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Abstract

A part of the structure of Hilbert spaces is characterized by the parallelogram
law. In order for us to hold the parallelogram law by the norm, fairly good
conditions are required for Banach space. In this paper, we propose new type
parallelogram laws with a bifunction on Banach spaces, and consider alterna-
tive expression of affine combinations. Moreover, we introduce two different
balanced mappings by using them.

1 Introduction
In real Hilbert spaces, it holds that

loz + (1 = a)yl* = allzl* + (1 = a)llyl* — a(l = a)l|lz — y||?

for every two points x,y and every scalar a € R. This equation is called the paral-
lelogram law. If a real Banach space satisfies this equation, then it space has inner
product, that is, such a space is a real Hilbert space.

In Banach spaces, Xu [7] proved inequalities like the parallelogram law by using
uniform convexity and uniform smoothness.

Theorem 1.1 (Xu [7]). Let E be a uniformly conver real Banach space. Then, for
any K > 0, there exists a convex gauge function 9y such that

lax + (1 = a)y|* < all® + (1 = a)llyl* — a(l — a)g, (l= = ylI)

for any xz,y € E and o € [0,1], where ||z|| < K and |jy|]| < K.
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Theorem 1.2 (Xu [7]). Let E be a uniformly smooth real Banach space. Then, for
any K > 0, there exists a convex gauge function Gy such that

laz + (1= a)yl* = allz|? + (1 = a)lly|* — a1 - &)gk (| - yl)
for any xz,y € E and o € [0, 1], where ||z|| < K and |jy|| < K.

In this paper, we propose new type parallelogram laws in real Banach spaces for a
bifunction defined with a bounded linear functional and norms.

2 Preliminaries

Let X be a metric space and T a mapping from X into itself. We denote the set of
fized points of T by Fix T, that is, FixT = {z € X | x = Tx}.

Let S be a nonempty set. Let f: .S — |—00,00] be a function. We denote the set
of minimizers of f by argmin, g f(z), that is,

argmin f(x) = {y €S ‘ f(y) = inf f(:r:)}
x€S zeS

In what follows, we always consider real linear spaces. Let E be a Banach space
and let Sp = {x € E'| ||z|| = 1} its unit sphere. FE is said to be strictly convex if
|l + y|| < 2 holds for each z,y € Sg with x # y. E is said to be smooth if the limit

tuyll —
e+ iy~ |
t—0 t

exists for each z,y € Sg.
Let E* be a dual space of Banach space E. We denote the value of y* € E* at
x € E by (z,y*). A bifunction ¢: E x E* — R is defined by

$(x,y") = llz|* — 2 (2, y") + [ly" ||
for each x € F and y* € E*. Also, a bifunction ¢*: E* x E** — R is defined by
¢ (z*,y"™) = 2| = 2 (=, y™) + |y |12

for each z* € E* and y** € E**. Since we can regard as E C E**, ¢(x,y*) = ¢*(y*, x)

holds for every x € E and y* € E*. The normalized duality mapping J : E — 2F ig
defined by

Jr = {x*eE*

(@,2") = |lo|* = |2*|*}

for each x € E. We know Jx C E* is a nonempty bounded closed convex set for any
z € FE and J0g = {0g«}.

Let E be a Banach space with its dual £* and let J: F — 25" is the normalized
duality mapping. Then, we obtain the following results:



FE is reflexive if and only if E* is reflexive;
if F is reflexive, then F is strictly convex if and only if E* is smooth;

if F is smooth, then F is reflexive if and only if J: E — E* is surjective;
if F is smooth, then F is strictly convex if and only if J: F — E* is injective;
if F is smooth, strictly convex and reflexive, then the normalized duality map-
ping J*: E* — E** = E coinsides with J~1: E* = E;

e if F is smooth and strictly convex, then ¢(x, Jy) = 0 if and only if x = y for
z,y € E.

[ ]
[ ]
e [ is smooth if and only if J: £ — 28" s single-valued;
[ ]
[ ]
[ ]

For more details about the properties of J and ¢ on Banach spaces, see [1, 3, 5].

Let F be a smooth Banach space and J: F — E* the normalized duality mapping.
Let C' be a nonempty closed convex subset of E and T" a mapping from C' into F. If
FixT # @ and ¢(u, JTx) < ¢(u, Jz) for x € C' and u € Fix T, then we say that T is
relatively quasinonexpansive. If FixT # @& and ¢(Tz, Ju) < ¢(z, Ju) for x € C and
u € Fix T, then we say that T is generalized quasinonexpansive. For more details, see,
for instance, [3, 5].

