Generically supercompact cardinals
by forcing with chain conditions
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Abstract

A cce-generically supercompact cardinal k£ can be smaller than or equal
to the continuum. On the other hand, such a cardinal  still satisfies diverse
largeness properties, like that it is a stationary limit of ccc-generically mea-
surable cardinals (Theorem 4.1). This is in a strong contrast to P-generically
supercompact cardinals for the class P of all o-closed posets, which can be

N, for any n > 1.

1 Introduction and preliminaries.

For a class P of posets, we say that a cardinal x is P-generically measurable (P-g.
measurable, for short) if there is P € P such that, for a (V,P)-generic G, there
are j, M C V[G] such that V[C] = j : V 5. M holds). If x is {P}-generically

measurable, we shall also say that x is P-generically measurable.
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D When we write j : N 3. M, we mean N is a transitive model (possibly a class model) of
ZFC™, j is an elementary embedding of V into M, M is transitive, and « is the critical point of j.



A cardinal k is P-generically A\-supercompact (P-g. A-supercompact, for short)
for a given cardinal A > &k, for short) if there is P € P with a (V, P)-generic G and
J, M C V[0] with

(1.1)  V[GEj:V S, M, j(k) >\ j" e M.

A cardinal k is P-generically supercompact (P-g. supercompact, for short) if it
is P-g. A-supercompact for all A > k.

Clearly, for k < A < N, P-g. N-supercompactness of x implies P-g. A-super-
compactness of k and P-g. k-supercompactness of x is equivalent to P-g. measur-
ability of k.

In the following we mainly consider the cases in which P is the class of all v-cc
posets for some uncountable v. In this case, we shall say v-cc-generically mea-
surable (v-cc-g. measurable, for short), or v-ce-generically A-supercompact (v-ce-g.
A-supercompact, for short), in place of P-generically measurable or P-generically
A-supercompact, respectively.

Starting from a measurable (supercompact, resp.) cardinal s, it is easy to
obtain a model in which a ccc-g. measurable (supercompact, resp.) cardinal is less
than or equal to the continuum. Actually, forcing with Fn(\,2) for any A > x will
create such a model.

We can also consider the generic versions of weak compactness: A cardinal &
is said to be P-generically weakly compact for a class P of posets (or P-g. weakly
compact, for short), if, for any A C k (A € V), there is a transitive set model M
of ZFC™ with k, A € M such that, for some P € P and (V,P)-generic G, we have
j:M >, N for some j, N € V[G].

We shall also say v-cc-g. weakly compact etc. similarly to above.

Lemma 1.1 For a class P of posets, if k is P-generically measurable then r is

P-generically weakly compact.

Proof. Suppose that P € P and (V,[P)-generic G are such that there are j*
M* C V[G] with j* : V 5, M*. Let M := H(x"), N := H(*(x)™" )M and
j =71 M. Then, these M, P, G, j, N are witnesses of the property in the
definition of the P-g. weakly compactness for all A C k. O (Lemma 1.1)

We refer mainly [14] for results in connection with precipitousness and generic
ultrapower while our notation tend to be more compatible with that of [15]. Names

in forcing are denoted by alphabets with undertilde adopting the notation of [17].
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2 Generically weakly compact cardinals

Lemma 2.1 Suppose that k is v-cc-g. weakly compact for a v < k. Then

(1) k is weakly Mahlo.
(2) K has the tree property.

Proof. Assume that k is v-ce-g. weakly compact.

(1): (a) First, we prove that x is not a successor cardinal? . Suppose, toward
a contradiction, that r is a successor cardinal, say x = p*. Note that v < p.

Let A C k be a set which codes (s¢ : & < k) where each s¢ for 0 < £ < Kk is a
surjection from p to &.

Let M be a transitive model of ZFC™ such that k, A € M and there is a v-cc
poset P with (V,P)-generic G such that there are j, N € V[C] such that

(21)  V[GEj: M5, N,

Now, since A € M, we have M = k = p* and, since j(p) = p by p < Kk, we
have N |=“j(k) = ut” by elementarity. Thus

since P preserves cardinals > v
by the v-cc of P

J) = ()N < ()Y ) =

This is a contradiction to k = crit(j).

