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FILTERS IN ZFC

J. CANCINO-MANRIQUEZ

ABSTRACT. This is a survey of several filter constructions in ZFC.

1. INTRODUCTION.

There are many filter constructions by means of additional hypothesis to ZFC,
such as the Martin’s Axiom or the Continuum Hypothesis. Such hypothesis are
used in order to construct filters with some predetermined combinatorial properties.
The situation is somewhat different when dealing with constructions of filters
by only making use of the ZFC-framework. Obviously, each Borel ideal has its
own combinatorial properties, and the definition of any Borel ideal provides a
construction in ZFC of such ideal. However, we mean constructions of a different
flavor, and maybe the main interest of this paper is the techniques involved.

This paper present several classical constructions of filters in ZFC. Some of these
techniques have been expanded by some authors. For example, the construction
of an ultrafilter with character 2 has been expanded in [12] to construct an F, s,
ideal for which .#-ultrafilters exist. In [15], the construction of OK points has been
generalized by showing that any meager filter can be extended to an OK point.

The only cardinal invariants we need are the dominating and the unbounding
numbers. Given f,g € w¥, define f <* ¢ if and only if {n € w: f(n) < g(n)} is
cofinite. An family B C w® is unbounded if for any f € w® there is g € B such that
g £* f. A family D C w* is dominating if for any f € w* there is g € D such that
f <* g. The unbounding number is defined as follows:

b = min{|B| : B is an unbounded family}

and the dominating number is defined as

0 = min{|D| : D is an dominating family}
Let us recall that a family Z C [w]“ is an independent family if for any finite
partial function f;Z — 2, the set
ﬂ XX

Xedom(f)
is infinite, where X* = X and X' =w \ X.
As usual, the natural numbers are denoted by w, and when needed, the set of

positive natural numbers are denoted by N. The cofinite filter is the filter of cofinite
sets on w. The following theorem is widely known:
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Theorem 1.1 (Jalali-Naini, Talagrand, see [13] and [16]). Let F be a filter on w.
The following are equivalent:

(1) The filter F is meager.

(2) F has the Baire property.

(3) F is bounded.

(4) There is a partition T = (I,, : n € w) of w into intervals such that any
A € F has empty intersection with finitely many elements from T.

(5) There is a finite to one function f : w — w such that f(F) is the cofinite
filter.

Finally, recall that given an filter F, as base for F is any family B C F such
that for any A € F there is B € B such that B C A; in this case we say that B
generates the filter 7. The character of a filter is the minimal cardinality of a base
for the filter.

2. A TUKEY TOP ULTRAFILTER.

Given two partial orderings (P, <p) and (Q,<q), a function f : P — Q is
cofinal if the image of any cofinal subset of P is a cofinal subset of Q. If there
exists such a map, we say that Q is Tukey reducible to P, which is written as
Q <7 P. In the case that both Q <7 P and P <7 Q hold, we say that P and Q
are Tukey equivalent, which is written as P =7 Q. N. Dobrinen and S. Todorcevic
have extensively studied the Tukey types of ultrafilters on countable sets, that is,
the Tukey types of the orderings (U, D), where U is an ultrafilter. They focus
mainly on p-points and selective ultrafilters, but also obtain several general results.
It is straightforward to see that V <px U implies V <p U. Also, the following
relations are pointed out in [8] to be true for any ultrafilters U, V, W:

(1) UxU=rU.
2) U<pUxVandV <rUx V.
B) HV<pWand U <p W, then U x V <p W.

Tt is also proved that for any directed partial ordering (P, <) with cardinality
at most ¢, it holds (P, <) <p ([¢]<*¥,C). So in particular, the Tukey type of any
ultrafilter on w is at most the Tukey type of ([¢]<¥,C). They actually prove that
the maximum is attainable:

Theorem 2.1 (N. Dobrinen, S. Todorcevic, see [8]). There is an ultrafilter U such
that U, 2) =7 (<%, C).

The following lemma is the key in the proof of the previous theorem:

Lemma 2.2 (N. Dobrinen, S. Todorcevic, see [8]). Let U be an ultrafilter. Then
U, D) =1 ([c]<%, Q) if and only if there is X C U with cardinality ¢ such that for
any infinite Y C X, Y ¢ U.

