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1 Introduction

This article is based on joint researches [4, 5] with Vincent Duchéne (Université de
Rennes 1, France). We will consider the motion of the interfacial gravity waves at the
interface between two layers of immiscible waters in (n 4 1)-dimensional Euclidean space.
Let ¢ be the time, = (1, ...,2,) the horizontal spatial coordinates, and z the vertical
spatial coordinate. We assume that the layers are infinite in the horizontal directions,
bounded from above by a flat rigid-lid, and from below by a time-independent variable
topography, and that the interface, the rigid-lid, and the bottom are represented as z =
C(x,t), z = hy, and z = —hy + b(x), respectively, where ((z,t) is the elevation of the
interface, h; and hy are mean thicknesses of the upper and lower layers, and b(x) represents
the bottom topography. Therefore, the upper layer Q;(¢) and the lower layer Qy(t) of the
waters have the form

Q) ={X = (z,2) € R"™; {(2,t) < 2 < Iy},
Qo(t) ={X = (z,2) e R"™; —hy + b(x) < 2 < {(z,1)}.

We denote the interface, the rigid-lid, and the bottom by I'(¢), X1, and X5, respectively.
We assume that the waters in the upper and the lower layers are both incompressible
and inviscid fluids with constant densities p; and ps, respectively, and that the flows are
both irrotational. Then, the motion of the waters is described by the velocity potentials
Oy (x, 2,t) and Py(x, z,t) and the pressures Pi(x, z,t) and Py(x, z,t) in the upper and
the lower layers. These velocity potentials should be harmonic and satisfy Bernoulli’s
equation

1
Pe <8t®g+§|vx®42+gz) + P, =0 in Qg(t) (gz 1,2),

where Vy = (V,0.) = (04y,---,0s,,0.) and ¢ is the acceleration due to gravity. We
impose the Neumann boundary condition for the velocity potentials on the rigid-lid of



the upper layer and the bottom of the lower layer as a kinematical boundary condition.
Moreover, on the interface we impose the kinematical boundary conditions

0P, +V(-VO,—0,2,=0 on I'(¢) (t=1,2)

and the dynamical boundary condition P, = P, on I'(t). These are basic equations for
the interfacial gravity waves and referred as the full model in the following. Throughout
this article, we assume Rayleigh’s stability condition

(p2 = p1)g > 0.

As in the case of surface gravity waves (water waves), the full model for the interfacial
gravity waves have a variational structure and a Lagrangian is given in terms of velocity
potentials ®; and P, in the upper and the lower layers and the elevation of the interface (.
We denote the Lagrangian density by .2 (®1, @5, (). T. Kakinuma [9, 10, 11] approximated
the velocity potentials ®; and ®, in the Lagrangian by

Ny

(D‘?PP(:B’ Z, lf) = Z Z[J‘(Z; ﬁ[)él,i(wa t)

i=0
for ¢ = 1,2, where {Z,,} and {Z,,;} are appropriate function systems in the vertical
coordinate z and may depend on hy(x) and hy(x), respectively, which are thicknesses
of the upper and the lower layers in the rest state, whereas ¢, = (¢r0, dr1,- -, den,) s
¢ = 1,2, are unknown variables. The Kakinuma model is the Euler-Lagrange equations
for an approximated Lagrangian with a density Z?PP(¢y, ¢, () = L(PTP, 5P (). Ac-
cording to the analysis of the Isobe-Kakinuma model for surface gravity waves given by
Y. Murakami and T. Iguchi [14], R. Nemoto and T. Iguchi [15], and T. Iguchi [6, 7], we
will choose the approximated velocity potentials as

N
PP (x, 2,t) = Z(—z + )% (1),
v (1)
OEP(x, 2,t) = Y (2 + hy — b(@)Pi (2, 1),
i=0
where N, N*, and po, p1, ..., pn+ are nonnegative integers satisfying the conditions

(H1) N*=N and p; =2i (1 =0,1,...,N) in the case of the flat bottom b(x) = 0,
(H2) N*=2N and p; =i (i =0,1,...,N*) in the case of a general bottom b(x).

