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1 Introduction 

A totally ordered space like the real field is very useful for preference, evaluation, 
computation, or comparison on the values of real-valued functions. However, 

multiobjective programming and vector optimization are a little complicated 

with multicriteria structure like some partial ordering, and minimal and maximal 

notions like Pareto optimal solution or efficient solution are defined with respect 

to a certain ordering cone (i.e., a dominance cone); see [19]. 

In vector optimization and set optimization, we have a typical approach by 

which optimization problems with vector-valued or set-valued maps can be easily 

handled by converting vectors or sets into real numbers; see [2] and [3, 5]. From 

the viewpoint of scalarization, the notion of weighted sum is a good tool for the 

scalarization of vectors in multicriteria problems, and it is regarded as the projec-

tion (i.e., inner product with the weight vector d) in恥n.The average of elements 

is also a special case of weighted sum with the weight d = (1/n,..., 1/n?. They 
all are linear scalarization methods, and they can be regarded as a special case 

of a certain sublinear scalarization (introduced by Tammer [1, 3]): 

he (v; d) : = inf { t E艮 IVEtd-C} 
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where C is a convex cone in a real topological vector space and d E C. This 

scalarizing functional he(・; d) is sublinear (i.e., he（釘十四；d):'S he（町） ＋he（砂）
and he(tv; d) = the(v; d) fort> 0) and hence this conversion is called "sublin-
ear scalarization." Therefore this special functional is a certain generalization 
of linear scalarization including the notions of weighted sum and inner product. 

Accordingly, this idea has inspired some researchers to develop particular scalar-
ization methods for sets, leading to several applicable results shown in [4, 15]. 

On the other hand, we know that composite operation frequently preserves 
several mathematical properties of each nested function. For instance, a composi-
tion of continuous maps is continuous on topological spaces. Based on this prop-

erty, we can characterize solutions for multicriteria problems through scalariza— 

tion under certain assumptions. This leads to consider the mechanism by which 
composite functions of a set-valued map and a scalarization function transmit 
semicontinuity of parent set-valued maps through several scalarization for sets. 

Recently, Ike, Liu, Ogata and Tanaka [6] show certain results on the inheri-
tance property of some kinds of continuity of set-valued maps via scalarization 

functions for sets: if a set-valued map has a kind of continuity (lower continu-
ity or upper continuity; see [3]) then the composition of its set-valued map and 

a certain scalarization function assures a similar semicontinuity to that of its 
scalarization function defined on the family of nonempty subsets of a real topo-
logical vector space. Their results are generalizations of results in earlier study 

by Kuwano, Tanaka and Yamada [15]. 
The aim of this paper is to review these background and to propose some 

idea how to generalize the inheritance property which is introduced by [6]. 

2 Set Relations and Scalarizing Functions for 

Sets 

Throughout the paper, let X be a topological space and Y a real topological 

vector space. Let的 bethe zero vector in Y and P(Y) denote the set of all 

nonempty subsets of Y. The topological interior, topological closure, convex 
hull, and complement of a set A E P(Y) are denoted by int A, cl A, co A, and 

A尺respectively.For given A, B E P(Y) and t E民， thealgebraic sum A+  B 
and the scalar multiplication tA are defined as follows: 

A+B:={a+blaEA, bEB}, tA:={taiaEA}. 

In particular, we denote A+ {y} by A+ y and (-l)A by -A for A E P(Y) and 
y E Y. 

Let X be a nonempty set and ~ a binary relation on X. The relation ~ is 
said to be 

(i) reflexive if x ~ x for all x EX; 
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(ii) irreflexive if x終xfor all x E X; 

(iii) transitive if x ~ y and y ~ z imply x ~ z for all x, y, z EX; 

(iv) antisymmetric if x ~ y and y ~ x imply x = y for all x, y EX; 

(v) complete if x ~ y or y ~ x for all x, y EX. 

The relation ~ is called 

(i) a preorder if it is reflexive and transitive; 

(ii) a strict order if it is irreflexive and transitive; 

(iii) a partial order if it is reflexive, transitive, and antisymmetric; 

(iv) a total order if it is reflexive, transitive, antisymmetric, and complete. 

Throughout the paper, we assume that C is a convex cone in Y with int Cヂ0
and 0y E C. Then, C + C = C holds, and int C and cl C are also convex cones. 
Accordingly, we can define a preoder :Sc on Y induced by C as follows: 

for Y1, Y2 E Y, Y1 :ScY2畠ぬ一 Y1EC. 

