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Abstract 

In this paper, we show nonlinear mean convergence theorems for two monotone 
nonexpansive mappings in ordered uniformly convex Banach spaces. We also show 
some convergence theorems for the mappings. 

1 Introduction 

Let E be a real Banach space, let C be a nonempty subset of E. For a mapping T of C into 

E, we denote by F(T) the set of fixed points of T, i.e., F(T) = {z EC: Tz = z}. Let T be a 

mapping of C into itself. A mapping T is called nonexpansive if 11 T x -Ty I I :S I Ix -y I I for all 

x,yEC. 

In 1975, Baillon [2] proved the following first nonlinear mean convergence theorem in a 

Hilbert space: Let C be a nonempty bounded closed convex subset of a Hilbert space H and 
let T be a nonexpansive mapping of C into itself. Then, for any x E C, 

{S研｝ ＝ ｛：立｝
converges weakly to a fixed point of T (see also [13]). 

Ran and Reurings [11] proved an analogue of the classical Banach contraction principle 

in a partially ordered metric space. Dehaish and Khamsi [8] proved a convergence theo-

rem by Mann type iteration [9] for a monotone nonexpansive mapping in an ordered Banach 
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spaces. Shukla and Wisnicki [12] proved nonlinear ergodic theorems for a monotone nonex-

pansive mapping in an ordered Banach space. 
In this paper, we show nonlinear mean convergence theorems for two monotone nonex-

pansive mappings in ordered uniformly convex Banach spaces. We also show some conver-

gence theorems for the mappings. 

2 Preliminaries and notations 

Throughout this paper, we assume that Eis a real Banach space with norm II ・ II and endowed 
with a partial order ::s compatible with the linear structure of E, that is, 

xゴyimplies x+ z ::s y+ z, 

xさyimplies入x::s入y

for every x,y,z EE and入：：：：： 0.

As usual we adopt the convention x t y if and only if yさx.It follows that all order intervals 

[x,→］ ＝｛zEE:xさz}and［←，y] = {ZEE : ZEE: Zさy}are convex. Moreover, we assume 
that each order intervals [x，→] and［←，y] are closed. Recall that an order interval is any of 

the subsets 

[a，→]={xEX:aゴx} or ［←，a]= {xEX :x ::s a}. 

for any a EE. As a direct consequence of this, the subset [a,b] = {x EX: aさXさb}= 

[a，→］ n [←，b] is also closed and convex for each a, b EE. 
Let E be a real Banach space with norm II ・ II and endowed with a partial orderさcom-

patible with the linear structure of E. Let C be a nonempty subset of E. Let T be a mapping 
of C into itself. A mapping T is called nonexpansive if 

IITx-Tyll::::; llx-yll 

for all x,y EC. A mapping Tis called monotone if 

TxさTy

for each x,y EC such that xさy.For a mapping T: C→C, we denote by F(T) the set of 

fixed points of T, i.e., F(T) = {z EC: Tz = z}. 
We denote by E* the topological dual space of E. We denote by N and艮theset of all 

positive integers and the set of all real numbers, respectively. We also denote by町 theset of 

all nonnegative real numbers. We write Xn→x (or limxn = x) to indicate that the sequence 
n→OO 

{ xn} of vectors in E converges strongly to x. We also write Xn→ (or w-limn→ooXn = X) to 
indicate that the sequence {xn} of vectors in E converges weakly to x. We also denote by 

〈y,x*〉thevalue of x* E E* at y E E. For a subset A of E, coA and西Amean the convex hull 
of A and the closure of convex hull of A, respectively. 



184

A Banach space E is said to be strictly convex if 

llx+yll 
<1 

2 

for x,y EE with llxll = IIYII = 1 and xi-y. In a strictly convex Banach space, we have that if 

llxll = IIYII = II (1 —入） x＋入YII

for x,y E E and入E(0, 1), then x = y. For every t: with Ost:さ2,we define the modulus 
o (t:) of convexity of E by 

卵）＝inf{1-~: llx||さ1,IIYII s 1, llx-yll 2 t:}. 