In this article, we report that the Kakinuma model has a nontrivial stability regime,
which can be represented as

a a P1P2 a a 2
—0, (PP — PPy — VY — VOIPPI2 > ¢y on I'(t 2
(P = Pim) = e P VBT -V 2w o T ()




with a positive constant ¢y, where the approximate pressures P, (¢ = 1,2) are defined
through Bernoulli’s equation, H; = hy — ( and Hy = hy + ( — b are thicknesses of the
upper and the lower layers, and a; and «ay are positive constants depending only on N
and converge to 0 as N — oo. Under this stability condition and compatibility conditions
on the initial data, we show that the initial value problem for the Kakinuma model is
well-posed in Sobolev spaces. This is not consistent with the fact that the initial value
problem for the full model is ill-posed in Sobolev spaces as was shown by T. Iguchi, N.
Tanaka, and A. Tani [8]. See also V. Kamotski and G. Lebeau [12] and D. Lannes [13].
Nevertheless, we can show that the Kakinuma model is a higher order shallow water
approximation of the full model with an error of order O(§;" 2 + §,V*2), where §; and

0o are nondimensional parameters which represent the shallowness of the upper layer and
A
TZ
(¢ = 1,2), where X\ is a typical wavelength in the horizontal direction. Therefore, the

the lower layer, respectively. More precisely, these parameters are defined by &, =

Kakinuma model is a desirable model to simulate the interfacial gravity waves in the
shallow water regime.

As is well-known that the full model for interfacial gravity waves has a conserved energy
which is the sum of the kinetic energies of the waters in the upper and the lower layers
and the potential energy due to gravity. Moreover, T. B. Benjamin and T. J. Bridges [1]
found that the full model can be written in Hamilton’s canonical equations
5%1w 5%IW

50 ) g = — 5C )

where the canonical variable ¢ is defined by

¢ =

¢(m7 t) = pQ(I)Z(wv C(.’.& t)v t) - /)1(1)1((15, C(il:, t)’ t) (3)

and the Hamiltonian s#™ is the total energy. We report that the Kakinuma model has
also a Hamiltonian structure with a Hamiltonian ##%. Moreover, under an appropriate
assumption on the canonical variables (¢, ¢), we show the error estimate

[A(C,0) = A 0)] S 0T+ 0,

2 The basic equations and the Kakinuma model

We first recall the equations governing potential flows for two layers of immiscible,
incompressible, homogeneous, and inviscid fluids. The motion of the waters is described
by the velocity potentials ®; and ®5 and the pressures P, and P, in the upper and the



lower layers satisfying the equations

Aq)l -+ 83@1 =0 in Ql(t), (4)

A(I)Q + 822(1)2 =0 in Qz(t), (5)

where A = 92 +--- 4 02 is the Laplacian with respect to the horizontal space variables

x = (21,...,2,). Bernoulli’s equations in each layers have the form

1

P1 <0t@1+§|VXCD1|2+gz) +P1:O in Ql(f), (6)
1

P2 <8t<I>2+2|VXCI>2|2+gz) +P2 =0 in SZQ(t) (7)

The dynamical boundary condition on the interface is given by
P1 = P2 on F(t) (8)

The kinematic boundary conditions on the interface, on the rigid-lid, and on the bottom
are given by

0C+VD-V(—0,0,=0 on T(t), 9)
B¢+ V- V(— 0.0, =0 on I(t), (10)
0,9, =0 on X, (11)
V&, -Vb—0,P5=0 on Y. (12)

These are the basic equations for the internal gravity waves. It follows form Bernoulli’s
equations (6)—(7) and the dynamical boundary condition (8) that

1 1
o (@‘Dl + §|VX(I>1|2 + g§> — p2 (8,@2 + §|VX(I>2|2 + g() =0 on I(¢). (13)

It is easy to see that the basic equations (4)—(12) for unknowns (¢, @1, ®o, P, ) are
equivalent to (4)—(5) and (9)—(13) for unknowns ((, ¢y, P5), which will be referred as the
full model for the interfacial gravity waves in the following.