3 Parallelogram laws in Banach spaces

In this section, we prove the parallelogram laws with the normalized duality map-
ping:

Theorem 3.1. Let E be a smooth Banach space with its dual E*. Let N € N. Then,
it holds that

N N N N
¢ (Z akxk,2*> = awp(zr,2%) = > o (CEk, J (Z Oé/ﬂk))
k=1 k=1 k=1 k=1

for every x1,x0,...,xny € E, 2* € E* and a1, aq,...,ay € R such that Zszl ap =1,
where J: E — E* is the normalized duality mapping.

Proof. From the assumptions, it follows that

N N N
> (g, 2*) =Y ard <l‘k7 J (Z Ozkxk))
k=1 k=1 k=1

N N
= Zakﬂxknz -2 <Z akxk,z*> + 1271
k=1 k=1
N N
j{:a%xk J’(E{:a%xk>
k=1 k=1

N N
~2 <Za> + =12 = ¢ (Za) :
k=1 k=1

2 2

N
- Zak||xk|\2 +2
k=1

2

N
E QT
k=1
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This is the desired result. O

Theorem 3.2. Let E be a reflexive Banach space with its dual E*. Suppose that E*
is smooth. Let N € N. Then, it holds that

N N N N
1) (z,Za;wZ) = Zakqﬁ(z,x;) — Zakgb (J* (Z akmz> ,xZ)
k=1 k=1 k=1 k=1

for every z € B, x],x5,...,xy € E* and a1, a0, ...,an € R such that Zszl ap =1,
where J*: E* — E is the normalized duality mapping.

Proof. From the assumptions, we obtain
N N N
Zaké(z, xy) — Z ard (J* (Z akxz> ,x;)
k=1 k=1 k=1
N N
= ||2|* — 2 <Z > ak$2> + > agllei?
k=1 k=1
N N 2 N
J* (Z aka) Zakmz — ZakaZHQ
k=1 k=1 k=1
N N 2 N
= ||z|]22<z,Zakx};>+ Zakxz =¢ (z,Zaka) :
k=1 k=1 k=1

This is the desired result. O

2
+ 2

Consequently, we know the following results:

Theorem 3.3. Let E be a smooth Banach space with its dual E*. Then, it holds that

(25(06217 + (1 - a)y? Z*) = oz<b(3:, Z*) + (1 - Q)¢(y, Z*)
—ag(z, J(az + (1 —a)y)) — (1 — a)d(y, J(az + (1 — a)y))
for every x,y € E, z* € E* and o € R, where J: E — E* is the normalized duality
mapping.

Theorem 3.4. Let E be a reflexvive Banach space with its dual E*. Suppose that E*
1s smooth. Then, it holds that

d(z, 02" + (1 —a)y’) = ad(z,2") + (1 — a)d(z,y")
—ag(J (ax" + (1 —a)y"),z") = (1 = )¢(J" (az” + (1 = a)y"),y")

for every z € E, x*,y* € E* and o € R, where J*: E* — E is the normalized duality
mapping.



Corollary 3.1. Let E be a smooth Banach space. Then, it holds that

oz + (1 = a)y||* = allz|* + (1 - a)lly[?
—ag(z, J(ar+ (1 - a)y)) — (1 = a)é(y, J(ax + (1 - a)y))
for every x,y € E and o € R, where J is the normalized duality mapping.
If E is a Hilbert space, then, since ¢(-,-) coincides with || - — - ||?, it follows that

laz + (1 = a)yll* = allz[* + (1 — a) [yl
—afz — (az + (1= a)y)|* = (1= a)lly - (az + (1 - a)y)|?

for every z,y € E and o € R. Moreover, we can proceed with the following calcula-
tions:

—alz — (az+ (1 - a)y)|* — (1 —a)lly — (az + (1 - a)y)|
=—(all@ - a)(@ =) + 0~ a)lla(z - y)[?)
=—(a(l=a)|z —y|* +o*(1 - )|z - y[?)
=—a(l—a) (1 - a)lz—yl* +allz — y[I*)
= —a(l—a)lz -yl