So everything reduces to construct an ultrafilter having the property stated in
the previous lemma. The construction of such ultrafilter is quite well known, and
it is in fact the same construction of an ultrafilter having character ¢. We need the
existence an independent family of cardinality c:

Lemma 2.3. There exists an independent family of cardinality c.
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Proof. There are several constructions of independent families with cardinality c.
We choose the following one. Denote by Z the family of all pairs (a, F') such that
a € [w<¥ and F € [[w]<*]<“. Note that Z has cardinality w. For each X C w.
define the set

Ax ={(a,B): X Na e B}

Define T = {Ax : X C w}. We claim that Z is an independent family and has
cardinality ¢. To see the second affirmation, let X, Y C w be two different sets.
Assume there is n € X \' Y. Then ({n},{{n}}) € Ax \ Ay. This implies that the
function X — Ax is an inyective function.

On the other hand, let Xoy,...,X,,Ys,...,Y,, be different subsets of w. We
prove that (,.,, Ax, N(;<,, Z \ Ay, is infinite. For i <n and j < m, pick some
kij € (Xi\Y;)U(Y;\ X;). Now let B € [w]<“ be such that k; ; € B for i < n and
j < m. Then we have that BN X; # BNYj;. Define B={BNX,:i<n} Then
we have that (B, B) € Ax, for all i <n, and (B, B) ¢ Ay, for all j < m. O

Proof of Theorem 2.1. Let Z be an independent family with cardinality ¢. Define
F to be the following family:

TU{w\(B: B CTis infinite}

It is easy to see that F has the finite intersection property. Let U be any
ultrafilter extending F. Then Z C U, and by the definition of F, there is no
infinite B C Z such that (| B € U(since the complement of any infinite intersection
of elements of Z belongs to the family F). It follows by Lemma 2.2 that ¢/ has
maximal Tukey type.

3. OK-POINTS.

OK-points were introduced by K. Kunen in [14], in order to prove that Sw* is not
homogeneous. Previously to him, it was established under additional hypothesis,
such as the Continuum Hypothesis, the non-homogeneity of fw*. It turns out
that the ultrafilter he constructed is a weak p-point: it does not belong to the
topological closure of any countable subset of Sw*. His construction makes use of
a clever combinatorial device called independent linked families. In this section we
deal with his construction of OK-points

Definition 3.1. Let X be a topological space, p € X and (U, : n € w) a sequence of
neighborhoods of p. A k-refinement system for (U, : n € w) is a sequece (V,, : @ € k)
of meighborhoods of p such that for all n > 1, for any ag < a1 < ... < u_1, it
holds that (,_, Va, C Uy.

i<n
Definition 3.2. Let X be a topological space. A point p € X is a k-OK point if
for any sequence (U, : n € w) of neighborhoods of p there is a k-refinement system.

So we now start with the construction of a ¢-OK point in Sw* by introducing
Kunen’s independent linked families.

Definition 3.3 (K. Kunen, see [14]). Let F be a filter on w. Then:

(1) Let n be a positive natural number. A family {A; : i € I} is precisely
n-linked with respect to(w. r. t. from now on) F, if for any a € [I]™,
Nica Ai € FT, but for any a € [I]"T1, (N, Ai is finite.
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(2) An indexed family {A; , i € I,n € w,n > 0} is a linked system w. r. t.
F, if for any positive n € w, {A; , 11 € I} is precisely n-linked w. r. t. F,
and for any positive n € w and i € I, A; p C A; pt1.

(3) Anindexed family {A{n ciel,jednewn>0}isanIxJ independent
linked family w. r. t. F, if for any j € J, {Agm cie€l,n€wn>0}is
a linked system w. r. t. F, and for any 7 € [J]<¥ and {(n;,0;) : j € 7}
such that o; € [I]™, where n; € w is positive, we have that:

NN AL, |eF"

jeET \i€o;
The following lemma shows that independent linked families actually exist.

Lemma 3.4 (K. Kunen, see [14]). There is a ¢ X ¢ independent linked family with
respect to fin*.

Proof. Define the set S = {(k,f) : k € wA f € (P(P(k)))P®}. Clearly S is a
countable set. The independent linked family will be defined over S. For X, Y C w
and a positive n € w, define A?n as follows:

