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NOTE ON  THE SOLVABILITY OF THE FULLY FOURTH 

ORDER NONLINEAR BOUNDARY VALUE PROBLEMS 

TOKYO UNIVERSITY OF INFORMATION SCIENCES 
TOSHIKAZU WATANABE 

1. INTRODUCTION 

Many researchers have considered the following differential equation; 

(1.1) 
{ u””(t) ＝ f(t,u(t)）， 0 < t < 1, 

u(O) = u'(O) = u"(l) = u"'(l) = 0, 

where f is a continuous mapping from [O, 1] x股 into恥 wedenote by艮 theset of 
all real numbers; see [9, 10, 14, 15, 21, 22, 23, 25, 26]. Equation (1.1) can be used 

to model the deformations of an Cantilever equation. In mechanics, the problem 
is called Cantilever beam equation, and in the equation, the physical meaning of 
the derivatives of the deformation function u(t) is a follows: u"" is the load density 

stiffness, u"'is the shear force stiffness, u" is the bending moment stiffness, and u' 
is the slope ;see [9, 10]. In some practice, only its positive solution is significant. 

Meanwhile, fractional differential equations have been studied by many researchers; 

see [3, 5, 6, 7, 8, 11, 12, 17, 18, 19, 24]. However, to the best of our knowledge, there 
are no results for the boundary value problem represented by (1.4) for 3 < aさ4,
which we consider in the present paper. We use the method of order reduction and 

contaraction principle [27, 28] to prove the existence and uniqueness of solutions. 
In [20], we consider the boundary value problem for fractional order differential 
equation 

(1.2) 
｛叫(t)＝f(t,u(t)），t E [O,1] 

u(O) = u'(O) = u"(l) = u111(l) = 0, 

where D品 isthe Riemann-Liouville derivative of order a, 3 < aさ4,and f is a 
continuous function of [O, 1] x股 into艮

Several authors consider the following fourth order boundary value problems for 
the fully nonlinear with boundary conditions see; [27, 28, 29, 30, 31, 32, 33]. 

(1.3) ｛ u””(t) ＝ f(t,u(t)，u'（t)，U”(t),U”'（t)）， 0 < t < 1, 
u(O) = u'(O) = u"(l) = u111(l) = 0, 

Recently in [27], using an order reduction and contaraction method, authors give 
a existance and uniqueness of solution. In [28] authors using a contraction method 
and iteration method they give a existance and uniqueness of solutions of boundary 

value problems and also examples of non-linear function as a function f in (1.3). 
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In this paper we propose the following differential equation of fractional order 
a, 3 < a :S 4 with the two point boundary condition involving the form (1.2). 

(1.4) 

｛叫(t)＝f(t,u(t)，D腐％（t），D。+D腐％（t），D。+D。+D腐％（t)),

O<t<l 

u(O) = Dg_戸u(O)= Dg_戸u(l)= D合;=-1u(l)= 0. 

In particular, using a order reduction and contaraction method, we give a unique 
solution com pairing method in [27, 28], we also give a suitable Lipschitz constant 
through a study. 

Let a > 0. The Riemann-Liouville fractional integral of order a of u, denoted 
I晶u,is defined by 

1 
I畠u(t)= ~ 1• (t -s)°'-1u(s)ds, 

r(a) 。
provided the right-hand side exists. The Riemann-Liouville fractional derivative of 
order a of a function u of (0, oo) into股 isgiven by 

l dn rt 叫(t)=~)記 1'(t -sr-a-1u(s)ds, 

where n = [a]+ 1 ([a] denotes the integer part of a) and r(a) denotes the gamma 
function; see [11, 18]. Note that for a> (3 > 0, we have 

D畠tf3= 
r((3＋1) tf3-a. 

r(B-a+1) 

A function u E C[O, 1] is called a solution of problem (1.4) if D°'u E C[O, 1], 
D°'-3u E L1[0, 1], D°'-2u E £1[0, 1], D°'-1u Eが[O,1], u satisfies the boundary 

conditions and equality in (1.4) a.e. on [O, l]. 

