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Abstract 

Equilibrium problems are one of the important problems which are applied 
in a variety of fields such as natural science, economics, statistics and so on. 
The idea of the resolvent are considerable notion to solve these problems and 
has been studied by many researchers. In this paper, we consider the problem 
of asymptotic behavior of resolvents defined for equilibrium problems. 

1 I ntroduction 

The concept of resolvent has been deeply studied and applied for solving convex 

minimization problems and fixed point problems in various settings of spaces. A 

geodesic space is a metric space having a convex structure and a Hadamard space 

is one of complete geodesic spaces in which resolvents are considered. For a convex 
function on a Hadamard space, its resolvent is often defined as follows. Let X be a 

Hadamard space and g a convex lower semicontinuous function on X. We define a 

resolvent R9: X→X by 

凡(a)=argmin{J(y) + d(y, a)2} 
yEX 
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for a EX. This R9 is well-defined as a single valued mapping; see [4]. Therefore, we 

can consider a resolvent R入， withpositive parameter入． Thatis, 

恥 (a)=a~嘉閃in｛入f(y) + d(y, a)2} = a~贔閃in { f(y) + ½d(y, a)2}. 

The asymptotic behavior of resolvent at infinity is a problem to consider the limit 

of R入gXat入→ oo.As for this problem, the following result is known. 

Theorem 1.1 (See [1]). Let X be a Hadamard space, g a convex lower semicontinuous 

加 ctionon X, x EX, and入＞ 0.Define R入g:X→X by 

R叫）
1 

a = arygE悶in{ J(y) + ½d(y, a)2} 

for each a E X. If there exists a sequence {μn} such that μn→ oo and {J四 JX}is 
bounded, then argmin fヂ0and, 

lim J入JX= PEquil JX-
入→00

Equilibrium problems are important problems containing minimization problems, 

fixed point problems, saddle point problems, and Nash equilibria. Let K be a 

nonempty set and f: K x K →賊 abifunction on K. An equilibrium problem 

for f is a problem of finding 

z E K such that f (z, y):2: 0 for all y E K. 

These problems are studied by many researchers. For example, see [2]. We consider a 
resolvent for such a bifunction f of equilibrium problems. A resolvent of equilibrium 

problems on Hadamard spaces is defined in [3]. 
In this paper, we study the property of a resolvent of equilibrium problems with 

a positive parameter入andconsider the asymptotic behavior of its resolvent at入to

infinity. 

2 Prelimi reliminaries 

Let X be a metric space. For x, y E X, a geodesic Cxy: [O, d(x, y)］→ Xis a 

mapping which satisfies Cxy(O) = x, Cxy(d(x, y)) = y, and d(cxy(u), Cxy(v)) = lu -vi 
for u, v E [O, d(x, y)]. If for any two points, there exists a unique geodesic, Xis called 
a uniquely geodesic space. We define convex combination tx① (1-t)y between x and 

y in a unique geodesic by 

tx① (1 -t)y = Cxy((l -t)d(x, y)), 

fort E [O, l]. In particular, we denote ½x 〶 ½Yby 号． A complete uniquely geodesic 
space X is called a Hadamard space if it holds that 

d(tx① (1 -t)y, z)2 :S td(x, z)2 + (1 -t)d(y, z)2 -t(l -t)d(y, z)2 
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for any three point x, y, z E X, and t E [O, 1]. Let S be a subset of X. The convex 
hull co S of S is defined by 

00 

coS = LJ Sゎ
j=l 

where 81 = S and 83+1 = {tx 〶 (1 -t)y EX  I x,y E S1,t E [O, 1]}. We say X 
has the convex hull finite property if for every subset S and continuous mapping 
T: coS→co S, T has a fixed point in co S. 

Let X be a Hadamard space and g a function from X to艮． gis said to be lower 
semicontinuous if it satisfies 

g(x)'.S liminf g(xn) 
n→OO 

for all x EX  and sequences {xn} of X with Xn→x. Further, g is said to be convex 
if it satisfies 

g(tx① (1 -t)y)さtg(x)+ (1 -t)g(y) 

for x, y E X and t E [O, l]. Moreover, g is said to be upper hemicontinuous if it 
satisfies 

limsupg(tx E9 (1-t)y)::; g(y). 
t→O 

for x, y E X. Let C be a closed convex subset of X. Then, for each x E X, there 
exists a unique point x0 E C such that 

d(x0,x) = inf,d(y,x). 
yEC 

We define the metric projection Pc : X→Cby 

for a EX. 