(b) Next, we prove that « is regular. Suppose, again toward a contradiction,
that « is singular and let (k¢ : £ < 9) be a strictly increasing sequence of cardinals
< k cofinal in k and such that § < k. Let A C k be a set which codes the sequence
(ke = £ <0).

Let M be a transitive model of ZFC™ such that k, A € M and there is a v-cc
poset P with (V, P)-generic G such that there are j, N € V[G] such that (2.1) holds.

By A € M, we have (ke : £ < ) € M. By elementarity and crit(j) = &,
J((ke : £ <8)) = (ke : £ <9). Hence

N = () = lmn(j({rg = € < 8))) = lim((sg € < 6)) = #".

This is contradiction to & = crit(j) ¥ .

(¢) Finally, we prove that  is weakly Mahlo. Suppose that C' C & is a club.
Let A C & be such that it codes C' as well as witnesses of singularity of all singular

cardinals and successorship of the successor cardinals < .

2 We can skip (a) since (b) implies (c) and this establishes (1) (see Lemma 3.1).

3) Actually, we do not need the v-cc or any other condition on P to prove (b).



Let M be a transitive model of ZFC™ such that x, A € M and there is a v-cc
poset P with (V, P)-generic G such that there are j, N € V[G] such that (2.1) holds.

Since C € M by A€ M and M |=“C is a club subset of j(k)”, we have N =
“j(C) is a club subset of k" by elementarity. Since j(C)Nr = C by crit(j) = &, it
follows that x € j(C'). & is regular by (b). Since P preserves cardinality and cofinal-
ity > v by its v-ce, V][] |= “k is regular”. It follows that N = “k is regular”. Thus
N |=“j(C) contains a regular cardinal” and M |= “C contains a regular cardinal”
by elementarity. By the choice of A the weakly inaccessible cardinal in C' N M is
really weakly inaccessible.

Since C' was arbitrary, this shows that x is a weakly Mahlo cardinal.

(2): Suppose that T is a r-tree. We want to show that T has a r-branch.

Since we have |T'| = k, we may assume without loss of generality that the
underlying set of T' is k.

Let A C k code the tree ordering <r as well as the witnesses asserting that 7’
is a k-tree. Let M be a transitive model of ZFC™ such that k, A € M and there
is a v-cc poset P with (V, P)-generic G such that there are j, N € V[G] such that
(2.1) holds.

We have T € M and M | “T is a s-tree” by A € M. It follows that N =
“j(T) is a j(r)-tree” by elementarity, and j(T')<, = T. Since j(r) > &, there is
t* € j(T) such that N |=“t* € j(T),”.

Let < and ¢ be P-names of j(<r) and ¢*.

BackNin V, let

TQ = {t el : ”_[P“{ g z”}.

To is a tree of height x and, by the v-cc of P, it is of width < v and v < & (in
V). By a theorem of Kurepa (Proposition 7.90 in [15]), it follows that there is a
r-branch b in Ty. Clearly by is also a k-branch of T 0 (Lemma 2.1)

3 Generically measurable cardinals

Let us call a cardinal k greatly weakly Mahlo if k is weakly inaccessible and there
exists a non-trivial < rk-complete normal filter F over x such that {y < r : pis a

regular cardinal} € F, and F is closed with respect to the Mahlo operation ¥ :

(31) S = ML(S):={a €S : «has uncountable cofinality and

S Na is stationary in a}.

) Closedness here means that for any S € F, we have M¢(S) € F.
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This definition of the Mahlo operation is slightly different from the one given in
[2].
For oo € On, we define the notion of a-weakly Mahloness for all cardinals x by

induction on «.

(3.2) K is O-weakly Mahlo if k is weakly Mahlo;
(3.3)  kis l-weakly Mahloif k is weakly Mahlo® and {y < x : u is weakly Mahlo}

is stationary;

(34) for 1 < a <k, kis a-weakly Mahlo if {i < k : p is f-weakly Mahlo} is
stationary in s for all 5 < a.

(3.5) Kk is hyper-weakly Mahlo if Aoc{p < K : pis a-weakly Mahlo} is sta-

tionary® .

