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1 Introduction 

This article is based on joint researches [4, 5] with Vincent Duchene (Universite de 

Rennes 1, France). We will consider the motion of the interfacial gravity waves at the 

interface between two layers of immiscible waters in (n + 1)-dimensional Euclidean space. 

Lett be the time, x = (x1,..., xn) the horizontal spatial coordinates, and z the vertical 

spatial coordinate. We assume that the layers are infinite in the horizontal directions, 

bounded from above by a flat rigid-lid, and from below by a time-independent variable 

topography, and that the interface, the rigid-lid, and the bottom are represented as z = 

((x, t), z = h1, and z =一加十 b(x),respectively, where (（x, t) is the elevation of the 

interface, h1 and h2 are mean thicknesses of the upper and lower layers, and b(x) represents 

the bottom topography. Therefore, the upper layer r21 (t) and the lower layer切(t)of the 

waters have the form 

r21(t) = {X = (x, z) E Rn+l；く（x,t) < z < hサ，

切(t)={X=（x,z)E Rn+l;一加＋b（切<zく〈(x,t)}. 

We denote the interface, the rigid-lid, and the bottom by r(t)，喜 and喜 respectively.

We assume that the waters in the upper and the lower layers are both incompressible 

and inviscid fluids with constant densities p1 and p2, respectively, and that the flows are 

both irrotational. Then, the motion of the waters is described by the velocity potentials 

<I>1(x, z, t) and動（尤，z,t) and the pressures P心，z,t) and P:心，z,t) in the upper and 
the lower layers. These velocity potentials should be harmonic and satisfy Bernoulli's 

equation 

Pe（麟＋2|▽x幻＋gz)+Pe= 0 in 幻(t) (£ = 1, 2), 

where▽x=（▽，Oz) = (oxu・..,Oxn, Oz) and g is the acceleration due to gravity. We 

impose the Neumann boundary condition for the velocity potentials on the rigid-lid of 
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the upper layer and the bottom of the lower layer as a kinematical boundary condition. 

Moreover, on the interface we impose the kinematical boundary conditions 

8沖£十▽<• ▽釘— 8ふ＝ 0 on 「(t) (£=1,2) 

and the dynamical boundary condition Pi = P2 on r(t). These are basic equations for 
the interfacial gravity waves and referred as the full model in the following. Throughout 

this article, we assume Rayleigh's stability condition 

(P2 -P1)g > 0. 

As in the case of surface gravity waves (water waves), the full model for the interfacial 

gravity waves have a variational structure and a Lagrangian is given in terms of velocity 

potentials剌 and動 inthe upper and the lower layers and the elevation of the interface (. 

We denote the Lagrangian density by 2（州動，く）． T.Kakinuma [9, 10, 11] approximated 

the velocity potentials剌 and動 inthe Lagrangian by 

N£ 

炉 (x,z, t)＝区Ze,i(zふ）如(x,t) 
i=O 

for£= 1,2, where {Zぃ｝ and{ Z2,;} are appropriate function systems in the vertical 

coordinate z and may depend on h心） and妬（叫 respectively,which are thicknesses 
of the upper and the lower layers in the rest state, whereasの£ = （匹，o,¢£,1, ・ ・ ・，切，Nt汀，
£ = 1, 2, are unknown variables. The Kakinuma model is the Euler-Lagrange equations 

for an approximated Lagrangian with a densityダapp（釘むく） ＝ダ(<I>↑pp'<I>戸，().Ac-

cording to the analysis of the Isobe-Kakinuma model for surface gravity waves given by 

Y. Murakami and T. Iguchi [14], R. Nemoto and T. Iguchi [15], and T. Iguchi [6, 7], we 

will choose the approximated velocity potentials as 

s
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In this article, we report that the Kakinuma model has a nontrivial stability regime, 

which can be represented as 

-8z(P戸ーP戸）＿ PlP2 ▽炉app-V呼叫＞ c。on
P1H四2+p2H心1

| 2 r(t) (2) 
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with a positive constant c0, where the approximate pressures P,戸(£= 1, 2) are defined 
through Bernoulli's equation, H1 = h1 -(and H2 =加十<-bare thicknesses of the 
upper and the lower layers, and a1 and a2 are positive constants depending only on N 

and converge to O as N→oo. Under this stability condition and compatibility conditions 
on the initial data, we show that the initial value problem for the Kakinuma model is 

well-posed in Sobolev spaces. This is not consistent with the fact that the initial value 

problem for the full model is ill-posed in Sobolev spaces as was shown by T. Iguchi, N. 

Tanaka, and A. Tani [8]. See also V. Kamotski and G. Lebeau [12] and D. Lannes [13]. 