A?n:{(k,f)ES:|f(Yﬂk)\§nAkaef(Yﬂk)}

Fix Y C w. Let us see that for any positive n € w, the family {A}/(n : X Cw}
is a precisely n-linked system w. r. t. fin. Let X, ..., X,,_; be different subsets of
w. Let k € w be big enough so the sets XgNk,..., X,,—1 Nk are all different. Then
define f : P(k) — P(P(k)) such that f(Y Nk) ={XoNk,..., Xn—1Nk}. It follows
that (k, f) € M., AX, - On the other hand, for Xo,..., X, all different, there
are finitely many & such that {XoNk,..., X,, Nk} contains at most n elements, so
the clause X Nk € f(Y Nk) in the definition of A?n can be true only for finitely
many k € w. Since (k, f) € ;< A%,n implies X; Nk € f(Y Nk) for all i <n, and
|f(YNk)| < n, there are only finitely many pairs (k, f) which belong to ), ,, A}/(“n.
Now fix X C w. It follows directly from the definition that if (k, f) € A}/(’n, then
(kv f) € A}/(,nJrl'

Now let us see that for any Yp,...,Y; C w, any positive ng,...,n; € w and any
different Xg,..., X}, 1 C w for i <[, the set

M M,

is infinite. Let k& € w be big enough so Yo Nk,...,Y; Nk are all different, and for
each i <1, the sets X{Nk,..., X | Nk are all different. Then define f : P(k) —

P(P(k)) as f(Y; k) = {XiNk:j < ni}. Then (k. f) € Niey (Mycn, 4%, ) O
Now we are ready to prove Kunen’s theorem.
Theorem 3.5 (K. Kunen, see [14]). There is U € Sw* which is a ¢-OK point.

Proof. The proof goes over a recursion of length ¢. Let (X, : @ < ¢ A« is even) be

—

the enumeration of all subsets of w. Also, let (Cy, : @ < cAa is odd) the enumeration

—

of all C-decreasing sequences C, = (C% : n € w) of infinite subsets of w, and such
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that each such sequence appears cofinally often. Let {Agn co,8<¢,n€wn >0}
be a ¢ x ¢ independent linked family w. r. t. fin*.

We construct an C-increasing sequence (F, : @ < ¢) of filters and a C-decreasing
sequence (K, : o < ¢) of subsets of ¢, such that Foy = fin* and Ky = ¢, and at step
~ of the construction the following holds:

(1) {A5,:a<c¢néewmn>0,8¢€ K,}is an independent linked family w. r.
t. .
(2) If v is a limit ordinal, F, = |J

) F,and K, =J
(3) K\ K4 is finite.

)

)

<7y a<’y

(4) If ~ is even, then X, € F4q or w\ X, € Fyq1.

(5) If v is odd and Cy € F, for all n € w, then there is {D, o : @ < ¢} C
F41 such that for all positive n € w and ag < ..., < ap—1 < ¢, the set
Nicn Dry.a; \ Cy is finite.

Suppose the construction has been done and define U = U7 F.,. Condition (4)
makes sure that I/ is an ultrafilter, while condition (5) makes sure that I is a ¢-OK
point.

So let us see know how to achieve the construction. Assume F, and K., have
been constructed. We have two cases:

(1) ~is even. Let V be the filter generated by F-, U{X,}. If V is a proper filter
and {4}, :a <c¢newn>0,5€ K,} is independent w. 1. t. V, define
Fry+1 =V, and K41 = K. Otherwise, there are A € F,, 7 € [K,]<* and
{(ng,08) : B € 7} such that oz € [¢]™ such that:

X, nAn (| ) AL, | =0
Ber \a€og
Define K.,41 = K, \ 7 and let F,11 be the filter generated by F, and
Nper (ﬂaegﬁ A8 m) Then we have that w \ X, € F,11.

(2) v is odd. If there is n € w such that C} ¢ F,, define F,4; = F, and
K1 = K. Otherwise, pick some fy € K., and define K1 = K, \ {fo}.
For a < ¢ define D, ,, as follows:

~(ne)o( U smnenew)

new ncw,n>0

Then define F,q as the filter generated by F, and {D,, : @ < ¢}. Let
us check that condition (5) is satisfied. Let n € w be any positive number,
and choose ap < ..., < a1 < ¢. Note that if n =1, then D, ,, \ C; = 0.
If n > 1 we have the following;:

() Dya \Cj <

k=1,...,n
f ( U 4%.n@n mH))

- m Azi,nfl

k=1,...,n



FILTERS IN ZFC

Where the last inclusion follows from the fact that Ai‘jk - Ai?k 41 for

any positive k € w. Since the family {A% | :a < ¢} is (n — 1)-linked, it

a,n—1
follows that (,—; Ag(;,n—l is finite.
The fact that {Agm ra<cgn€ewn>0,8¢€ K, 1} is an independent
linked family w. r. t. F,41 follows from A2, NC) C D, o, which is easy
to see it’s true.

d

Kunen’s construction has been extended in [15] by showing that any meager
filter can be extended to a ¢-OK point, besides some other results.

