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Abstract

In this paper, we consider a quadratic fractional programming problem (QFP) whose
feasible set is defined by quadratic convex functions. It is known that such a problem
can be transformed into a quadratic dc programming problem(QDP). By incorporating
a procedure for listing KKT (Karush-Kuhn-Tucker) points of (QDP) into a branch-and-
bound procedure, we propose a global optimization algorithm for (QFP).

1 Introduction

In this paper, we consider a quadratic fractional programming problem (QFP) to minimize the
ratio of two quadratic convex functions over a convex set defined by quadratic convex functions.
It is known that fractional programming is one of the typical problems in Global Optimization.
Several types of iterative methods for solving (QFP) have been proposed by many researchers.
However, such algorithms are not effective in the case where the dimension of variables is so large.
One of the difficulties in solving (QFP) is the complexity of the objective function. Hence, in or-
der to overcome this drawback, we transform (QFP) into a parametric quadratic dc programing
problem (QDP) minimizing a quadratic dc function over a convex set. Moreover, to find an ap-
proximate solution of (QDP), we introduce an algorithm for listing KKT (Karush-Kuhn-Tucker)
points of (QDP). Since every locally optimal solution of (QDP) satisfies KKT conditions, we
can calculate most of locally optimal solutions contained in the intersection of the boundaries of
convex sets defining the feasible set by utilizing our algorithm. Furthermore, to improve calcu-
lation efficiency, we incorporate our algorithm into a branch-and-bound procedure for Lagrange
multipliers of constraint functions. The proposed algorithm can calculate an approximate solu-
tion of large scale (QFP). The effectiveness of the proposed algorithm has been shown by the
result of the computer experiment.

Throughout this paper, we use the following notation: R and R denote the set of all real
numbers and an n-dimensional Euclidean space. The origin of R™ is denoted by 0,. Given a
vector @ € R", @' denotes the transposed vector of a. For given real numbers « and 3 (o < ),
weset [a. Bl i={reR:a<z<p}, |o,fi={reR:a<z<pf}]ofl ={reR:a<
z < P} and o, f:= {z € R: a <z < }. The sets of all nonnegative real numbers, all positive
real numbers and all nonnegative vectors are denoted by Ry, R, and R’} respectively, that is,
R ={zeR:2>0},Ryy:={r€R:2>0tand R" := {z = (z1,...,2,) ER" : 1; >

0i=1,...,n}. Moreover, R := R U {—o00,+00}. Given a vector @ € R", ||a| denotes the
Euclidean norm of a, that is, ||a|| = ViaTa. Given a vector a € R" and a positive real number
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r € Ryy, Bi(a,r) ={x € R" : | —a| < r}, Ba,r) :={x cR": |Jr—al <r} and
B(a,r) = {x € R" : ||x —al = r}. For asubset X C R”, int X, 1i X cl X, bd X and coX
denote the interior, the relative interior, the closure, the boundary and the convex hull of X,
respectively. Given a nonempty subset X C R™, span X denotes the subspace spanned by X. For
a subset X C R™, diam X denotes the diameter of X, that is, diam X := max ||z’ — z"||. The

o' a"eX
n X n unit matrix is denoted by I,,. Given real numbers ay, ..., a,, diag{a,...,a,} denotes the
n x n diagonal matrix whose diagonal elements are ay, ..., a,. For a given differentiable function

d d?
f:R =R, . f(z) and e f(Z) denote the differential and the second order differential of f

at T € R, respectively. For a differentiable function f : R" — R, V f(x) denotes the gradient
vector of f at ¢ € R". Given a subset A C N, |A| denotes the number of elements contained in

A.

2 A quadratic fractional programming problem

Let us consider the following quadratic fractional programming problem:

e fm+1 (m)
Minimize ———-—=
(QFP) fm+2(m)
subject to  fi(x) <0,i=1,...,m, x€R"
where

1 .
o fi(x):= imTAier (bl)Tac+ci, i=1,....m+1,

1
b fm+2(m) = 5331_33 + Cmt2,
o A, e R (i=1,...,m+ 1) are positive definite symmetric matrices,
ebcR" (i=1,....m+1)andg R (i=1,...,m+2).