A Banach space E is said to be uniformly convex if o (t:) > 0 for every t: > 0. If E is 
uniformly convex, then for r, t: with rミt:> 0, we have 8 (fl > 0 and 

~II ~r(l-8 ピ））
for every x,y EE with llxll :::; r, IIYII :::; rand llx -yll 2 £. It is well-known that a uniformly 
convex Banach space is reflexive and strictly convex. Let SE = {x EE: llxll = 1} be a unit 

sphere in a Banach space E. 

3 Monotone and approximating fixed point sequences 

In this section, we deal with approximating fixed point sequences and monotone sequences. 

Let C be a nonempty subset of E and let T be a mapping of C into itself. The mapping T is 

said to be demiclosed if for any sequence { Xn} in C the following implication hold: 

w-limxn=xand lim IITxn-YII =0 
n→oo n→00 

imply that 

Tx=y 

(see [6]). 

Theorem 3.1 ([6]). Let C be a nonempty closed and convex subset of a uniformly convex 

Banach space E. Let T be a nonexpansive mapping of C into itself and let I be the identity 
mapping. Then, I -T is demiclosed at 0, that is, 

w-lim Xn = x and lim llxn -Txnll = 0 
n→oo n→OO 

imply that 

Tx=x. 
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A sequence { Xn} in C is said to be an approximating fixed point sequence of a mapping 
T if 

lim llxn -Txnll = 0 
n→OO 

(see also [10, 13]). A sequence {xn} in Eis said to be monotone if 

x1 =:; x2づX3さ，．．．

(see also [8]). 

Lemma 3.2. Let C be a bounded convex subset of an ordered uniformly convex Banach 
space E. Let T be a monotone nonexpansive mapping ofC into itself. Let {un} and {vn} be 

approximate fixed point sequences of T such that Un ::5 Vnforeach n EN. Letwn = 1(un+vn) 
for each n E N. Then, the sequence { Wn} is an approximate fixed point sequence too. 

(see also [13]). 
The following result plays an important role in the proof of Theorem 4.1 (see [l]). 

Theorem 3.3 ([l]). Let C be a closed convex subset of an ordered uniformly convex Banach 
space E and let S and T be monotone nonexpansive mappings of C into itself such that 
F (S) n F (T) i-0. Let { Xn} be a monotone approximating fixed point sequence for T and S, 
i.e., 

lim 
n→OO 

llxn -Txnll＝｝咆llxn-S叫＝0.

Then, then the sequence {xn} converges weakly to zo E F(S) nF(T). 

4 Nonlinear mean convergence theorems 

In this section, we show weak and strong mean convergence theorems for monotone nonex-
pansive mappings. Using Lemma 3.3, we can prove a weak mean convergence theorem for 
monotone nonexpansive mappings in an ordered uniformly convex Banach space (see [l]). 

Theorem 4.1 ([l]). Let C be a closed convex subset of an ordered uniformly convex Banach 
space E and let S and T be monotone nonexpansive mappings of C into itself such that 
ST= TS and F(S) nF(T)ヂ0.Assume that x ~ Sx and x ~ Txfor each x EC. Then, 

{S研｝ ＝ ｛］江sゲx}
converges weakly to zo E F(S) nF(T). 

We can prove a strong mean convergence theorem for monotone nonexpansive mappings 
with compact domains (see [l]). 
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Theorem 4.2 ([l]). Let C be a compact convex subset of an ordered strictly convex space 

E and let S and T be monotone nonexpansive mappings of C into itself such that ST = TS. 
Assume that xゴSxand x j Txfor each x EC. Then, 

{s研｝ ＝ ｛喜岱叶
converges strongly to zo E F(S) nF(T). 

Using Theorem 4.1, we get some convergence theorems for monotone nonexpansive 

mappings in ordered uniformly convex Banach spaces (see [12]). 

Theorem 4.3 ([12]). Let C be a closed convex subset of an ordered uniformly convex Banach 

space E and let T be a monotone nonexpansive mapping of C into itself such that F (T) cf-0. 

Assume that xさTxforeach x EC. Then, {S研｝ ＝ ｛iこにi応｝ convergesweakly to zo E 

F(T). 

Theorem 4.4 ([ 12]). Let C be a closed convex subset of an ordered uniformly convex Banach 

space E and let T be a monotone nonexpansive mapping of C into itself such that F (T) cf-0. 

Assume that x j Txfor each x EC. Then, {Tnx} converges weakly to zo E F(T). 
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