(g) and g(A) = 1} n nに＼AI A E dom(g) and g(A) = O}. 

In this notation, a family I <;;;; [wドisindependent ifび isinfinite for all g E FF(I). 
An independent family I is maximal if 

VX E[wlwヨgE FF(I) such that I9 n X or I八X is finite, 

We will need a slight strengthening of m訟 imality.

Definition 2.1. An independent family I is densely maximal if 

VX E [wt and g'E FF（エ）ヨg~ g'in FF(I) such thatび nxor I八X is finite. 

In other words, an independent family I is densely maximal if for each X E [wt 
the collection of g's witnessing that I U { X} is not a larger independent family is 

dense in (FF（エ），~).

Definition 2.2. Let I be an independent family. The density ideal of I, denoted 
id(I), is 

{X <;;;; w I Vg'E FF(I)ヨg二g'inFF(I) such that I9 n X is finite}. 

Dual to the density ideal of I is the density filter of I, denoted fil（エ） anddefined as 

{X <;;;; w I Vg'E FF(I) ::lg~ g'in FF(I) such that I八X is finite}. 

6Pri rivate communication. 
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Observe also that for an infinite independent family I, none of the above defini-
tions'meanings change if we replace the word "finite" with "empty". We have as 
well the following from [9, Lemma 5.4]. 

Lemma 2.3. A family 工~ [w]w is densely maximal if and only if 

P(w) = fil(I) U〈叫¥I9I g E FF(I)〉dn・

Where for a set Xこ[w]wthe set〈X〉dndenotes the downward closure of X under 
ご i.e.A E〈X〉dnif and only if there is an X E X with A ~* X. Later on we will 
similarly denote〈X〉upfor the upward closure of X under ~*. 

The following are easily verified, see [9, Lemma 5.5]. 

Lemma 2.4. {1) If I'is an independent family and Iこ工'thenfil（エ）こ fil(I');
{2) if "'is a regular uncountable cardinal and〈Iala<t,,〉isa continuous 

increasing chain of independent families then fil(LJ°'<"'工砂＝ Ua<t<fil（勾；
(3) If I is an independent family then fil(I) = U{ fil(.7) I.7 E［エ]:<:::w}.

Recall that given a family F of subsets of w we say that 

(1) Fis a P-set if every countable family {An In< w}こFhas a psuedointer-
section BE F 

(2) Fis a Q-set if given every partition of w into finite sets { In I n < w} there 
is a semiselector A E F i.e. IA n 1』:::;1 for all n < w, 

(3) F is Ramsey if it is both a P-set and a Q-set. 

If Fis a filter and a P-set (respectively a Q-set, Ramsey set) we call Fa  P-filter 
(respectively a Q-filter, Ramsey filter). 

Definition 2.5. An independent family I is selective if it is densely maximal and 
fil（エ） isRamsey. 

Fact 2.6 (Shelah, see [14]). CH implies the existence of a selective independent 
family. 

Under certain circumstances countable support iterations of proper forcing notions 
over a model of CH will preserve that a given ground model selective independent 
family is maximal. Towards clarifying the meaning of "certain conditions" recall 
the following preservation result, due to Shelah, see [14, Lemma 3.2]. 

Theorem 2. 7. Assume CH. Let 8 be a limit ordinal and let〈氏立 Ia <  8〉be
a countable support iteration of ww-bounding proper posets. Let F こP(w)be a 
Ramsey set and let 1{ be a subset of P(w)＼ぽ〉up. IfVlP'aにP(w)=ぴ〉upU〈H〉dn
for all a < 8 then VlP'/jF P(w) =〈和PU〈初dnas well. 

We will also need the notion of Cohen preserving. 

Definition 2.8. Let IP'be a forcing notion. We say that IP'is Cohen preserving if 
every every new dense open subset of 2<w (or, equivalently w<w,…） contains an old 
~ense subset. Mo~e formally, IP'is Cohen preserving if for all p E IP'and all IP'-names 
D so that p|←“Dこ2<wis dense open" there is a dense Eこ2<win the ground 

model and a q :::;JP'p so that q|←EこD.
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Being Cohen preserving is preserved by countable support iterations of proper 
forcing notions. 

Theorem 2.9 (Shelah, See Co~clusion 2.15D, pg. 305 of [15], see also [5], Theorem 
27). If 8 is an ordinal and〈a,恥 |a<8〉isa countable support iteration of forcing 

notions so that for each a < 8 we have|卜a‘裏 isproper and Cohen preserving" then 
(QJ is proper and Cohen preserving. 

