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Abstract 

In this paper, we consider a quadratic fractional programming problem (QFP) whose 
fe邸 ibleset is defined by quadratic convex functions. It is known that such a problem 
can be transformed into a quadratic dc programming problem(QDP). By incorporating 
a procedure for listing KKT (Karush-Kuhn-Tucker) points of (QDP) into a branch-and-
bound procedure, we propose a global optimization algorithm for (QFP). 

1 Introduction 

In this paper, we consider a quadratic fractional programming problem (QFP) to minimize the 
ratio of two quadratic convex functions over a convex set defined by quadratic convex functions. 
It is known that fractional programming is one of the typical problems in Global Optimization. 

Several types of iterative methods for solving (QFP) have been proposed by many researchers. 
However, such algorithms are not effective in the case where the dimension of variables is so large. 
One of the difficulties in solving (QFP) is the complexity of the objective function. Hence, in or-

der to overcome this drawback, we transform (QmP) into a parametric quadratic dc programing 
problem (QDP) minimizing a quadratic dc function over a convex set. Moreover, to find an ap-

proximate solution of (QDP), we introduce an algorithm for listing KKT (Karush-Kuhn-Tucker) 
points of (QDP). Since every locally optimal solution of (QDP) satisfies KKT conditions, we 
can calculate most of locally optimal solutions contained in the intersection of the boundaries of 
convex sets defining the feasible set by utilizing our algorithm. Furthermore, to improve calcu-

lation efficiency, we incorporate our algorithm into a branch-and-bound procedure for Lagrange 
multipliers of constraint functions. The proposed algorithm can calculate an approximate solu-
tion of large scale (QFP). The effectiveness of the proposed algorithm has been shown by the 

result of the computer experiment. 
Throughout this paper, we use the following notation:股 and町 denotethe set of all real 

numbers and an n-dimensional Euclidean space. The origin of町 isdenoted by On. Given a 
vector a E町， a丁 denotesthe transposed vector of a. For given real numbers a and(3 （aく (3),
we set [a,(3］ ：＝ ｛XE恥： aこx< (3}，］a,(3[:= {x E股： a<xく (3},]a,(3］：＝ ｛XE耽： a<
x:s;(3}and [a, (3[:= { x E恥： a三xく (3}.Thesets of all nonnegative real numbers, all positive 
real numbers and all nonnegative vectors are denoted by記，貶++and閏 respectively,that is, 
恥：＝ ｛XE股： X;:::O},股++:= ｛XE股： x> O} and記：＝ ｛X = (x1,---,Xn)T E町： Xi;:::
0 i = 1,..., n }. Moreover,豆：＝罠 U{ -oo, +oo}. Given a vector a E町， llalldenotes the 
Euclidean norm of a, that is, llall＝⑭豆 Givena vector a E町 anda positive real number 
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r E 恥＋＋， B~(a,r) :=｛尤€恥n : llx -all < r}, Bど(a,r) :=｛エ€股n:||x -all ::=; r} and 
陀 (a,r)：＝｛XE町： 1|尤ー all=r}. For a subset X C JR叫intX,riX clX, bdX and coX 
denote the interior, the relative interior, the closure, the boundary and the convex hull of X, 
respectively. Given a nonempty subset X C町， spanX denotes the subspace spanned by X. For 

a subset X C町， diamXdenotes the diameter of X, that is, diamX := m::1X __ llx'-x"II-The 
が，x11EX

n x n unit matrix is denoted by In. Given real numbers a1,..., an, diag { a1,..., an} denotes the 
n x n diagonal matrix whose diagonal elements are a1,..., an. For a given differentiable function 

d d2 
f:恥→恥―f（元） and~f（元） denote the differential and the second order differential of f 

dx dx2 
at 元€恥 respectively. For a differentiable function f :即→恥▽f(x) denotes the gradient 

vector of f at x E町． Givena subset AC  N, IAI denotes the number of elements contained in 
A. 

2 A quadratic fractional programming problem 

Let us consider the following quadratic fractional programming problem: 

(QFP) ｛ Minimize［二[：］
subject to fi(x)::; 0, i = 1,..., m, XE町，

where 

1 
• fi(X)：= -X丁A;x+ (bi) T x + ci, i = 1,..., m + 1, 

2 

1 T • fm+2(X) := ix IX+ Cm+2, 
2 

• A; E股nxn(i = 1,..., m + 1) arc positi i = 1,..., m + 1) arc positive definite symmetric matrices, 

• b'E町 (i= 1,..., m + 1) and c, E股 (i= 1,..., m + 2). 