2. LEMMAS 

Let h be a continuous mapping [O, 1] into恥 weconsider the following fractional 
differential boundary value problems defined by 

(2.1) ｛叫(t)＝h(t)，0 < t < 1, 

u(O) = u(l) = 0, D。+D富％（0)= D。+D似％（1)= 0, 

where 3 < a ::; 4. In this section, we show the unique solution to the boundary 
value problem represented by (2.1). A mapping u of [O, 1] into良 isa solution of 
that boundary value problems if u is continuous on [O, 1] and u satisfies (2.1). 

The following lemma can be found in [6]; see also [11]. We denoted by C(O, 1) the 
set of all continuous mappings of (0, 1) into恥 andby L(O, 1) the set of all Lebesgue 
integrable mappings of [O, 1] into艮

Lemma 1. Let a>  0. If u(t) E C(O, 1) n L(O, 1) satisfying Dg+u(t) E C(O, 1) n 
L(O, 1), then there exist constants C1, C2,..., Cn E恥 suchthat 

閑 D晶u(t)= u(t) + C1ta-l + C2t°'-2 + ・ ・ ・ + C孔a-n,

where n = [a]+ 1 and I,晶uis the Riemann-Liouville fractional integral of order a 
of a function u is defined by 

叫 (t)= ~ 1t (t -s)°'-1u(s)ds. 
r(a) 。
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Using Lemma 1, we obtain the following. 

Lemma 2. Let g E cn[o, 1] be given. Then the unique solution to problem D°'y(t) = 
g(t) together with the boundary conditions in (1.4) is 

u(t) = 1t G(t, s)g(s)ds, 

゜where 

(2.2) 
G(t,s)＝｛心 ((t-s)a-1 -ta-1 + （a -1)sta-2)．if0こS< t < 1, 

心 (-ta-l+ (a -1)sta-2) if O ::=; tさs< 1. 

Proof. In order to have G(t, s), by Lemma 1, we have 

u(t) = c1ta-l + c2戸＋C3戸＋C4ta-4+ I訪(t)

l rt 
= C1ta-l + C□+C3ta-3 + C4ta-4 + ~ 1" (t -s)a-lg(t) 

r(a) 。
By the boundary condition in (1.4), since u(O) = 0, we have c4 = 0. 

t 

D臨3(1'(t -s)a-lg(s)ds) = ¥ 1'(t -s)2g(s)ds 

Since D腐％（0)= 0, we have c3 = 0. Since 

Dg口（心 lat(t -s)°'-1g(s)ds) = lat (t -s)g(s)ds 

゜andD『戸u(l)= 0, we have 

1 

0=建（a)+咽 (a-1) + 1• (1 -s)g(s)ds. 

゜Also we have 

Dご(1 t t 

~ lat (t -s)"'-1g(s)ds) = lat g(s)ds 

Then we have 

1 f1 
C1 =―r(a) l g(s)ds. 

Since 

0=研（a)+研 (a-1) + i¥1 -s)g(s)ds. 

= -［g(s)ds ＋碩（a-1）+1'(1 -s)g(s)d.s, 

we have 

C2 =—~ (11 (1 -s)g(s)ds -11 g(s)ds) 

(a -1) 1 

= ~ (11 sg(s)ds). 
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Hence we have 

u(t) = C1t°'-1 + C2t°'-2 + Do-f g(t) 

= fTc0 fo1 -g(s)dst°'-1十りぃp(fo1 sg(s)ds) t°'-2 

＋ rい［（t-s)°'-1g(s)ds 

1 
= fTc0 (lat ((t -s)°'-1 -t°'-1 + (a -l)st°'-2) g(s)ds 

1 

+ 11 (-t°'-1 + (a -l)st°'-2) g(s)ds). 
t 

Then the green function G(t, s) is defined by 

G(t, s) 
~ ((t -s)°'-1 -t"'-1 + (a -l)st°'-2). if O <:'.: s <:'.: t, 

，＝ ｛土 (-ta-1+ （a-1)sta-2) ift < s < 1. 

Next in order to estimate the order reducton, we consider the followings. 

and 1'G(t,.s)h(.s)ds -[-G(t,.s)v(.s)]: +［叩t,s)v(s)ds,

11 G(t, s)h(s)ds = [-G(t, s)v(s)]i +［叩t,s)v(s)ds, 

where v(t) = ft1 h(s)ds and G1(t, s)＝捉(t,s); 

(2.3）化 （t，S)＝ { r(a:-1) (-（t -s)a-2 + ta-2) if oこS< tこ1

r(a-1) t"-2 if O < t < s < 1. 