Pc(a) = argmind(y, a) 
yEC 

Let X be a Hadamard space, K a closed convex subset of X, and f a bifunction 
from K x K to股． Forthis f, we denote the set of solution of equilibrium problems 
by Equil f. That is, 

Equil f = { z E K 凰f(z,y)2: 0}. 
In what follows, we assume f satisfies the following four conditions. 

(El) f(x, x) = 0 for all x EK; 
(E2) f(x, y) + f(y, x)さ0for all x,y EK; 
(E3) f(x, ・): K →股 isconvex and lower semicontinuous for all x EK; 
(E4) f(・, x): K →股 isupper hemicontinuous for all x EK. 
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If f satisfies these conditions, for x EX, the function fx: K x K→良 whichis defined 
by 

fx(z, y) = J(z, y) + d(y, x)2 -d(z, x)2 

is also satisfies (El)-(E4). We denote the set of solutions of equilibrium problems for 

f x by J1x. That is 

J1x = Equilfx = { z EK}狐(f(z, y) + d(y, x)2 -d(z, x戸）~ 0} ・ 

If X has the convex hull finite property, then J1x is a singleton; see [3]. Therefore, we 
can consider JJ as a mapping from X to K. We call such a mapping JJ a resolvent 
of equilibrium problems for f. 

3 Main result 

Let X be a Hadamard space which has the convex hull finite property and f a bi-
function on K satisfying (El)-(E4). For a positive parameter入， wedefine a resolvent 

J入fas follows; 

1 
J入1(a)= { z EK  I J~i (f(z,y) + ½ (d(y,a)2 -d(z,a)り） 2:0} 

We consider the asymptotic behavior of a resolvent J入fat入toinfinity. 
We first show the following lemma. 

Lemma 3.1. Let~: 賊→恥 be an increasing function. If for some sequence {μn} C股

diverging to oo,｛（（四）｝ isbounded, then｛く（入n)}is bounded for any sequence｛入n}C 

股 divergingto oo. 

Proof. Let｛入n},{μn} be real sequences such that心 μn→ ooand~：股→艮 an
increasing function. Suppose{（（四）｝ isbounded and{〔（入n)}not. Then there exists 

M>O, 
~(µn) S:: M. 

for all n E N and we can find a subsequence｛入n;}of｛入n}such that 

(（入n;)>M. 

for all i E N. Then there exists k EN such that入m さμk.Since (is increasing, we 
have 

M<(（%）こ珈）さ M.

This is a contradiction and it completes the proof. 仁l

By using this lemma, we get a result about asymptotic behavior of an equilibrium 
problems as follows. 
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Theorem 3.1. Let X be a Hadamard space having the convex hull finite prope廿Y,
K a closed convex subset of X, x E X, and入＞ 0.Suppose f: K x K→JR satisfies 

(El)-(E4). Define J入f:X →K by 

1 
知＝ {zEK;~k (!(z,y) +½ (d(y,a)2 -d(z,a)り） ;::o:0} 

for each a E X. If there exists a sequence｛四｝ suchthat μn→ oo and {J四 JX}is 
bounded, then Equil f i-0 and, 

lim J入JX= PEquil JX 
入→(X)

Proof. Let x E X and｛心｝ apositive increasing sequence diverging to oo. We put 

Xn = J心JXfor each n E N and suppose n, m E N satisfy n ::; m. Assume that there 
exists a sequence {μn} such that μn→oo and {J:匹 fx} is bounded. Then { Xn} is 
bounded from Lemma 3.1. First, we show d(xn, x)::; d(xm, x), J(xn, Xm)::; 0 and 
f(x加％） 2::0.肝omthe definition of the resolvent, it holds that 

and 

1 
〇::;f (xn,叫）＋―｛d(xm,x)2 -d(xn, x戸｝

入

1 
〇s;f(xm心）＋ー{d(xn, x)2 -d(xm, x戸｝．

入m

From these inequalities and (E2), we have 

〇:Sf (xn, Xm) + f(xn, Xm) +（上＿上{d(xm, x)2 -d(xn, X戸｝

こ（［—土） ｛d（xm,x)2 ＿入dn(xn:］
Since 

入れ 入
> 0 from the monotonicity of｛入n},we get 

m 

0さd(xm,x)2 -d(xn, x)汽

which is equivalent to d(xn,x) :S d(xm,x). By the monotonicity of {d(xn,x)} and 
(E2), we have 