From the definition of A;, f; (i = 1,...,m + 2) are strictly convex functions. For (QFP), we
assume the followings.

1
(Al) Cos1 > 5 (bm+1)T A;{Hberl

(A2) ¢pyo >0

(A3) ¢; <Oforeachi=1,...,m.

By assumption (A3) and the definition of f;,
£(0,) <0, i=1,....m,

that is, the feasible set of (QFP) is a nonempty compact convex set. Moreover, from assump-
tions (A1) and (A2), for any « € R",

fil)>0, i=m+1,m+2.



This implies that the objective function of (QFP) is continuous over R” and that fm“gm; >0
m—+2(T
for all € R™. Therefore,
min(QFP) > 0, (1)

where min(QFP) denotes the optimal value of (QFP).
Now, we consider the following parametric quadratic programming problem with respect to
a e R

(QDP(a)) { Minimie  frui1(2) ~ @fmia ()

subject to  fi(x) <0,i=1,...,m, x€R"

Theorem 2.1 (Jagannathan [3], Theorem 5) Let & € R and z(&) a globally optimal solu-
tion of ((QDP(c)). Then, min(QDP(&)) = 0 if and only if & and x(&) are the globally optimal
value and a globally optimal solution of (QFP), respectively.
Corollary 2.1 The following statements hold.
(i) min(QDP(a)) < 0 for each o > min(QFP).
(i) min(QDP(«v)) > 0 for each v < min(QFP).
From Theorem 2.1 and Corollary 2.1, we notice that (QFP) can be solved by finding «
satisfying
min(QDP(«a)) = 0. (2)

When (2) holds, it is true that @ = min(QFP). Hence, by (1), we can restrict the search range
of a as follows.

(A4) >0

Moreover, we note that the objective function of (QDP(«)) is a dc(difference of two convex
functions) function for each o > 0. Therefore, under Assumption (A4), (QDP(«)) is a quadratic
dc programming problem.

3 Optimality conditions

In this section, we propose optimality conditions for (QDP(«)) under Assumption (Al),... ,(A4).

From KKT(Karush-Kuhn-Tucker) conditions for nonlinear programming problem, if € R"
is a globally optimal solution of (QDP(«)), then there exist Lagrange multipliers §y,..., 5, € R
satisfying the following conditions.

(KKT1) Vfni1(®) — aVfmia(@) + Y5V i(@) = 0y, ie.,
i=1

Apr® + " — 0z + Z 5 (Az+b') =0, (3)

i=1
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(KKT2) fi(z)<0i=1,...,m
We set 51,...,5,41 € R as follows.
S; ¢ % ‘:1,...,’[77,

=~ m = ¢
1+ Zj:i Sj

gm = m ~
i 1+ Z]’:l Sj

Then,

Hence,
5=(51,...,8mu1) €8 (4)
where
m+1
S = {SERm+1 : ZS¢=1, 5, >0, z'=1,...,m}‘
i=1

By dividing both sides of equation (3) by 1 + Z 3, (KKT1) can be rewritten as follows.

i=1
(KKT1) A(s)z +b(s) — as,1& =0,

Here,

m-+1

nrl

b(s) = sib'.

From (2), if @ and & are the globally optimal value and a globally optimal solution of (QFP)
respectively, the following condition holds.

fm+1 (E) - @f7”+2(j) =0 (5)
Hence, we rewrite (KKT3) by adding (5) as follows.
(KKT3) s:fi(®)=0(i=1,...,m), Smy1 (fms1(Z) — @fi2(Z)) =0and s € S



Moreover, if (Z, @, §) satisfies (KKT1) and (KKT 3), then 3 € S and the following condition
holds.

m+1
Z glfi(:i) - @ngrlferZ(:i)
i=1
= %;ETA(E)@ +b(3) Z+c(8) — %agmﬂfc% — @84 1Cmi2
(6)

1
) — A8 ®) T+ 5b(g)Tg-a + ¢(3) = @Bpmy1Cmy2

N
w
8
+
(=l
ol

=
—~

®l
=
]

z+ C(E) - @§7n+lcm+2 =0
m+1
Here, ¢(s) = Z s;¢;. Since it is difficult to find (z, c, s) satisfying (KKT3), we relax (KKT3)

i=1
as follows.