Moreover 

fo1 G(t, s)h(s)ds =［G1(t, s)v(s)ds. 

゜In fact since v(t) = J: h(s), v(l) = 0, 

[-G(t, s)v(s)]~ 
1 ＝ー~ ([(t -s)°'-1v(s)闊＋［一t"-1+ (a -l)st°'-2v(s)]~) 

1 

= r(a) 
(t°'-1) v(O) 

+ 1 
r(a) 

((-(t"-1 + (a -l)t"-2) v(l) -t°'-1v(O)) = 0. 

We also have 

(J1 Dご。伍(t,s)v(s)ds) = 1 伍(t,s)v(s)ds, 

口
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where 

(2.4) 伍 (t,S)＝｛s(OこS< tさ1)，
t (0 :S t :S s :S 1). 

如叫 (11G(t, s)h(s)ds) = D。+(11ら (t,s)v(s)ds)= fo1ら (t,s)v(s)ds 

where 

(2.5) 伍 (t,s)＝｛゚(O< sこtさ1)，
1 (0 ~ t ~ s ~ 1). 

3. ESTIMATES OF INTEGRAL EQUATIONS 

In this section in order to have the solution of boundary value problem (1.2), we 
tranfered it to interal equation and estimate its value. We consider the method of 
order reduction and Banach contarction to the integral equations. 

Now we use the method of order reduction to transform (1.4) to a nonlinear 
integral equation; see [27]. To do this, let 

(3.1) T1v(t) = I,『叫(t)= 1 凸 (t,s)v(s)ds, 

゜
(3.2) T:匹 (t)= 11 G2(t, s)v(s)ds, T3v(t) = 11 G3(t, s)v(s)ds, 

0 JO 

where G1(t, s), G2(t, s) and伍 (t,s) are given by (2.3), (2.4) and (2.5). From the 
above formulas, it follows that 

D。+D。+D富3T1v(t)= D。+D。+T四 (t)= D。心(t)= -v(t) 

Note that since 

T1v(t) = la叩 t,s)v(s)ds = fo1 G(t, s)f(s)ds, 

゜we have 

T1v(O) = T1v(l) = 0. 

Moreover by definition, 

T匹（1)= 11伍（1,s)v(s)ds = 0, T;籾 (1)= 11ら (1,s)v(s)ds = 0. 

゜Boundary value problem (1.4) can be converted into a terminal value problem 

D。+v(t)= -f(t, T1v(t), T;匹 (t),T3v(t), -v(t)), v(l) = 0. 

From the above formulas, it follows that 

D。+v(t)= f(t, T1v(t), T2v(t), T3v(t), -v(t)) 

where 

D。+T3v(t)= -v(t), D。+T匹 (t)= T;⑪ (t), D名□T1v(t)= T:四 (t).

Then we have the following lemmas. 
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Lemma 3. Let 3 < a :::; 4. The boundary problem (1.4) is equivalent to the 
following integral equations forms; 
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(3.3) Av(t) = 11 f(s,T1v(s),T:匹 (s),T:砂 (s),v(s))ds, 
t 

where v E C[O, 1]. Also let 

1 

(3.4) (T1v)(t) = 1 伍 (t,s)v(s)ds, (T:匹）（t)= fo1 G2(t, s)v(s)ds, 

(3.5) (T:⑪)（t) = j1 v(s)ds, (T,砂）（t)= v(t). 

゜Then the solution of boundary value problem (1.4) is equivalent to the fixed 
point of A on C[O, 1]. Take u0(t) = 1 -t. By (3.4), we get 

11 (T1uo)(t)dt 

： 1 (1(1-日）―_!_（1-炉） ＋ ］（1 -ta-2) 
r(a) a(a+ 1) 1 -t 2a 1 -t 2a1 -t)  Uo(t) 

(3.6) 

In fact take u0(t) = 1 -t. By (3.4), we get 

t 

叫 o)(t)= 1 1 

。r(a-1) 
(-(t -s)0-2(1 -s) + t0-2(1 -s)) ds 

+ 11 ~ (ta-2 -ta-2s) ds 
t 「(a-1) 

=lat~ (-(t -s)a-1 + (t -s)a-2t -(t -s)a-2 

+ [「（bi(ta-2 -ta-2s) ds 

-1 ta + 1 ta _ l ta-1 
= ar(a -1) （a -1)r(a -1) （a -1)r(a -1) 