Nevertheless, we can show that the Kakinuma model is a higher order shallow water 

approximation of the full model with an error of order 0(8tN+2 + 8iN+2), whereふand
82 are nondimensional parameters which represent the shallowness of the upper layer and 

the lower layer, respectively. More precisely, these parameters are defined byふ＝舟
(£ = 1, 2), where入isa typical wavelength in the horizontal direction. Therefore, the 
Kakinuma model is a desirable model to simulate the interfacial gravity waves in the 

shallow water regime. 

As is well-known that the full model for interfacial gravity waves has a conserved energy 

which is the sum of the kinetic energies of the waters in the upper and the lower layers 

and the potential energy due to gravity. Moreover, T. B. Benjamin and T. J. Bridges [1] 

found that the full model can be written in Hamilton's canonical equations 

ふ光？IW
8t(= 
砂'

where the canonical variable ¢ is defined by 

ふ光'IW
Oゆ＝一
杖'

の（x,t) = p2<I>2（尤，〈（x,t), t) -p1<I》1（尤，く(x,t), t) (3) 

and the Hamiltonian £1W is the total energy. We report that the Kakinuma model has 

also a Hamiltonian structure with a Hamiltonian虎 K_ Moreover, under an appropriate 

assumption on the canonical variables ((, ¢), we show the error estimate 

|尻K((,cp)-虎 IW((,c/J)I乏釘lN+2+ 8ずV+2.

2 The basic equations and the Kakinuma model 

We first recall the equations governing potential flows for two layers of immiscible, 

incompressible, homogeneous, and inviscid fluids. The motion of the waters is described 

by the velocity potentials <p1 and動 andthe pressures Pi and A in the upper and the 
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lower layers satisfying the equations 

△4>1 + 8知1= 0 in 砧(t),
△動＋洸他＝ 0 in 切(t),

(4) 

(5) 

where△ ＝差＋・・・＋8;nis the Laplacian with respect to the horizontal space variables 
尤＝（xい・・・,xn)-Bernoulli's equations in each layers have the form 

1 
P1（晒＋2|▽x灯＋gz)+Pi= 0 in 叫 t), (6) 

P2（砂＋訳心＋gz)+A= 0 in 叩t). (7) 

The dynamical boundary condition on the interface is given by 

尺＝凡 on r(t). (8) 

The kinematic boundary conditions on the interface, on the rigid-lid, and on the bottom 

are given by 

釈＋▽叱・ ▽<-8具り＝ 0 on r(t), 

釈＋ ▽剌• ▽<-az叱＝ 0 on r(t), 
az叱＝ 0 on 2;1, 

▽叱・ ▽b-8z動＝0 on 均．

(9) 

(10) 

(11) 

(12) 

These are the basic equations for the internal gravity waves. It follows form Bernoulli's 

equations (6)-(7) and the dynamical boundary condition (8) that 

1 1 
Pl（砂＋2|▽x吋＋g()-P2（砂＋2|▽x叶＋g()= 0 on r(t). (13) 

It is easy to see that the basic equations (4)-(12) for unknowns ((,<I>ぃ如，P1,P2) are 

equivalent to (4)-(5) and (9)-(13) for unknowns(＜，企，動）， whichwill be referred as the 

full model for the interfacial gravity waves in the following. 

As in the case of the surface gravity waves, the full model has a variational structure 

and the corresponding Luke's Lagrangian is given essentially by the vertical integral of 

the pressure in the water regions. In fact, we first define 2伍by

年＝Jく(m) P心，z,t)dz+1柘尺(x,z, t)dz 
-h2+b（:z:) ＜（:z:,t) 

By using Bernoulli's equations (6)―(7) to remove the pressures Pi and A, we see that 
h1 

午＝一P2し（砂＋5|▽～） dz -P1[（砂＋5|▽x心12)dz 
1 1 
-~(P2 -P1)gぐ＋ー (p2g（一加十b)2-p1ghi). 
2 2 
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The last term docs not contribute the variation of the Lagrangian, so that we define a 

Lagrangian density 2（也，い） by

1 h1 1 
尋い） ＝一P2! （砂＋―|▽x虹 dz-P1 砂＋―|▽x吋 dz

1 

-h2+b 2 )  ［ （ 2)  
--（P2 -P1)g<， 
2 

(14) 

and the action function /（弘，叱，く） by

t1 

/（剌的，く） ＝ f fダ（屯，動，〈）曲dt.
to JRn 

The corresponding Euler-Lagrange equation is exactly the same as the full model (4)-(5) 

and (9)―(13). 

