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FILTERS IN ZFC 

J. CANCINO-MANRIQUEZ 

ABSTRACT. This is a survey of several filter constructions in ZFC. 

1. INTRODUCTION. 

There are many filter constructions by means of additional hypothesis to ZFC, 

such as the Martin's Axiom or the Continuum Hypothesis. Such hypothesis are 
used in order to construct filters with some predetermined combinatorial properties. 

The situation is somewhat different when dealing with constructions of filters 
by only making use of the ZFC-framework. Obviously, each Borel ideal has its 

own combinatorial properties, and the definition of any Borel ideal provides a 
construction in ZFC of such ideal. However, we mean constructions of a different 

flavor, and maybe the main interest of this paper is the techniques involved. 
This paper present several classical constructions of filters in ZFC. Some of these 

techniques have been expanded by some authors. For example, the construction 
of an ultrafilter with character 2w has been expanded in [12] to construct an Fu如

ideal for which f-ultrafilters exist. In [15], the construction of OK points has been 

generalized by showing that any meager filter can be extended to an OK point. 
The only cardinal invariants we need are the dominating and the unbounding 

numbers. Given f, g E w竺definef s* g if and only if {n E w : f(n) :S g(n)} is 
cofinite. An family 13こwwis unbounded if for any f E ww there is g E!3such that 

g i* f. A family'D ~ ww is dominating if for any f E ww there is g E'D such that 

f s* g. The unbounding number is defined as follows: 

b = min{IBI : Bis an unbounded family} 

and the dominating number is defined as 

cl= min{IVI: Vis an dominating family} 

Let us recall that a familyエこ [w忙isan independent family if for any finite 

partial function f; I→2, the set 

n xf(X) 

XEdom(f) 

is infinite, where x0 = X and X1 = w ¥ X. 
As usual, the natural numbers are denoted by w, and when needed, the set of 

positive natural numbers are denoted by N. The cofinite filter is the filter of cofinite 
sets on w. The following theorem is widely known: 
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Theorem 1.1 (Jalali-Naini, Talagrand, see [13] and [16]). Let F be a filter on w. 
The fallowing are equivalent: 

(1) The filter F is meager. 
(2) F has the Baire property. 
(3) F is bounded. 
(4) There is a pa仕itionI=〈In: n E w〉ofw into intervals such that any 

A E F has empty intersection with finitely many elements from I. 
(5) There is a finite to one function f : w→w such that f (F) is the cofinite 

filter. 

Finally, recall that given an filter F, as base for F is any family BこFsuch 
that for any A E F there is B E B such that BこA;in this case we say that B 
generates the filter F. The character of a filter is the minimal cardinality of a base 
for the filter. 

2. A TUKEY TOP ULTRAFILTER. 

Given two partial orderings (P, ::::;p) and (Q,匹）， afunction f : P→Q is 
cofinal if the image of any cofinal subset of P is a cofinal subset of Q. If there 
exists such a map, we say that Q is Tukey reducible to P, which is written as 
Q臼 P.In the case that both Q臼 Pand P丘 Qhold, we say that P and Q 
are Tukey equivalent, which is written as P三TQ. N. Dobrinen and S. Todorcevic 
have extensively studied the Tukey types of ultrafilters on countable sets, that is, 
the Tukey types of the orderings (U, ;;:,), where U is an ultrafilter. They focus 
mainly on p-points and selective ultrafilters, but also obtain several general results. 
It is straightforward to see that V ::::;RK U implies V ::::;T U. Also, the following 
relations are pointed out in [8] to be true for any ultrafilters U, V, W: 

(1) U XU三TU,

(2) U ::::;TU x V and V ::::;TU x V. 
(3) If V臼 WandU臼 W,then U x V ::::;T W. 

It is also proved that for any directed partial ordering (P, ::::;) with cardinality 
at most c, it holds (P,::::;）臼 ([c]<w,~). So in particular, the Tukey type of any 
ultrafilter on w is at most the Tukey type of ([ c] <w, ~). They actually prove that 
the maximum is attainable: 

Theorem 2.1 (N. Dobrinen, S. Todorcevic, see [8]). There is an ultrafilter U such 
that (U,;;:,)可 ([c]<wぷ）．

The following lemma is the key in the proof of the previous theorem: 

Lemma 2.2 (N. Dobrinen, S. Todorcevic, see [8]). Let U be an ultrafilter. Then 
(U,;;:,)三T([c]<w'こ） ifand only if there is X こUwith cardinality c such that for 
any infinite Y ~ X, n Y ~ U. 

