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Abstract 

In this paper, we show a fixed point approximation theorem with the form of 
balanced mapping using Mann's iterative method for nonexpansive mappings 
on admissible complete CAT(l) spaces and complete CAT(-1) spaces. 

ntroduction 

The CAT(K,) space is one of the metric spaces with convex structures, and several 

researchers study the convex analysis on those spaces. Fixed point approximation is 

one of the topics of the convex analysis, and has been studied in CAT(K,) spaces as 

well. Mann's iterative scheme is the method to generate a sequence converging to 

a fixed point of mappings produced by Mann [10] in 1953. The most basic form of 

Mann's iterative scheme is expressed by 

Xn+l = O!nXn① (1 -an)Txn (n EN), 

where { Xn }nEN is an iterative sequence, { an }nEN C [O, 1] is a real sequence, T is a 
mapping that has fixed points, and① is a symbol of the convex combination. Mann 

[10] showed a convergence theorem with Mann's iterative scheme for a nonexpansive 

mapping in a Hilbert space. Thereafter, many researchers has been studied that 

scheme in several spaces. For instance, that scheme is studied on Banach spaces, 

complete CAT(O) spaces, complete CAT(l) spaces, and so on. Henceforth, we call 
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the theorem using Mann's iterative scheme a Mann type approximation theorem. 
In 2008, Dhompongsa and Panyanak [1] proved a Mann type approximation the-

orem in a complete CAT(O) space. Five years later, Kimura, Saejung, and Yotkaew 
[8] proved the same type theorem in a complete CAT(l) space. Recently, Kimura [5] 
showed the following Mann type approximation theorem. 

Theorem 1.1 ([5]). Let X be a complete CAT(O) space and {Tk}t,'. kH,・=1 nonexpansive 

mappings from X into itself such that n 
N 
~v=l F(Tk) # 0. Let{%｝，｛洸｝此 C[a,b] C 

]O, 1[ be real sequences such that ~f=l 虎＝ 1 for all n E N. Let x1 E X arbitrarily 
and define a sequence { Xn} C X by 

N 

Xn+l = aryg~悶in (and（Xn, y)2 + (1 -an)苔虎d(Tkxn,y)2) 

for each n E N. Then｛Xn}△-converges to an element of nf=l F(T,砂

In the assumption of Theorem 1.1, put'Y K+1 k A = Ctn and'Y~+i = (1一％）ぬ foreach 
n E N and k E {1, 2,..., N}, and let S1: X →X be the identity mapping and put 
Sk+l = Tk for each k E {1, 2,..., N}. Then we can describe the iteration of Theorem 
1.1 as 

N+l 

(i) Xn+1 = argminこ心（S戸叫l)汽
yEX k=l 

and Lf!i1益＝ 1holds. The right-hand side of (i) has the form of the balanced 
mapping proposed by Hasegawa and Kimura [3]. 

In the above theorem, the equation on the right-hand side can be described as a 
balanced mapping. In this paper, we show a fixed point approximation theorem with 
the form of balanced mapping using Mann's iterative method on admissible complete 
CAT(l) spaces and complete CAT(-1) spaces. 

2 Prelimi reliminaries 

Let X be a metric space with a metric d. For a mapping T: X→X, the set of all fixed 
points of Tis denoted by F(T). A mapping'Y: [O, 1]→X is called a geodesic joining 
x EX  and y EX  if 1(0) = x, 1(1) = y, and d('Y(s), 1(t)) = Is -ti d(x, y) hold for any 
s, t E [O, l]. For D E ]O, oo], X is called a uniquely D-geodesic space if there exists 

a unique geodesic 1: [O, 1]→X for any x, y E X with d(x, y) < D. In particular, 
oo-geodesic space is merely said a geodesic space. For a uniquely D-geodesic space, 

the image of the geodesic joining x and y is denoted by [x, y]. 
Let (X, d) be a uniquely D-geodesic space. For two points x, y E X, we define a 

convex combination tx①(1-t)y by 1(1-t) fort E [O, 1] -t) fort E IO, 11, where 1 is a geodesic joining 
x and y. A subset C of Xis said to be convex if [x, y] CC  holds for any x, y EC. For 
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points x, y, z E X, we define a geodesic triangle△(x, y, z) with vertices x, y, z E X 
by the union [x, y] U [y, z] U [z, x]. 