Plugging the approximation (1) into the Lagrangian density (14), we obtain an ap-

proximate Lagrangian densityダapp（四心く） ：＝グ（①匹，<I>?P,(). The corresponding 
Euler-Lagrange equation is the Kakinuma model, which has the form 

N 

叫心｛▽• (2(t+1]） ＋ 1H;（叶j)+l鴨，J）- 4tJ H『（叶j)-1
j=O 

2(i + j) -1 如｝＝ 0 
for i = 0, 1,..., N, 

N* 

H夕似＋〗ド (~H~i切＋1麟，J ― ptp+JPJH:，十Pjい）

+p,p+tpJH:，十Pj▽b▽知— Pt +p;［J-1H:，十Pj―1(1+ I▽bド）如｝＝ 0 
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(15) 

where H1 and H2 are thicknesses of the upper and the lower layers, that is, 

H1(x, t) = h1-〈（x,t), 凡(x,t)＝加＋((x,t) -b（叫

Here and in what follows we use the notational convention § = 0. In this Kakinuma 
model, we have (N + N* + 2) evolution equations for just one unknown scalar function 
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〈whereaswe have only one evolution equation for (N + N* + 2) unknown functions 

¢1=（釘o,¢1,1, ・ ・ ・,釘，N汀and¢2 =（位o,伽，1'...'伽，N・）T. Therefore, the Kakinuma 
model is an overdetermined and underdetermined composite system. Anyway the total 

number of the equations is equal to the total number of unknown functions. We will 

consider this Kakinuma model (15) in the following. 

In the case N = 0, that is, if we approximate the velocity potentials in the Lagrangian 

by functions independent of the vertical spatial variable z as <I>戸（尤，z,t) = ¢パx,t) for 
£ = 1, 2, then the Kakinuma model is reduced to the nonlinear shallow water equations 

｛：：：：［：： ：iりこ）0，=0, 
P1 （騎＋ gく＋〗⑫|2)-P2(鱗 +g(+~立|2) = Q 

The initial value problem to these nonlinear shallow water equations was analyzed by D. 

Bresch and M. Renardy [2]. 

3 Stability condition 

We linearize the Kakinuma model (15) around an arbitrary flow（ふ釘如 anddenote 

the variation by（(,釘心． Byneglecting lower order terms, the linearized equations 
have the form 

N 

賦＋柘• Vくーと 1 Hi)＋1△如＝0 for i = 0, 1,..., N, 
j=O 
2(i + j) + 1 

N* 

以＋妬•▽く＋と 1 H:3+1△%＝0 for i = 0, 1,..., N*, 
j=0防＋Pj+1 

(16) 

N N* 

P1L砂(8贔＋妬• ▽%） -P2L閣 (8贔＋妬•▽贔）一 a(= 0, 
J=O J=O 

where ue = (V<I>戸）lz=(forC = l, 2 are approximate horizontal velocities in the upper and 

the lower layers on the interface and a =ーは(PtPP-p戸）） lz=(・ Here, P戸 andP2app 
are approximate pressures in the upper and the lower layers calculated from Bernoulli's 

equations (6)-(7), that is, P,戸＝一Pe仇砂＋爪IVx可叩＋gz)forC = 1, 2. 
Now, we freeze the coefficients in the linearized equations (16) and put 

｛巫＝（切，o，H紬，1，．．．，Hf疇，N汀，
'¢2=（む，o,Hg向，1,...,H斤必，N平．
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Then, the linearized equations (16) can be written in a matrix form 

ヽ
ー
，

△
 

▽
 

¥

）

．

o
 

•
V
·

如
．
妬
他
出
。

(

＼

2
1
 

H
 

T
 

O
t
1
1
-
p
 

¥

）

-

T
 

5
●
 

2
1
0
0
 

p
 

国

g
n
d

T
 ーp
l
o
0
a
 

a
 

ー

-

1

2

 

T
 

ー

‘‘,'/ 
ー

H
直

（

＼

，

 

O
H
l
l
叫

十

（

＼

ー

'

‘、,¥＝
 

ーe
 
r
 
e
 

h
 
w
 

p/1/〗20△▽))じ） ＝ 0 

，
 
z
 

＜＿ J
 

.e“ ＜＿ 

。

、＼’_ー／ー＋
 
‘̀,＇／ 

1

j

 
＋
 

.
9し（
 
2
 
（
 
＝
 ゚
，
 

ーA
 ＊

 z
 

V
I
 
J
 
i’
 V
I
 。

、
\
,
~ー＋
 

1
P
j
 

＋
 
几（
 
＝
 ゜

2
 
A
 

The linearized equations (16) have a nontrivial plaJ1e wave solution of the formく（x,t) = 
邸ei(e・わーwt)and叫(x,t) ＝如ei(e・の一wt)for /i, = 1, 2 if and only if the wave vector e E Rn 
and the aJ1gular frequency w E C satisfy 

dct(孤 (W: Ul e)1 lPl((;11己竺―1位(W-0 U2 e)1T) ＝ 0, 
叩 (w-U2. e)1 0 (H俎1)山，0

which is the linear dispersion relation for the linearized equations (16). We can expand 

this determinaJ1t and the linear dispersion relation can be given simply as 

Pl 1...,2, P2 

H1a1 
(w -U1 ・む＋（W - U2 ・ e)2 -a|む=0,

H四 2
(17) 

where 

<let Ac,o 
叩＝
detA c,o 

for £ = 1, 2. It is easy to see that the solutions w to. the disp~rsion relation (17) are real 

for any wave vector e E Rn if and only if 

ふ。＝ (~1 ~:。）

P1P2 a-
P1H四2+ P2H1a1 

lu1 -切|22'. 0. 