So everything reduces to construct an ultrafilter having the property stated in 
the previous lemma. The construction of such ultrafilter is quite well known, and 
it is in fact the same construction of an ultrafilter having character c. We need the 
existence an independent family of cardinality c: 

Lemma 2.3. There exists an independent family of cardinality c. 
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Proof. There are several constructions of independent families with cardinality c. 
We choose the following one. Denote by Z the family of all pairs (a, F) such that 
a E [w]<w and FE  [[w]<w]<w_ Note that Z has cardinality w. For each X こw.

define the set 

Ax = { (a, B) : X n a E B} 

Define I=  {Ax : X こw}. We claim that I is an independent family and has 
cardinality c. To see the second affirmation, let X, Yこwbe two different sets. 
Assume there is n EX¥ Y. Then ({n}, { {n}}) E Ax¥ Ay. This implies that the 
function X→Ax is an inyective function. 

On the other hand, let X。,．．．，Xn,Yo,..., Ym be different subsets of w. We 

prove that n区nAx,nn区 mZ¥位 isinfinite. For i S n and j S m, pick some 

ki,j E（ふ＼}7J)u（じ＼ふ）． Nowlet BE  [w]<w be such that ki,j EB  for i Sn and 
j s m. Then we have that B n Xi =J B n ½· Define B = {B nふ： iSn}. Then 
we have that (B, B) E Ax, for all i S n, and (B, B) (/_位 forall j Sm. ロ

Proof of Theorem 2.1. Let I be an independent family with cardinality c. Define 
F to be the following family: 

IU{w¥nB:Bこ[is infinite} 

It is easy to see that F has the finite intersection property. Let U be any 
ultrafilter extending F. Then IこU,and by the definition of F, there is no 
infinite BこIsuch that n B E U(since the complement of any infinite intersection 
of elements of I belongs to the family F). It follows by Lemma 2.2 that U has 
maximal Tukey type. 

3. OK-POINTS. 

OK-points were introduced by K. Kunen in [14], in order to prove that/3w* is not 
homogeneous. Previously to him, it was established under additional hypothesis, 
such as the Continuum Hypothesis, the non-homogeneity of f3w*. It turns out 
that the ultrafilter he constructed is a weak p-point: it does not belong to the 
topological closure of any countable subset of f3w*. His construction makes use of 
a clever combinatorial device called independent linked families. In this section we 
deal with his construction of OK-points 

Definition 3.1. Let X be a topological space, p EX  and〈Un:n E w〉asequence of 
neighborhoods of p. A K, —refinement system for〈Un:n E w〉isa sequece〈Va:aEK,〉
of neighborhoods of p such that for all n 2". 1, for any a。<a1<... < °'n-1, it 

holds that ni<n Va,こUn.

Definition 3.2. Let X be a topological space. A point p E X is a K,-OK point if 
for any sequence〈Un:n E w〉ofneighborhoods of p there is a K,-refinement system. 

So we now start with the construction of a c-OK point in f3w* by introducing 
Kunen's independent linked families. 

Definition 3.3 (K. Kunen, see [14]). Let F be a filter on w. Then: 

(1) Let n be a positive natural number. A family { Ai : i E J} is precisely 
n-linked with respect to(w. r. t. from now on) F, if for any a E [J]凡
niEa Ai E F+'but for any a E [J]n+l'niEa Ai is finite. 
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(2) An indexed family { Ai,n : i E I, n E w, n > O} is a linked system w. r. t. 
F, if for any positive n E w, {Ai,n : i EI} is precisely n-linked w. r. t. F, 
and for any positive n E w and i E I, Ai,nこAi,n+l・

(3) An indexed family {Aむ： iE I, j E J, n E w, n > O} is an Ix J independent 

linked family w. r. t. F, if for any j E J, {A{.,, : i E I, n E w, n > O} is i,n 

a linked system w. r. t. F, and for any TE [J]<w and {(nかり： jET} 
such thatの E[Itj, where nj E w is positive, we have that: 

ロ（り3心） Er+ 

The following lemma shows that independent linked families actually exist. 

Lemma 3.4 (K. Kunen, see [14]). There is a c x c independent linked family with 
respect to fin*. 

Proof. Define the set S = {(k, f) : k E w I¥ f E (P(P(k)))P(k)}. Clearly S is a 
countable set. The independent linked family will be defined over S. For X, YこW

and a positive n E w, define Ak_n as follows: 

Ak_n = {(k, f) E s: IJ(Y n k)|::::; n I¥ X n k E f (Y n k)} 

Fix Yこw.Let us see that for any positive n E w, the family {Ak,n : X こw}
is a precisely n-linked system w. r. t. fin. Let X。,．．．,Xn-1be different subsets of 
w. Let k E w be big enough so the sets X。nk,..., Xn-l n k are all different. Then 

define f: P(k)→P(P(k)) such that f(Ynk) = {X。nk,...,Xn-1nk}.It follows 
that (k, f) E ni<n A反，n. On the other hand, for X。,．．．，ふ alldifferent, there 

are finitely many k such that { X。nk,..., Xn n k} contains at most n elements, so 
the clause X n k E f(Y n k) in the definition of A1,;.,, can be true only for finitely X,n 

many k E w. Since (k, f) E ni~n Aぷ，nimplies Xi n k E f(Y n k) for all i::::; n, and 

lf(Ynk)|::::; n, there are only finitely many pairs (k, f) which belong to ni~n A反，n・