Let Ii E {-1, 0, 1} and (X, d) a uniquely D氏―geodesicspace, where D_1 = D。=
oo, and D1 = 1r. Let us denote a 2-dimensional model space with the constant 

curvature Ii by (M", d'), where d'is a metric on M". To be accurate, M_1 is the 
2-dimensional hyperbolic space, M。isthe 2-dimensional Euclidean space, and M1 is 
the 2-dimensional unit sphere. M" is one of the uniquely D氏―geodesicspaces. Then 
for each geodesic triangle△(x, y, z) on X with d(x, y) +d(y, z) + d(z, x) < 2D", there 
exists a geodesic triangle with vertices囚（歪］，乏） cM" such that d(x, y) = d'（豆，y),
d(y,z) = d'（戸）， andd(z, x) = d'（ゑ団）． Thattriangle on M,氏 iscalled a comparison 
triangle of△(x, y, z). For a triangle△(x, y, z) C X with its comparison triangle 

囚（瓦戸） CM",and two vertices s1,s2 E {x,y,z} and these corresponding vertices 

可 and西， thereexists a point p E ［可亙]for each p E [s1, s2] such that d(s1,P) = 

d'（可，p).Such a point p Eパ（歪，戸） iscalled a comparison point of p. X is called a 

竺~T(!i) space if, for any△(x, y, z) C X with d(x, y) + d(y, z) + d(z, x) < 2D" and 
△（x,y，芝） CM",the inequality d(p, q).:; d'(p, q) always holds for p, q E△(x, y, z) and 

their comparison points p, q E囚（歪，0，乏）． ACAT(!i) space is said to be admissible 
if the distance between any two points is less than D氏／2.Every CAT(-1) space is 
admissible obviously. 

Let Ii E {-1, 1} and X a CAT(!i) space. Then the following inequalities hold for 
any x, y, z EX  and t E ]O, l[: 

• if Ii=ー 1,then 

coshd(tx④ (1 -t)y, z) sinh d(x, y) 

::; cosh d(x, z) sinh td(x, y) + cosh d(y, z) sinh((l -t)d(x, y)), 

• if Ii = l, then 

cos d(tx① (1-t)y,z)sind(x,y) 

：：：：： cos d(x, z) sin td(x, y) + cos d(y, z) sin((l -t)d(x, y)). 

Considering the convexity or concavity of sinh and sin, we easily obtain the following: 

• if"'= -1, then cosh d(tx EB (1 -t)y, z) ~ t cosh d(x, z) + (1 -t) cosh d(y, z), 

• if"'= 1, then cos d(tx④ (1 -t)y, z)：：：：： t cos d(x, z) + (1 -t) cos d(y, z) 

for any x,y,z EX  and t E ]O, l[. 
Let X be a set and f a function from X into R We write the set of all minimizers 

(resp. maximizers) off as argminxEX f(x) (resp. argmaxxEX f(x)). For a set X and 
a mapping T: X→X, let us denote the set of all fixed points of T by F(T). 

Let X be a metric space with a metric d. For { Xn} C X, define an asymptotic center 

of {xn} by argminxEX limsupn→00 d(x, Xn), and denote it by AC({xn}). The sequence 
{ Xn} is said to△-converge to xo if AC({ XnJ) = { xo} holds for any subsequence { XnJ 
of { Xn}, and then refer to x。asthe△-limit of { Xn}. The△-convergence of { Xn} to 

△ 
x0 is expressed by the notation Xn→ Xo. 
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Let X be a complete CAT(l) space. Then a sequence {xn} C X is said to be 

spherically bounded if infyEX lim supn→00 d(Xn, y) < 1r /2 holds. Then the asymptotic 
center of any spherically bounded sequence {xn} is exactly one point, and {xn} has 
△-convergent subsequences. See [2] for details. Incidentally, suppose X is a complete 

CAT(O) space, then the asymptotic center of any bounded sequence {xn} is exactly 

one point, and {xn} has△-convergent subsequences [9]. These natures contribute to 

prove theorems for Mann's iterative schemes on CAT(li) spaces. 

3 Main results 

In this section, we prove approximation theorems using a Mann's iterative scheme 

with balanced mappings on a CAT(l) space and a CAT(-1) space. 