Otherwise, we have exponentially growing solutions and an instability will appear. As a 

result, the initial value problem turns out to be ill-posed. This consideration leads us the 

following stability condition 

P1P2 a-
p1H西＋p2H氾1

如―u出と句

for some positive constant c0, which is equivalent to (2). 

(18) 
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Here, we remark that in the case of surface gravity waves, the corresponding stability 

condition is given byーはP)lz=(~ c0, where P is the pressure of the water. This condi-

tion is also known as a generalized Rayleigh-Taylor sign condition. We remind that the 

function a in the stability condition (18) can be written as a=ー (oz(P;PP-P戸）） lz=(・

If we put the density p1 of the upper layer to be 0, then the problem of the interfacial 

gravity waves is reduced to that of the surface gravity waves and we have Pi（x, z, t) = 0 
by Bernoulli's equations (6). Therefore, our stability condition is a generalization of this 

well-known stability condition for the surface gravity waves. We also note that the con-

stants a1 and a2 in the stability condition converge to O as N→oo, so that this stability 
regime diminishes as N→oo. This fact is consistent with the full problem. 

4 Well-posedness of the initial value problem 

We proceed to consider the initial value problem for the Kakinuma model (15) under 

the initial condition 

（＜，釘</>2)= (((o)，伽o),¢2(0)) at t = 0. (19) 

Here, we remark that the Kakinuma model has a drawback, that is, the hypersurface 

t = 0 is characteristic for the Kakinuma model, so that the initial value problem for the 

Kakinuma model (15) and (19) is not solvable in general. In fact, if the problem has a 

solution ((, </>ぃ</>2),then by eliminating the time derivative Ot(from the equations we see 

that the solution has to satisfy the relations 

N 

心▽
H[j+1 

J悶（勾＋ 1▽釘，J）
罰・(H罰9十J)＋1
j=O 

2(t+J) ＋ 1 ▽加）— 2(t+J) -1Ht(9十j)-1如｝＝ 0 
for i = 1, 2,..., N, 

N* 

H『戸（Hij+1 
Pj + 1露，J―凸H昆，jv'b)噂 (20)

＿こ｛▽・（凡
Pi切＋1

]＝0 防＋p］+1⑫ ,J―ptp+JP]鱈八,jv'b)

+~H戸▽b▽¢2]―p2 +p;[］-1H;，十P;-1(1+ I▽bド）如｝＝ 0 
for i=l,2,...,N*, 

言▽（名□］喜1,j)＋孟▽ (P叫[]▽知—信鱈如▽b) = 0 
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Therefore, as necessary conditions the initial date (((o)，伽o),¢2(0)) and the bottom topog-

raphy b have to satisfy the relations in (20) for the existence of the solution. These neces-

sary conditions will be referred as the compatibility conditions. In the following, we write 

¢1 =（叫o,¢~)T, ¢2 =（吟O,¢;)T, <Pl(O) =（釘，0(0),<P~(O) 汀， and ¢2(o) =（必，0(0)，必(0)汀．
We denote by加＝加(R門andwm,oo = W仇 oo(R門theL2 and the L00 Sobolev 

spaces of order m, respectively. The following theorem states that the initial value prob-

lem for the Kakinuma model is well-posed locally in time in the Sobolev space Hm under 

the stability condition (18), the compatibility conditions (20), and nondegeneracy of the 

thicknesses of the upper and lower layers. 

Theorem 1 ([4]) Let g, P1, P2, h1, h2, co, Mi。bepositive constants and m an integeT such 
that m > ~ + l. TheTe exists a time T > 0 such that if the initial data (((o), <Pi(o), ¢2(o)) 
and the bottom topogmphy b satisfy 

{||（＜（O)，▽釘，0（O)9謬，0（O))||Hm+||（外o)外 o))||Hm+1+ ||b||wm+1,OOこM。,
柘―如（尤） 2:Co, 加＋((o)(x)-b（X) 2: Co f O'r X E R叫

the stability condition (18), and the compatibility conditions (20), then the initial value 

prnblem (15) and (19) joT the Kakinuma model has a unique solution((, q圧¢叫 satisfying

<，▽釘，o，▽伽，0E C([O, T]; Hm), ¢~, </.も EC([O, T]; Hm+1). 