Now fix X C w. It follows directlv from the definition that i y from the definition that if (k, f) E Ak,n, then 

(k,f)EA及，n+l・
Now let us see that for any Yo,..., Yiこw,any positive n0,..., nz E wand any 

different X~,..., X~,-i i:;;; w for i ::::; l, the set 

tり（］Q,A見”.)
is infinite. Let k E w be big enough so Yon k,..., Yi n k are all different, and for 
each i::; l, the sets xi n k,..., X~,-l n k are all different. Then define f: P(k)→ 
亨 (k))as f(Y; n k) = {Xj n k: j < ni}-Then (k, f) E ni:S:l (nj<n,政，n;)．ロ

Now we are ready to prove Kunen's theorem. 

Theorem 3.5 (K. Kunen, see [14]). There is U E/3w* which is a c-OK point. 

Proof. The proof goes over a recursion of length c. Let〈Xa: a < c A a is even〉be
the enumeration of all subsets of w. Also, let〈仇： a<c八ais odd〉theenumeration 
of all <;;;;—decreasing sequences 仇＝〈C~: n E w〉ofinfinite subsets of w, and such 
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that each such sequence appears cofinally often. Let { A応： a,/3＜c,n E w,n > O} 
be a c x c independent linked family w. r. t. fin*. 

We construct an こ—increasing sequence〈凡： a<c〉offilters and a こ—decreasing
sequence〈Ka:a< C〉ofsubsets of c, such that五＝ fin*and Ko = c, and at step 
1 of the construction the following holds: 

(1) {A(3 a,n : a< c, n E w, n > 0, /3 EKサisan independent linked family w. r. 

t.瓦・
(2) If, is a limit ordinal,瓦＝ Ua<,瓦 andK, = Ua<, Ka. 
(3) K, ¥ K,+l i ,+1 is finite. 
(4) If, is even, then X, E F,+1 or w ¥ X, E F,+1・

(5) If I is odd and CJ E瓦 forall n E w, then there is {D,,a : a < c} <:;;; 

瓦＋1such that for all positive n E w and a。<．．．，＜ O:n-1< c, the set 

ni<n D,,a, ¥ CJ is finite. 

Suppose the construction has been done and define U = LJ, F,. Condition (4) 
makes sure that U is an ultrafilter, while condition (5) makes sure that U is a c-OK 
point. 

So let us see know how to achieve the construction. Assume瓦 andK, have 
been constructed. We have two cases: 

(1) 1 is even. Let V be the filter generated by瓦U｛ふ｝． IfV is a proper filter 

and {A応： a<c, n E w, n > 0, /3 EKサisindependent w. r. t. V, define 
瓦＋1= V, and K,+1 = K,. Otherwise, there are A E瓦， TE[K,戸 and
{(n(3，び(3): /3E T} such that u(3E [c]四 suchthat: 

x,nAnりT(aりf3Aい）＝0 

Define K,+1 =氏＼ Tand let工＋1be the filter generated by瓦 and

nfJET (naEaf3 A如f3).Then we have that w＼ふ E瓦＋1・

(2) 1 is odd. If there is n E w such that CJ tf_瓦， defineF,+1 =瓦 and
K,+l = K,. Otherwise, pick some/30 E K, and define K,+1 = K, ¥ {/3o}. 
For a < c define D,,。asfollows: 

叫＝（n0w CJ) U CE~見。A岱n n (CJ＼誓））

Then define F,+1 as the filter generated by瓦 and{D,,a : a < c}. Let 
us check that condition (5) is satisfied. Let n E w be any positive number, 

and choose a。<．．．， <°'n-l< c. Note that if n = l, then D,,a。¥C1= 0. 
If n > l we have the following: 

n D伍 k \CJ~ 
k=l,...,n 

k=O..,n (m=lりn-1位，mn(C孟＼ C~+1))
C n A虞，n-1

k=l,...,n 
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Where the last inclusion follows from the fact that A~0,_ C A~0 a,K - a,K+1 for 

any positive k E w. Since the family {A応？n-l: a< c} is (n -1)-linked, it 

follows thatn AfJo k=l,…，n "'ak,n-1 is finite. 

The fact that {A~,n : a< c, n E w, n > 0,/3E K,+i} is an independent 
linked family w. r. t.瓦＋1follows from A品nc;rこD,,a,which is easy 
to see it's true. 

ロ

Kunen's construction has been extended in [15] by showing that any meager 
filter can be extended to a c-OK point, besides some other results. 