From the definition of A;, f; (i = 1,..., m + 2) are strictly convex functions. For (QFP), we 
assume the followings. 

(Al) ½n+l > ~ (bm+l) TA土bm+1

(A2) Cm+2 > 0 

(A3) c, < 0 for each i = 1,...,m. 

By assumption (A3) and the definition off;, 

f。(O砂く 0, i = 1,...,m, 

that is, the feasible set of (QFP) is a nonempty compact convex set. Moreover, from assump-
tions (Al) and (A2), for any x E尉，

f出z:)>0, i=m+l,m+2. 
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This implies that the objective function of (QFP) is continuous over賊nand that ~ > 0 
fm+1(X) 

fm+2(x) 
for all x E股n.Therefore, 

min(QFP) > 0, (1) 

where min(QFP) denotes the optimal value of (QFP). 
Now, we consider the following parametric quadratic programming problem with respect to 
a E股．

(QDP(a)）{ Minimize fm+1(X) -afm+2(X) 
subject to f;(x)::;; 0, i = 1,..., m, x E町

Theorem 2.1 (Jagannathan [3], Theorem 5) Let a E恥 andx(a) a globally optimal solu-

tion of ((QDP(a)). Then, min(QDP(a)) = 0 if and only if a and x(a) are the globally optimal 
value and a globally optimal solution of (QFP), respectively. 

Corollary 2.1 The following statements hold. 

(i) min(QDP(a)) < 0 for each a> min(QFP). 

(ii) min(QDP(a)) > 0 for each a< min(QFP). 

From Theorem 2.1 and Corollary 2.1, we notice that (QFP) can be solved by finding a 
satisfying 

min(QDP(a)) = 0. (2) 

When (2) holds, it is true that a= min(QFP). Hence, by (1), we can restrict the search range 
of a as follows. 

(A4) a> 0 

Moreover, we note that the objective function of (QDP(a)) is a dc(difference of two convex 

functions) function for each a> 0. Therefore, under Assumption (A4), (QDP(a)) is a quadratic 
dc programming problem. 

3 Optimality 
．． 

conditions 

In this section, we propose optimality conditions for (QDP(a)) under Assumption (Al),...,(A4). 
From KKT(Karush-Kuhn-Tucker) conditions for nonlinear programming problem, if x E町
is a globally optimal solution of (QDP(a)), then there exist Lagrange multipliers函，．．．，smE股

satisfying the following conditions. 

(KKTl)▽fm+1（元）―a▽fm+2（元） ＋芦ぷ▽f,（元） ＝On, i.e., 

m 

Am+1元＋bm+1-a元＋〉ぷ (Aぷ＋bi)=On (3) 
i=l 
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(KKT2) f;(元):::;Oi=l,...,m

(KKT3) s;f;（元） ＝0,ふ：：：： O,i=l,...,m

We set函，．．．，5m+1E股邸 follows.

Then, 

s, 
5i := 
1＋こJm=1も'
1 

i=l,...,m 

Sm+l := 
1 十 ~'f'=l も

m+l 

LB; = 1, B; ~ 0, i = 1,..., m, Sm+l > 0. 
i=l 

Hence, 

る＝（函，．．．，Bm+1)TE 8, 

where 

m+l 

S := { s E股m+l苫ふ＝ 1,S; 2 0, i = 1,..., m} 
m 

By dividing both sides of equation (3) by 1 + Lぶ (KKTl)can be rewritten as follows. 
i=l 

(KKTl) A(s)元＋b（8)-a5m+1元＝ On

Here, 

m+l 

A(s)：＝区函A99
i=l 
m+l 

b(s)：＝区函b'.
i=l 

(4) 

From (2), if a and元arethe globally optimal value and a globally optimal solution of (QFP) 
respectively, the following condition holds. 

fm+l（元）一刃fm+2（元） ＝ 0 (5) 

Hence, we rewrite (KKT3) by adding (5) as follows. 

(KKT3)ぷJi(元） ＝0 (i = 1,...,m), Sm+l Um+1（元）― afm+2（元）） ＝0 ands ES 
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Moreover, if（元，ふs)satisfies (KKTl) and (KKT 3), then s E S and the following condition 
holds. 

m+l 

区鵡（元）ー麻m+1fm+2（元）
i=l 
1 1 
= -xT A(s)の十b(s)T x + c(s) -~6:sm+lぶの一 O:Sm+1Cm+2
2 2 

1 1 
= ~ (A(s)元＋b（8) -dSm+1元）丁元＋ーb(s)丁元＋c(s)-O:Sm+1Cm+2 
2 2 

(6) 

= ~b(s)海＋ c(s) -O:Sm+1Cm+2 = 0 

m+l 

Here, c(s) = L s;ci. Since it is difficult to find (x, a, s) satisfying (KKT3), we relax (KKT3) 
i=l 

as follows. 