+ r(a 1 -1) (ta-2 _；ta-2) 

= 1 ta _ l ta-1十 1 ta-2 
r(a+ 1) r(a) 2r(a-1) 
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and 

11 (T1uo)(s)ds 
t 

=[ （r(a1+ 1)Sa_ rta)Sa1十江hSa-2) dt 

1 1 1 = （1 -ta+1) - a-1 
r(a+2) r(a+1) 

(1 -t勺＋
汀 (a)

(1 -t)  

= (1 1  -ta+1 1 1-ta + 1 1 -ta-1 
r(a + 2) 1 -t ―r(a+ 1) 1 -t 2r(a) 1-t)  Uo(t)． 

Since 1 -t3 < 1 -t°'< 1 -t4, we have（冒t丁） ＜冒;= l+t＋柱＋炉＋t4::::;5. 

Thus we have 

J1 (T1uo)(t)dtさC四 o(t)
t 

where 

(3.7) 
凸＝（r（a5+2)―r(a+1) + 2rい）

We also have 
t 

叫 0)(t)= lat s(l -s)ds + 11 t(l -s)ds = ;— f+~ 

J1(T四 0)(t)dt
t 

1 
= (~(1 +t+t2) -~(1 + t＋柱＋秒） ＋訊＋t＋柱＋t3+ tり） （1-t) 

1 
< -Uo(t) - 6 

(T四 o)(t)= j1 ~(1- s)2ds = ~ (-t2 + 3t-1)) 
2 2 

゜
J1 叫 o)(s)ds= 1'~( 

1 1 
~(1 -s)2ds = ;(1 -t)3 

1 
- -t) ＜ -uo(t)． 

2 6 -6 

Thus we have 

〗~)(T四o)(t)dl <; M四 o(t)，［(T四 o)(t)dt<; M四 o(t)，［（T四 o)(s)ds<; M四 o(l),

where 

(3.9) M1 = ( 
5 3 3 ¥ -- 1 -- 1 

r(a+2)―r(a+1) + 2r(a)）, M2 = 6’ 応＝ 6• 
Next in order to use the method in [28], first we give the setting. For each 

number M > 0 we denote 

DM  = {(t, u, w, y, z)IO :St :S 1, llull :S M1M, IIYII :S M2M, llv||:S M3M, llzll :S M} 
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and by B[O, M] we also denote a closed ball centered at O with the radius Min 
the space of continuous functions C[O, 1] with the norm ll</JII = max。こに1lr_p(t)I-In 
this case, by [28, Theorem 2.2], we have the following lamma; 

Lemma 4. Assume that there exist numbers M, Ci > 0 where (i = 1, 2, 3, 4), such 
that 

(3.10) IJ(t,u,w,y,z)I:::; M, 

4 

(3.11) IJ(t, X1心2心3心4,)-J(t,y1,Y2,Y凸） I:::; 区 C凸— Yil
i=l 

for any (t,u,w,y,z),(t,x1,x□3，四），（t,Y1, Y公 Y3如） ED M. Then the operator A 
defined by (3.3), where vや， u'Pare the solutions of the problems (1.4), maps the 
closed ball B[O, M] into itse[f．Moreover, if 

(3.12) q:=M心＋M凸＋M凸＋口く 1

then the operator A is contractive operator in B [ 0, M]. 

Proof. We only need to prove that A defined by (3.3) has a unique fixed point in 
B[O,M]. We introduce a linear operator Ton C[O, 1] as 

(3.13) (Tu)(t) = 1• (M叫）（s)+M尋 u)(s)＋島(T四）（s)+ M4(T,四）（s))ds. 

As a first step, we show that for all v E C[O, 1] with v(t) > 0 (t E [O, 1]), there exists 
N = N(v) such that 

(3.14) (Tv)(t)さNua(t),t E [O, 1]. 

In fact, we take N = M1IIT1vll + M2IIT2vll + M3IIT:籾 II+M4llvll-Then by (3.13), 
we obtain the result. Moreover, it follows from (3.8) that 

(3.15) 

where 

(Tuo)(t)：：：：： quo(t), t E [O, 1], 

q=M凸＋M凸＋M3ら＋口く 1.

For any given v。EB[O, Ml, let 

Vn(t) = (Avn-1)(t), Wn(t) = lvn(t) -Vn-1 (t)I, n = 1, 2,.... 