As in the case of the surface gravity waves, the full model has a variational structure
and the corresponding Luke’s Lagrangian is given essentially by the vertical integral of
the pressure in the water regions. In fact, we first define £, by

C(m,t) hy
Lrre :/ P2($,Z,t)d2’+/ Pi(x, 2, t)dz.

ha+b(z) (1)

By using Bernoulli’s equations (6)—(7) to remove the pressures P, and P, we see that
¢ 1 h 1
gpre: —pP2 / 8t®2+—|VX®2\2 dZ—p1 / 6tq)1+—|VX<D1|2 dZ
J —ha+b 2 J¢ 2

1 1
- §(p2 - p1)g§2 + B (P29(—h2 + b)2 - plghf) .



The last term does not contribute the variation of the Lagrangian, so that we define a
Lagrangian density .Z(®q, o, () by

¢ 1 ~hy 1
L(®1,P2,() = —p2 / (51@2 + _|VX(I)2|2> dz — pl/ <atq)l + —VX@1|2) dz
J —ho+b 2 C 2
1
- 5(/72 —p)gc®, (14)

and the action function _#Z (¢, @5, () by

tq
/(q)h (1)27 C) = / Z((I)l'/ ¢27 C)d:]}dt
to J R

The corresponding Euler-Lagrange equation is exactly the same as the full model (4)—(5)
and (9)—(13).

Plugging the approximation (1) into the Lagrangian density (14), we obtain an ap-
proximate Lagrangian density Z*PP(¢y, ¢o,() = L(PI, D3P (). The corresponding
Euler—Lagrange equation is the Kakinuma model, which has the form

N .
i 1 2(i44)+1 dug 2(i445)—1
H¥0,¢ — v/ . — ) - g N
v ;{ (Z(i +i)+1! Vo 20i+j)—1"" 91
for ¢=0,1,..., N,
N* 1 .
HP < 4 {v . < Hpi+pj+1v¢ o J Hpi+pj¢) Vb)
2 ]z:(‘: pitp+177 Yopitp Y
Di Pitp; bipj pitp;—1 2
+———Hy""Vb -V, — —————Hy""7 (1+]|Vb ¢.}_0
Di + Dj ? I pi+p;—1 2 ( VE[*) 2,
for ¢1=0,1,...,N*,
N ] 1 N ) 2 N . 2
pra > HY 0y + gC + 5 > HPVe | + (Z 2jH12“¢17j>
j=0 Jj=0 Jj=0
N
P2 {Z Hy dyaj + ¢
§=0
1 N* 2 N* 2
5 | (Do Vg — piHy ™ 62;V0) | + (Z ij5-"1</>2,]-> =0,
Jj=0 j=0

(15)
where H; and H, are thicknesses of the upper and the lower layers, that is,

Hi(z,t) = hy — ((x, ), Hy(x,t) = ho + ((z,t) — b(x).

Here and in what follows we use the notational convention § = 0. In this Kakinuma
model, we have (N + N* 4 2) evolution equations for just one unknown scalar function



¢ whereas we have only one evolution equation for (N + N* + 2) unknown functions
&1 = (010,011, 01n)T and P2 = (¢, P, ..., Pan+)T. Therefore, the Kakinuma
model is an overdetermined and underdetermined composite system. Anyway the total
number of the equations is equal to the total number of unknown functions. We will
consider this Kakinuma model (15) in the following.

In the case N = 0, that is, if we approximate the velocity potentials in the Lagrangian
by functions independent of the vertical spatial variable z as O™ (x, z,1) = ¢y, t) for
¢ =1,2, then the Kakinuma model is reduced to the nonlinear shallow water equations

0~V (b~ )¥61) =0,
O ¢+ V- ((ha+(—=b)Vepy) =0,
pr (0 9 + 5190 ) = o (002 a6 + 51T ) 0.