Lemma 3.1 For an ordinal k, if S C Kk is a stationary set consisting of regular

cardinals, then k is also regular and hence k is weakly Mahlo.

Proof. Suppose that S is as above but & is not regular.

We have c¢f k > w, since if ¢f(x) = w, then any increasing w-sequence of
successor ordinals cofinal in & is a club in x disjoint from S.

Say, c¢f (k) = u < k. Let (£, : a < pu) be a continuously increasing sequence
of ordinals cofinal in x such that & > p. By the assumption on S, there is
Ae Sn{& - a < p}. Say, A = &4+ Then ¢f(\) < o < p < A Thisis a

contradiction since \ as an element of S must be regular. 0 (Lemma 3.1)

Lemma 3.2 Suppose a < f < k. If k is B-weakly Mahlo, then k is a-weakly
Mahlo.

Proof. By induction on f. 0 (Lemma 3.2)
For S C k and o < &, let M¢*(S) be defined inductively by

(3.6)  MLY%S):=S;

(3.7)  MELYTH(S) := M (ML*(S));

(3.8)  ML7(S) :=,-, ML*(S) for a limit v < x.

Finally, let

6 The definition of “hyper Mahloness” (i.e. the strongly Mahlo version of the hyper-weakly
Mahloness defined here) has several deviations: in some cases k-Mahloness (which is apparently
slightly weaker than the hyper Mahloness parallel to the hyper-weakly Mahloness as defined here)
is called hyper Mahlo.

6 By Lemma 3.1, the weak Mahloness of  follows from the second condition.



(3.9)  ML(S) = Aae, MLY(S).

Note that stationary sets are not necessarily closed with respect to intersection
of decreasing sequence of short length: Let s be an uncountable cardinal with
K> w,. Fornew,let S, ={a<k:w,<cf(a) <w,} Then each S,, n € w is
stationary. But (0, Sn = 0.

Lemma 3.3 (1) For a regular k, a filler F over k is uniform (i.e. every end-
segment of k is in F) and normal, if and only if F is non-principal, < k-complete
and normal.

(2) If Fis a uniform normal filter over a regqular k, then C' € F for all club
C C k. It follows that all S € F are stationary in k.

(3) If k is greatly weakly Mahlo and F is as in the definition of the greatly weak
Mahloness of k, then for all o« < k {{ < K : £ is a-Mahlo} € F.

Proof. (1): “<” is trivial. For “=", suppose that § < x and S, € F for all
a < 9.
For o < &, let
o {Sa\(i, if o < 0

o .
K otherwise.

We have S! € F for « < d as k'\ 6 € F since F is uniform.

Then F 3 AqcrwSy = MNper Sa \ 0 € Noey Sa- Thus NeeSa € G.

(2): We show first that Lim(x) (= {o < £ : o is a limit ordinal}) is an element
of F. This follows from Lim(k) = Agepk \ (@ +1) € F.

For a club C' C k, let (¢, : o < k) be an increasing enumeration of C'. Then
we have C' D Lim(k) N Aperk \ Co € F.

Foran S € F, SNC € F and hence SN C # () for all club C' C k. Thus S is
stationary in k.

(3): By induction on a. [ (Lemma A 3.0)

The following Proposition is a variant of Proposition 16.8 in [15].

Proposition 3.4 Suppose that k is greatly weakly Mahlo, and let F be a non-trivial
< k-complete normal filter over k such that

(3.10)  Reg(k) :=={pu <k : pis reqular} € F, and

(3.11)  F is closed with respect to the Mahlo operation (as defined in (3.1)).
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Then, for any 1 < o < kK,

(1) Ml{*(Reg(r)) € F,

(2) MlY(Reg(r)) = {p <k : pis B-weakly Mahlo for all B < o}

={p < Kk : pis ag-weakly Mahlo} for all 1 < a < w where g is such that
a=aoay+1;
Ml¥(Reg(r)) = {p < K : w is B-weakly Mahlo for all 8 < o}

={p <k : pis a-weakly Mahlo} for allw < a < k,

(3) & is hyper-weakly Mahlo.