If the initial data (((o), <Pi(o), ¢2(o)) and the bottom topography b are suitably small, then 

the stability condition (18) and the nondegeneracy of the thicknesses of the upper and 

lower layers are automatically satisfied under Rayleigh's stability condition (p2 -p1)g > 0. 
However, it is not evident how we prepare the initial data satisfying the compatibility 

conditions (20). By analogy to the canonical variable (3) for interfacial gravity waves 

introduced by T. B. Benjamin and T. J. Bridges [1], we introduce a canonical variable for 

the Kakinuma model by 

N* N 

¢=P2LH砂2,j-P1 L Hf j ¢1,1 ・ (21) 
j=O j=O 

Given the initial data (((o), ¢co)) for the canonical variables（し¢)and the bottom topog-

raphy b, the compatibility conditions (20) and the relation (21) determine the initial data 

（伽o),</J2co)) for the Kakinuma model, which is unique up to an additive constant of the 

form (Cp2, C叫 to（釘，o(o),¢2,o(o))-In fact, we have the following proposition. 

p roposition 1 ([4]) Let p1, p2, h1, h2, c, M be positive constants and m an integer such 

that m > ? + 1. There exists a positive constant C such that for the canonical variables 
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((, ¢) and bottom topography b satisfying 

{||（||Hm+||b||wm,oo □M, ||匹||Hか 1<oo, 
柘一 ((x)?:c, 加＋く(x)-b(x) ?: c for x E R凡

the compatibility conditions (20) and the relation (21) determine the variables (</>いか）

for the Kakinuma model, uniquely up to an additive constant of the form (Cp2, Cp1) to 

伍，o,必，0).Moreover, we have 

ll(V¢1,o，▽吟o)IIHm-l+ II(</>~, ¢;)11Hm :S GIi▽efJIIHm-1. 

5 Equati di uations in a nondimensional form 

In order to rigorously validate the Kakinuma model (15) as a higher order shallow water 

approximation of the full model for interfacial gravity waves (4)―(12), we first introduce 

nondimensional parameters and then non-dimensionalize the equations, through a conve-

nient rescaling of variables. Let入bea typical wavelength. Following D. Lannes [13], we 

introduce a nondimensional parameter 8 by 

h
一入＝
 

so 
with h = ____l!_山

£ih2 + e_炉'

where p, and P~ are relative densities. We also need to use relative thicknesses fl, and fl 
—2 —2 

of the layers. These nondimensional parameters are defined by 

山＝ P£' 
Pl+ P2 

which satisfy the relations 

山＝一
h£ 

h 
(£ = 1, 2), 

f!.1 + f!.2 = l, 
pl p2 
=-＋ =-＝1. 
鉛釦

(22) 

Note also that min{h1, h叶:=;h :=; max{ h1，加｝． Here,we note that the standard shal-

lowness parametersふ：＝舟 and82:＝舟 relativeto the upper and the lower layers, 
respectively, are related to the above parameters by 8c =幻8for£= 1, 2. In this article, 

we restrict our consideration to the parameter regime 

釘＼妬1乏1. (23) 

To understand this restriction, it is convenient to use nondimensional parameters,:＝肛
p2 

and 0:＝灼 Interms of these parameters,犀（C= 1, 2) can be represented as 

伍1= ,+1 
,+0' 

妬1=
?―1 + 1 
1―1 + 0-1. 
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Therefore, the only cases that we shall exclude are the case'Y』≪ 1 and the case'Y, 0 ≫ 1. 
In other words, we shall consider the following three regimes concerning the densities and 

the mean thicknesses of the layers in this article: 

(i) 0 -:::: 1, i.e., h1 -:::: h2, 

(ii)'Y-:::: 1, i.e., P1 -:::: P2, 

(iii)'Y ≪ 1 ≪ 0, i.e., p1 ≪ p2 and h2 ≪柘．

Although the remaining case 0 ≪ 1 ≪'Y, i.e., p2 ≪ p1 and h1 ≪加 satisfies(23), this 

case is not consistent with Rayleigh's stability condition (p2 -p1)g > 0, so that we also 
exclude this case. 

Introducing Csw:＝鼻ロニ戸thespeed of infinitely long and small interfacial gravity 
waves, we rescale the independent and the dependent variables by 

入～
X=屈， z= hz, t =— t, (＝底， b= hb, <I>e =入Csw叱 (C= 1, 2). 

