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Abstract 

In 2021, Hidaka and Kimura proved a△-convergence theorem in CAT(l) 
spaces. In this paper, we modified the coefficient condition and obtain another 
△-convergence theorem. 

1 Introduction 

In [1], the authors proved the following theorem. 

Theorem 1 ([1]). Let X be an admissible complete CAT(l) space. Let 

f: X →]-oo, oo] be a proper convex lower semicontinuous function and sup-
pose that argmin f -/ 0. Let｛ぬ｝ andhn} be real sequences in [O, 1] such that 

L~=l/3n = oo and that both {/3n} and hn} converge to 0. For an initial point 
x1 E X, generate a sequence { Xn} as follows: 

珈＝ JJXn,

an E [min{/3n, d(xn, Yn) -"In}, 1] n [O, 1], 

Xn+l = (1 -an)Xn① O!nYn・ 

Suppose that one of the following conditions holds: 
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• infnEN an > O; 
•区:=l an < 00. 

△ 
Then, Xn→ xo E argmin f. 

In this paper, we try to remove the condition that infnEN an > 0 in Theorem 1. In 

order to this, we modify the coefficient condition. 

2 Prelimi reliminaries 

Let入bea positive real number. A metric space X is said to be 入—geodesic if for 
each x, y E X with d(x, y) <入， thereexists a mapping c : [O, l]→X such that 
c(O) = x, c(l) = y, and 

d(c(t1), c(む)） ＝ |t1 -t叫

for all t1, t2 E [O, l], where l = d(x, y). The mapping c is called a geodesic from x to 
y. If a geodesic c from x to y is unique, the geodesic segment [x, y] is defined by 

[x,y] = {c(t): 0さt::::; l}. 

Let X be a uniquely geodesic space, and x, y, z EX. Let x, y, z EX  with d(x, y) + 

d(y,z)+d(z,x) < 21r. The set△ ＝ △（x, y, z) is defined by△=  ［x, y]U[y, z]U[z, x]. We 
take元，y,_zE ~2 such that d(x,y) = ~§2 （元， y),d(y,z) = d§2(y,z),d(z,x) = d§2(z，元）．
The set~= △（元， y, z) is defined by△ = ［邑y]u [y,z] u [z，元］． X is called a CAT(l) 
space, if for all△and p,q E△with p, iJ E△, 

d(p,q)三如(p,q). 

We say that a CAT(l) space X is admissible if 

T 
d(w,w') < i 

2 

for all w, w'E X. 
The definition of the resolvent off is as follows [4]: 

J戸＝ argmin{J(y)+ tand(y, x) sind(y, x)}, 
yEX 

where f : X →]-oo, oo] is a proper lower semicontinuous function. We denote by 
argminx f the set of all u EX  such that f(u) = inf f(X). For a bounded sequence 
{xn} C X, the asymptotic center A({xn}) of {xn} is defined by 

A({ Xn}) = { U E X I li巴門pd(u,xn)= j乳li巳門pd(y,Xn)}. 

A sequence { Xn} is said to be△-convergent to a point p E X if 

A({ Xn;}) = {p} 
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for each subsequence {xnJ of {xn}-
We know the following lemmas. 

Lemma 1 ([4]). Let X be an admissible complete CAT(l) space, f a proper convex 
lower semicontinuous functions of X into ]-oo, oo]. Let J11t be the resolvent of T/f 
for all T/ > 0 and C11,z the real number given by 

c1),Z = cosd(J11JZ, z) 

for all T/ > 0 and z E X. Then 

（入叩(l+C土）Cμ,,y+ μC勾（1＋年）叫）cosd(J入JX,Jμ,JY) 

ミ入c1,x(l+c土）cosd(J入JX,y)+ μCら（1+心）cosd(Jμ,JY, x) 

for all x, y E X and入，μ > 0. Further, 

：鳳＋1）（C入，ェ cosd(u,J入JX)-cosd(u,x)) ~入(f(J入JX) -f(u)) 

and 

(1) cosd(J入1x,x)cosd(u,J入ix)2'. cosd(u,x) 

for all x EX, u E argminx f and入＞ 0.