Since A is a operator on B(O, M), fort E [O, 1], we have 

叫＋1(t)= lvn+i(t) -Vn(t)I = l(Avn)(t) -(Avn-1)(t)I 

:S J1 lf(s, (T1vn)(s), (T2vn)(s), (T3vn)(s), —%(s)) 

-f(s, (T匹n-1)(s),(T2Vn-1)(s), (T3Vn-1)(s), -Vn-1(s))I ds 

さJ1(M1T1(lvn -Vn-1l)(s) + M山 (lvn-Vn-1l)(s) 

+M3乃(lvn-Vn-1l)(s) + M4 lvn(s) -Vn-1(s)l)ds = (T lvn -Vn-1l)(t) = (Twn)(t). 

By (3.14), (3.15), and the method of induction, there exists N = N(w1) such that 

Wn+1(t) ~こ (Twn)(t) :S ・ ・ ・さ (Tnw1)(t)さN(Tn-luo)(t):S NMn-luo(t), t E [0, l]. 
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Thus for all m, n EN  and t E [O, 1], 

lvn+m+1(t) -Vn(t)I = lvn+m+1(t) -Vn+m(t) + ・ ・ ・ + Vn+1(t) -Vn(t)I 

~ Wn+m+1(t) +・・・＋叫＋1(t) 

~ NMn+m-luo(t) + ・ ・ ・ + Nqn-luo(t) 
NMn-l(l -qm+l). t,¥ _ Nqn-1 

＝ 
l-q 

uo(t) ＜.  
l-q 

This shows that {vn} is a uniform Cauchy sequence in B[O,M] and since C[O, 1] 
is complete and B[O, M] is a clozed subspce of C[O, 1], B[O, M] is also complete. 
Then there exists v* E B[O, M] such that limn→00 Vn = v*. Moreover, v* is a fixed 
point of A that follows from the continuity of A. Next we show that A has at most 

one fixed point. Suppose that there are two elements x, y E B[O, M] with x = Ax 
and y = Ay. By (3.14), there exists N such that (T(lx-yl))(t)さNu0(t),t E [O, l]. 
Then for n E N, we have 

lx(t) -y(t)I = l(A叫r)(t)-(Any)(t)I ~ (Tn(lx -Yl))(t) 

~ N(rn-luo)(t)さNqn-1uo(t),t E [0, l]. 

Consequently, we assert that x = y. This means that A has at most one fixed point. 
This completes the proof. ロ

Then we have the following theorem. 

Theorem 5. Under the assumption of lemma 4, the boundary value problem (1.4) 
has a unique solution there hold the estimates 

(3.16) llull ~ M1M, IID名~3ull ~ M2M, IID名~2ull ~ M3M, 11vg;1u11 ~ M. 

Proof. The proof is similar to that of [28, Theorem 2.2]. 口

Next for the positive solution case, we have the following, For each number 

M > 0 we denote 

Dt = {(t,u,y,v,z) 
0 <::'. t <:'.'. 1, 0 <::'. u <:'.'.払M,O<:'.'.戸島M,
0戸這M,-Mさzご。 ｝ 

and 

贔＝｛'PEC[O, 1] IO< 1.p(t) <::'. M for any t E [O, 1]}. 

Then as the special case of Theorem 5, we have the following theorem. 

Theorem 6. Suppose that in D心thefunction f is such that 

(3.17) 0::::; f(x,u,y,v,z):SM, 

and satisfies the Lipschitz condition (3.11) and condtion (3.12). Then, the problem 
{1.4) has a unique nonnegative solution. 

4. EXAMPLES 

For the examples in this section, as the constant value we apply the following. If 

a = 3.1, then M1 = ~ -~ + ~ r(3.1+2) r(3.l+l)'2r(3.l) = 0.421205, M2 = ¼ = 6 
0.166667 

恥＝ふ＝ 0.166667,and M4 = l. 
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Example 7. Next we consider the examples of fractional order given by a non-

linear f. 