4. ADDING A REAL ALWAYS DESTROYS AN ULTRAFILTER.

Preservation of ultrafilters have turned out to be a quite useful tool. The
preservation theorem for p-points along countable support iterations has been useful
in proving the consistency of several classical cardinal invariant inequalities. How-
ever, it is natural to ask if it is possible to preserve all ultrafilters after adding a
real to a model V of ZFC. Tt was proved in [2] the existence of an ultrafilter which
is destroyed whenever a real is added to the model V.

Theorem 4.1. Let V and W be two models of ZFC such thatV C W, and let r € W
be a real which does not belong to V. Then there is an ultrafilter U in V which does
not generate an ultrafilter in W.

Proof. Fix an increasing sequence of natural numbers (k, : n € w). Define a tree
T C 2<% such that the following holds:
(1) For any s € T, s is an splitting node if and only if |s| = k,, for some n € w.
(2) Forany n € w, let {s1,..., 59} be the lexicographical ordering of 2¥». Then
for any w C P(2") \ {0,2"}, there is k € (kp—1,ky,) such that s;(m) =0 if
and only if [ € w.
(3) There is no m € w such that for all s € TN 2™ 5(0) = 0 or for all
neTn2mt s(m) = 1.
Now, for any subtree S C T, define the following sets:
AY={mew: (¥se SN2m ) (s(m) = 0)}
Ay ={mcw: (¥Vsc SN2™ ) (s(m) =1)}
Let .# be the ideal generated by the family {A%, A7 : S C T is a perfect tree}.

Claim 1. The ideal .# is a proper ideal. Let Sy,...S, be perfect subtrees of
T. We prove that (J,.,, A% U A§ does not almost cover w. Let n € w be such

that for all i < m, |S; N 2*=| > n, and let {s; : i < 2*} be the lexicographical
enumeration of T'N 28~ . Define w; C 2¥= such that S; N2k~ = {s; : i € w;}, and

w = {min(w;) : i <n}. Then w; ;Zf w, since w; has cardinality bigger than n. Also,
wNw; # 0 for all i < n. By (2) in the construction of T, there is k € (Kp,, kmr1)
such that w = {j : s;(k) = 0}. Now, since w; ¢ w and w; Nw # 0, there are
s0, st € §; N 2% such that s'(k) =4, for i € 2. It follows that k & |J,,, Ay U A .
Since this happens for infinitely many k,,, the claim follows. B

Claim 2. For any ultrafilter U extending .#*, U does not generate an ultrafilter
in W. Assume towards a contradiction that U/ generates an ultrafilter. Let r €
(2“)W be a real not in V, and define X, = {n € w: r(n) = 1}. Then there is X € U
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such that X C X,. Let us define S = {s € T : (Vk € X)(|s| > k = s(k) = 1)}.
Note that by definition S belongs to V. Also note that r is a branch of S in W,
so S contains a perfect subtree in V, say R C S. Then X C AL € .#, which is a
contradiction.

O

More recently the previous theorem has been generalized in [7] by proving that
any ultrafilter which is disjoint from the density zero ideal Z is not preserved as
an ultrafilter after adding a new real to the ground model. More generally, any
ultrafilter which is not a Z-ultrafilter is destroyed as an ultrafilter after adding a
real to the ground model.

5. THERE IS AN .#-ULTRAFILTER FOR SOME F,s, IDEAL.

The notion of .Z-ultrafilter was introduced by J. Baumgartner in 1992, in his
article Ultrafilters on w (see [3]). This notion has proved to be very useful in the
classification of combinatorial properties of ultrafilters, and has been extensively
studied by several authors, among them we can find J. Baumgartner, J. Brendle,
O. Guzman-Gonzalez, M. Hrusdk and many more. The precise definition is as
follows:

Definition 5.1 (J. Baumgartner, see [3]). Let .# be an ideal on w. An ultrafilter
U is an F-ultrafilter if for any function f : w — w, there is A € U such that
fl4] € #.