This preorder is compatible with the linear structure of Y: 

for all Y1, y汀 3E Y, Y1 :ScY2⇒ Y1 + Y3 :ScY2 + y3; (1) 

for all Y1, Y2 E Y and t > 0, Y1 :ScY2 ==} ty1 :SctY2• (2) 

When C is pointed (i.e., C n (-C) =｛的｝）， :Scis antisymmetric and then a 
partial order. 

p roposition 1. Let C, C'be convex cones in Y and d E Y. Assume that 

c+ (o，十oo)dC C'. Then, for any v1, v2 E Y and t, t'E艮 witht > t', 

釘＋ td:Scv2⇒ v1 + t'd :Sc1 v2. 

As generalizations of partial orderings for vectors, we give a definition of 
certain binary relations between sets in Y, called set relations. This is a modified 
version of the original one proposed in [12]. 

Definition 2 (set relations, [12]). For A, B E P(Y), we define the following 
eight types of binary relations on P(Y). 

(i) Aさg)B 辛~ ¥;/a EA, Vb EB, aさcb -¢::::=} Ac  nbEB(b -c) 

⇔ BC  naEA(a + C); 

(ii) A 豆聾 B~ ヨa EA s.t. Vb EB, a :Sc b←⇒ An (nbEB(b-C)) # 0; 
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(iii) A翌U)B 辛しョbE B s.t. Va E A, aさcb ¢:::=} (naEA(a + C)) nB =I 0; 

(iv) A 亨 B 辛~A さ聾 BandA羞四 B {=⇒ An (nbEB(b-C)）ヂ0
and (naEA(a + C)) n B =I 0; 

(v) A 羞詈 B 辛~ Vb EB,ヨaEA s.t. aさCb{=⇒BcA+C; 

(vi) A尋U)B 晶~ Va EA,ヨbE B s.t. a :Sc b←⇒AcB-C; 

(vii) A亨 B 畠 A'.S詈 BandA'.SげU)B ←:;,-B c A+C and Ac  B-C; 

(viii) A 誓 B~ ヨa EA,ヨbE B s.t. a :Sc b {=⇒ An (B-C) =f 0 
⇔ (A+ C) n B =f 0. 

In the above definition, the letters L and U stand for "lower" and "upper," 

respectively. Each relation羞見 istransitive for j = 1, 2L, 2U, 3L, 3U and not 

transitive for j = 4. Since 0y E C 
(j) 

, -C  :::;~1 is reflexive for j = 3L, 3U, 4 and 
hence a preorder for j = 3L, 3U. Besides, for each j = 1, 2L, 2U, 3L, 3U, 4, the 
relation :Sげsatisfiescertain similar properties to conditions (1) and (2) for all 
A,B E P(Y), 

(i) A羞げB ⇒ A+y羞げB+y for y E Y; 

(ii) A鉗 B ⇒ tA羞りtBfor t > 0. 

Also, we easily obtain the following implications: 
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for A, BE P(Y). 

p roposition 3 ([6]) . Let C'and C be two nonempty convex cones in Y and 

d E Y. Assume that C'+ (0，十oo)dc C. Then, for each j = l, 2L, 3L, 2U, 3U, 4, 
any A, BE P(Y), s, s'E艮 withs'<s and t, t'E艮 witht < t', 

A翌］ B+ s'd ==?- A翌げ B+sd,

and A +t'd亨 B ⇒ A+td羞り B.

Now, we recall the scalarization scheme [13] for sets in a real vector space 
related to the set relations, which are certain generalizations as unification of 

several nonlinear scalarizations proposed in [5]. 
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Definition 4 ([7, 13]). For each j = l, 2L, 3L, 2U, 3U, 4, we define 

虐(A;V, d) := inf { t疇 A嚢 (V+ td)}, 

潔(A;V, d) := sup { t E股 (V+td)誓 A}'

for any A, VE P(Y) and d E Y. 
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The idea of these scalarization functions is introduced in [13], which originates 
from the idea of Gerstewitz's (Tammer's) sublinear scalarizing functional in [1]; 
see [3, 7]. This type of scalarization measures how far a given reference set needs 
to be moved toward a specific direction to fulfill each set relation between a 
target set and its moved reference set. Note that V and d in (4) and (5) are 
index parameters for scalarization which play key roles as a reference set and a 
reference direction, respectively. 

p roposition 5 ([7]). Let C be a convex cone in V. The following inequalities 
hold between each scalarizing function for sets: 