｛叩u(t)＝ -｝D似u(t)D肛u(t)＋u(t)（D昇u(t)戸＋柘―u(t),o< t < 1, 
u(O) = D0・1u(O) = D髯u(l)= D肛u(l)= 0,, 

In this example 

1 1 
J(x, u, y, v, z) = -~yz + uv2 + ~e―叫3v..  2 

which maps [O, 1] x R! x R―→ R+・ 
If we choose M = 1, then we have ½恥M恥M+ M1M M] M2 + ½e-M直 :::;M.
Therefore, if a = 3.1, the Lipschitz coefficients in Lemma ?? are C1 = If』=

lv2 -桑e―ulさ;I（みM)2―吾e-M1M1：：：：：： 0.30035,C2 = lfyl = ½z = ½M4M =ふ
C3 = If』=2uvさい聞記：：：：：： 0.140402,C4 = If』 =½Y = ½恥M ：：：：：： .0555556. 
Then we have 

q := (C1 * M1 + C2＊島＋ C3＊恥＋ C4* M4)：：：：：： 0.26102 < 1. 

Then the conditions of Lemma 4 and Theorem 5 are satisfied. 

Next we consider the examples of fractional order given by a non-linear f. They 
are versions in [28]. 

Example 8. 

｛慶(t)＝宇(u(t)＋D似u(t)＋D認u(t)-D加u(t))+ 1,0 < t < 1, 
u(O) = D0・1u(O) = D店u(l)= D討u(l)= 0, 

In this example 
u 

f (X, U, y, V, Z) = ~ (U + y + V -Z) + 1, 
6 

which maps [O, 1] x R! x R―→ R+・ We can choose M = 2, and therefore, if 
a = 3.1, the Lipschitz coefficients in Lemma ?? are satisfied. By the definition of 

f, since 

1 
lful = ~ * U < ~ * M 

3 3 
1 ：：：：：：゚．280803

2 
fy = fv = fz = ~ 

6 
＊間：：：：：： 0.140402

we have 

q:=M凸＋M凸＋M凸 ＋Mぶ4

2 1 1 1 1 
=M1*-Mげ M2*-Mげ— *-M1 + ;::M1 

3 3 2 3 3 
：：：：：： 0.305478 < 1. 

Thus the conditions of Lemma 2 and Theorem 2 are satisfied. 

Example 9. 

｛慶(t)=l+u(x戸＋D`塁喜；：s：:戸+D。凸(x)2+ e―u2,0 < x < 1, 
u(O) = D0・1u(O) = D討u(l)= D討u(l)= 0, 



113

In this example 

f(x,u,y,v,z) = 
u+y -u  

1 ＋炉＋炉＋炉＋ z2
+e  

which maps [O, 1] x Ri x R―→ R+. Analogously we can choose M = l and 
Following argument, the function f(x, u, y, v, z) satisfies the condition of Lemma 4 

and Theorem 5. Hence, the problem has a unique solution. In fact if we choose 

a=  3.1, then the Lipschitz coefficients in Lemma 4 are given by the following; 

(1 +研＋炉＋炉＋丑）ー 2u(u+ y) 
If』=―u2

(1 +炉＋炉＋炉＋丑）2
-2ue 

1 2u(U + y) ＿U2 

-2ue 
＝ （1 ＋炉＋炉＋炉＋丑）― (1+研＋炉＋炉＋丑）2

1 2M1(Mげ島）M2

= (1+（Mf+M名＋ M子＋ Mt)Mり― (1+（Mf+M名＋ M§+Mt)Mり2

-2聞 Me―(M1M)2

|f叫＝ l ＿ 2y(U+ y) 

(1 +研＋炉＋炉＋丑） （1+研＋炉＋炉＋丑）2

1 2M2(M1＋恥）M2

= (（1+（Mf+M名＋ M§+Mt)M2)―(1+（1+Mf+M名＋ M§+Mt)M2)2'

l!vl = I-
-2v(u+y) I j 2恥 (M1＋恥）M2

（1+炉＋炉＋炉＋丑）2 ＝ （1+ （1+Mf+M名＋ M§+Mt)M叩'

-2z(u + y) I I 2M4(M1＋狛）M2
lfzl = I-

（1+炉＋炉＋炉＋丑）2 ＝ (1+ （1+Mf +M名＋ M§ +Mt)M叩'

As we take M = 2, we have 

l!ul R::: 0.4430161, lfyl R::: o.360078, If』R:::0.0877564, If z I R::: o.526538, 

q := M1 * If』+M2* lfyl + M3 * If』+M4* lfzl R::: 0.787778 < 1. 
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