Several combinatorial properties of ultrafilters can be stated as being an .-
ultrafilter for a suitable ideal .#, tipically with low Borel complexity. However, it
was an open question the existence in ZFC of a Borel ideal .# for which there is an
S-ultrafilters. This was answered in the positive by O. Guzman Gonzalez and M.
Hrusék, and below we reproduce their proof. For the proof it will be essential the
concept of independent family, which was defined in section 1. The proof makes
use of the cardinal invariant ge(.#) introduced by J. Brendle and J. Flagkov4 in [5].
The relevance of this cardinal invariant is that the cardinal equation ge(.#) = 2¥
is equivalent to the generic existence of .#-ultrafilters, so the strategy is to find a
Borel ideal .# for which ge(.#) = 2 is a theorem of ZFC. Let us recall that generic
existence of Z-ultrafilters means that any filter F which is generated by strictly
less than continuum many sets, there is an #-ultrafilter extending F.

Definition 5.2 (J. Brendle, J. Flagkovd, see [5]). Let & be an ideal on w, The
cardinal invariant ge(&) is defined as follows:

ge(#) = min{cof(_#): 7 is an ideal and & C 7}

Lemma 5.3 (J. Brendle, J. Flaskovd, see [5]). Let . be an ideal over w. Then
S -ultrafilters exist generically if and only if ge(#) = 2%.

Definition 5.4 (O. Guzmdn-Gonzalez, M. Hrusék, sce [12]). A tree T C 2<% is said
to be independent if the family of all brances of T, denoted by [T, is an independent
family. For an independet tree [T, there is an associated ideal denoted by Pos(T),
which is defined as the ideal generated by the family {w\ A: A e [T|}U{NC:CC
[T)AC is countable} U [w]<%.

Lemma 5.5 (O. Guzmdn-Gonzdlez, M. Hrusdk, see [12]). The ideal Pos(T) is a
proper ideal.
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Proof. This follows easily from the fact that Pos(T) is an independent family. [

Lemma 5.6 (O. Guzmdan-Gonzalez, M. Hrusdk, see [12]). For any independent
tree T C 2<%, ge(Pos(T)) = 2“.

Proof. This is essentially the same proof as Theorem 2.1. (I

So the previous two lemmas show the existence of an analytic ideal .# for which
it holds ge(.#) = 2¥. However, it is not clear that the complexity of such ideal
can be Borel by only choosing an appropriated tree T. The solution given in [12]
consisted in finding a Borel ideal which contains Pos(T'). Note that for any two
ideals .# C ¢, it follows that ge(.#) < ge(_#), so for any Borel ideal .# such that
Pos(T) C .# we have that ge(.#) = 2¥, and then .#-ultrafilters exist generically.
So, aiming to find a Borel ideal extending Pos(T):

Definition 5.7 (O. Guzmén-Gonzdlez, M. Hrusdk, see [12]). For a tree T and
m € w, let Z,,(T) be the family of all inyective sequences having length m of
elements of [T]. Let T be an independent tree:

(1) Forx € [[T]]", define C(x) = Joepw \ € and D(x) = (., C-

(2) For x € [[T)" and y1,...,yx € Zn(T), define H(x,y1,...,y;) = C(z) U
Ui:l,...k D(y;)-

(3) For positive n € w, Hy, is defined as the family of all sets A C w such that
for any m > n there are k > 1, x € [T|" and y1,...,yx € Zn(T) such that

AQH(I7y17"'7yk)'
Finally define Posp(T) = Uyc., Hr-

Theorem 5.8 (O. Guzman-Gonzélez, M. Hrusék, see [12]). Posg(T) is a proper
Fys55 ideal whenever T is an independent tree. Moreover, Pos(T) C Posp(T), so
it follows that Posp(T')-ultrafilters exist generically.

Proof. Fix A,B € Posp(T) and let k € w be such that A, B € Hy(clearly such
k exist since (Hy : k € w) is C-increasing). We will see that AU B € Hay. Fix
m > 2k. By definition of Hj,, there are a,b € [[T]]* and ay,...,ar, € Znu(T) and
bi,... bk, € Zm(T) such that A C H(a,ay,...,ax,) and B C H(b,by,...,by,). It
follows that AU B C H(aUb,a,ay,...,ax,,b1,...,bx,) € Hor. This implies that
Posg(T) is closed under finite unions. The fact that Posg(T') is a proper ideal
follows from [T] being an independent family and thus [T] generates a proper ideal.

To see that Pos(T) C Posp(T), pick any « € Pos(T) and let F C [T] be finite
and a countable C' C [T such that 2 C (Uyepw \ A) N C. Thus, for any m > 1,
fix A € F and choose B € [C]", w\z C AU B, so x € H.