The initial value problem to these nonlinear shallow water equations was analyzed by D.
Bresch and M. Renardy [2].

3 Stability condition

We linearize the Kakinuma model (15) around an arbitrary flow (¢, ¢1, ¢p2) and denote
the variation by (C , qf)h ¢)2) By neglecting lower order terms, the linearized equations

have the form

N
. . 1 254+1 M .
O +uy - V( — —— H""'A¢p;; =0 for i=0,1,...,N,
(G- Ve ;2(z+3)+1 1A%y
fo
oXe V¢ —— HY''Ady; =0 for i=0,1,... N*,
(4 ug V€+;pi+pj+1 2 oy or 17 y s ) ) (16)
N . . . N* . . .
p1 Y HY (Oihrj +ur - Vong) — p2 D HY (Bioj + uz - Vboy) — al =0,
3=0 j=0

where u, = (VOJ™)|.—¢ for £ = 1,2 are approximate horizontal velocities in the upper and
the lower layers on the interface and a = — (9,(P;™ — P{*))|.—c. Here, P{* and P;*"
are approximate pressures in the upper and the lower layers calculated from Bernoulli’s
equations (6)—(7), that is, P;*” = —p; (0,®7™ + $|Vx®)*P|2 + g2) for £ =1,2.

Now, we freeze the coefficients in the linearized equations (16) and put

1»[]1 = (él,Oa H12('b1717 e 7H12N(b1,N)T7
1'[)2 = (¢2,07 Hglg-SZ,lv s 7H§N* @2,N*)T-



Then, the linearized equations (16) can be written in a matrix form

0 —p1 1T po1T ¢
Hi1 0 O | |4
~H,1 O O o
a —p 1M (g - V) 1T (uy - V) C
+ | H1(u, V) —H2A A 0] ¥ | =0,
—Hyl(uy - V) O —H3A50A 1,

where 1 = (1,...,1)T and

1 1
AI,O = (4> ) AQ,O = <7> i
20+7)+ 1/ ocijen pitpi+1/ < icn

The linearized equations (16) have a nontrivial plane wave solution of the form ¢(x, t) =
Coe'E® =t and apy(x,t) = '«,bg’oei(ﬁw_“t) for £ = 1,2 if and only if the wave vector € € R
and the angular frequency w € C satisfy

a ip(w—uy- €17 —ipy(w —uy - €)17T
det —1H1(w — Ui - 5)1 (Hl‘é‘)ZALQ 0] = 07
iHy(w —uy - €)1 0O (H2|€[)* Az

which is the linear dispersion relation for the linearized equations (16). We can expand
this determinant and the linear dispersion relation can be given simply as

£1

Hioy

P2
Hyorp

o det A&O 1 - 0 ]_T
= ———=", Ao =
det A[,() -1 A@,O

for ¢ = 1,2. Tt is easy to see that the solutions w to the dispersion relation (17) are real

(w—u- €2+ (w—usy-&)*—al¢]* =0, (17)

where

for any wave vector & € R" if and only if

a«— P1P2
p1Hzan + poHian

|U1 — UQ|2 2 0.

Otherwise, we have exponentially growing solutions and an instability will appear. As a
result, the initial value problem turns out to be ill-posed. This consideration leads us the
following stability condition

P12

2
- u —us|® > 18
p1H2a2+p2H1a1| ! 2" = o (18)

a

for some positive constant ¢y, which is equivalent to (2).