Proof. We first prove (1) and (2) simultaneously by induction on 1 < o < k.
Note that the last equality in both of the cases in (2) follows from Lemma 3.2.

For a = 1, we have

F > Ml(Reg(k)) =Ml (Reg(x))
—

by (3.10) and (3.11) = {1 € Reg(r) : ;1N Reg(k) is stationary in u}

. is weakly Mahlo}.

)
")
)
) : p is O-weakly Mahlo}.

(

(
={u € Reg(k
— {j € Regln

Suppose that v < & is a limit ordinal, and (1), (2) hold for all @ < ~. Then

MO (Reg(r)) = Naey ME*(Reg(r)) € F
N
by (3.8)

by the induction hypothesis about (1) and < k-completeness of F.

Suppose that € M{7(Reg(x)). Then, by the induction hypothesis about
(2), p is (B8 + 1)-weakly Mahlo for all 8 < 7. By (3.4), it follows that {& < p :
¢ is B-weakly Mahlo} is stationary in . Thus, again by (3.4), u is y-weakly Mahlo.

Conversely, if 1 < k is y-weakly Mahlo, then, by Lemma 3.2, u is a-weakly
Mabhlo for all & < 7. Thus, by the induction hypothesis about (2),
1t € Naey ML (Reg(r)) = ME7(Reg(x)). This shows that (2) holds for .

Suppose now that (1) and (2) hold for 1 < a < k.

If a < w, this means in particular that for o such that a = ag + 1,

MC“(Reg(k)) = {p < K : p is ap-weakly Mahlo} € F.
By the definition (3.7) of the iteration of Mahlo operation and (3.11), we have

IVMO‘H(Reg(K)) ={u<r:pis (ap+1)-weakly Mahlo} € F.
N——
=«

If w < a < w, our assumption is



Ml (Reg(k)) = {p < K : p is a-weakly Mahlo} € F.
Thus, similarly to above, we obtain
MCT (Reg(k)) = {p < K : pis (o + 1)-weakly Mahlo} € F.
(1) and (2) imply (3):
Npcr{pr < k : pis a-weakly Mahlo} = A, M{¥(Reg(r)) € F.
— -
by (2) by (1) and normality of F

In particular Ay<o{pr < £ : pis a-weakly Mahlo} is stationary, and this proves
that  is hyper-weakly Mahlo. [ (Proposition 3.4)

The following theorem actually holds already for a v-cc-g. weakly compact

for some v < k. This will be addressed in the forthcoming [13].

Theorem 3.5 If k is a v-cc-g. measurable cardinal for a v < kK, then k is greatly
weakly Mahlo.

Proof. Let P be a cce poset with (V,P)-generic G such that there are classes j,
M C V[C] with j : V =5, M.

Note that, since generically large cardinals are definable (see [12]), we may
apply forcing theorems in the arguments which involve j and M. In particular, we

may assume that
(312) |Fp“j:V .M.
In V[G], let F:={SCrk:SeV,j(S) >k} and let F be a P-name of F.
InV,let F:={SCrk: |Fp“SeF"}={SCk: |Fp“j(S)>~r"}. Then
Claim 3.5.1 (1) F is a non-trivial < k-complete normal filter.

(2) Reg(r) € F.
(3) F is closed with respect to Mahlo operation.
= (1): It is clear that F is a non-trivial filter.

Suppose that S .= (So @ a< pu) €V for some p < k is a sequence of length
of elements of F. Then |Fp “ S is a sequence of elements of F of length p”. Since
ke “5(S) = (j(Sa) : @ < pu)” by (3.12), we have

Fe “5(N5) =N3(S) = M{i(Sa) - a<p} 357
Thus |Fp“ NS € F7, and hence NSeF

If §:= (S, : & < k) is a sequence in V of elements of F. then
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e r € N(S) = a < w} =N (GE) [+7).

Since |Fp“w € N(G(S) | k) & & € AJ(S)® = J(AS)”, it follows that
ke “AS € F7 and thus AS € F.

(2): Let R := Reg(k) \ v. Then we have |Fp“j(R) = Reg(j(r))™ \ v” by
(3.12). By the v-cc of P, it follows that |Fp“k is regular and K > v”. Thus
IFp“r € j(R)”, and hence R € F.