3. h-PERFECT TREES PRESERVE SELECTIVE INDEPENDENT FAMILIES 

In this section we prove Main Theorem 1.1. First, recall the definition of h-perfect 
tree forcing from [7]. 

Definition 3.1. Given a function h : w→w with 1 < h(n) < w for all n < w, the 
h-perfect tree forcing, denoted IP'宣 isthe forcing notion consisting of trees p ~ w<w 
so that the following hold: 

(1) For all t E p and all l E dom(t) we have t(l) < h(l). 
(2) Every t E p has either one or h(l(t))-many immediate successors in T. 
(3) For every t E p there is a t'二twith t'E p and there are h(l(t')) many 

immediate successors of t'in p. 

The order is inclusion. 

Note that the case where h(n) = 2 for all n < w is simply Sacks forcing, while 
for a fast growing h : w→w this forcing will make the ground model reals measure 
zero so which h we choose can affect the properties of the forcing significantly. This 
forcing notion was first considered in [7]. In [7] the following is shown. 

Fact 3.2 ([7]). For any h : w→w with 1 < h(n) < w for all n < w the following 
hold. 

{1) ]pi冗 isproper, and in fact satisfies Axiom A. 
{2) ]pi宜 isww -bounding. 
{3) ]pi'『hpreserves P-points. 

For the rest of this section fix an arbitrary function h : w→w so that 1 < h(n) < 
w for all n < w. We will prove first that forcing with IP'冗 preservesa ground model 
selective independent family. Then we will show that under CH arbitrary countable 
support iterations of h-perfect tree forcings (where the h can change and need not 
even be in the ground model) will preserve selective independent families. First we 
introduce some arboreal terminology. If p E IP'11'h and n < w then a node t E pis an 
nth-splitting node if it has h(l(t)) many immediate successors and it has then -1 
predecessors with this property. Denote by Splitn (p) the set of n-splitting nodes. 
We say that for two h-perfect trees p, q E IP'11'h that q名 pif q ::; p and for all 
i < n + 1 SplitJp) = SplitJq). Given any p E『11'hand any node t E p we let Pt 
denote the tree { s E p I sこtortこs}.Note that Pt E IP'11'h and Pt ::; p for any 
t E p. 
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Lemma 3.3. Let p E ][D1['h and let X be a ][D'Jl'h-name for an infinite subset of w. 
There is a q :S p so that for all n < w and any n-splitting node t E q we have that 
qt decides X n n. 

Such a q is called preprocessed for X. 

Proof. ~his is a standard fusion argument but we sketch it for completeness. Fix 
p and X as in the lemma. Inductively define a fusion sequence... :Sn Pn :Sn-l 
Pn-1'.Sn-2… :S1 P1 :So Po = p as follows. qiveりk< w and Pk, for each kth splitting 

node t E Splitk(Pk) let p~ :S (Pk)t decide X n k. Let Pk+1 = UtESplitk(pk) p~. Clearly 
Pk+l'.Sk Pk and the fusion q := nk<wPk is as needed. ロ

We now move to the first substantial lemma. 

Lemma 3.4. ][D'Jl'h is Cohen preserving. 

Proof. Fix p E ][D'Jl'h and suppose that iJ is a ][D'Jl'h-name for a dense open subset 
of 2竺 Enumerate2<w as { Sn I n < w }. We will inductively construct sequences 

{pn I n < w} and { tn I n < w} so that the following hold. 

(1) Po= P・

(2) Pn+l :Sn Pn for all n < W. 

(3) tn ;;;? Sn for all n < w. 
(4) Pn+1 I卜な ED.

Given such sequences, let q = nn<w Pn and E = { tn I n < w}. Clearly q|卜EC D 
and E is dense so, assuming we can construct such sequences we will be done. fhis 
is done by induction. Given Pk, enumerate Splitk(Pk) as{糾 |i< l}. Note that 
l E w depends not just on h but also on Pk but what matters he~e is that _it is finite 
(which it is). Now let P~,o :S (Pk)u。decidesome t~ ;;;? sk to be in D (since Dis forced 

to be dense this is possible). Next, let P~,1 :S (Pk加 decidesome ti ;;;? t~ to be in iJ. 
Continuing this way, inductively,let for all O < i < l let p知:S(Pk此 decidesome 

ti ;;;? tt―1 to be in iJ. Let Pk+ 1 = l)i<l恥 andtk+l bet炉． SinceiJ is forced to be 
open we have that Pk+l I卜tk+lE D so we're done. ロ

Fix a selective independent family I in the ground model. 