Therefore, it follows that

laz + (1 — a)yl? = allz|® + (1 - a)lly[?
—afz — (az+ (1 - a)y)|? = (1 - a)lly — (az + (1 - a)y)|
= alz|® + 1 - a)lly|* — a(l - a)|lz - y|*
for every z,y € F and o € R.
At the end of this section, we consider affine combinations in smooth Banach
space. Let E be a smooth, strictly convex and reflexive Banach space. Let N € N,
T1,%o,...,xNy € F and ay,as,...,any € R such that Zszlak =1. Let J: E — E*

and J*: E* — E be the normalized duality mappings, respectively. Then, it holds
that

N N N N
¢ (y, Z%Jﬂ?k> = by, Jup) = > axd (J* (Z akaEk> ,J$k>
k=1 k=1 k=1 k=1

for any y € E. Therefore, we have

N

argmin ard(y, Jxy,)
velE 3

159



= argmin { <y > akJmk> + Z ko (J* (zN: akak> J:rk) }

ye k=1 k=1

= argmmd) (y, Zakak> =J* (Z oszmk> .
€E k=1

k=1
It implies
argmin {a¢p(y, Ju) + (1 — a)p(y, Jv)} = T (aJu + (1 — a)Jv)
yek

for every u,v € F and a € R. On the other hand, it holds that

N N N N
¢ (Z L, Jy) = ard(ar, Jy) = > axd (ifka J (Z Oék%))
k=1 k=1 k=1 k=1

for any y € E. Therefore, we have

N
argmanakqﬁ Tk, JY)
veE ko
N N N
= argmin {¢ (Z QT Jy) + Z 170 (xk, J (Z ozka:k)> }
yer k=1 k=1
N
= argmin ¢ arrg, Jy | = axT

It implies

argmin {ac(u, Jy) + (1 — )6 (v, Jy)} = au + (1 - a)
yEE
for every u,v € E and o € R.
Consequently, we can replace the definition of affine combinations by using mini-
mizers of some functions shown as above.

4 Balanced mapping

In this section, we consider balanced mappings for a finite family of nonexpansive-
type mappings in Banach space. A concept of the balanced mappings was introduced
by Hasegawa and Kimura [2] for approximation of common fixed points in Hadamard
spaces.

Theorem 4.1 (Hasegawa and Kimura [2]). Let (X, d) be a Hadamard space and N €
N. Let {Ty | k € {1,...,N}} be a finite family of nonexpansive mappings from X into



itself and {ay | k € {1,...,N}} a finite real sequence of 10, 1] such that Zszl ap = 1.
For each x € X, we define a subset Uz of X by

N

Uz = argminz ard(y, Tpr)?.
veX =1

Then, the following hold:

e Uz is a singleton for every x € X and therefore U is defined as a single-valued
mapping from X into itself;

e U is nonexpansive;

o if the set ﬂkN:1 Fix Ty of common fixed points is nonempty, then ﬂszl Fix T} =
FixU holds.

In what follows, we introduce two balanced mappings, and show the properties of
them like Theorem 4.1.

Let E be a smooth, strictly convex and reflexive Banach space with its dual E*
and C a nonempty closed convex subset of E. Let N € Nand {T} | k € {1,...,N}}
a finite family of mappings from C into E. Let {ay | k € {1,..., N}} be a finite real
sequence of ]0, 1[ such that Z/vaﬂ ar = 1. We define a mapping U: C' — FE as

N

N
Ur = argminz ard(y, JTpx) = J* (Z akJTkx)
k=1

veE =1

for each x € C, where J: E — E* and J*: E* — F are the normalized duality
mappings. We call such a mapping U the balanced mapping for {a} and {Ty}. We
also define a mapping V: C — F as

N N
Vx = argmin Z ard(Tpx, Jy) = Z o T
veE 41 k=1

for each z € C, where J: E — E* is the normalized duality mapping. We call such a
mapping V the dual-balanced mapping for {oy} and {T}}.

Particularly, if such mappings are relatively quasinonexpansive, we obtain the fol-
lowing theorems:

Theorem 4.2. Let E be a smooth, strictly convex and reflexrive Banach space with
its dual E* and C a nonempty closed convex subset of E. Let N € N and let
{Ty | ke {l,...,N}} be a finite family of relatively quasinonerpansive mappings from
C into E. Let {ag | ke {l,...,N}} be a finite real sequence of 10,1[ such that
Zszl ar = 1. Let U be the balanced mapping from C into E for {oy} and {T}}.
If the set ﬂgzl Fix Ty of common fized pints is nonempty, then ﬂgzl Fix Ty, = FixU
holds.
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Proof. Let z € (o, FixTj. Then, it follows that