4. ADDING A REAL ALWAYS DESTROYS AN ULTRAFILTER. 

Preservation of ultrafilters have turned out to be a quite useful tool. The 
preservation theorem for p-points along countable support iterations has been useful 
in proving the consistency of several classical cardinal invariant inequalities. How-
ever, it is natural to ask if it is possible to preserve all ultrafilters after adding a 
real to a model V of ZFC. It was proved in [2] the existence of an ultrafilter which 
is destroyed whenever a real is added to the model V. 

Theorem 4.1. Let V and W be two models of ZFC such that VこW,and letr E W 
be a real which does not belong to V. Then there is an ultrafilter U in V which does 
not generate an ultrafilter in W. 

Proof. Fix an increasing sequence of natural numbers〈kn:nEw〉.Definea tree 
T ~ 2<w such that the following holds: 

(1) For any s ET, sis an splitting node if and only if Isl＝似 forsome n E w. 
(2) For any n E w, let {s1,..., s2n} be the lexicographical ordering of2位 Then

for any w ~ P(2門＼ ｛0,2吋， thereis k E (kn-1, k砂suchthat sz(m) = 0 if 
and only if l E w. 

(3) There is no m E w such that for all s E T n 2m+1, s(O) = 0 or for all 
n E T n 2m+1 s (m) = 1. 

Now, for any subtree SこT,define the following sets: 

A怠＝ ｛m E w: (Vs ES n 2m+1)(s(m) = O)} 

A点＝ ｛m E w: (Vs ES n 2m+l)(s(m) = 1)} 

Let yr be the ideal generated by the family { A怠，Af: S ~ T is a perfect tree}. 
Claim 1. The idealダ isa proper ideal. Let S。,．．．Snbe perfect subtrees of 
T. We prove that LJ区nA嵐UAふdoesnot almost cover w. Let n E w be such 

that for all i ~ m, ISi n 2k吋＞ n,and let{約： i~庄｝ be the lexicographical 
enumeration of T n 2k叫 DefineWi ~ 2km such that Si n 2km = { Si : i E Wi}, and 
w = {min(wi): i ~ n}. Then wi芦w,since wi has cardinality bigger than n. Also, 
wnwiヂ0for all i ~ n. By (2) in the construction of T, there is k E (km, km+1) 
such that w = {j : s1(k) = O}. Now, since w1芦wand w1 n w =J 0, there are 

s0,s1 E sj n2km such that si(k) = i, for i E 2. It follows that k tf_ Ui:c;nA嵐uA1,・
Since this happens for infinitely many km, the claim follows. 

Claim 2. For any ultrafilter U extending Y,*, U does not generate an ultrafilter 
in W. Assume towards a contradiction that U generates an ultrafilter. Let r E 
(2w)W be a real not in V, and define Xr = {n E w: r(n) = 1}. Then there is XE  U 
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such that X こぶ Letus define S = {s ET: ('vk E X)(lsl > k⇒s(k) = 1)}. 
Note that by definition S belongs to V. Also note that r is a branch of S in W, 

so S contains a perfect subtree in V, say R ~ S. Then X ~ Ak Eダ， whichis a 
contradiction. 

ロ

More recently the previous theorem has been generalized in [7] by proving that 

any ultrafilter which is disjoint from the density zero ideal Z is not preserved as 
an ultrafilter after adding a new real to the ground model. More generally, any 

ultrafilter which is not a Z-ultrafilter is destroyed as an ultrafilter after adding a 
real to the ground model. 

5. THERE IS AN..Jf-ULTRAFILTER FOR SOME Faoa IDEAL. 

The notion of f-ultrafilter was introduced by J. Baumgartner in 1992, in his 
article Ultrafilters on w (see [3]). This notion has proved to be very useful in the 
classification of combinatorial properties of ultra.filters, and has been extensively 

studied by several authors, among them we can find J. Baumgartner, J. Brendle, 
0. Guzman-Gonzalez, M. Hru弱kand many more. The precise definition is as 

follows: 

Definition 5.1 (J. Baumgartner, see [3]). Letダ bean ideal on w. An ultmfilter 

U is an f -ultmfilter if for any function f : w→w, there is A E U such that 
f[A] E..Jf. 

Several combinatorial properties of ultrafilters can be stated as being an f-

ultrafilter for a suitable ideal f, tipically with low Borel complexity. However, it 
was an open question the existence in ZFC of a Borel ideal f for which there is an 

ダ—ultrafilters. This was answered in the positive by 0. Guzman Gonzalez and M. 
Hru幽， andbelow we reproduce their proof. For the proof it will be essential the 

concept of independent family, which was defined in section 1. The proof makes 
use of the cardinal invariant ge(..Jf) introduced by J. Brendle and J. Flaskova in [5]. 
The relevance of this cardinal invariant is that the cardinal equation gc(f) = 2w 
is equivalent to the generic existence of..Jf-ultrafilters, so the strategy is to find a 
Borel ideal f for which gc(f) = 2w is a theorem of ZFC. Let us recall that generic 
existence of ダ—ultrafilters means that any filter F which is generated by strictly 
less than continuum many sets, there is an f-ultrafilter extending F. 