(3): If S € F, then S is stationary by (1) and Lemma 3.3, (2).
Since P is v-cc, |Fp“VF | S is stationary in 7.
Since |Fp“S =j(S)Nk”, it follows that

Fe<r e MEY(j(S)) = j(MLY(S))".

Thus, | “M¢Y(S) € F7 and hence M( (S) € F. — (Ctaim 55.1)

I:I (Theorem 3.5)

Proposition 3.6 For a reqular cardinals k, v with v < k, the following are equiv-

alent:

(a) k is v-cc-g. measurable.

(b) There is a non-trivial, non-principal and v-saturated < k-complete ideal over
K.

(c) there are a v-cc poset P, a (V,P)-generic filter G, and j, M C V[G] such
that V]G] =47 : V S, M” and ("M)VI® C M.

Proof. “(c) = (a)”: is clear. So we shall prove “(a) = (b)” and “(b) = (c)”.
“(a) = (b)”: Let P be a v-cc poset such that, for (V,P)-generic G and j,
M C V[G], we have V[G] = j : V =, M.
InV,let Z:={ACkr: |Fp“r &j(A)”}. Note that Z is the dual ideal of the
filter of F in the proof of Proposition 3.4.

Claim 3.6.1 7 is < k-complete and v-saturated ideal (in V).

Proof. < k-completeness follows from Claim 3.5.1, (1).

In the following, we argue in V. To prove that Z is v-saturated, assume, toward
a contradiction, that (A¢ : { < v) is a pairwise incompatible sequence of elements
in P(x) \ Z. By the < k-completeness of Z, we may choose the sequence such that
Ag, & < v are pairwise disjoint. For each £ < v, since A¢ € Z, there is pe € P, such
that pe |Fp “r € j(Ae)”. By v-cc of P, there are £ < 1 < v such that pg and p,

b2

are compatible, say r <p pg, p,. But then r|p“r € j(/lg) N j(fin) and hence



ke “Ac N A, # 07, Tt follows that A; N A, # 0. This is a contradiction to the
choice of A¢, £ < v. = (Claim 3.6.1)

“(b) = (c)”: Let Z be a v-saturated r-complete ideal over x. Pz := P(k) \Z
satisfies then the v-cc.

T is precipitous (see e.g. Lemma 22.22 in [14]). Let G be a (V,[Pz)-generic
filter, and let j : V %, M be the canonical elementary embedding of V into the
Mostowski collapse of the generic ultrapower by G. By Lemma 22.31 in [14], we
have (“M)V[‘G] C M. [ (Proposition 3.6)

Theorem 3.7 Suppose that k is a v-cc-g. measurable cardinal for some reqular

v < k. Then k is the stationary limit of v-cc-g. weakly compact cardinals.

Proof. Suppose that k is v-cc-g. measurable and let C' C k be an arbitrary club
subset of k. We have to show that C' contains a v-cc-g. weakly compact cardinal.
Let P be a v-cc poset with a (V, P)-generic G and j, M C V[G] such that j : V =5, M

and
(3.13) (*M)VE Cc m

(see Proposition 3.6).
Since M | “j(C) is a club subset of j(x)” and k € j(C) by the closedness, the
following claim completes the proof.

Claim 3.7.1 M | “k is v-cc-g. weakly compact”.

I In M, suppose A C k. We have to show in M that there is a transitive model
My of ZFC™ with k, A € My and jy : M, i>,.i Ny for some jy, Ny in some v-cc
generic extension.

By Proposition 3.6, there is a v-saturated < k-complete ideal Z on x in V.

In V]G], let J be the ideal over r generated by Z. By v-cc of P, it is easy
to see that J is < k-complete (in V[C]). J is v-saturated (in V[G]) by Prikry’s
Theorem (see e.g. Theorem 17.1 in [15]). Let Ps := (P(k)\ J)VIC. Then V[C] |=
“Ps has the v-cc”.

Working further in V[G], let 8 be sufficiently large and let M; be such that

(3.14) My < H(6),
(3.15) k+1U{A,J} C My, and
(3.16) | M| = k.