Csw 

Plugging these into the full model (4)-(5) and (9)-(13) and dropping the tilde sign in the 

notation we obtain 
／ 

△叱＋か咽叱＝ 0 in D1(t), 

△動十J-2洸動＝ 0 in 切(t),

8t( ＋▽剌• ▽(-5-2a沖1= 0 on r(t), 

8t(＋▽動・▽<-6-28z叱＝ 0 on r(t), 
(24) 

8具打＝ 0 on :E1, 

▽動• ▽b -5-28z動＝ 0 on 均，

g1 （底＋り▽虹＋ ½8-2(8ふ）2)
_(!_2（砂＋引▽炉＋冒（砂）2)-(= 0 on r(t), 

where in this scaling, the interface r(t), the rigid-lid I:1, and the bottom I:2 are written 

as 

f(t) = {X =（尤，z)E Rn+l; z = (ほ，t)},

~1 = {X =（尤，z)E Rn+l; z = fl_ふ

均＝｛X=（x,z) E Rn+l; z =―島十b(x)}.

As for the Kakinuma model, we introduce additionally the rescaled variables 

入c ~ 
如＝ hitw知， 年＝入；itwむ，,.
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H心，t)= 1―伍忙(x,t), H2(x, t) = 1＋妬［（x,t) -fl芦（x). (26) 

6 Well-posedness in the shallow water regime 

We will revisit the initial value problem for the Kakinuma model (25) in the nondimen-

sional form under the initial conditions (19). In order to rigorously validate the Kakinuma 

model (25) as a higher order shallow water approximation of the full model for interfacial 

gravity waves (24), we then need to show the existence of the solution to the initial value 

problem (25) and (19) on some time interval independent of the shallowness parameters 

釘＝/]_115and 152 = /]_215 together with a uniform bound of the solution. 

The nondimensional version of the stability condition (18) is given by 

a- 旦 2
疇直年＋麟H四

lu1 -u姐~ Co, 

where H1 and H2 are given by (26), Uc=（▽叫戸）lz=(forC = 1,2 and a=―⑫(P2app -

(27) 

P戸））lz=(・ Here, we note that the nondimensional version of the approximate velocity 
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potentials砂 andpressures Pcapp for £ = 1, 2 are given by 

『pp(X,z,t) ＝言（1-応）2＇如（工， t），
年 (x,z, t)＝L(l＋犀Z-犀 b(x)）拓年(x,t), 

i=O 

and 

が (x,z,t)=―凸（咽戸＋；（I▽呼叫＋6噸ぷ）り＋邑―[!_1)-1z) 

for£= 1, 2, respectively. 

The nondimensional version of the compatibility conditions (20) is given by 

N 

心▽（
Hfj+1 

J悶 2j+1鴨，］）
冒(2〖[：:J)）＋＋11 ▽¢1,j) -(い)-22(t+4:J)-1H『(i十j)-1凡｝＝ 0 

for i = 1, 2,..., N, 

H『言▽(~▽如—悶鱈知犀▽b)
幻•(Hf凸＋1 喜，J ＿ PJ 尻八，jb_芯7bJ=。 ~'v¢2,j -~Hfi+P; <P2,jb_21'vb) 

(28) 

+ pt p+tp]H戸犀▽b▽知— Pt +p;［J-1Hf，十pJ―1((/}_26)-2十島叶▽bド）如｝ ＝ 0 
for i = 1, 2,..., N*, 

N H『j+1 N• 

/}_1 冒（勾＋ ~'v¢1,j) + fl_叩 (~'v¢2,j ―誓閲疇b) = 0 
(29) 

The following theorem states the existence of the solution to the initial value problem (25) 

and (19) on some time interval independent of nondimensional parameters, especially, the 

shallowness parametersふ＝ b_1<5andふ2= /}_2<5 together with a uniform bound of the 

solution. 

Theorem 2 ([5]) Let c0, Mi。,flminbe positive constants and m an integer such that m > 
~ + 1. There exist a time T > 0 and a constant M > 0 such that for any positive 

parameters e_1, e_2'嵐島，6satisfying the natural restrictions (22), fl16, fl26 :S 1, and the 

condition llmin ::;嵐加 ifthe initial data (((o), ¢i(o), ¢2(o)) and the bottom topography b 
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satisfy ｛1|＜（O)1|加＋£互凸(||V伽o)II払＋（ht6)-2||外（O)1|加）＋犀I|b||wm+1,OOこM。,
1-flil((O)（x)：：：：：切， 1+ fl21〈(0)(x)-ll21b(x)：：：：：匂 for x ER叫

(30) 

the stability condition (27), and the compatibility conditions (29), then the initial value 

problem (25) and (19) has a unique solution（し中1'のサ onthe time interval [O, T] satis-
fying 

ふ▽釘o，▽¢2,0E C([O,T];H門， 外必 EC([O, T]; Hm+l). 

Moreover, the solution satisfies the uniform bound 

ll((t)||加＋互崎（1|⑫ (t)1|加＋（幻t5)-2II必（t)I|加）さ M

fort E [O, T]. 