Definition 5.2 (J. Brendle, J. Fla函kova,see [5]). Let f be an ideal on w, The 

cardinal invariant ge(..Jf) is defined as follows: 

gc（ダ） ＝min{ cof(/) : / is an ideal andダこ/}

Lemma 5.3 (J. Brendle, J. Flaskova, see [5]). Let f be an ideal over w. Then 

ダ—ultmfilters exist generically if and only if ge(..Jf) = 2竺

Definition 5.4 (0. Guz叫 n-Gonzalez,M. Hru幽， see[12]). A tree Tこ2<wis said 

to be independent if the family of all bmnces ofT, denoted by [Tl, is an independent 
family. For an independet tree [Tl, there is an associated ideal denoted by Pos(T), 

which is defined as the ideal generated by the family { w ¥ A : A E [T]} U {n C : Cこ
[T]八Cis countable} U [w] <w. 

Lemma 5.5 (0. Guz叫 n-Gonzalez,M. Hru品k,see [12]). The ideal Pos(T) is a 
proper ideal. 
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Proof. This follows easily from the fact that Pos(T) is an independent family. ロ

Lemma 5.6 (0. Guzman-Gonzalez, M. Hru弱k,see [12]). For any independent 
tree Tこ2<w,ge(Pos(T)) = 2竺

Proof. This is essentially the same proof as Theorem 2.1. ロ

So the previous two lemmas show the existence of an analytic ideal f for which 
it holds ge(f) = 2竺 However,it is not clear that the complexity of such ideal 
can be Borel by only choosing an appropriated tree T. The solution given in [12] 
consisted in finding a Borel ideal which contains Pos(T). Note that for any two 
ideals ダ ~/,it follows that ge(f) S ge(/), so for any Borel idealダ suchthat 
Pos(T) ~ f we have that ge(..Jf) = 2竺andthen f-ultrafilters exist generically. 
So, aiming to find a Borel ideal extending Pos(T): 

Definition 5. 7 (0. Guz叫 n-Gonzalez,M. Hru弱k,see [12]). For a tree T and 
m E w, let Zm(T) be the family of all inyective sequences having length m of 
elements of [T]. Let T be an independent tree: 

(1) For x E [[T]]n, define C(x) = UcEx w ¥ c and D(x) = ncEx C. 
(2) Forx E [[T]]n andy1,••·,Yk E Zm(T), defineH(x,y1,...,y砂＝ C(x)u 

LJi=l,... k D(yi), 
(3) For positive n E w,叫 isdefined as the family of all sets A ~ w such that 

for any m > n there are k 2 1, x E [T]n and yい・・・,Yk E Zm (T) such that 
AこH(x,y1,...,y砂

Finally define PosB(T) = ukEw 1-lk, 

Theorem 5.8 (0. Guzman-Gonzalez, M. Hru幽， see[12]). PosB(T) is a proper 
F⑭ u ideal whenever T is an independent tree. Moreover, Pos(T)こPosB(T),so 
it follows that PosB(T)-ultrafilters exist generically. 

Proof. Fix A, B E PosB(T) and let k E w be such that A, B E珀 (clearlysuch 
k exist since〈加： kEw〉is~—increasing). We will see that AU B E 1-l2k• Fix 
!!1 > 2k...: By definition of珀， thereare a, b E [[T]]k and 互•.．，圧EZ叫J') and 
b1,..., bk2 E Zm(T) such that AこH(a,釦，．．．，i'ik1)and BこH(b,b1,...,b叫 It
follows that A U BこH(aU b,a,祖，．．．，恥ふ，．．．，如） E厖． Thisimplies that 
PosB(T) is closed under finite unions. The fact that PosB(T) is a proper ideal 
follows from [T] being an independent family and thus [T] generates a proper ideal. 

To see that Pos(T)こPosB(T),pick any x E Pos(T) and let Fこ[T]be finite 

and a countable Cこ[T]such that x ~ (UAEF w ¥ A) n n C. Thus, for any m > 1, 
fix A E F and choose BE [C]叫 w¥xこAunB, so XE柘．

Let us see that PosB(T) h邸 Borelcomplexity Fuou・ For positive n, m E w, 
n < m, define the following: 

(1) am(T) = {(s1,..., Sm) Erm: (Vi,j：：：：： m)(i=Jj→ Si % Sj A Sj % Si)}, 
(2) For s E am(T) define〈吟＝ ｛（X1,..., Xm) : Xi E [T「Sil}.
(3) For positive k E w and函，．．．，森 Eam(T): 

Q(n,m,函，．．・ぷ） ＝ ｛H(x，祐，．．．訴） ：XE [Tt八Vi：：：：：几砧 E〈迅〉｝

(4) Qd(n, m,函，．．．，荘） ＝ ｛Aこw:（ヨBEG(n,m, 珀，．．．，荘）（A~ B))} 
(5) B(n, m) = Uk>〇｛炉(n,m,函，．．．，森） ：約，．．．，森 Eam(T)}. 
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Note that Q(n, m，函，．．．，森） isa closed set, so Qd(n, m,函，．．．，森） isclosed as 

well. Then B(n, m) is an Fa set, and 1-ln = nm>n B(n, m), which is an Fao set. It 
follows that PosB(T) = UnEw叫， whichis an Fa8。set.