Let m : M; — Mj be the Mostowski collapse. Note that
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(317) mlr+1=rid.4

by (3.15). My € M by (3.13).

By A C k and (3.17), we have A = m(A) € M,.

Let Jo := m(J). Jo € My by this definition and Jy = J N My by (3.17).
By the elementarity (3.14) (and since 6 is taken sufficiently large), we have M; =
“J is a v-saturated, < r-complete ideal over ”. It follows that

My =“TJy is a v-saturated, < k-complete ideal over 7.

In particular, Jp is precipitous in connection with My by Lemma 22.22 in [14].

Let Q := (P(k) \ Jo)™ (note that Q € M since My € M). m™ | Q = idq is
then an order-preserving and incompatibility preserving embedding of @ into P.
Since P is v-cc in V[G], Q is also v-cc in V[C]. It follows that Q is also v-cc in M
(note that (v*)M = (v+)VI® by (3.13)).

Let H be a (M,Q)-generic filter and let jo : My =3, Ny where Ny is the
Mostowski collapse of the generic ultrapower of My by H (in M[H]).

Clearly, M, together with these jp, and Ny is as desired. — (Claim 371

[ (Theorem 3.7)

4 Generically supercompact cardinals

Theorem 4.1 Suppose that r is v-cc-g. 2%-supercompact for some uncountable

cardinal v < k. Then k is the stationary limit of v-cc-g. measurable cardinals.

Proof. Let P be a v-cc poset with a (V, P)-generic filter G and j, M C V[G] such
that, in V[C], j : V =5, M, j(k) > (27)" and

(4.1) "2V e M.

As in the proof of Theorem 3.7, it is enough to show that M = “k is v-cc-g.
measurable”. Thus, by Proposition 3.6, we are done by showing that M |
“there is a v-saturated, < x-complete ideal over x”.

Since k is v-cc g. measurable, there is a v-saturated, < k-complete ideal Z over
k in V by Proposition 3.6. In V[G], let J be the ideal over x generated by Z. By

Prikry’s theorem, we have
(4.2)  VIC] E“J is v-saturated, < s-complete ideal”.

Note that



J={Ac P&V : AC B for some B € T}
={Ae PV : ACj(B) for some B € I}
={Aec PO . ACC for some C € j"T}.

Since j"Z € M by (4.1), it follows that
JNM={AePr)M: ACC for some C € j"T}

is an element of M.
Thus, we have M | “J N M is v-saturated, < k-complete ideal” by (4.2).

[ (Theorem 4.1)

5 Reflection properties down to < a generically

supercompact cardinal

An interesting fact about the notion of generic large cardinals is that the continuum
can be generic large, or in some cases the continuum can be strictly larger than
many generic large cardinals (cf. Theorem 3.7, Theorem 4.1). This is in particu-
lar the case with cce-generically supercompact cardinals (e.g. obtained by starting
from a model with a supercompact x and then by forcing by Fn(k,2)). The large-
ness properties of generic supercompact cardinals for forcing with chain condition
discussed in the previous sections can thus also be situations with the continuum.

Since generic large cardinals are reflection points of diverse reflection statements
(as discussed below), the continuum can be also the reflection point of the same
reflection statements.

Let S be a class of (not necessarily first-order) structures with a notion Cg
of substructure relation where (S, Cg) should satisfy certain reasonable properties
like that

(5.1) AeSand A= imply B € S,
Cs is transitive,

ACTs DB and (B, A) = (B, A) imply A’ Cs B,

ete.

We also assume that S is absolute and Cg is upward absolute, meaning that
if M, N are transitive (class or set) models of ZFC™ and M is an inner model of
N, then, forany A, B e M, M FAecS S NEAcSand M EALCs B =
N E 2 Cs %B. For a structure 2, we denote by |2l the underlying set of 2 and
by ||| the cardinality of the underlying set of the structure 2L.
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Given such a class S = (S§,Cg) of structures, and a property P, the reflection

number of P (in connection with S) is defined as

vefl 4, (S, P) ;= min{x € Reg : for any A € S with 2 = P and ||| > &,
the set {|B| : BLCsA, B = P, [|B]| < x}
is stationary subset of [ |2 |<* }

where we define min ) := co.

