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Abstract 

In the literature, characterization for set relations are of various application to 
optimality conditions of set optimization problems, variational principles for set-valued 
maps, theorems of the alternative, certain robustness of vector optimization problems, 
and so on. In this paper, the author presents properties of scalarization functions as 
dual expression of set relations. Comparing to existing results, one can confirm their 
uniqueness in their relaxed conditions. Also, we show our results suggest some robust 
positive semi-definite optimization problems. 

1 Introduction 

For set optimization, binary relations between two sets (usually called set relations) are used 

to find an optimal set. However, their relations are abstract for the most part and not easily 
calculable so that many papers scalarize given sets to figure out their relations hold or not. 

Scalarization is basically a fundamental tool to estimate objects that their magnitude can 
be mathematically quantified, for which size, volume, or probability are familiar examples. 

This approach is done by scalarization functions which are real-valued set functions based 

on a convex cone. These functions representing their corresponding set relations are utilized 
in the literature for optimizing algorithm, variational principles, or optimality conditions for 

set optimization problems [3,8-10, 12]. Recently, oriented distance functions ([4-6]) playing 
similar roles to scalarization functions are vigorously researched as a parallel approach to 

estimate set relations. 

To prove equivalence between set relations and scalarized values, given sets are required to 

have topological conditions: some paper describe compactness, cone-compactness, closedness, 
properness. This paper is a review of [10, 11] and studies six kinds of expression with cone-
compactness and cone-closedness as a generalization and propose tiny application for positive 

semi-definite optimization problems. 
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2 Basic notations 

This thesis is involved in a topological vector space X with a convex solid cone C where 

intCヂ0.The relation ::::;0 denotes the vector ordering where x ::::;0 y is defined to be 
XE  y-C. 
We use convex cone properties with respect to C: A is C-closed if A+ C is closed, A is C-
bounded if it holds that A C U + C for any open neighborhood U of the zero, A is C-compact 

if any cover of S being like｛い＋Cl広 isopen} admits a finite subcover. We clearly see 
C-compactness leads to C-closedness and C-boundedness. For sets A, B C X ¥ {0}, the 
algebraic sum and the scalar multiplication are denoted by A + B = {a+ b I a E A, b E B}, 
aA = { aa I a E A} 
At first, we introduce the six types of set relations originally proposed in [7]: for nonempty 

sets A, B C X¥ {0}, the relations叫aredefined by 

A恐B {==?- Ac n(b-C); 
bEB 

A亨 B←c;, An n(b-C)ヂ0;
bEB 

Aさ炉B ←c;, B c A+C; 
Aさ炉B {==?- A n n (a + C)バ；

aEA 

A』図B {==?- A c B -C; 
A翌四B {==?- Bn  (A+C)ヂ0.

(i) （ii) （iv) （iii) 
By the above definition, we see that j'f/ impli -C  imphesゴcandさct,which lead toゴc and 
亨 respectively.The 1邸 trelationさ炉followsfrom any others. Moreover, these relations 
j~ coincide with ::::;c when two compared set A, B are both singleton. 

3 Scalarization functions 

For quantification of set relations, we use the following Minkovski functional [2] proposed by 
Garstewitz: for a given vector x EX  and a fixed direction d EX, the scalarization functions 

如，d:X→喜{oo} is defined by 

如，d(x):= inf{r E股|X::::c洲｝．

Note that this function'-Pc,d coincides with the linear functional f E X* where C := 
{x E X I f(x) ?: O} is a half space. Nishizawa et.al. studied theorems of the alternative 
for set-valued maps with the function in [9]. In addition, [3, 8] proposed generalized types 

of scalarization by using set relations: for a応ivenset A, a fixed reference set B, and a fixed 
direction d. the characterization functions <I>~ n J : if,B,d : 2X→民U{ oo} are defined by 

吟い(A):= inf{ 1 E良|A鉗B+1d}. 
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These functions <I>贔，dvary themselves by types (i)―(vi), and coincide with'-PC,d when A=  
{x}, B = {Ox}. Also, it is easy to show A ::sりBimplies叫贔，d(A)三0.
In recent years, Ogata et.al. proposed the scalarization functions can characterize the 
corresponding set relations based on an open or closed convex cone [10, 12] under some 
compactness. This fact is a similar situation to that where aさcbis equivalent to〈c,b-a〉:::;0 
for all c E C*. 