Lemma 3.5. If G ~『'Jl'h is generic over V then in V[G] the ideal id(I) is generated 
by id(I) n V. 

Note that dually this lemma implies that in V[G] the filter fil(I) is generated by 
fil(I) n V. 

Proof. Let.P E ][D'Jl'h, let X be a ][D'Jl'h-name for an infinite subset of w and suppose 
that p I卜X E id(I). We need to find a ground model Y E [wt and an r :Sp so 

that r I卜XこY.Towards this, via a fusion argument, or ju旦tusing the properness 
of『Tゎ finda q :S p and a countable :T ~ I so that q|卜X E id(:T). Since :T is 

countable, we can邸 sociateFF(:T) with 2竺 LetiJ be the ][D宣 namefor the dense 
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open subset of 2<w defined by q|卜gE iJ if and only ifぴ nX = 0. Since IP'宜 is
Cohen preserving there is an r ~ q and a dense E ~ 2<w so that r I卜EこD.Let 
y = nhEE(w ¥ Jh). Observe that y E id(J) and hence y E id(I). To see this, let 
g'E FF(J) be arbitrary and let g ;;2 g'be in E. We have that Y ~ w ¥ぴ and
hence Y nぴ＝ 0which by definition means that Y is in the ideal. The following 
claim now completes the proof. 

Claim 3.6. r I 卜 x~Y.

Proof. Let r E G be四雰genericover V. Note that by the way炉 isdefined we 

have that X = ngEiJa(w ¥印） andsince E ~炉 we're done. ロ

ロ
Theorem 3.7 (CH). IJI is a selective independent family and G ~ IP''IT'h is generic 
over V then V[G]F''I is a selective independent family". 

Proof. There are three things to check. We need to show 1) that fil(I) is a P-filter, 
2) that fil(I) is a Q-filter and 3) that I is densely maximal. We take these one at a 
time. First though, since we assume CH in V, note that the fact that fil（エ） isa P-set 
implies that we can assume that fil(I) is generated by an w1 length ~* -descending 
sequence { Ba I aく叫． Inother words for all a </3 ＜W1 we have B(3ご Baand 
every A E fil（エ） isalmost contained in some (equivalently a tail of) B,. Fix such a 
sequence { Ba I aく凸｝．

To see that fil(I) is a P-filter in V[G] then, note that if {An In< w}~ fil(I) in 
V[G] by Lemma 3.5 there are countable ordinals{in I n < w} so that for all n < w 
we have B咋~* An. Let I 2': SUPn<w /n・ We have B, ~* An for all n < w so fil（エ） is
a P-filter in V[G]. 

The fact that fil(I) is a Q-filter still in V[G] follows immediately from the fact 
that IP''『his ww-bounding. 

Thus it remains to see that I remains densely maximal in V[G]. Suppose not 

and let X be a IP''IT'h-name for an infinite subset of w so that in V[G]炉 isnot in 

事） andfor all g E FF(I) we have X芦W＼四 Letp E G force this. Without 

loss of generality we may assume that p is prep~ocessed for X i.e. for each n < w 

and every t E Splitn_(p) we have that Pt decides X n n. For each split nod~ t of-p let 

½={nip戊 n ~ X}. Note that for all split nodes t we have that Pt I 卜 x~ 乳

Claim 3.8. For all split nodes t of p we have Yi, E fil（エ）．

Proof. Othe~wise _there is at E Split(p) s_o that Yi,~ w＼四 forsome g E FF(I) but 

since Pt If-X ~ Yt we have that Pt I卜X こw¥四 Howeverthis contradicts the 
choice of p. ロ

Since fil(I) is a P-filter generated by ground model elements there is a C E 
fil(I) n V so that Cこ＊ Yi,for all t E Split(p). Let f €ば.; be a strictly increasing 

function such that for all n < w we have C ¥ f (n)~ n{Yi, It E Splitip), j ~ n+2}. 
The following is proved in [14], as well as [6, Lemma 3.15] but we include it for 
completeness. 
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Claim 3.9. There is a C* ~ C so that C* E fil（エ）nV and, letting { kn I n < w} be 
a strictly increasing enumerate of C*, we have that J(k砂<kn+lJ or all n < w and 
f(l) < k1・

Proof. This follows from the fact that fil(I) is a Q-filter7. Inductively find a sequence 
{ nz }zEw so that no = 0 and 

nl+1 = min{n | m < nandforallm < mf(m) ＜ n} 

. Consider the interval partition £,。=｛[n31, n3z+3)}lEw・ Since fil（エ） isa Q-set and 
a filter there is a C1 ~ C so that for all l < w we have IC1 n [n3z, n3z+3)I ::; 1. Now 
define an equivalence relationふonw by 

m 三t:1kiffm = kVm,k E C1 /¥ (m < k::; f(m) V k < m::; J(k)). 