Let us see that Posp(T) has Borel complexity F,s,. For positive n,m € w,
n < m, define the following:

(1) am(T) ={(s1,...,sm) €T™: (Vi,j <m)(i #j—> si L sj Ns; L si)}.
(2) For §€ a,,(T) define (8) = {(x1,...,xm) : x; € [T | 84}
(3) For positive k € w and §1,...,8; € am(T):

g(namvglv---agk) :{H(.’Ii,gl,...,g'k)ll'e [T]n/\V’LSTL,g; € <§Z>}

(4) G4n,m,51,...,5) ={ACw: (IB € G(n,m,5,...,5)(AC B))}
(5) B(n,m) =Upso{G%(n,m, 51, ,5k) 51, 5k € am(T)}-
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Note that G(n,m,31,...,5%) is a closed set, so G¢(n,m, 51, ...,5;) is closed as
well. Then B(n,m) is an Fy, set, and H, =,,~,, B(n,m), which is an F,s set. It
follows that Posg(T) =J H,,, which is an F,s, set.

new

0

It is worth mentioning that, regarding generic existence of .#-ultrafilters and
Borel complexity, the previous theorem is optimal: it has been proved in [12] that
consistently there is no F,4 ideal for which generic existence of .#-ultrafilters holds.

6. FRIENDLY ,ﬂl/n-ULTRAFILTER.

The previous section established the existence of an F,s, ideal .# for which .7-
ultrafilters exist generically. It has been proved in [6] that consistently there is no
F, ideal . for which .#-ultrafilters exist, and moreover, consistently there is no
weak Z-ultrafilter. As a counterpart, J. Flaskovd has proved in ZFC the existence
of friendly .7, s,-ultrafilters, where ., /,, is the summable ideal defined on N by the
function f(n) = %, and friendly means that for any inyective function f : N — N|
there is A € ., such that f~'[A] is an element of the ultrafilter (see [9]). This
is an improvement of a Gryzlov’s theorem, which states the existence of frendly
Z-ultrafilters (see [10, 11]). So, Flaskovad and Gryzlov’s results are optimal when
passing from inyective functions to finite to one functions. In this section we present
Flaskovd’s construction of a friendly .#; /,-ultrafilter.

In this section N denotes the positive natural numbers, summable set A C N is
a set such that Y _, L is finite, and a family 7 C P(N) is summable if for any
inyective f : N — N there is A € F such that f[4] is a summable set.

Lemma 6.1. For every positive natural number k, it holds anzl
1 + lOQQ(k)

Lemma 6.2 (J. Flaskovd, sce [9]). Let (Fy : k € N) be such that for every k € N,
Fr a k-linked family of infinite subsets of N. Then F = {F C N: (Vk € N)(34 €
F)(A C* F)} is a centered family. If moreover, & is a p-ideal and f : N — N is
an inyective function such that for all k € N there is Uy, € Fy, such that f[Uy] € .7,
then there is U € F such that f[U] € .7.

Proof. Pick Fy,...,F, € F. Then for every k > n and i < n, there is Af c F;
such that Af C* Fy. Since Fj is k-linked, ﬂj:l,...,n Af is infinite and it is almost
contained in ﬂj:l,...m F};. Thus, F is a centered family.

Now, if {Uy : k € w} C F and inyective f : N — N are such that f[U;] € .# for
all k, with .# being a p-ideal, then there is Z € .# such that f[Uy] C*C Z for all k,
and since f is inyective, it follows that Uy C* f~![Z], and therefore f~1[Z] € F. O

<1+in(k) <

1
m

Lemma 6.3 (J. Flaskova, see [9]). Let A be an infinite subset of w. For every
k € N there is Fi, C P(A) which is a summable k-linked family.

Proof. Following [9], in this proof [] denotes the product of sets and ® denotes the
product of numbers. Fix a positive k € w. For any n € N and j < k, define ¢} =
22" note that for i < k, 2" Q?zo q? — ont2i04) — 9nt(2'—1)n _ 92'n Now, let
(By, : n € N) be a partition of A into finite sets such that B, = {bs : ¢ € H?:o qr}.

ForAeach i <k megqgand s € H?:i+1 q}, define B, (i,m,s) = {by~m~s :
n e H;;B q}}. Given an inyective f : N — N, define 15, = min(f[B,(i,m, s)]) and
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m(f,s) € ¢ such that lj;(ﬁs) = max{l}, : m € ¢"}. Now, given f : N — N and
i < k, define the following:

(1) Bf(z s) = Bn(i,m(f,s),s).

(2) Bl =ULBl(09) 5 < [l a}

(3) Bf =Uiq,.... BL().