Lemma 3.1 ([4]). Let X be an admissible complete CAT(l) space and C a nonempty 
closed convex subset of X. For附，匹，．．．，邸 EX and a1, a2,..., aN E [O, 1] with 

区r=l心＝ l,define a function g: X→ ]0, 1] by g(x)＝区r=l心cosd(Uk, x) for each 
x EX. Then g h as a unique maximizer on C. 

Let X be an admissible complete CAT(l) space and｛心｝此 areal sequence on 

[O, 1] satisfying区N 
k=1心＝ 1,and let｛九｝贔 bemappings from X into itself. Then 

a mapping U: X→X defined by 

N 

Ux = argrI:~X L ak cosd(nx, y) (x EX) 
yEX k=l 

is well-defined as a single-valued mapping from Lemma 3.1. This mapping U is called 

a balanced mapping for｛心｝ and{Tk} on an admissible complete CAT(l) space. 

Lemma 3.2 ([7]). Let X be an admissible complete CAT(l) space and let {Tk}此
be mappings from X into itse[f．Let｛心｝N

N 
f/=1 C ]O, 1[ such that区k=1心＝ land 

U:X→X a balanced mapping for｛心｝ and｛九｝． Thenthe fallowing inequality 

holds for any x, z E X: 

N 

戸 cosd(T,砂， Ux)cosd(Ux, z) 2 t ak cosd(Tkx, z). 

k=l k=l 

Lemma 3.3 ([4]). Let X be an admissible complete CAT(l) space and let｛九｝此

be quasinonexpansive mappings from X into itself such that nf=1 F(T,砂キ 0. Let 
N 

｛心｝心 C]O, 1[ such that区k=1心＝ landU: X→X a balanced mapping for｛心｝

and｛互｝． ThenF(U) = n 
N 
~'=1 F(Tk) holds, and U i is also quasinonexpansive. 

Using above lemmas, we prove the following convergence theorem on an admissible 

complete CAT(l) space. 
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Theorem 3.4. Let X be an admissible complete CAT(l) space and let｛互｝心
be nonexpansive mappings from X into itself such that n 

N 
k=1F(Tk) キ 0. Let 

如｝，｛閃｝此 c[a, b] c ]O, 1[ be real sequences such thatどr=l洸＝ 1for all n E N. 
Let x1 E X arbitrarily and define a sequence { Xn} C X by 

叫 1= ar,悶~X (O!n COS d(xn, y) + (1 -O!n) t,閤cosd(T,砂 n,Y))
k=l 

for each n EN. Then {xn}△-converges to an element of nr=l F(T,砂

Proof. Define a mapping Un: X →X by U立＝ argmaxyEX(an cos d(x叫 1)+ (1 -
N 叫こk=1虎cosd(T,砂 n,y)) for each x E X and n E N. The well-definedness of the 

mapping Un is guaranteed by Lemma 3.1. Then Xn+l = U立 nholds for any n E N. 

From Lemma 3.3, we have F(Un) = nf=1 F(T,いforall n E N, and we also get the 
quasinonexpansiveness of Un. 

Let p E n~=l F(Tk)-Then we have d(xn+1,P) = d(U立 n,P)：：：：： d(xn,P)and hence 
{ d(xn,P)} is decreasing. It means that the real sequence { d(xn,P)} has the limit value 

for any p E nr=l F(T,砂
We show limn→(X) d(T砂 n,Xn) = 0 for any k = 1, 2,..., N. Let t E ]O, l[. Using 

Lemma 3.2, we have 

(an cos d(xn, U:凸） ＋（1-an) t附cosd(T,豆 n,UnXn)) COS d(U:砂 n,P)
k=l 
N 

~ ancosd(xn,P) + (1-%）区附cosd(T,砂 n,P)
k=l 

~ cosd(xn,P) 

and thus 

(ii) 

N 

O!n cos d(xn, U凸）＋ （1-い区 (3%OSd(Ti三広Xn)> 
cosd(xn,P) 

k=l 
―cosd(UnXn,P) ・ 

From (ii), we obtain 

Oen COS d(xn, Unxn) + 1 -Oen 2> 
cosd(xn,P) 

'----cosd(Unxn,P) ・ 

Since an :::> a, we get 

-a(l -cosd(xn, Unxn)) + 1 2> 
cosd(xn,P) 

-cosd(UnXn,P) 
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and thus 

1-cosd(xn, Unxn) :=; ¾ (1 1 (, cosd(xn,P) 

a ¥ ~ cos d(xn+1,P) -）→0 (n→ CX)）． 

Therefore we have limn→oo d(xn, U砂 n)= 0. 
Moreover, from (ii), we get 

N 

Ocn + (1 -知）と応OSd(T,砂 n,Unxn) 2'. 
cosd(xn,P) 

k=l 
'--cos d(U詞 n,P)

and it implies that 

N 

(1 -％）区尻(1-cos d(T,砂 n,Un%））::;1 -
cosd(xn,P) 

k=l 
cosd(U戸 n,P).