N

Uz = argmin Z ard(y, JTiz)
yerE k=1

N
= argminz ard(y, Jz) = argmin ¢(y, Jz) = z.
yeE yeE
It implies Uz = z and z € FixU. Therefore, we obtain ﬂévzl FixT), C FixU.
Conversely, let z € FixU. From Theorem 3.2, for u € ﬂszl Fix Ty, we have

k=1
N N
= ad(u, JTyz) = > ard(z, JTiz)
k=1 k=1
N
< p(u, J2) = Y ard(z, JTiz),
k=1
which implies
N
0< Zaqu(z, JTz) < o(u, Jz) — d(u, Jz) = 0.
k=1

Since ay, # 0 for every k € {1,...,N}, z € ﬂgzl Fix T}, holds. Therefore, we have
FixU C N, FixTj.
Consequently, we obtain ﬂivzl FixT, = FixU. O

Theorem 4.3. Let E be a smooth, strictly conver and reflexive Banach space with
its dual E* and C a nonempty closed convex subset of E. Let N € N and let
{Ty | k € {1,...,N}} be a finite family of relatively quasinonexpansive mappings from
C into E such that the set ﬂgzl Fix Ty of common fized points is nonempty. Let
{ag | k€ {1,...,N}} be a finite real sequence of 10,1 such that Zszl ap=1. Let U
be the balanced mapping from C into E for {ay} and {I}}. Then, it holds that

N

¢(z, JU) + > axd(Uz, JTx) < ¢(2, Jx)
k=1

for every x € C and z € FixU, where J: EE — E* is the normalized duality mapping.



Proof. Let x € C, z € FixU = (), FixTy. From Theorem 3.2, we have
¢(z, JUx) ( ZakJTkx>
N
(z, JTpzx) — Zakd) ( (Z akJTkx> ,JTkz>
k=1

N
ard(z, JTpx) — app(Ux, JTyz),
k=1

M

=~
Il
_

where J*: E* — FE is the nomalized duality mapping. Since T} is relatively quasi-

nonexpansive for every k € {1,..., N}, we obtain
N
¢(z,JU) < ¢(z,Jx) = Y onp(Ux, JTi2)
k=1
and this is the desired result. O

As direct consequence of Theorem 4.3, we know that the balanced mapping for
relatively quasinonexpansive mappings is also relatively quasinonexpansive.

In the same way as Theorem 4.2 and Theorem 4.3, we obtain the following results
for generalized quasinonexpansive mappings:

Theorem 4.4. Let E be a smooth, strictly conver and reflexive Banach space with
its dual E* and C a nonempty closed conver subset of E. Let N € N and let
{Ty | ke{l,...,N}} be a finite family of generalized quasinonexpansive mappings
from C into E. Let {ay, | k € {1,...,N}} be a finite real sequence of |0,1] such that
ij:l ar = 1. Let V' be the dual-balanced mapping from C into E for {ay} and {T}}.
If the set ﬂ,lcvzl Fix Ty of common fixed points is nonempty, then ﬂfcvzl FixTy = FixV
holds.

Theorem 4.5. Let E be a smooth, strictly conver and reflexive Banach space with
its dual E* and C a nonempty closed conver subset of E. Let N € N and let
{Ty | ke{l,...,N}} be a finite family of generalized quasinonerpansive mappings
from C into E such that the set ﬂkN:1 Fix Ty of common fixed points is nonemply. Lel
{ag | ke {1,...,N}} be a finite real sequence of |0, 1] such that chvzl ap=1. Let V
be the dual-balanced mapping from C into E for {ay} and {T}}. Then, it holds that

N
¢(Va,Jz) + Y ond(Tir, JVa) < ¢lx, Jz)
k=1

for every x € C and z € FixV, where J: E — E* is the normalized duality mapping.
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As direct consequence of Theorem 4.5, we know that the dual-balanced mapping
for generalized quasinonexpansive mappings is also generalized quasinonexpansive.

In a Hadamard space, it is only defined that a convex combination for two points.
Balanced mappings enable us to consider combinations for more points. Moreover,
the set of fixed points of balanced mapping coincides with common fixed point set
of considered mappings. We can use this fact for common fixed points approxima-
tion. Balanced mappings are also defined in CAT(1) spaces and CAT(—1) spaces,
respectively, and common fixed points approximation theorems are showed by using
them. For more details about the balanced mappings in CAT(1) spaces and CAT(—1)
spaces, see, for instance, [4, 6].
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