It is not evident how we prepare the initial data (</Ji(o), ¢2(o)) satisfying the compatibility 

conditions (29) together with the uniform bound (30). Again, it is sufficient to specify 

the initial data for the canonical variables ((, ¢), where ¢ is defined by 

N* N 

</J=e2区Hf冨，J―f!_1LH瓢，J. (31) 
J=O j=O 

In fact, we have the following proposition. 

Proposition 2 ([5]) Let c, M be positive constants and m an integer such that m>戸．1 

There exists a positive constant C such that for the canonical variables ((, ¢) and bottom 

topography b satisfying 

{犀||＜||Hm+鱈||＜||Hm+犀 ||b||炉，00 ：：：：： M, ||匹||Hm-1< OO, 

1-f1_11((x) ~ c, 1 + f1_21((x) -f1_21b(x) ~ c for x ER叫

the compatibility conditions (29) and the relation (31) determine the variables（か，如）

for the Kakinuma model, uniquely up to an additive constant of the form (C趾％） to

伍，o,む，0).Moreover, we have 

区崎（1|▽釧協m-1+（flco)-2||必||払-1)：：：：： C||匹 ||tm-1・
C=l,2 

Now, we can show that the solution to the Kakinuma model (25) constructed in The-

orem 2 satisfies approximately the full problem for the interfacial gravity waves with an 

error of order O(otN+2十OiN+2)for the time interval [O, T]. There are several . 1 nere are severa1 versions 

of this kind of result on the consistency. The most sophisticated version would be an 

approximation of the Hamiltonians. 
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7 Hamiltonian structures 

As is well-known that the full model (24) for interfacial gravity waves has a conserved 

energy 

汐＝こff蒻(|豆(x,z, t冒＋戸（砂（尤，z,t)）りd如＋Ln炉く(x,t)羞，
t=1,2 幻(t)

which is the total energy, that is, the sum of the kinetic energies of the waters in the 

upper and the lower layers and the potential energy due to gravity. Putting ¢, = <I>,lz=( 

for£= 1, 2, we can rewrite this total energy as 

汐＝互店(Aぷ）切，向）L2+ ~ll(ll;,2, 

whereふ（()=ふ((,8, ll.1) and Aぷ） ＝ Aぷ，b,8,島） arethe Dirichlet-to-Neumann maps 

for Laplace's equation. More precisely, these are defined by 

｛ふ（＜旦）釘＝ （一6-2麟＋▽＜ • ▽心）1Z=<’
ふ（ふb,o，缶）む＝ （J-2心恥—▽(• ▽動）lz=('

where<I>1 and<I>2 are unique solutions to the boundary value problems 

(32) 
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in 幻(t),

on r(t), 

It follows from the kinematical boundary conditions on the interface that釘 and伽 are

related by Aぷ氾＋ん（（）心＝ 0.Introducing the canonical variable ¢ := e_評2-e_占
釘and今 canbe written in terms of the canonical variables ((, ¢) as 

{¢l = -（0人(〈)+g2ふ(<)）-1ふ(()¢,
c/J2 = (e_lふ(()+ e2ふ(())-1ふ(()¢.

Therefore, the total energyぷcanbe written in terms of the canonical variables ((, ¢) as 

汐＝ ；（（い（〈）十g2ふ(())-IAぷ）の，A瓜）伽＋；ll(lli2, 

which will be denoted by洸ヮIW（し¢).This is the Hamiltonian of the full model for the 

interfacial gravity waves found by T. B. Benjamin and T. J. Bridges [l]. See also W. 

Craig and M. D. Groves [3]. 
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As in the case of the full model, the Kakinuma model (25) has a conserved quantity 

炉＝互ff幻(t)髯(|▽炉(x,z, t)l2 +い（麟戸(x,z, t))2)dxdz + in ~((x, t)羞，

where <I>戸 forC = 1, 2 are given by (28). This is nothing but the total energy, which 
can be written explicitly in terms of（し¢ぃ¢砂． Now,we define the canonical variable ¢ 

by (31). Then, by Proposition 2 we can determine (c/>いの2)from the canonical variables 
((, ¢), so that the total energy炉 canbe expressed in terms of ((, ¢), which will be 

denoted by洸鸞，¢).This is a Hamiltonian of the Kakinuma model. In fact, we have 

the following theorem. 

Theorem 3 ([4]) Let m be an integer such that m > ~ + 1 and b E wm,00. Then, the 
Kakinuma model (25) is equivalent to Hamilton's canonical equations 

ふ光？K 8尻ck
at(==-;-,, aゆ＝一
砂＇杖'

(33) 

as long asく(・,t) E Hm satisfies 

inf (1 -h喜(x,t))> 0, 
:z:ERn 

inf 1+h言(x,t) —鱈b（x)) >〇
o,ERn 
（ 

and▽の(・,t) E L2. More precisely, for any regular solution(＜，か，む） tothe Kak-

inuma model (25), if we define ¢ by (31), then((, ¢) satisfies Hamilton's canonical 

equations (33). Conversely, for any regular solution((,¢) to Hamilton's canonical equa-

tions (33), ifwe define (¢1,¢2) as a solution to the compatibility conditions (29) and the 

relation (31), then(（，向匂 satisfiesthe Kakinuma model (25). 