Fix k E {1, 2,..., N}. Then we obtain 

(1 -ctn)/3勺1-cos d(T,砂 n,U凸））::;1 -
cosd(xn,P) 

cosd(Unxn,P) 

and hence 

1 -cosd(Ti砂 n,Un%）さ 1 (1 - cosd(％ ,p)) 
(1-b)a ¥ ~ cosd(U詞 n,P)

→0 (n→ CX)）． 

Thus we have limk→oo d(T戸 n,Unxn) = 0 for any k = 1, 2,..., N and hence we obtain 
limn→oo d(T砂 n,Xn) = 0 for any k = 1, 2,..., N. 

Let xo E AC({xn}) and {xnJ a subsequence of {xn}, and let u E AC({xnJ). For 
k = 1,2,...,N, we get 

limsupd(xn;, u):=; limsupd(xn;, Ti砂）
t→CXl t→OO 

さlimsup (d(Xn;, TkXn;) + d(TkXn;, Ti砂））
t→OO 

:S limsupd(xn;, u) 
t→OO 

and thus lim supi→00d(xni,u) = limsupi→00 d(xni, Tku). By the uniqueness of the 
N 

asymptotic center of {xnJ, we have u E n~•=l F(Tk)-Then we obtain 

limsupd(xn,xo) ~ lim d(xn,u) = _lim d(xn,,u) 
n→00 n→OO i→OO 

~ limsupd(xni, xo) ~ limsupd(xn, xo). 
9→OO n→OO 

Therefore we get lim supn→00 d(xn, xo) = limn→00 d(xn, u). By th e uniqueness of the 

asymptotic center of {xn}, we have x0 = u. From the definition of the△-convergence, 
△ N 

we get Xn -':i Xo E n~v=l F(T,砂 whichis the desired result. ロ
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Next, we consider the balanced mapping on complete CAT(-1) spaces. Let X be a 

(-1) space and { ak}以 k complete CAT(-1) space and { ak}f:=1 a real sequence on [O, 1] satisfying区:=lak = 
1, and let {Tk}此 bemappings from X into itself. Then a mapping U: X → X 
defined by 

N 

U x = arg_1:1_in L心coshd(I]砂， y) (x EX) 
yEX k=l 

is well-defined as a single-valued mapping from the following Lemma 3.5. This map-

ping U is called a balanced mapping for｛心｝ and｛九｝ ona complete CAT(-1) 
space. 

Lemma 3.5. Let X be a complete CAT(-1) space and C a nonempty closed convex 
N 

subset of X. For u1墨 2,...,uNE X  and a1,a汽．．．，aNE [0, 1] with区k=1心＝ 1,

define a function g : X→[1, oo[ by g(x)＝四r=l心coshd(Uk, x) for all x E X. Then 
h g has a unique minimizer on C. 

The above theorem can be proved in the same way as Lemma 3.1. 

Definition 3.6 ([6]). Let X be a uniquely geodesic space. For each u, v E X and 
-1 

t E [O, 1], we put tu④ (1-t)v = argminxEx(tcoshd(u,x) + (1-t)coshd(v,x)). If 

Uキv,then tu⑤ (1 -t)v coincides with 

(l_1  tsinhD 1 -1 (1 -t)sinhD itanh-1~い(itanh-1~》
-1 

where D = d(u,v). It obviously holds that tu④ (1-t)v = tu 〶 (1 -t)v if u = v. 

Lemma 3.7 ([6]). Let X be a CAT(-1) space and let x,y,z EX. Then 

coshd(ax① (1 -a)y, z) ::; 
-l acoshd(x,z) ＋ （1 -a)coshd(y,z) 

V心＋ 2a(1-a)coshd(x,y) ＋ （1 -a)2 

holds for any a E [O, l]. 