1 
0 :S f(xm心） ＋ー{d(xn, x)2 -d(xm, X戸｝

入m 

さf(xm,Xn)

さーf(xn,Xm)-



16

Hence, we get f(xm, Xn) :S O and f (xn, Xm) 2: 0. Next, we show 

d（Xn,x) さ d(~,x).
From (E3) and (El), we have 

0さf(xn,~) + ~ { d (~,x)2 -d(xn,x)2} 

s f(xn9%） ： f(Xn9%） + ［｛d (咋：三x)2-d(xn,x)2} 

1 1 
2 

= ~f(xか知）＋ぷ {d(~,xr-d(xn,x)2}.
Similarly, it holds that 

Oさ；f(xmふ）＋亡 {d(¥,xr-d(xm,x)2}.

From these inequalities and (E2), we obtain 

1 1 
0 S if(xn心m)+ if(x加％）

2 2 

＋土{d (¥,xr-d(xn,x)2} + t { d (¥,xr-d(xm,x)2} 

= (~+亡） d(~”尺 X) 2 ー ~d（戸）2_ 亡d(xm,x)2 

::; (~+土） d(¥,x)2 ー ~d（口）2_ 亡d(xn,x)2

＝仕＋亡）｛d(¥,xr-d(xn,x)2} 

since d(xn, x):::; d(xm,x). Thus, we get 

d(xn,x) :::: d(~,x). 

Then, we show the sequence {xn} is convergent. Using the parallelogram law, we 
have 

d(xn心）2：：：：： d(凸：三X)2 
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1 2 1 2 1 
< -d(％ ,X) ＋ -d(Xm心）一一 2 

_ 2 2 d(％心m)，
4 

and this implies d(Xn心m)2S 2{ d(xm, x)2 -d(xn, X戸｝． Therefore,since { d(xn, x)} is 
bounded and increasing, {xn} is a Cauchy sequence on K. Since K is a closed subset 
of complete metric space X, {xn} converges to some point q EK. Finally, we show 
q = PEquil f. From the lower semicontinuity of f for the second argument, 

lim sup(-f (y,%））さーliminf J(y, Xn) S -f (y, q) 
n→OO n→OO 

for all y E K. From (E2), we have 

1 
0さf(xn,y)＋ぷ{d (y, x)2 -d(xn, x戸｝

1 
さーf(y,Xn)＋立化(y,x)2-d(xn,X戸｝．

Since {d(xぃ x)}is bounded, letting n→oo, we obtain 

。：：：：： limsup(-f (y, Xn))：：：：： -f (y, q) 
n→OO 

is lower semicontinuous for the for all y E K. Let w E K and t E ]O, l[. Since f is 1 
second argument and K is convex, we have 

0 = f(tw① (1 -t)q, tw① (1 -t)q) 

:::; tf (tw EB (1 -t)q, w) + (1 -t)J(tw EB (1 -t)q, q) 

:::; tf (tw EB (1 -t)q, w). 

Dividing by t and letting t→0, we obtain 

〇:::;limsup f（叩，w):::;J(q, w) 
t→O 

for all w EK  from (E4). Therefore, we know 

q E Equilf # f/J. 

For all z E Equil f, we have 

1 
。：：：： f(xn,z) + -i-{ d(z, x)2 -d(xn, x戸｝

入れ

1 
::::—{d(z,x)2 -d(xn,X戸｝

入れ

from the definition of the resolvent. This implies d(xn, x)：：：： d(z, x). By the lower 
semicontinuity of the distance function, we get 

d(q,x)：：：： lim inf d(xn, x)：：：： d(z,x) 
n、→00
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for all z E Equil f, which is equivalent to q = PEquil JX-
Since J心 JX→PEquilJX for every positive increasing sequence｛入n}which diverges 

to infinity, we conclude 

This is the desired result. 

lim J入JX= PEquil JX・ 
入→00

口
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