摩 (A;W,d)さI詈 (A;W, d) :SI:笠(A;W,d)さ虐 (A;W, d); 

摩 (A;W,d)さI炉 (A;W, d)さI尺 (A;W, d)さ虐 (A;W,d);

虐 (A;W,d) :SI:り(A;W, d) :S 1g) (A; W, d) :S靡 (A;W, d); 

製 (A;W, d) :S S例 (A;W, d) :S S詈 (A;W,d)さSり(A;W,d); 

潔 (A;W,d)さS炉 (A;W, d)さS冑 (A;W, d) :S Sげ(A;W,d);

潔 (A;W,d)こ潔 (A;W, d) :S潔 (A;W, d)こ潔 (A;W,d)

for A, W E P(V) ¥ {0} and d E C. 

p roposition 6 ([7]). Let C be a convex cone in V. There are certain relations 
among the scalarizations of types (2L), (2U), (2) as well as (3L), (3U), (3): 

(iJ rげ(A;W, d) = max { I:笠 (A;W,d),I:尼(A;W, d)}; 

(ii) 1g) (A; W, d) = max { I:炉 (A;W,d),I:冑 (A;W, d)}; 

(iii)潔 (A;W, d) = min { S炉 (A;W,d), S已(A;W, d)}; 

(iv) S閃(A;W, d) = min { S詈 (A;W,d), S臼(A;W,d)}

for A, W E P(V) ¥ {0} and d E C. 
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Proposition 7 ([6]). Let A, VE P(Y) and d E Y. Then the following statements 

hold 

—虐(-A;-V,d)
-I尺(-A;-V,d)

-I聾(-A;-V,d)

-I戸(-A;-V,d)

-I戸(-A;-V,d)

-It¥-A;-V,d) 

澤(A;V, d), 

s戸(A;V,d), 

s已（A;V,d),

s馴(A;V, d), 

s詈(A;V, d), 

潔(A;V, d). 

For each j without j = 4, scalarizing functions虐(・;W, d) and潔(・;W, d) 
with a nonempty reference set W and a direction d have the following mono-

(j) 
tonicity with respect toさgJ,which is referred to as "j-monotonicity" in [10]: 

｛A埒B ⇒ 虐 (A;W,d)<Ig)(B;W,d)； 

A羞げB ===⇒嶺 (A;W, d) :s;潔 (B;W,d).
(6) 

3 Transmission Mechanism on Semicontinuity 

of Set-Valued maps 

Ike, Liu, Ogata and Tanaka [6] introduce a new concept of invariant property for 
set-valued map F: X→P(Y) with respect to a binary relationship on a family 
of sets in Y, which is regarded as some kind of continuity from the viewpoint of 
order-monotonicity. Besides they show certain results on the inheritance prop-

erty of some kinds of continuity of set-valued maps via scalarization functions 
for sets: if a set-valued map has a kind of continuity (lower continuity or up-

per continuity; see [3]) then the composition of its set-valued map and a certain 
scalarization function assures a similar semicontinuity to that of its scalarization 
function defined on the family of nonempty subsets of a real topological vec-

tor space. On the other hand, Sonda, Kuwano, and Tanaka [20] introduce two 

kinds of continuity with respect to cone, called "cone continuity," for set-valued 
maps by analogy with semicontinuity for real-valued functions, and they investi-
gate the inheritance properties on cone continuity of parent set-valued maps via 

scalarization. Therefore, it is interesting to investigate the inheritance of cone 
continuity for set-valued maps via general scalarization functions for sets in the 

same manner as [6]. At first, we recall several definitions and results in [6]. 
Let N(x) and ~ be a neighborhood system of a point x E X and a binary 

relation on P(Y), respectively. 

Definition 8 (Definition 3.2 in [6]). Let F : X→P(Y) be a set-valued map, 

x0 E X and ~ a binary relation on P(Y). We say F is 忍—continuous at x。if
VW C Y with W ~ F(xo)，ヨVEN(x0) such that W ~ F(x),'ix EV. 
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For A, B E P (Y), we denote binary relations int A n Bヂ0and B c int A 

by A =;<1 B and A =;<2 B, respectively. Then奇 continuousand全 continuous

coincide with usual "lower (semi)continuity" and "upper (semi)continuity" for 

set-valued maps, respectively. 