Here, we remark that in the case of surface gravity waves, the corresponding stability
condition is given by —(9,P)|.—¢ > ¢o, where P is the pressure of the water. This condi-
tion is also known as a generalized Rayleigh-Taylor sign condition. We remind that the
function a in the stability condition (18) can be written as a = — (0,(P5™ — P{™)) |.—.
If we put the density p; of the upper layer to be 0, then the problem of the interfacial
gravity waves is reduced to that of the surface gravity waves and we have Pj(x, z,t) =0
by Bernoulli’s equations (6). Therefore, our stability condition is a generalization of this
well-known stability condition for the surface gravity waves. We also note that the con-
stants o and as in the stability condition converge to 0 as N — oo, so that this stability
regime diminishes as N — oo. This fact is consistent with the full problem.

4 Well-posedness of the initial value problem

We proceed to consider the initial value problem for the Kakinuma model (15) under
the initial condition
(¢, @1, 92) = (Co), P1(0) P2(0) at t=0. (19)

Here, we remark that the Kakinuma model has a drawback, that is, the hypersurface
t = 0 is characteristic for the Kakinuma model, so that the initial value problem for the
Kakinuma model (15) and (19) is not solvable in general. In fact, if the problem has a
solution (¢, ¢1, ¢2), then by eliminating the time derivative 9,¢ from the equations we see
that the solution has to satisfy the relations

2]+1
HZZZV < (;5 J)

N 2(i+7)+1 .
H 41y 2(it+5)—1 }
- Vil —— Vo, | — 4]{ 7 =
{ (2(i+.j)+1 d’“) 2(i +j) — P14

§=0
for i=1,2,..., N,

HP7+1 pi
HY Z V- < L e H”]quJVb)

Hp1+p1+1
o Z{ <—v¢ le+p]¢2 ]Vb>
= pi+p+1 pL+J

(20)

i 1 PiPj pi+p;i—1
+ HY PINb - Vg ; — ———L— HY™P77 (1 4|V =
e 2 ¢27] pi + j—l ( | | )¢2]

for i=1,2,...,N*,
N H2j+1 N~ pj+1

. 1 . . 9 o & v ' _
ZV <2] n 1V¢51,J) +ZV (pj n 1V¢52,J ij2 ¢27.7Vb) 0.

Jj=0 Jj=0



Therefore, as necessary conditions the initial date (), @1(0), P2(0)) and the bottom topog-
raphy b have to satisfy the relations in (20) for the existence of the solution. These neces-
sary conditions will be referred as the compatibility conditions. In the following, we write
b1 = (¢1,07¢>I1)T7 P2 = (¢2,0,¢>/2)T7 ¢1(0) = (@1,0(0)7¢/1(0))Ta and ¢2(0) = (¢2,0(0)a¢/2(0))T»
We denote by H™ = H™(R") and W™ = W™>(R") the L? and the L> Sobolev
spaces of order m, respectively. The following theorem states that the initial value prob-
lem for the Kakinuma model is well-posed locally in time in the Sobolev space H™ under
the stability condition (18), the compatibility conditions (20), and nondegeneracy of the
thicknesses of the upper and lower layers.

Theorem 1 ([4]) Let g, p1, p2, ha, ha, co, My be positive constants and m an integer such
that m > § + 1. There exists a time T > 0 such that if the initial data (), d1(0), P2(0))
and the bottom topography b satisfy

(C0)s Vér,000), Vdao) llm + [[(@10), Do) | rrmer + [[bllwmrce < Mo,
hi = Coy(®) > co,  ha +{oy(x) =b(x) > ¢ for = e R,

the stability condition (18), and the compatibility conditions (20), then the initial value
problem (15) and (19) for the Kakinuma model has a unique solution (, ¢1, ¢2) satisfying

(, V10, Voo € C([0,T; H™), ¢y, ¢h € C([0,T]; H™ ).