Lemma 3.8. Let X be a complete CAT(-1) space and｛互｝贔 mappingsfrom X 
K N N into itse[f．Let { ak}{:=1 C [O, 1] such that L~v=l 心＝ 1 and let U be a balanced 

mapping for｛心｝ and｛互｝． Thenthe following inequality holds for any x, z E X: 

N N 

こ心coshd(T]戸， Ux)coshd(Ux, z)ここ心coshd(Tkx,z). 
k=l k=l 
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Proof. Let t E ]O, 1［皿dput D = d(Ux, z). By Lemma 3.7 we have 

N t ak coshd(Ti砂， Ux):St心coshd(Ti砂， tUx言(1-t)z) 
k=l k=l 

さこN 心tcoshd(Tkx,Ux)＋心(1-t) coshd(Ti砂， z)

k=l ✓炉＋ 2t(1-t)coshD + （1 -t)2 

Thus we obtain 

(1一沢＋2t(1-t):oshD + （1 -t)2)言心coshd(Tkx,Ux) 

1-t 
N 

三
沢＋2t(1-t)coshD+（1 -t)2 k=1 

どパcoshd(T,戸， z)

and it implies that 

2t(l -t) coshD + (1 -t)2 
N 

k 江 coshd(Tkx,Ux) 
t+沢＋2t(1-t)coshD+ （1 -t)2k=1 

N :S (1 -t)こばcoshd(T]砂， z).
k=l 

Dividing both sides by 1 -t and letting t→1, we obtain the desired result. ロ

The proof of above theorem used the different type of convex combination直 but
actually it can be proven by using ordinal convex combination. The reason we used 
that convex combination is that it is simpler to calculate than the ordinal one. 

Lemma 3.9. Let X be a complete CAT(-1) space and｛九｝以 quasinonexpansive

mappings from X into itself such that n 
N 
k=1 F(Tk)キ0.Let｛心｝此 c]O, 1[ such 

that区N 
k=1心＝ land U: X →X a balanced mapping for｛心｝ and｛九｝． Then

F(U) 
N = n~'=1 F(Tk) holds, and U is also quasinonexpansive. 

Proof. Let z E nf=l F(Tk)-Then we have 

N N 

uz = argmin区akcoshd(Tkz, y) = arg1:1.in L ak coshd(z, y) = z 
yEX k=l yEX k=l 

and thus F(U)っnf=lF(Tk) holds. 
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We show F(U) C nf=l F(Tk)-Let z E F(U) and w E nf=l F(n). By Lemma 
3.8, we have 

N 

ど心coshd(T,砂， z)coshd(z,w)= t心coshd(T,屁， Uz) cosh d(Uz, w) 
k=l k=l 

さ立kcosh d(Tkz, w)さcoshd(z, w). 

k=l 

Hence we get区f=l心coshd(T,屁， z):S 1 and it implies z E nf=l F(T,砂
Finally we show the quasinonexpansiveness of U. Let x EX  and z E F(U). Then 

we have z E nf=l F(Tk)-From Lemma 3.8, we get 

N 

coshd(Ux, z)::; L ak coshd(Ti戸， Ux)coshd(Ux, z) 

k=l 

こ立kcosh d(Tkx, z)::; cosh d(x, z) 

k=l 

and it implies d(U x, z)さd(x,z). Therefore we get the conclusion. 口

Using above lemmas, we get the following result. 

Theorem 3.10. Let X be a complete CAT(-1) space and {n}心 nonexpansive

mappings from X into itself such that n 
N 
~v=l F(Tk)キ0.Let{％｝，｛虎｝贔 C [a,b] C 

Jo, 1[ be real sequences such that 1::r=l虎＝ 1for all n E N. Let x1 E X arbitrarily 
and de.fine a sequence { Xn} C X by 

Xn+l = aryg~閃in (°'n cosh d（Xn,Y) + (1-い言f3!cosh d(T,砂 n,Y))

for each n E N. Then｛凸｝ △-converges to an element of nf=l F(T,砂

Proof. Define a mapping Un: X→X by Unx = argminyEX(ancoshd(xn,Y) + (1-
N 叫どk=1f3訂oshd(T,砂 n,y)) for each x E X and n E N. The well-definedness of the 

mapping Un is guaranteed by Lemma 3.5. Then Xn+l = U砂 nholds for any n EN. 