Definition 9 (Definition 3.3 in [6]). Let <p: P(Y)→瓢｛士oo}be a scalarization 

function, A。EP(Y), and =;< a binary relation on P(Y). Then 

(i) we say <p is =;<-lower semicontinuous at A。if

Vr < rp(A。)，ヨWEP(Y) such that W =;< A。andr < rp(A), VA E U(W, =;<), 

(ii) we say <pis ~-upper semicontinuous at A。if

'ir > <p(A。)，ヨWEP(Y) such that W =;< A。andr > <p(A), ¥:/A E U(W, =;<), 

where U(W, =;<) := {A E P(Y) I W =;< A}. 

Theorem 10 (Theorem 3.1 in [6]). Let F: X→P(Y), <p : P(Y)→艮u｛土oo},

x0 E X, and =;< a binary relation on P(Y). If F is =;<-continuous at x。and<p 

is臼 owersemicontinuous at F(x0), then <po F is lower semicontinuous at x。
where <po F(x) := <p(F(x)) for each x EX. 

Theorem 11 (Theorem 3.2 in [6]). Let F: X→P(Y), <p : P(Y)→艮U｛土oo},

x0 EX, and=;< a binary relation on P(Y). If F is五 ontinuousat x。and<p is 

=;<-upper semicontinuous at F(x0), then <po F is upper semicontinuous at x。.

In order to investigate the inheritance properties on cone continuity of parent 

set-valued maps via scalarization, we consider generalizations of semicontinuity 

for set-valued maps and real-valued functions. 

Definition 12. Let F : X→P(Y), x0 EX, =;< a binary relation on P(Y) and 

C C Y a convex cone. We say that F is（弐C)-continuousat x。if
¥:/WC Y, W open, W =;< F(xo)，ヨVE芯 (x0)s.t. W + C =;< F(x),'ix EV. 

As special cases, (=;<1, C)-continuity and（吟，C)-continuitycoincide with "C-

lower continuity" and "C-upper continuity" for set-valued maps, respectively. 

Indeed, F: X→P (Y) is (=;< 1, C)-continuous at x。ifand only if 

¥:/W c Y, W open, WnF(x0) c/= 0, :3V E芯 (x0)s.t. (W + C)nF(x) i= 0,'ix EV, 

that is, F is C-lower continuous at x。.Similarly,F is（忍，C)-continuousat x。
if and only if 

¥:/WC Y, W open, F(x0) C W，ヨVEふ (x0)s.t. F(x) CW+  C,'ix EV, 

that is, Fis C-upper continuous at x0; see Definition 2.5.16 of [3]. 
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Remark 13. If C = {O} then (=;<, C)-continuity for set-valued maps becomes 
=;<-continuity in Definition 8. 

Definition 14. Let <p : P(Y)→ Ru｛土oo},A。EP(Y), =;< a binary relation on 
P(Y), and Ca convex cone in Y with CヂY.Then, we say that <pis 

(i)（苓C)-lowersemicontinuous at A。if而く c.p(Ao)，ヨWEP(Y), W open, 

s.t. W =;< A。andr < c.p (A), VA E U(W + C，畔

(ii)（苓C)-uppersemicontinuous at A。ifVr > c.p (A。)，ヨWEP(Y), W open, 

s.t. W =;< A。andr > c.p (A), VA E U(W + C, =;<), 

where U(V, =;<):={A E P(Y) IV=;< A}. 

Remark 15. When C = {O},（苓C)-lowerand（苓C)-uppersemicontinuities 
are coincident with =;<-lower and臼 ppersemicontinuities, respectively, which are 
introduced in Definition 3.3 of [6]. In Definition 14, we adopt that if <p (A。)＝ -00 

(resp. +oo) then <p is (=;<, C)-lower (resp. upper) semicontinuous at A。•

Therefore, we can easily show the following results as generalizations of The-
orems 10 and 11. 

Theorem 16. Let F: X→P(Y), c.p: P(Y)→塁｛士oo}, x0 EX, =;< a binary 
relation on P(Y), and C C Y a convex cone. If F is（苓C)-continuousat x。and
<p is（=;<, C)-lower semicontinuous at F(x0), then <po F is lower semicontinuous 

at X。•

Theorem 17. Let F: X→P(Y), c.p: P(Y)→虞｛士oo}, x0 EX, =;< a binary 
relation on P(Y), and C C  Y a convex cone. If Fis (=;<, C)-continuous at x。and
<p is (=;<, C)-upper semicontinuous at F(x0), then <po F is upper semicontinuous 

at X。•

By above theorems, we can systematically unravel the inheritance mechanism 
related to lower and upper continuities for set-valued maps. 
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