ロ

It is worth mentioning that, regarding generic existence of J-ultrafilters and 
Borel complexity, the previous theorem is optimal: it has been proved in [12] that 
consistently there is no応 idealfor which generic existence of J-ultrafilters holds. 

6. FRIENDLYふ/n-ULTRAFILTER.

The previous section established the existence of an Faoa ideal elf for which elf-
ultrafilters exist generically. It has been proved in [6] that consistently there is no 
此 idealelf for which ダ—ultrafilters exist, and moreover, consistently there is no 
weak J-ultrafilter. As a counterpart, J. Flaskova has proved in ZFC the existence 
of friendly elf1;n-ultrafilters, where elf1;n is the summable ideal defined on N by the 

function f(n) = ¼, and friendly means that for any inyective function f: N→N, 

there is A Eダ1/nsuch that f―1[A] is an element of the ultrafilter (see [9]). This 
is an improvement of a Gryzlov's theorem, which states the existence of frendly 
Z-ultrafilters (see [10, 11]). So, Flaskova and Gryzlov's results are optimal when 
passing from inyective functions to finite to one functions. In this section we present 
Flaskova's construction of a friendlyダi.;n-ultrafilter.

In this section N denotes the positive natural numbers, summable set A ~ N is 

a set such that LnEA五isfinite, and a family F こP(N)is summable if for any 
inyective f : N→N there is A E F such that J[A] is a summable set. 

Lemma 6.1. For every positive natural number k, it holds 冗~=1 点~ 1 +ln(k) ~ 
1 + log2(k). 

Lemma 6.2 (J. Flaskova, see [9]). Let〈Fk:k EN〉besuch that for every k E N, 
五 ak-linked family of infinite subsets of N. Then F = { FこN:('vk EN)（ヨAE
F)(Aこ＊ F)}is a centered family. If moreover, elf is a p-ideal and f : N→N is 
an inyective function such that for all k EN there is Uk E五 suchthat f[[l吋Eダ，

then there is U E F such that f [U] E §. 

Proof. Pick F1,...,Fn E F. Then for every k ~ n and i ~ n, there is Af E互
such that Aぐこ＊ Fk.Since五 isk-linked, n j=l,...,n Af is infinite and it is almost 

contained in n; j=l,...,n L J F1. Thus, F is a centered family. 

Now, if {Uk : k E w}こFand inyective f : N→N are such that j[[l吋Eダ for
all k, with § being a p-ideal, then there is Z E § such that j[[l吋こ＊こ Zfor all k, 
and since f is inyective, it follows that Ukこ＊ f-1[ Z], and therefore f―1[Z] E F. ロ

Lemma 6.3 (J. Flaskova, see [9]). Let A be an infinite subset of w. For every 
k EN there is五 cP(A) which is a summable k-linked family. 

Proof. Following [9], in this proof IT denotes the product of sets and 0 denotes the 
product of numbers. Fix a positive k E w. For any n EN  and j ~ k, define q'; = 
2がn;note that for i ~ k, 2n 0仁。q'J= 2n＋四パ＝ 2n+(2'-l)n= 2がn_Now, let 

〈Bn:n EN〉bea partition of A into finite sets such that Bn = {b¢ : cp E ITい滑｝．
For each i ~ k, m E qf and s E ITJ⇒＋1 q'J, define Bn(i, m, s) = {b町 m-s:

n E rr;二因｝． Given an inyective f : N→N, define lfn = min(f[Bn(i,m,s)]) and 
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m(f, s) E q「suchthat z!,,(f,s) = max{lfn : m E qf}. Now, given f : N→N and 

i :::; k, define the following: 

(1) B{(i, s) = Bn(i, m(f, s), s). 

(2) B{(i) = LJ{B{(i, s): s E ITJ⇒＋1吋｝．

(3) B{ = LJi=O,...,k B{ (i). 