(4) Af =Unen B

The family {A; : f : N — Nis inyective} is k-linked. Let f1,...,fr : N —

N be inyective functions. For each n € N we will find ¢ € H?:o q; such that
by € ﬂ?:o Bﬁj . The sequence ¢ is constructed recursively backwards: start with
so =0 and s; = (m(f1,50)). Suppose s; is defined, then let s;11 = m(fit1,5:) s
be the next element of the sequence. Define ¢ = s;. Note that by construction

b¢€ﬂj 0, Bf](k .778.7)an 0, Bf]

What remains is to prove that I [A f] is summable. Note first that by definition
of Bf(i,s) we have |Bf(i,s)| = jzoq] ,

Z ©) Oqj 2n(2i71)
weBl) f - min( FIBLG ) T
Define r}* = OJ qu;’“ and let {m; : I = 1,...,r"} be the increasing enumeration

of {Z’r{z(f,s s € HJ —i+1 4} Note that m; > 1 - g, so we have, by Lemma 6.1,

k
1+ loga(r}') < 143 5—iy1loga(qy) <

q;' - qi' a
g+nY 02 14 @5 Dn 2k
q; a;' @
Thus, we have
k k+1
Z 1 < Z 1 < 2 n(f +1)
@ &= X2 T 7
a€B), I=Ya€ By (j)
And since ¢ = 22'" > 2"_it also holds that
Z 2k+1n(/€ + ].)
< o
a€B, f(a
So taking the sum overall Ay,
Z < 2M2(Ek 4 1)
acAy
which concludes the proof. (I

Theorem 6.4 (J. Flaskovd, see [9]). There is a friendly 9, j,-ultrafilter.
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Proof. Apply the previous lemma to each k¥ € N and N to obtain a summable
k—linked family. Then apply Lemma 6.2 to the family {Fj : k¥ € N} to obtain a
summable centered family F. Then extend F to an ultrafilter ¢/. Since F provides
witnesses of summability for any inyective f, it follows that U is a friendly % ,-
ultrafilter. (]

7. A MEASURABLE FILTER WITHOUT THE BAIRE PROPERTY.

Null filters have a similar characterization to the Theorem 1.1, given by T.
Bartoszynski in 1992, which is needed for the proof of Theorem 7.2. It is the
following theorem:

Theorem 7.1 (T. Bartoszyniski, see [1]). Let F be a filter on w. Then F is a
measurable filter if and only if there is a family (F,, : n € w) such that the following
holds:

(1) For each n € w, F, is a finite collection of finite subsets of w.
(2) For different n,m € w, YF, NUF, = 0.

(3) Yoo r({X Cw: (Ja € F)(a € X)}) < o0.

4) F<MNhew Umzn{X Cw:(Ja€ Fp)aC X)}.

Theorem 7.2 (T. Bartoszynski, see [1]). Every measurable filter can be extended
to a measurable filter without the Baire property.

Proof. Let F be a measurable filter on w and (F,, : n € w) the family given by the
previous theorem. Given X C w, define

supp(X) ={y € U F,:yCX}
new

Define H = {supp(X) : X € F}, which is a centered family since F is a filter
and the choice of the family (F), : n € w). Let U be an ultrafilter extending H and
define F = {X € P(w) : supp(X) € U}. Then F is a measurable filter, since I is
an ultrafilter and (F, : n € w) still witnesses that F has measure zero. Let us see
that F is not meager. Let {P, : n € w} be a partition of w such that for all n € w
F, € P(P,). Pick any interval partition (I, : n € w) and partition w into finite
sets (B, : n € w) such that for each n € w there is k € w such that I C ;. P
Since U is an ultrafilter, there is Z C w coinfinite such that |J,,c, U;cp, Fi € U.
Define X = U,ezUicp, Fi- Then X € F and X has empty intersection with
infinitely many intervals I,,, namely, those contained in J,. g, Pi for some n ¢ Z.

Since (I,, : n € w) was arbitrary, it follows that F is not meager.
O

One may be tempted to ask about a meager filter which is not measurable.
However, it has been proved in [2] that every filter with the Baire property is
measurable, so the existence of a nonmeasurable meager filter is not provable in
ZFC.

8. A NON-FEEBLE ULTRAFILTER WITH CHARACTER b.

A feeble filter is a filter F for which there is a finite to one function such that f(F)
is the cofinite filter. It follows from Jalali-Naini-Talagrand theorem that any meager
F filter is feeble, and ultrafilters are easily seen to be not feeble, and more generally,
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any unbounded! filter is not feeble, by Jalali-Naini-Talagrand’s thereom again. In
this section we present a construction of a non-feeble filter having character b. This
construction appears in [4].