(KKT3)'s ES and 

1 
-b(8)海＋c(s)-CTSm+1Cm+2 = 0 
2 

Let a:> 0 ands ES. Then, A(s) is a positive definite symmetric matrix. Hence, there exists 
an orthogonal matrix P(s) satisfying 

P(s)T A(s)P(s) = diag｛入1(s),...,入n(s)}=: A(s) 

where入1(s),...，入n(s) are eigen values of A(s) such that 

〇＜入1(s)：：：：：...：：：：：入n(s).

By replacing元 byP(s)fJ (fl E罠門，（KKTl),(KKT2) and (KKT3)'can be transformed as 
follows. 

(KKTl) (A(s) -a:sm＋山）fl=-b(s) 

(KKT2) f;(P(s)fJ)：：：：： 0, i = 1,...,m 

(KKT3)'s ES and 

1 
ふ(s)Ty + c(s) -O:Sm+1Cm+2 = 0 
2 

Here, In E股nxnis the unit matrix and b(s) := P(s)Tb(s). 

4 Procedures for listing KKT points 

In order to find (y, a, s) satisfying (KKTl) and (KKT3)', for a givens ES, we set入1(s),・ ・ ・,,¥n(s) 
satisfying the followings. 
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• For each i E {1,..., n }, there exists i E {1,..., n(s)} such that入，（s)=入;(s).
• 0 <ふ（s)<ふ(s)<...く入n(s)(s).
Moreover, for each i E {1,..., n(s)}, we define J(s, i) and £(s, i) as follows. 

J(s,}) := {j :ふ（s)=入;(s),j=l,...,n}. 
£(s, i) := IJ(s, i)I 

Let aヂ
入，（s)
for all i E {1,...,n}. Then, A(s)-asm+lln i is a non-singular matrix. We 

Bm+l 
define y(a; s) as follows. 

y(a; s) := -(A(s) -asm十山）―1b(s) 

= ( -bl(s） 一如(s) )T 
入1(s) -asm+l'・ ・ ・'入n(s)-asm+l 

IF (y(a; s), a, s) satisfies (KKT3)', the following equation holds. 

1 
F(a; s) = ~b(s)T y(a; s) + c(s) -asm+1Cm+2 

=~文 b, （s)2 +c(s) -asm+1%＋2 = 0 

i=l 
2（入，（s)-asm+i) 

For every i E { 1,..., n + 1}, we define L; (s) C股asfollows. 

：（（： ： 1 :，〗（：こ
Ln+1(S) ：＝ I已，S十二[., t = 2, ． ． ． ， n, 

On each L; (s) (i = 1,..., n + 1), the following statements hold. 

• lim.. F(a; s) = oo if b;_1(s)ヂ0
入i-1(S)

a→ sm+1 

• lim F(a; s) =―oo if b;(s)ヂ0
a→土旦
'm+l 

d 
•石F(a;s) ＝一こ

n Sm+1bi(S)2 

i=1 2（入（s）-asm+1)2 
-Sm+1Cm+2 < 0 for each a E L;(s) 

(7) 

Therefore, F(a; s) is a decreasing function on L;(s). Moreover, we define F{(a; s), F.托(a;s) : 
ム(s)→股 respectivelyas follows. 

F;（）こ
も(s)2

a:s, = -
j=i 
2（ふ（s)-asm+i) + c(s) -asm+1Cm+2, i = 1,..., n, 

F{'+l(a; s) = 0, 

FJ(a; s) = 0, 
i-1 

F;() と も(s)2
a:s =).~, i=2,...,n+l. 

j=l 
2（ふ（s)-asm+l)' 
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Then, F(a; s) can be written as follows on every L;(s). 

F(a; s) = F{(a; s) -F~(a; s) 

On each L;(s) (i = 1,..., n + 1), we obtain the second derivative of F{(a; s) and FJ(a; s) 
respectively as follows. 

d2 '.:..... bi(s)2s~+l 
da2.  
F{(a; s）＝ーと凶(s)-O:Sm+1)3 >0,i=l,...,n 

J=t 

d2 

da2 
F;'+l(a; s) = 0 

d2 

da2 
Fi_(a; s) = 0 

d2 t-1 

尻(a;s)＝こ も (s)2s~+l

da2 j=1 （ふ（S)-O:Sm+1)3 
> 0, i = 2,..., n + 1 

This implies that F1(a; s) and FJ(a; s) are convex on each 1勺(s).Therefore, F(a; s) is a de-
creasing dc function on eachム(s).
Let a'E L;(s). Then, we consider the following two cases. 