(KKT3)’ s €S and
1, . _ __
§b(s) T+ c(8) — aSmi1Cmi2 =0
Let @ > 0 and s € S. Then, A(s) is a positive definite symmetric matrix. Hence, there exists
an orthogonal matrix P(s) satisfying
P(S)TA(S)P(S) = dlag {)‘1(8)7 tees /\n(s)} = (S)
where A;(s),..., A\, (s) are eigen values of A(s) such that
0<Ai(s) <+ < Au(s).

By replacing & by P(s)y (g € R"), (KKT1), (KKT2) and (KKT3)’ can be transformed as
follows.

(KKT1) (A(8) — asmarl,) g = —b(s)
(KKT2) fi(P(s)y) <0,i=1,...,m
(KKT3)" s € S and

1-
éb(s)Ty +c(8) — aSm41Cme2 =0

Here, I,, € R*™™ is the unit matrix and b(s) := P(s)"b(s).

4 Procedures for listing KKT points

In order to find (y, a, s) satisfying (KKT1) and (KKT3)’, for a given s € S, we set A((s), .. ., An(s)
satisfying the followings.
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e For each i € {1,...,n}, there exists 7 € {1,...,n(s)} such that \;(s) = X:(s).

e 0 < A(8) < Aa(8) <+ < Ays)(8)-

Moreover, for each i € {1,...,n(s)}, we define J(s,1) and (s, 1) as follows.

J(s.0) = {5 : \y(8) = Xi(s), 5 =1.....n}.
U(s,7) = |J(s,1)]

Ai .
Let o # 2i(s) for all ¢ € {1,...,n}. Then, A(s) — aSy41l, is a non-singular matrix. We
Sm+1
define y(o; s) as follows.
y(a;s) = — (A(s) — asmsila) ' b(s)

(o )

IF (y(«; ), o, 8) satisfies (KKT3)’, the following equation holds.

F(a;8) = %b(s)Ty(a; S) + c(s) — ASpmi1Cms2
- bi(s)® (7)

==Y ——————+c(s) — ASpi1Cpia =0
2 T3] — ) * L) T i
For every ¢ € {1,...,n+ 1}, we define L;(s) C R as follows.
A
Li(s) = |0, ﬁ{
\ Sm+1 \
Ll(s) = = S) l(S) ) = 27 7”7
971)1\+1 Sm+1
(s
Ln+1(s) ::j| ( )7+QO
Sm+1

On each L;(s) (i =1,...,n+ 1), the following statements hold.
e lim Fla;s)=00ifb_1(s)#0

Ni1(s
a‘)zl()

Sm+1
o liin( ) F(a;s) = —o0if bi(s) # 0
(J(*)s?lnT
d - Sm, bz S 2
. %F(a; s)=— Z W{;LHP — Sma1Cmae < 0 for each o € L;(s)

=1
Therefore, F(«;s) is a decreasing function on L;(s). Moreover, we define Fi(a;s), Fi(a; s) :

Li(s) — R respectively as follows.
- b;(s)?

F038) == 3 gy ) Tt =
Fi ' ars) =0,
F)(a;8) =0
i1
. bo(s)2
Fy(a;s) = () 1=2,...,n+1

2(0(8) — aSmt1)’
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Then, F(«a;s) can be written as follows on every L;(s).
F(a;8) = Fi(a;8) — Fi(a; s)

On each Li(s) (i = 1,...,n + 1), we obtain the second derivative of Fi(a;s) and Fi(a;s)
respectively as follows.

2 n b(5)%s2
Fi =— J il > 0,i=1,...,

Ta 1039 = = 2 G oy "
o
7d(12Fl a;s) =0

d2
Tl l(ais) =

A —  b;(s)2s?
— _Fi(a:8) = _ I\ Pmtl g =2 1
da? 2(%8) = (Aj(8) — aspp)? TS

This implies that Fi(a;s) and Fi(a;s) are convex on each L;(s). Therefore, F(a;s) is a de-
creasing dc function on each L;(s).
Let o € L;(s). Then, we consider the following two cases.