The following theorem states that the Hamiltonian洸町ふ¢)of the Kakinuma model 

is a higher order shallow water approximation of the Hamiltonian洸っrw((, ¢) of the full 

model. This is one version of the consistency of the Kakinuma model with the full model. 

We put忙＝｛¢；▽¢ E Hm-1 }. 

Theorem 4 ([5]) Let c, M, flmin be positive constants and m an integer such that m > 

~ + 1 and m ：：：：：引N+ 1). There exists a positive constant C such that for any positive 
parameters凸凸謹直砂 satisfyingthe natural restrictions (22), f11<5,f12<5::; 1, and the 

condition 11min ::;嵐釦， andfor any canonical variables ((, ¢) E Hm x炉 andthe bottom 
topography b E wm+i,oo satisfying 

we have 

{犀||＜||:・:+犀||＜||Hm+鱈||b||wm+1,OOこM,
凡(x)：：：：： c, 几（x)：：：：： c for x ER叫

|尻k(＜，¢)—虎IW((,¢)1 さ C|1▽¢11t4N+3((b_18)4N+2+ (b28)4N+2). 
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8 Conditionally rigorous justification of the Kakinuma model 

In order to give a rigorous justification of the Kakinuma model as a higher order shallow 

water approximation, we need to give an error estimate between the solution to the 

Kakinuma model and the solution to the full model. However, we cannot expect to 

construct a solution to the initial value problem for the full model in Sobolev spaces with 

uniform bounds with respect to the shallowness parameters釘＝'116and 62 =如6because 

the initial value problem for the full model is ill-posed. Nevertheless, if we assume the 

existence of the solution to the full model with a uniform bound, then we can give an 

error estimate between the solutions by making use of the well-posedness of the initial 

value problem to the Kakinuma model. 

To state the result, we remark that the full model (24) for interfacial gravity waves can 

be written in a more compact and closed form as 

釈＋Aぷ，8,flふ＝0,

似ーふ((,b, 8，島）伽＝ 0,

g1 （麟＋ ~IV臼—誡2(Aぷ， 6，山）釘—▽<•▽虹 (34)
2 2 1 +8叶▽<|2)
11.--,1 12 l,2(A2((,b,8，年）伽十▽〈・露）2

咆 2(麟+2|鱈 |2_ 26 1+ 6叶▽<|2)-〈＝ 0,

where如＝刺z=(for£ = 1, 2. Here, we remind that A心鱈） andAぷ，b,8，加） are
the Dirichlet-to-Neumann maps for Laplace's equation defined by (32). 

Theorem 5 ([5]) Let c0, c, M, flmin be positive constants and m an integer such that 

m > ? + 4N + 5. Then, there exist a time T > 0 and a constant C > 0 such that 
the following holds true: Let e_げ凸羞8b e positive parameters satisfying the natural 

restrictions (22), flふ島8さ1,and the condition flminさ髯島 andlet b E wm+i,oo satisfy 

犀 llbllwm+1,oo::::; M. Suppose that the full model for interfacial gravity waves (34) pos-
sesses a solution ((1w, ¢買平） EC([O, T1]; Hm+l X正＋1X戸） satis,灼inga uniform 
bound 

｛1|圏 (t)||い+£;崎||V平 (t)||；mこM,
1-fl_;_-l(IW（x, t)：：：：： c, 1 + fl2l(IWは，t)-fl_21b(x)：：：：： c for x ER叫tE [O,T叶．

Let ((o) := (1wlt=O and ¢(a) := (e_2摩—凸の四） lt=O be the initial data for the canonical 

variables, and let（<Pl(O),伽o))be the initial data to the Kakinuma model constructed from 

(((o), ¢(a)) by Proposition 2. Assume moreover that the initial data (((o), <Pi(o), ¢2(o)) satisfy 

the stability condition (27), let(＜凡吋，吋） bethe solution to the initial value problem 
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for the Kakinuma model (25) and (19) on the time interval [O, T] whose unique existence 

is guaranteed by Theorem 2, and put 

N N* 

碕＝どH;喝ぃ 碕＝ど鷹尋'.j・
J=O j=O 

Then, we have the e汀orbound 

ll(K(t) -(IW(t)IIH=-(4N+5)十こ乳五II疇 (t)―▽炉(t)IIH=-(4N+5)
f=l,2 

::::; C((fl.18)4N+2 +（釦8)4N+2)

for O ::::; t ::::; min { T, Tサ．
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