If the initial data ({(0), ¢1(0), P2(0)) and the bottom topography b are suitably small, then
the stability condition (18) and the nondegeneracy of the thicknesses of the upper and
lower layers are automatically satisfied under Rayleigh’s stability condition (ps—p1)g > 0.
However, it is not evident how we prepare the initial data satisfying the compatibility
conditions (20). By analogy to the canonical variable (3) for interfacial gravity waves
introduced by T. B. Benjamin and T. J. Bridges [1], we introduce a canonical variable for
the Kakinuma model by

N* N
¢ZPQZH;J¢)2J _Plefjﬂsl,j- (21)
j=0 j=0

Given the initial data (((g), ¢(0)) for the canonical variables (¢, ¢) and the bottom topog-
raphy b, the compatibility conditions (20) and the relation (21) determine the initial data
(P1(0), P2(0)) for the Kakinuma model, which is unique up to an additive constant of the
form (Cpz,Cp1) to (¢1,000), P2.0(0))- In fact, we have the following proposition.

Proposition 1 ([4]) Let p1, pa, ha, ha, ¢, M be positive constants and m an integer such
that m > 5 + 1. There ewists a positive constant C such that for the canonical variables



10

(¢, @) and bottom topography b satisfying

Il + [Bllwmes < M, |[V9]
hi—C@) > e, hyt((@)—b@)>c for xeR,

Hm-1 < 007

the compatibility conditions (20) and the relation (21) determine the variables (¢1, ¢2)
for the Kakinuma model, uniquely up to an additive constant of the form (Cpa,Cpy) to

(1.0, P20). Moreover, we have

[(Vér0, Vdoo)llam-1 + (D), @5)llam < C|| V)

Hm—1.

5 Equations in a nondimensional form

In order to rigorously validate the Kakinuma model (15) as a higher order shallow water
approximation of the full model for interfacial gravity waves (4)—(12), we first introduce
nondimensional parameters and then non-dimensionalize the equations, through a conve-
nient rescaling of variables. Let A be a typical wavelength. Following D. Lannes [13], we
introduce a nondimensional parameter § by

5= with =Tl
A Py ha + £2h1

where p and p, are relative densities. We also need to use relative thicknesses h, and h,

of the layers. These nondimensional parameters are defined by

Pr hy
= h = 5 E = 17 2
B p1+ P2 “h ( )
which satisfy the relations
Py Py
o +p, =1, =4+ ==1 (22)
L hy ' hy
Note also that min{hy, he} < h < max{hy, ha}. Here, we note that the standard shal-
lowness parameters 0; = %1 and 0y = hTZ relative to the upper and the lower layers,

respectively, are related to the above parameters by d, = h,d for ¢ = 1,2. In this article,
we restrict our consideration to the parameter regime

hi', byt S 1 (23)

To understand this restriction, it is convenient to use nondimensional parameters v := g—;

and 0 := Z—; In terms of these parameters, ﬁ[l (¢ =1,2) can be represented as

h—lf’y—’_l -1 _ 771—’—1
A3} _'Y+07 =2 _7_1+0_1'



Therefore, the only cases that we shall exclude are the case v, 0 < 1 and the case v,0 > 1.
In other words, we shall consider the following three regimes concerning the densities and
the mean thicknesses of the layers in this article:

(i) 0 ~ 1, ie., hy >~ ho,
(i) v~ 1, i.e., p1 = po,
(111) 7K 1K 9, i.e., 1 <K P2 and h2 < hl.

Although the remaining case § < 1 < v, i.e., po < p1 and hy < hy satisfies (23), this
case is not consistent with Rayleigh’s stability condition (py — p1)g > 0, so that we also
exclude this case.

Introducing ¢y 1= 4 /(/_)2 —p 1) gh the speed of infinitely long and small interfacial gravity
waves, we rescale the independent and the dependent variables by

A - ~ -
T =M\, z=hi t=-—+A C(=h( b=hb, By=Acwds ({=1,2).
Csw

Plugging these into the full model (4)—(5) and (9)-(13) and dropping the tilde sign in the
notation we obtain

AD, + 62020, =0 i Q)

AD, + 62020, = 0 i Qu(t),

0+ VD -V(—520,0, =0 on T(t),

0¢ + VP, - V(- 020,95 =0 on I'(¢),

0,9, =0 on X, (24)
Vd, - Vb—05720,0,=0 on Yo,

2, (001 + L[V, P + 152(0.0,)?)
0, (0% + JIV®,P + 3672(0.92)2) = (=0 on T(),

where in this scaling, the interface T'(¢), the rigid-lid 3, and the bottom X5 are written
as