(4) AJ = LJnEN Bf 

The family {At : f : N→N is inyective} is k-linked. Let Ji,..., fk : N→ 
N be inyective functions. For each n E N we will find </> E IT7=o qJ such that 

k: 
b<f> E n f 
¢'= I lj=O B元． Thesequence </> is constructed recursively backwards: start with 

so= 0 and s1 =〈m(fi,so)〉． SupposeSi is defined, then let si+l = m(fi+l, si)~s, 
be the next element of the sequence. Define </> = Bk. Note that by construction 

bcp E nj=O,...,k紬 (k-j, Sj)こnj=O,...,k紬．
What remains is to prove that f[AJ] is summable. Note first that by definition 

of Bf.(i,s) we have IBf.(i,s)I＝喝―贔q7,so 

1 0i-l n 

区 f(a)こmin(］［嘉Ti,s)])―lf 
aEBl(i) m(f,s) 

2n(2'-1) 

Define rf = 0}=i+1 qf and let { mz : l = l,..., rf} be th ・J=i+1 J e increasing enumeration 

of {l;,.(f,s) : s E IT~⇒＋1 吋｝． Note that m1 ~ l • qf, so we have, by Lemma 6.1, 

n _n 

ご＜上八］
l=l 

四― q『こ l< 
l=l 

1 + log2(r『)
＜ 

1+区；一＋1log鱈）
＜ 

qi ― qi ― 

q+nこ□2]= 1 + （2k+1 -1)n 2K+1n 

qi q『<忙

Thus, we have 

と 1 く文こ 1 く沙＋1n(K+1)
f(a)― f(a)― a~! f(a) -~aE~(j) f(a) - q『

And since q『=2がn~2叫 it also holds that 

こ
1 2K+1n(K+ 1) 

f(a）こ 2n
aEBl 

So taking the sum overall Aゎ

こ
1 

aEAt 
f(a) 

::; 2k+2(k + 1) 

which concludes the proof. 

Theorem 6.4 (J. Flaskova, see [9]). There is a friendlyダi;n -ultrafilter. 

ロ
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Proof. Apply the previous lemma to each k E N and N to obtain a summable 
k-linked family. Then apply Lemma 6.2 to the family｛瓦： kE N} to obtain a 

summable centered family F. Then extend F to an ultrafilter U. Since F provides 

witnesses of summability for any inyective f, it follows that U is a friendly巧1/n―

ultrafilter. ロ

7. A MEASURABLE FILTER WITHOUT THE BAIRE PROPERTY. 

Null filters have a similar characterization to the Theorem 1.1, given by T. 

Bartoszyriski in 1992, which is needed for the proof of Theorem 7.2. It is the 
following theorem: 

Theorem 7.1 (T. Bartoszyriski, see [1]). Let F be a filter on w. Then F is a 

measurable filter if and only if there is a family〈Fn:n E w〉suchthat the following 
holds: 

(1) For each n E w, Fn is a finite collection of finite subsets of w. 

(2) For different n, m E w, LJ Fn n LJ Fm= 0. 
(3) 区~=oµ({X こ w: （ヨa E Fn)(aこX)})<oo.

(4) F c;; nnEw Um2:n{Xこw:（ヨaE Fm)(a c;; X)}. 

Theorem 7.2 (T. Bartoszyriski, see [1]). Every measurable filter can be extended 

to a measurable filter without the Baire property. 

Proof. Let F be a measurable filter on w and〈Fn:n E w〉thefamily given by the 
previous theorem. Given X こw,define 

supp(X) = {y E LJ Fn: YこX}
nEw 

Define 1{ = { supp(X) : X E F}, which is a centered family since F is a filter 

and the_ choice of the family〈Fn:n E w〉.LetU _be an ultrafilter extending 1{ and 

define F ={XE P(w) : supp(X) EU}. Then Fi is a measurable filter. since U is 

〈〉an ultrafilter and (Fn : n E w) still witnesses that F has measure zero. Let us see 

that F is not meager. Let { Pn : n E w} be a partition of w such that for all n E w 

FnこP(Pn)-Pick any interval partition〈In:n E w〉andpartition w into finite 

sets〈Bn:n E w〉suchthat for each n E w there is k E w such that hこuiEBnPi. 

Since U is an ultrafilter. there is Zこwcoinfinite such that LJ,.,,=;;: LJ nEZ UiEBn L i  
F• E U. 

Define X = UnEZ uiEBn Fi. Then X E F and X h as empty intersection with 

infinitely many intervals In, namely, those contained in uiEBn pi for some n tf_ z. 
Since〈In:n E w〉wasarbitrary, it follows that F is not meager. 

ロ

One may be tempted to ask about a meager filter which is not measurable. 

However, it has been proved in [2] that every filter with the Baire property is 
measurable, so the existence of a nonmeasurable meager filter is not provable in 

ZFC. 

8. A NON-FEEBLE ULTRAFILTER WITH CHARACTER b. 

A feeble filter is a filter F for which there is a finite to one function such that J(F) 
is the cofinite filter. It follows from Jalali-Naini-Talagrand theorem that any meager 
F filter is feeble, and ultrafilters are easily seen to be not feeble, and more generally, 
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any unbounded1 filter is not feeble, by Jalali-Naini-Talagrand's thereom again. In 
this section we present a construction of a non-feeble filter having character b. This 
construction appears in [4]. 