In words, this says that every element of w ¥ C1 is in their own equivalence class 
and distinct elements m, k E C1 are ふ—equivalent just in case applying f to the 
smaller one is greater or equal to the bigger one. Everyふ equivalenceclass has 
at most two members. To see this, suppose叫 ＜ 叫 ＜ 叫 EC1 were all in the 
same equivalence class. By definition ofふ wehave m1く匹 <m3::; J(mサ
However, since C1 is a semiselector for the interval partition £,。 thereare distinct 
li < l2 < h so that for all i E {1,2,3} we have mi E [n3zi,n3zHJ. Thus we get 
m1 < n3z2さm2< n3l3さm3::; f(m1) but by the definition of the nz sequence we 
also have J(mリ<n叫＋1< n313 which i < n3z3 which is a contradiction. 

Now let C2 ~ C1 be a semiselector forふ infil(I). Without loss of generality 
0 E C2. Let｛知｝ bean increasing enumeration of C2. For all n < n'we have that 
n and n'are not in the sameふequivalenceclass and therefore f(n) < n'. As such 
ら＝ C*is as needed. 

For the final point note that fil（エ） isclosed under finite changes to elements so 
we can augment C* to get J(l) < k1 as needed. ロ

We will find a q ::; p forcing that C* ~ X which contradicts the choice of X. 
Obviously this will be a fusion argument. Let t* = Stem(p) and let p0 = p = Pt•. 
Now for each i E h(l(t*)) let w(t*,i) E p。bea I-splitting node extending (t*ri. 
Since k1 > f(l) we have that k1 E n{Yw(t*,i) I i E h(l(t*))}. This means that 
for each i E h(l(t*)) there is a w'(t*,i) E Splitk1+1(Po) extending w(t*,i) which 

forces that k1 E X since p。ispreprocessed. Let Pl = uiEh(l(t*))Pw'(t*,i)・ Note that 

Pl ::;o P。andforces that k1 E X. Also note that Split1 (p1)~ Splitk1 +1 (Po) and, by 
construction, for each m we have that Splitm (P1)こSplit柘十m(Po)

Now proceed inductively defining Pn+l as follows. Assume Pn has been defined 
and that for all m < w we have Splitn+m (p砂こ Split似十m(Po).Observe that we have 
kn+l E n{Yt I t E Splitn(Pn) since kn+l > J(kn) and hence we can find for each 
t E Splitn(Pn) and each i E h(l(t)) a w(t,i) E Splitkn+1+1(Po) in Pn which contains 

7In fact a family F C::: [w]w is a Q-filter if and only if for each increasing f E ww there is a 
C* = {kn In< w} E F such that J(kn) < kn+l, see [6, Lemma 3.15]. 
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tへ iSO that (Pn)w(t,i) I卜kn+lEX. Let Pn+l = UtESplitn(Pn) uiEh(l(t))(Pn)w(t,i)・ Clearly 
this is as needed. 

Let q be the fusion of the Pn's. We have that q|卜びこ Xcontradicting the fact 
that X is forced not to be in fil(I) so we're done. ロ

Now we show how to lift the above proof to show that iterations of h-perfect tree 
forcing notions preserve selective independent families. 

Theorem 3.10 (CH). Let i5 be an ordinal and I be a selective independent family. 

Let (IP a, ≪J!a I a < i5〉bea countable support iteration of posets so that for all a < i5 
we have|丘℃a is己 forsome h E ww with 1 < h(n) < w for all n < w". If 
GこIP6is generic over V then V[G]F''I is a selective independent family". 