[(t)={X = (x,2) e R"™; 2 = ((x,1)},
Y ={X = (x,2) e R"™; 2 =1},
S, = {X = (x,2) € R™; 2 = —hy, + b(x)}.
As for the Kakinuma model, we introduce additionally the rescaled variables

)\Csw it )\Csw 7
¢1,i = h—%i%,u ¢2,i = h—gi¢2,i~

11
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Plugging these and the previous scaling into the Kakinuma model (15) and dropping the
tilde sign in the notation we obtain the Kakinuma model in a nondimensional form, which
is written as

N
2 1 2(i+j)+1
Hj 6tc—h1Z{V’(—2(Z+])+1H J Vi,

=0
»
) p—

20i47)—1
N*
) 1 .
Hglatg + hQ § :{V . (mHgﬁ—p]*—lV(bQ,j + Hp‘l,+p](b h IVb)
J 7 J bi J

+p +p HmHJJh b - Vo — %Hmwrl((h&)*? +h2—2Vb|2)¢2J} =0
7 J pi J

Hf(iﬂ)—lmj}—o for i=0,1,...,N,

for i=0,1,...,N*
2

N N 2
SN HY0p ;45 | D HY V| + (1) <Z 2 HY ™ 1¢1J>
=0 =0
N* _ N* 2
Y HY 0o+ 5 | |D_(HE Vs — piHY' ™ 6o 5hy " V)
=0 =0
N* 2
5)~ (Z%ng_l@g) -¢=0,
j=0
(25)
where
Hi(z,t) =1-hi'¢(x,t),  Ha(m,t) =1+hy ((a,t) — by 'b(). (26)

6 Well-posedness in the shallow water regime

We will revisit the initial value problem for the Kakinuma model (25) in the nondimen-
sional form under the initial conditions (19). In order to rigorously validate the Kakinuma
model (25) as a higher order shallow water approximation of the full model for interfacial
gravity waves (24), we then need to show the existence of the solution to the initial value
problem (25) and (19) on some time interval independent of the shallowness parameters
01 = hy6 and 02 = hy0 together with a uniform bound of the solution.

The nondimensional version of the stability condition (18) is given by

B )
BIQQHQOQ + P2ﬁ1H1041

lur — ua|® > co, (27)

where H; and H, are given by (26), u, = (VO;*)|,—¢ for £ = 1,2 and a = —(9.(P,"" —
P*?))|.—¢. Here, we note that the nondlmensmnal version of the approximate velocity



potentials @3 and pressures P;* for ¢ = 1,2 are given by

(w2, t) = 3 (1= hi'2)" bl b),

<1[]=

(28)
PP (x, 2, t) = (14 hy'z — hy'b(z))" ¢ai(, 1)
2 [ad) L) 1A% 2,i\Ly L)y
=0
and
PP (@, 2, t) = <8t<I>app + = ([VOPPI* 4+ 672(0.95™)?) + (p, — 81)1Z>
for ¢ =1, 2, respectively.
The nondimensional version of the compatibility conditions (20) is given by
H2]+1
H21 Z \v2 ( 1 V(bl j)
N 2(i+5)+ ..
H o dij 2(i+§)—1 }
— V~14V'—h(527HJ i0=0
jo{ <2(i +7)+1 d)l”) (8:0) 20i+5)—1" oL
for i=1,2,...,N,
pit1 D,
HY Z V- (Q—V@J - ZQ—JHZPJ‘@QJ@;%)
j J
pit+p;+1
_ Z{ (H]V/ o HY i, h21Vb)
pitp;+1 i + Dj B
+ L gty .y — PBI e (hy8) 72 + by | V| } ~0
I b2y = BB (1) 4 B[O,
for i=1,2,...,N¥,
27+1 Hpﬁ-l P )
_1Zv< wU) +h2ZV ( v@zj__ﬂH;J@’jvb) =0.
(29)

The following theorem states the existence of the solution to the initial value problem (25)
and (19) on some time interval independent of nondimensional parameters, especially, the
shallowness parameters §; = h;6 and 2 = hy0 together with a uniform bound of the
solution.