Definition 8.1. A filter F on w is a feeble filter if there is a finite to one function
f:w— w such that f(F) is the frechet filter.

We need the following lemma. Given a function f : w — w, f% is defined
recursively as f%(0) = 0 and f*(n+1) = f(f*(n)).

Lemma 8.2. Let D be a dominating family of strictly increasing functions and
such that f(0) > 0 for all f € D. Let g € w¥ be a strictly increasing function.
There 1s f € D such that for all but finitely many n € w, there exist m € w such
that f*(n) < g(m) < g(m+1) < f(n+1).
Proof. Let g € w*” be an strictly increasing function. Define h, : w — w as follows:
hg(n) =min{k cw: k>nA(Bm e w)(n < g(m) < glm+1) <k)}

Let f € D dominating hy. Let kg € w be such that for all k > ko, hy(k)

f(k). Note that f(k) < f®(k). Then we have that for any k > ko, hy(f"(k))

Ff(R)) = fit(k+ 1), so by the definition of A, there is m € w such that fit(k)
g(m) < glm+1) < f4k+1).

OOAINIA

Theorem 8.3. There is a non-feeble filter with character b.

Proof. We have two cases:

Case 1: b < 0. Let B C w* be an unbounded family with cardinality b which
is closed under max{fo,..., fn}, and each element from B is strictly increasing.
Since b < 0, there is h € w" increasing which is not bounded by B. For any
f € B, define Ay = {n € w: f(n) < h(n)}, and let F be the filter generated by
{Ay : f € B}(since B is closed under taking maximum of finitely many elements of
it, the family {A; : f € B} is closed under finite intersections). We claim that F is
not bounded. Assume otherwise and let (I, : n € w) be such that any A € F avoids
finitely many intervals I,,. Define g(n) = h(max(I11)) where k is such that n € Ij.
Then g dominates each element in B. Indeed, let f € B and let ky € w be such that
for all m > ko, Ay N L, # 0, pick n > min(Iy,), let k € w be such that n € Ij.
Then there is ¢ € Ay N I41 such that f(i) < h(i), and since f and h are a strictly
increasing functions it follows that f(n) < f(i) < h(i) < h(max(Ix+1)) = g(n).

Case 2: b =0. Let D be a dominating family of strictly increasing functions and
well ordered by <* (this is possible since b = ). Given two interval partitions Z and
J, define J C T if all but finitely many intervals from Z contain an interval from 7.
Note that Lemma 8.2 implies that from D we can construct a family D of interval
partitions such that given any other interval partition 7, there is Z € D such that
J C Z, and moreover, D is well ordered by C. A straightforward modification of
the argument for Lemma 8.2 shows that for any family A C [w]¥ with cardinality
smaller than b, there is a partition Z such that for any A € A, all but finitely many
intervals from Z have non-empty intersection with 4. We construct a sequence of
centered families (F,, : @ < ) recursively as follows:

(1) Fo is the cofinite filter.

LA filter F is unbounded if the family {e4 : A € F} is an unbounded family, where e4 is the
increasing enumeration of the set A.

91
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(2) For limit ordinal o, Fo = Uy, Fs-

(3) If F, is defined, then there is 7, > « such that almost every interval
from 7, intersects all the elements from the filter generated by F (this is
possible since F,, has cardinality smaller than b and the remark following
the definition of D in the previous paragraph). Let X, be the union of the
even intervals from 7, and define Foyq1 = Fo U{X,}.

Let F be the filter generated by Uﬂ<a Fp. Note that by construction, for any
interval Z partition there is A € F such that A has empty intersection with infinitely
many intervals from Z. By the Jalali-Naini-Talagrand Theorem 1.1 F is not a feeble
filter. (]

9. AN ULTRAFILTER WHICH IS NOT A p-POINT NEITHER A ¢-POINT.
Finally, there is the following well known result:
Proposition 9.1. There is an ultrafilter which is not a p-point neither a q-point.

Proof. Let U be a non-principal ultrafilter and define:
UxU={ACwxw:{mew: (A), eU} eU}

Where (A)p, = {n € w: (m,n) € A}. It is easy to see that U x U is an ultrafilter.
It is not a p-point since {[n,o0) X w : n € w} has no pseudointersection in U x U.
It is not a ¢-point since the projection on the second coordinate has a restriction
which is finite to one, but no restriction is one to one. (]
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