Let X be a metric space such that d(v,v') < 1r/2 for all v,v'EX, Ta mapping of 
X into itself, and Cz the real number given by 

Cz = cos d(Tz, z) 

for all z E X. The mapping T is said to be vicinal [5] if 

心(1心）＋噂(1+ Cり）cosd(Tx, Ty) 

2 C;(l＋噂）cosd(Tx,y)＋噂(l+Cりcosd(Ty,x)

for all x, y E X. 

Lemma 2 ([5]). Let X be a metric space such that d(v, v')く n/2for all v,v'EX, 
T a vicinal mapping of X into itse[f，p an element of X, and {xn} a sequence in X 
such that A({xn}) = {p} and d(Txか％） →0. Then pis a fixed point of T. 

Lemma 3 ([3]). Let X be a complete CAT(l) space such that d(v,v')く 1r/2 for all 
v, v'EX. Let f be a proper lower semicontinuous convex function of X into ]-oo, oo], 
JJ the resolvent off. Then F（み） ＝argminx f. 
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3 Main result 

The following theorem is the main result of this paper. 

Theorem 2. Let X be an admissible complete CAT(l) space. Let f: X→ ]-00,00] 
be a proper convex lower semicontinuous function such that argmin f -/-0. Let｛rn} 
be a real sequence in [O, 1] converging to 0. For an initial point x1 E X such that 
f(x1) < oo, generate a sequence {xn} as follows: 

珈＝ JJXn,

O:n E Dd(xn如）一 rn,1] n [O, 1], 

Xn+l = (1 -an)Xn 〶 an珈・

△ 
Then, XnーxoE argminf. 

Proof. Take { d(xnぃYni)}C {d(x,ぃYnH・ There exists { ani) C { anJ such that 

O:nij→ a。E[O, 1]. If ao = 0, then 

1 
~d(x叫 'Yn,j)'.S °'nij + /nij→0. 

We get d(x凡 'Ynij)→0.

If a0 E ]O, 1], for u E argminf, using (1) in Lemma 1, we have 

COS d(u, Xn+1) 2 (1 -an) COS d(u, Xn) + Oen COS d(u, Yn) 

2 (1 -an) COS d(u, Xn) + Oen 
cosd(u, Xn) 

COS d(yn, Xn) 

= COS d(u, Xn) + Oen COS d(u, Xn) (~%)— 1) • 
It implies 

cosd(u, Xn+1),,. (l  
cosd(U,％）― 1こan(cosd(ym%）― l)．

We know that d(u, Xn)→[O, 1r /2[. In fact, since 

cosd(u,xn+1) 2 (1 —%) cosd(u, Xn)＋叫cosd(u,Yn)2 cosd(u,xn), 

we have 

d(u,Xn+l)さd(u,xn)-

Thus d(u,％)→ ［0, 7f /2[. Hence we get, 

0 < an9 ( 
1 ¥ COS d(u, XnL +1) 

― j(~ ― 1) こ cosd(U,xn,J )―1 →0. 
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We get d(x凡 'Yn,j)→0.It means that d(xか Yn)→0.

Let { XnJ C { Xn} with w = A({ XnJ). There exists { Xn,i} C { XnJ such that 

Xn'" S. z. In fact, since 

刀―

d(u,xn+1) :'::: d(u,xn) :'::: d(u,x1) < i, 
2 

we have lim supn→(X)d(u, Xn) < 1r/2. Using Lemma 2 and Lemma 3, we have z E 

F(JJ) = argminf. We put v = A({xn}). Then, 

lim d(xn, z) = _lim d(xn;, z) 
n→(X) t→(X) 

• （ni. 9 = _lim d(xnL, z) 
J→OO J 

さIimsupd(xnL,w)
j →OO 

J 

さIimsupd(xn;,w)
i→OO 

::; Iimsupd(xn;,v) 
i→OO 

::; Iimsupd(xn,v). 
n→OO 

△ 
We get v = w = z. Hence, Xn→ v = z E argminf. ロ
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