Case I: F(a'; s) < 0 

Case II: F(a'; s) > 0 

In Case I, we define G1(a;a',i,s): L;(s)→賊 asfollows. 

d 
G1(a; a', i, s) := Ff(a; s) -F4(a'; s) -i:-F4(a'; s) ・ (a -a') 

da 

We note that G1(a;a',i,s) is convex on L;(s). Moreover, from the convexity of FJ(a;s) on 
ム(s),the following inequalities holds. 

G1(a; a', i, s) 2: F(a; s) for each a E L;(s) 

In Case II, we define G2(a;a',i,s): L;(s)→恥 asfollows. 

d 
ら（a;a', i, s) := Ff(a'; s) + i:-Ff(a'; s) ・ (a -a') -F;(a; s) 

da 

We note thatら(a;a',i,s)is concave on L;(s). Moreover, from the convexity of Ft(a;s) on 
L; (s), the following inequalities holds. 

ら（a;a', i, s) <:: F(a; s) for each a E L;(s) 

For givens ES and i E {1,..., n+ 1}, to find a solution of F(a; s) = 0 on L;(s), we propose 
Algorithm LKKT as follows. 

Algorithm LKKT 
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Step 0: Choose a'E Li(s), and go to Step 1. 

Step 1: If F(a'; s) = 0, then stop. Otherwise go to Step 2. 

Step 2: If F(a'; s) < 0, calculate aL satisfying位 <a'andG凸；a',i, s) = 0, replace a'by aL 
and return to Step 1. Otherwise, calculate aR satisfying aR > a'andら(aR;a',i,s)= 0, 
replace a'by aR and return to Step 1. 

For given a'Eム(s)by executing Algorithm LKKT, P(s)y(a'; s) is a globally optimal 
solution of (QFP), if ((y(a';s),a',s) satisfies (KKT2) and (KKT3). 

5 Branch and Bound Procedure 

In this section, we propose a branch and bound procedure for calculating a globally optimal 

solution of (QFP). 

In order to execute Algorithm LKKT throughout S, we propose a branch and bound proce-

dure as follows. 

Algorithm BBP 

Step 0: Set tolerances T, p 2'. 0, S1 = { S}，が＝ On,k = l, Go to Step 1. 

Step 1: Ifふ＝0,then stop and output 

元Eargmin{い（尤）
k 

fm+2（尤） ： X E'リS1(sk)}
as an approximate solution of (QFP). Otherwise, go to Step 2. 

Step 2. Choose Sk E Sk satisfying diamSk = rp.a,xdiamS. Set skas follows. 
SESk 

1 
Bk:= -
m 
I:,.,,,, 
i=l,...,m 

whereぶ，．．．，炉 areall vertices of Sk. Go to Step 3. 

Step 3: Set D(sりofall solutions calculated by Algorithm LKKT for sk selected at Step 2. Go 
to Step 4. 

Step 4: Choose,-.,',,-.," E｛ぶ，．．．，炉｝ satisfying11,-.,'-,-.,"II= diamSk. Update Sk+l as follows. 

(Sk u {S', S11})＼｛品｝， ifdiam S'2 p and diam S11 2 p, 

sk+1 = ｛麿：悶誓＼胃k}}’9 :［悶二：：： ： ：：］悶二ご：： ：： 
Sい｛品｝， ifdiam S'< p and diam S11 < p, 

where S':= co ({,-.,1,...,,-.,m,i;,}¥{,-.,"}), S" := co ({,-.,1,...,K”\ 、~}\{,-.,'}), and i;, := 
,,.,,_,,.,11 

2 
. Set k←k + l and return to Step 1. 

Since Skis bisected at Step 4 of Algorithm BBP, by setting a tolerance p to a positive number, 

Algorithm BBP is terminates within a finite number of iterations (see, e.g., Theorem IV.l and 

Proposition IV.2 in [2]). 
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6 Conclusions 

In this paper, we propose a global optimization algorithm for (QFP). By combining a parametric 
optimization method, a procedure for listing KKT points and a branch-and-bound procedure, 

the proposed algorithm can found an approximate solution of (QFP). 
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