Proposition 3.1. Let A, BE 2八{0}.

• If A is compact, then Aさ閏BandA弐闘followfrom呪岱，B,iA):S: 0 and呪闘，B，d(A)< 
0 for some d E X, respectively. 

• If Bis compact, then Aご岱図BandAご見悶followfrom <I>ば閏i,B,d(A)さOand<I>ばb,B,iA)さ
0 for some d E X, respectively. 

(vi) 
• If both A, B are compact, then AさclCBfollows from呪翌，B，d(A)さ0for some d E X. 
Note that the case (i) is cle狙 lytrue without assuming any compactness. The other cases for 
an open cone are also proved as follows. 

Proposition 3.2. Let A, BE 2八{0}.

• If both A,B紅 ecompact, then A弐贔Bfollows from叫贔，B,d(A)さ0for some d E X. 

• If B is compact, then A :::s (ii) B and A -< (iii) -intC -intC follow from叫土，B,d(A)
叫畠，B,AA)さ0for some d E X, respectively. 

• If A is compact, then A :::s (iv) （iv) （） 
-IntC B and A さintCfollow from <I>invtC,B,d(A) 

饂c,BiA):":: 0 for some d EX, respectively. 
Note that the case (vi) is clearly true without assuming any compactness. 

Theorem 3.1. Let S be a nonempty set, A, BE 2八{0}.If 

• A is C-compact for case (ii); 

• A is C-closed for case (iii); 

• Bis (-C)-compact for case (iv); 

• Bis (-C)-closed for case (v); 

• A is C-closed and Bis (-C)-compact, 
or A is C-compact and Bis (-C)-closed for case (vi), 

then 

A羞 B ⇔ヨkE intC s.t．娼（A,B) :S 0 
for the cases (i)-(vi). 

::; 0 and 

:S O and 

We illustrate Theorem 3.1 with Figures 1-3 to indicate how it fails under broken conditions 

in each case. 
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Figure 1: Counter examples for case (ii) of Theorem 3.1 
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Figure 2: Counter examples for case (iii) of Theorem 3.1 

Figure 3: Counter examples for case (vi) of Theorem 3.1 
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4 Example 

Let sn be the set of n x n symmetric matrices. The set of non-negative (positive) semidefinite 
matrices in 5n are denoted by S+ (S++), f :囮四→茫＼ ｛0}, V C 5n a nonempty set. In 
this part, the trace of A c 5n is denoted by tr A:＝区~=Iaii・ Note that S+ is a closed cone 
and S↑+ ＝int S「.Fordetail, see [1]. 

p roposition 4.1. If a nonempty set V C sn is S凡 closed,it holds that 

ヨXE町 s.t.{f(x)｝塁V⇔ヨMCS+十 s.t.叫，M ({f(x)}, V):::; 0. 

The above proposition follows directly from Theorem 3.1 by setting A as a singleton and 
note that the cases (i)-(iii), and (iv)-(vi) respectively coincide in this assertion. 
Let us consider the following semidefinite optimization problem and its dual problem for 

ME  B++ and x E応：

(SDP) minimize tr(-(f(x) -V)X) 

subject to tr(MX) = -1, 

XES+; 

maximize -t (SDD) maxi 

subject to -tM + S = -f(x) + V, 
SES~ 

togeter with the following robust problems with a perturbation V E W for (SDD): 

(RDPl) minimize t 

subject to f(x) E n (tM + V -S~); 
VEW 

(RDP2) minimize t 

subject to f(x) E tM + W -S~. 

By Proposition 4.1 the optimal value of (RDPl) and (RDP2) are attained by calculating 

吹，M ({f(x)}, W) for cases (i)-(iii) and (iv)-(vi), respectively since the infimum value inf{t I 
f(x) E tM + V -S『}iseq叫 tothe optimal value of (SDD). 
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