The reflection spectrum of P is

REFL 10i(S, P) :={k € Reg : for any A € S with A = P and ||| > &,
the set {|B| : BLsA,B = P, [|B]| < r}
is stationary subset of [ |2 |<% }

Example 5.1 Let S be the class of all first countable topological spaces X = (X, T)
where T is an open basis for the space. Cg is the subspace relation.
For P = non-metrizability, the consistency of vefl ,,,(S, P) = Ry is known as

Hamburger’s Problem which has been open for almost a half century. a

A property P is downward absolute if, for any transitive (class or set) models
M, N of ZFC™ such that M is an inner model of NV, and for any structure 2A, if
N E“2 = P” implies M |E=“2A E P7.

For a class P of posets, P preserves P, if A = P then for any P € P, |Fp “A
P7 holds.

Theorem 5.2 Suppose that S = (S,Cs) is a class of structures, P a class of
posets, and k a P-g. supercompact cardinal. If a property P satisfies:

(5.2) P is downward absolute and

(5.3) P preserves P,

then k € REFL 1t (S, P) and hence vefl 4, (S, P) < k.

Proof. Suppose that 2l € S and ||2|| > . By replacing 20 with an isomorphic
structure, we may assume that || = X € Card (see (5.1)).

Let P € P be such that for an (V,P)-generic G and j, M C V[C], we have
VIG] =45 : V S5 M7,

(5.4)  j(k) > pand j”u € M where u = J,()\) for sufficiently large n.”

By the last condition (5.4), we have j() | j”\ € M.

7) We need 3,.()\) here since the elements of S may be (n + 1)-th order structures for n > 1.



V[CG] = “2A E P” by (5.3). By VIO = “20 = j(A) | "\, it follows that
VIG] E “j() | 7"\ = P?. Since [j() [ j”"A = j"\ € M by (5.4), we have
JRO) 17"\ € M and hence M E“2 | 7"\ | P” by (5.2).

Suppose D is an arbitrary club subset of [A]<* in V. Since M = “;"D is cofinal
in [j”A\<"", we have M =“7"XA=J(j"D) € j(D)".

InV,let Sp ={B : B Cs A ||I'B]| <k} Since j(|B|) =7"|B| forall B € S,
it follows that (J{ |€| : € € j"Sp} = 7”A. Thus, M =“j5(A) | "X Cs j(A)” (for
this, we have to assume that S satisfies the the property that the union of upward
directed system of Cs-substructures is a Cg-substructure and certain Downward
Léwenheim-Skolem theorem on Cg-substructures of a given structure in S). with
respect to Cg).

By elementarity, it follows that {|B] : B Cs A, ||'B]| < k} is stationary in
[)\]< R 0 (Theorem 5.2)

The following are some application of the theorem above.

Corollary 5.3 Suppose that k is a ccc-g. supercompact cardinal and S = (S, <) is
a variety and A € S with ||A|| > K is not free. Then there are stationarily many
non-free B < A of cardinality < k. In particular, with P being “being non-free”,
we have REFL ;0t(S, P) 3 k and vefl (S, P) < k.

Proof. ccc posets preserve non-freeness of algebras in any variety (see [5]).

D (Corollary 5.3)

Note that the Corollary above applies e.g. to groups, abelian groups, Boolean
algebras, etc.

We shall call posets of the form Fn(\,2) generalized Cohen posets. For P =
{P : P is forcing equivalent to some Fn(\,2)}, P-g. supercompactness for this P
will be also called Cohen-g. supercompactness.

In the following Corollaries, stationarity may be replaced with clubness since
any topological space containing a non-metrizable subspace is non-metrizable and

any tree containing a non-special subtree is non-special.

Corollary 5.4 Suppose that k is a Cohen-g. supercompact cardinal. Then any
first countable non-metrizable topological space of cardinalily > r have club many

subspaces of size < K which are non-metrizable.