From Lemma 3.9, we have F(Un) = nf=1 F(Tk) for all n E N, and we also get the 
quasinonexpansiveness of Un. 

Let p E n~=l F(T,い． Thenwe have d(xn+1,P) = d(U研如p)'."::=d(xn,P) and hence 
{ d(Xn, p)} is decreasing. It means that the real sequence { d(Xn, p)} has the limit value 

for any p E nf=l F(T,砂
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We show limn→00 d(Tkxn, xn) = 0 for any k = 1, 2,..., N. Let t E ]O, l[. Using 
Lemma 3.8, we have 

(％Coshd(xn, U凸） ＋ （1 -％） N t 尻coshd(T砂 n,Un%）） coshd(U詞 n,p)
k=l 

：：： ％ coshd(xn,P) + (1-%）と応oshd(Ti江 n,P)
k=l 

：：： coshd(xn,P) 

and thus 

(iii) Cl!n coshd(xn, Unxn) + (1 -an) t(3％oshd(T]砂 n,U凸） ＜ 
coshd(xn,P) 

k=l 
---= coshd(U砂 n,P).

From (iii), we obtain 

an coshd(xn, Unxn) + 1-an~ 
cosh d(xn, p) 

-= coshd(U砂 n,P).

Since an 2 a, we get 

a(coshd(xn, Unxn) -1) + 1 ~ 
coshd(xn,P) 

~ coshd(U戸 n,P)

and thus 

cosh d(xn, Unxn) -1 :::; 
1 (coshd(xn,P) ; （coshd(xn+1,p)―1)→0 (n→oo). 

Therefore we have limn→00 d(xn, Unxn) = 0. 
Moreover, from (iii), we get 

N 

知＋（1-％）L(3k cosh d(T,砂 n,U凸） ＜ 
cosh d(xn,P) 

k=l 
-'coshd(U立 n,P)

and it implies that 

(1 -an) t /3勺coshd(T,砂 n,UnXn)-l):=; ~-1. 
coshd(xn,P) 

k=l 
-coshd(U砂 n,P)

Fix k E {1, 2,..., N}. Then we obtain 

(1-%）依(coshd(nxn,U砂 n)-1)＜ -1 
cosh d(xn,P) 

-coshd(U砂 n,P)
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and hence 

coshd(T,砂 n,ux) -1 ：：：： 
1 (coshd(xn,P) 

n n (1 -b)a (coshd(U砂 n,p)―1)→0 (n→oo). 

Thus we have limk→00 d(Tk咋， Unxn)= 0 for any k = 1, 2,..., N and hence we obtain 

limn→oo d(TK丘％） ＝0 for any k = 1, 2,..., N. 
Let xo E AC({xn}) and {xnJ a subsequence of {xn}, and let u E AC({xnJ). For 

k = 1,2,...,N, we get 

lim sup d(xni, u)：：：： lim sup d(xni, T,四）
t→OO t→OO 

::::; limsup(d(xn;,Ti戸 n;)+ d(TkXn;, Ti砂））
t→OO 

::::; limsupd(xn;, u) 
t→OO 

and thus lim supi→00d(xn;,u) = limsupi→00 d(xn;, Tku). By the uniqueness of the 
N 

asymptotic center of {xnJ, we have u E n~v=l F(Tk)-Then we obtain 

limsupd(xn,Xo):s; lim d(xn, u) = Hm d(xn;, u) 
n→00..  i→OO n→OO 

:s; limsupd（エm心o):s;limsupd(％心o)．
t→OO n→OO 

Therefore we get lim supn→= d(xn, xo) = limn→= d(xn, u). By the uniqueness of the 
asymptotic center of {xn}, we have x0 = u. From the definition of the△-convergence, 

△ N 
we get Xn→ Xo E n~v=l F(T,い， whichis the desired result. ロ

Theorem 3.4 is a convergence theorem on admissible complete CAT(l) spaces, and 
it targets at nonexpamsive mappings. Since we have not found many examples of 
nonexpansive mappings in CAT(l) spaces, we consider Theorem 3.4 to be less useful. 
On the other hand, there exists many examples of nonexpansive mappings in CAT(-1) 
space and thus we consider Theorem 3.10 to be useful. 
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