Case I: I'(o/;8) <0
Case II: F(a/;s) >0

In Case I, we define G1(«; ¢/, 1, 8) : Li(s) — R as follows.
s a o d if ! ’
Gi(as o1, 8) == F{(o;8) — Fy(a'ss) — EFZ((Y ;8) - (o — )

We note that G(a;a’,i,s) is convex on L;(s). Moreover, from the convexity of Fi(a;s) on
L;(s), the following inequalities holds.

Gi(a;a,i,8) > F(a;8) for each o € Li(s)

In Case II, we define Go(«; o, i, 8) : L;i(s) — R as follows.

Golas )i, 8) := Fi(d;8) + d—FI’(a/; s)-(a—a')— Fy(as8)
a

We note that Go(a;a’,i,8) is concave on L;(s). Moreover, from the convexity of Fj(a;s) on
L;(s), the following inequalities holds.

Ga(a;a,i,8) < F(a;8) for each a € Li(s)

For given s € S and i € {1,...,n+1}, to find a solution of F(a;s) = 0 on L;(s), we propose
Algorithm LKKT as follows.

Algorithm LKKT
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Step 0: Choose o € L;(s), and go to Step 1.
Step 1: If F(¢/;s) = 0, then stop. Otherwise go to Step 2.

Step 2: If F(¢/;s) < 0, calculate oy, satisfying ay, < o’ and Gy (ay; o, i, 8) = 0, replace o/ by ay,
and return to Step 1. Otherwise, calculate ap satisfying ag > o and Go(ag;d/,i,8) =0,
replace o’ by ar and return to Step 1.

For given o € L;(s) by executing Algorithm LKKT, P(s)y(a/;s) is a globally optimal
solution of (QFP), if ((y(a';s), o, s) satisfies (KKT2) and (KKT3).

5 Branch and Bound Procedure

In this section, we propose a branch and bound procedure for calculating a globally optimal
solution of (QFP).

In order to execute Algorithm LKKT throughout S, we propose a branch and bound proce-
dure as follows.

Algorithm BBP
Step 0: Set tolerances 7,p > 0, S; = {S}, ' = 0,, k =1, Go to Step 1.
Step 1: If S, = 0, then stop and output
= . fm+1 (JZ) g k
T € argmin rxe| JO(s”
{fm+2(w) Uaeh
as an approximate solution of (QFP). Otherwise, go to Step 2.

Step 2. Choose Sy € S, satisfying diam Sy, = max diam S. Set s; as follows.
s

where k!, ..., k™ are all vertices of S;. Go to Step 3.

Step 3: Set Q(s*) of all solutions calculated by Algorithm LKKT for s* selected at Step 2. Go
to Step 4.

Step 4: Choose k', k" € {k!,..., K™} satisfying ||x’ — &”|| = diam Sy. Update Sy4, as follows.

(8, U{S, 8" \{Sk}, if diam S’ > p and diam S” > p,
(S U{S" H\{Sk}, if diam S’ > p and diam S” < p,
(

Sk 1= S UL{S" ) \{Sk}, if diam S’ < p and diam S” > p,
Se\{ Sk}, if diam S” < p and diam S” < p,
where &' = co ({r',....k" &}\{K"}), §" = co ({',..., k" E}\{K'}), and & :=
K — K

. Set k <+ k + 1 and return to Step 1.

Since Sy, is bisected at Step 4 of Algorithm BBP, by setting a tolerance p to a positive number,
Algorithm BBP is terminates within a finite number of iterations (see, e.g., Theorem IV.1 and
Proposition IV.2 in [2]).



6 Conclusions

In this paper, we propose a global optimization algorithm for (QFP). By combining a parametric
optimization method, a procedure for listing KKT points and a branch-and-bound procedure,
the proposed algorithm can found an approximate solution of (QFP).
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