Proof. The proof is by induction on 15. Note first that by Theorems 2.7 and 2.9 and 
Lemmas 3.4 and 3.5 we have that for each aさi5that恥 isCohen preserving and 
forces that fil(I) is generated by ground model sets. This guarantees that IP a forces 
that fil（エ） isa P-filter. Moreover being ww-bounding ensures that fil（エ） isa Q-filter 
hence fil(I) is forced to be Ramsey by every IP a for a ::; <5. Therefore we just need to 
ensure that I卜ぷ切 isdensely maximal" under the assumption that for all a < i5 we 
have that I卜。“Iis densely maximal". To show this we will use the characterization 
of dense maximality given by Lemma 2.3. We now consider two separate cases: 
Case 1: 6 = /3＋1 for some (3. The proof of this case is almost verbatim the same 

as the proof of theorem 3.7 noting that, by the above, we can assume that fil（エ）VIl'f3 

is generated by fil(I) n V and the f and C* found in that proof can be assumed to 
come from the ground model by ww-boundedness. 
~: i5 is a limit ordinal. Inductively we have that if/3 ＜ i5 and G13 ~応 is

generic over V then 

V[G13]F P(w) =〈fil（エ）nv〉upU〈w¥I9 I g E FF（エ）〉dn・

But then by Theorem 2. 7 plus the fact that fil(I) is a Ramsey filter in VIP'8 we get 

|卜6P(w) =〈fil（エ） nv〉upU〈w¥I9 I g E FF（エ）〉dn・

Which, by Lemma 2.3 is exactly what we needed to show. 

4. APPLICATIONS 

口

We now turn to applications of the results from the previous section. The most 
obvious of these is that there is a small independent family in any model obtained 
by iteratively forcing with h-perfect tree partial orders. In particular we get the 
following as a corollary to Theorem 3.10. 

Corollary 4.1. It is consistent that i = N1 < non(N)＝応

As mentioned in the introduction this consistent inequality was first shown in [4, 
Theorem 3.8], though by a very different construction. 

In the models constructed in [7] many interesting properties hold with regards to 
the structure of the strong measure zero sets, for example the consistency of "the 
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additivity of the strong measure zero ideal is N2 = 2l{。”.Asa consequence all of 
these are also consistent with i =州 Onething to note as a consequence of this is 
the following. 

Corollary 4.2. It is independent of ZFC whether there is a maximal independent 
family of strong measure zero. 

Proof. In the Laver model, [1, Model 7.6.13] every strong measure zero set is count-
able so no maximal independent family has strong measure zero. By contrast if the 
additivity of the strong measure zero ideal is N2 then in particular any set of reals of 
size N1 will be strong measure zero, in particular any selective independent family 
from the ground model. 

ロ
We can also now iteration mixings of h-perfect posets with other proper partial 

orders which iteratively preserve small selective independent families. 

Theorem 4.3. The following are consistent. 

(1) i = u < non(N) 
(2) i < u = non(N) 

Proof. For the first inequality, as noted above in Fact 3.2, for any h we have that 
lP'冗 preservesP-points hence in any model constructed by iterating h-perfect tree 
forcings with countable support over a model of CH there will be a P-point base of 
size N1. For the second inequality alternating between lP'冗 fore.g. h(n) = 2n and 
the forcing notions (Qェof[14] (alongside some bookkeeping device) will increase u 
but preserves selective independent families. ロ

Finally we note some applications to definability. 

Theorem 4.4. Both inequalities featured in Theorem 4,3 are consistent with a II~ 
independent family of size巡 a△§ well order of the reals and, in the case of the 
first inequality, a m ultrajilter base for a P-point of size州

Proof. Schilhan [13] has shown that in L there is a m ultafilter base for a P-point 
and Brendle, Fischer and Khomskii [3] have shown that in L there is a葛 selective
independent family and that if there is a塁maximalindependent family then there 
is a m maximal independent family. It follows that all of these objects can be 
preserved by the iterations described in the proof of Theorem 4.3 assuming the 
ground model is £. Finally for the△§-well order of the reals we apply the forcing 
from [9] noting that the main theorem of that paper is precisely that such objects 
can be preserved by this forcing, even when other forcing notions, such as lP''IT'h are 
added to the iteration. ロ

5. CONCLUSION AND OPEN QUESTIONS 

The proof of Main Theorem 1.1 are almost verbatim the same as those for Sacks 
forcing [5], Shelah's forcing for killing a maximal ideal used in [14] and very similar 
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to the proof for the coding with perfect tree forcing from [9]. In particular really 

only structural properties of the forcing are used. This suggests there should be 

a general property of proper, ww-bounding forcing notions which imply that small 

selective independent families are preserved. The following seems like the first place 

to go to isolate such a property. 

Question 1. Suppose <5 is an ordinal and〈恥，0|a ＜ 6〉isa countable support 

iteration of proper, ww-bounding, Cohen preserving forcing no~ions. Letエisa 

selective independent family in V p== CH. If for all a < <5 I旦“Q°'forces"fil(I) is 

generated by ground model sets" then does恥 preservethe maximality of I? 
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