Definition 8.1. A filter F on w is a feeble filter if there is a finite to one function 
f:w→w such that f (F) is the frechet filter. 

We need the following lemma. Given a function f : w→w, fit is defined 
recursively as Jit(o) = 0 and fit(n + 1) = f(Jit(n)). 

Lemma 8.2. Let D be a dominating family of strictly increasing functions and 
such that f(O) > 0 for all f E D. Let g E ww be a strictly increasing function. 
There is f E D such that for all but finitely many n E w, there exist m E w such 
that『(n)< g(m) < g(m + 1) < fit(n + 1). 

Proof. Let g E ww be an strictly increasing function. Define h9 : w→w as follows: 

h9(n) = min{k E w: k 2 n/¥（ヨmE w)(n < g(m) < g(m + 1) < k)} 

Let f E D dominating h9. Let k0 E w be such that for all k 2 k0, h9(k) ::; 
f(k). Note that f(k) ::;だ(k).Then we have that for any k 2 ko, h9(Jit(k)) ::; 
f(『（k))= fit (k + l), so by the definition of h9, there is m E w such that『(k)< 
g(m) < g(m + 1) < fit(k + l)．ロ

Theorem 8.3. There is a non-feeble filter with character b. 

Proof. We have two cases: 
Case 1: b < D. Let Bこwwbe an unbounded family with cardinality b which 

is closed under max{fo,..., f n}, and each element from B is strictly increasing. 
Since b < D, there is h E ww increasing which is not bounded by B. For any 

f EB, define At = {n E w : f(n) < h(n)}, and let F be the filter generated by 
{At : f E B}(since Bis closed under taking maximum of finitely many elements of 
it, the family {At : f EB} is closed under finite intersections). We claim that Fis 
not bounded. Assume otherwise and let〈In:n E w〉besuch that any A E F avoids 
finitely many intervals In. Define g(n) = h(max(h+1)) where k is such that n Eh-
Then g dominates each element in B. Indeed, let f EB and let k0 E w be such that 

for all m 2 ko, At n Imヂ0,pick n 2 min(h。)， letk E w be such that n E h・

Then there is i E At n h+1 such that f(i) < h(i), and since f and hare a strictly 

increasing functions it follows that f(n) < f(i) < h(i) < h(max(h+1)) = g(n). 
Case 2: b = (). Let D be a dominating family of strictly increasing functions and 

well ordered by ::;* (this is possible since b = D). Given two interval partitions I and 
:1, define :1 [;;; I if all but finitely many intervals from I contain an inte匹valfrom J. 
Note that Lemma 8.2 implies that from D we can construct a family D_ of interval 
partitions such that given any other interval partition :1, there is IE D such that 
:1 [;;; I, and moreover, D is well ordered by [;;;. A straightforward modification of 
the argument for Lemma 8.2 shows that for any family A~ [w]w with cardinality 
smaller than b, there is a partition I such that for any A E A, all but finitely many 
intervals from I have non-empty intersection with A. We construct a sequence of 
centered families〈凡： a<D〉recursivelyas follows: 

(1)五0is the cofinite filter. 

1 A filter F is unbounded if the family { e A : A E巧 isan unbounded family, where eA is the 
incre邸 ingenumeration of the set A. 
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(2) For limit ordinal a,瓦＝ UfJ<a互
(3) If瓦 isdefined, then there is'Ya z a such that almost every interval 

from互 intersectsall the elements from the filter generated by瓦 (thisis 
possible since Fa_ has cardinality smaller than b and the remark following 
the definition of D in the previous paragraph). Let Xa be the union of the 

even intervals from I,。anddefine F°'+1 =瓦 U{Xa}-

Let F be the filter generated by LJfJ<i, FfJ-Note that by construction, for any 
interval I partition there is A E F such that A has empty intersection with infinitely 
many intervals from I. By the Jalali-Naini-Talagrand Theorem 1.1 Fis not a feeble 
filter. ロ

9. A N  ULTRAFILTER WHICH IS NOT A p-POINT NEITHER A q-POINT. 

Finally, there is the following well known result: 

Proposition 9.1. There is an ultrafilter which is not a p-point neither a q-point. 

Proof. Let U be a non-principal ultrafilter and define: 

U x U ={A~ w x w: {m E w: (A)m EU} EU} 

Where (A)m = { n E w : (m, n) E A}. It is easy to see that U x U is an ultrafilter. 
It is not a p-point since { [ n, oo) x w : n E w} has no pseudointersection in U x U. 
It is not a q-point since the projection on the second coordinate has a restriction 
which is finite to one. but ut no restriction is one to one. ロ
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