Proof. Generalized Cohen posets preserve non-metrizability (see Dow, Tall and
Weiss [4]) [ (corollary 5.4)

Corollary 5.5 Suppose that k is a Cohen-g. supercompact. Then any non-special

tree T' has club many non-special subtrees of size < K.
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Proof. Generalized Cohen posets preserve non-specialty of trees (Todorcevié, see
[6} ) [ (corollary 5.5)

The Cohen-g. supercompactness in Corollary 5.5 cannot be replaced by ccc-g.
supercompactness:

We can prove (in ZFC) that there is a non-special tree of size 2% without
branches of length wy (e.g. T:={t : t: @ — w, ¢ is 1-1 for some « < w;} with the
ordering t/ <; t' :< t Ct' is such a tree).

By Baumgartner, Malitz, and Reinhardt [1], all trees of size < 2% without
branches of length w; are special under Martin’s Axiom.

The reflection number vefl ,,,(C, P) for C := trees and P := non-special by
vefl g is related to Rado’s Conjecture (which is the satement vefl,,,(C, P) = Ny).
If we denote this by veflgc, the results cited above can be put togetehr to show:

Proposition 5.6 (MA) teflgc > 2%, u]

Also, for § and P as in Example 5.1, we have vefl (S, P) > b (see [10]). Thus,
denoting this reflection number connected to Hamburger’s Problem (more presicely
Hamburger’s Problem is the question about the consistency of vefl (S, P) = Ra)
by vefl yp, we have

Proposition 5.7 (MA) tefl,p > 2%, Q

If we start from a supercompact x and force MA together with 2% = g by
the standard forcing construction, then in the resulting model x (= 2%) is ccc-g.
supercompact and MA holds. This shows (under the assumption of the consistency
strength of a supercompact cardinal) that the assertion “the continuum is ccc-g.
supercompact” is consistent with the non-reflection veflgc, veflyp > 2%0.

On the other hand, it is consistent that 2% is ccc-g. supercompact, MA holds
but a reasonably strong reflection principle with the reflection point < N, still holds:

Start from a model of ZFC with two supercompact cardinals. Use the smaller
supercompact to force Fodor-type Reflection Principle (FRP, which is a reflection
principle with the reflection point < Ny, and FRP follows from RC). Then force by
the standard ccc forcing for MA to make the larger supercompact cardinal (which
survives the first extension) to make it the continuum. In [7], it is shown that FRP
is preserved by ccc generic extension. Thus in the resulting model, we still have
FRP together with MA and that the continuum is cce-g. supercompact.

Corollary 5.8 (Konig [16] see also [8]) Suppose that k is P-g. supercompact where
P is the class of all o-closed posets. Then any non-special tree T has club many

non-special subtrees of size < K.



Proof. o-closed posets preserve non-specialty of trees (Todorcevié, see [18]).

[ (coroliary 5.8)
Corollary 5.9 (Diagonal Reflection Principle, see [3], [8]) Let
S:={(M, (S, :ae M)y : M#0,S, C[M forallae M}.
For (M,(S, : a € M)), (N,{(S, : a€ N)) €S, let

(M, (SM : a € M)) Cs (N,(SN : a € N)) =
M C N, and SM = SN N [M]* for alla € M.

Let the property P be defined by stipulating that P holds in (M, (S, : a € M)) €
S if and only if S, is a stationary subset of [M]* for all a € M.

Suppose that P is a class of posets such that all elements of P are proper. If k
is a P-g. supercompact, then we have tefl (S, P) < k. 0

The inequality vefl,,,, (S, P) < x in Corollary 5.9 is optimal in the following
sense: Suppose that k is supercompact and p < k is such that there is a non-
reflecting stationary set S C [u]*.®) If P := Fn(k,2) and G is a (V,P)-generic
filter, then x is Cohen-g. supercompact in V[G]. Since S remains a non-reflecting
stationary subset of [u]™ in V]G], we have V[G] | “p < vefl ;,,, (S, P) < k = 2807,

On the other hand, it is also consistent (modulo large cardinals) that vefl (S, P)
< k = 2% holds for a ccc-g. supercompact cardinal x: Suppose that kg < & are two
supercompact cardinals and P and G are as above. Then, in V[G], kg and k are both
Cohen-g. supercompact. Thus, by Corollary 5.9, we have V[G] = vefl (S, P) <
Ko < Kk = 20,
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