Theorem 2 ([5]) Let cq, My, h
5 + 1. There exist a time T > 0 and a constant M > 0 such that for any positive
parameters p,, p,. by, hy, 6 satisfying the natural restrictions (22), b6, hyd < 1, and the
condition hyy, < hy, hy if the initial data (G, P1(0), P2(0)) and the bottom topography b

be positive constants and m an integer such that m >

min

13
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satisfy
160

it 3 2 (19 00) B + () 21| Bl i) + By bl < My, -
=12 30

1—hy'Coy(®) > co, 1+hy " (op(®) —hy'b(x) > ¢y for xR,

the stability condition (27), and the compatibility conditions (29), then the initial value
problem (25) and (19) has a unique solution ((, ¢1, @2) on the time interval [0, T satis-
fying

(. V10, Voo € C([0, T H™), ¢y, ¢ € C([0,T]; H™ ).

Moreover, the solution satisfies the uniform bound
ICOm + D 2l (VD)7 + (Red) (1) [ Fm) < M
(=12
fort € [0,T].
It is not evident how we prepare the initial data (¢1(0), ¢2(0)) satisfying the compatibility
conditions (29) together with the uniform bound (30). Again, it is sufficient to specify
the initial data for the canonical variables (¢, @), where ¢ is defined by

N* N
¢:BQZH§]¢2,j —QIZH?QSL]'- (31)
j=0 §=0

In fact, we have the following proposition.

Proposition 2 ([5]) Let c, M be positive constants and m an integer such that m > §+1.
There exists a positive constant C' such that for the canonical variables (¢, $) and bottom

topography b satisfying

By WKz + By G + h_ll\wamw <M, [[Vollgm-r < oo,

1—hy'C(®) >¢, 1+hy'((x) —hy'b(x) > for xeR"
the compatibility conditions (29) and the relation (31) determine the variables (¢1, ¢2)
for the Kakinuma model, uniquely up to an additive constant of the form (0227031) to

(1.0, P20). Moreover, we have

> b (IVel3gm s + (1y8) 2| @l 3m 1) < CIVEI3

1=1,2

Hm—1-

Now, we can show that the solution to the Kakinuma model (25) constructed in The-
orem 2 satisfies approximately the full problem for the interfacial gravity waves with an
error of order O(01"¥ ™2 + 657 2) for the time interval [0,7]. There are several versions
of this kind of result on the consistency. The most sophisticated version would be an
approximation of the Hamiltonians.



7 Hamiltonian structures

As is well-known that the full model (24) for interfacial gravity waves has a conserved

energy
. 1 2 2 1 2
& = Z —p,(IV®(x, 2, 1)]> + 6 2(0.Pe(x, 2, 1))*)dzdz + ((z,t)*de,
o Joun 27 .2
which is the total energy, that is, the sum of the kinetic energies of the waters in the

upper and the lower layers and the potential energy due to gravity. Putting ¢, = ®|.—¢
for £ = 1,2, we can rewrite this total energy as

v ! 1,
&= Z:ZI;QMA@(C)@,@)LZ + 5 ICIE,

where A1(¢) = A1(¢, 0. hy) and Ax(C) = Aa(C, b, 8, hy) are the Dirichlet-to-Neumann maps

for Laplace’s equation. More precisely, these are defined by

(—6720.%1 + V¢ V)|, )

A (¢, 0, hy) =
¢,b,6,hy)po = (6 726Z@2_VC'V@2)‘,2=C7

AQ(

where ®; and ®, are unique solutions to the boundary value problems

APy + 620D, =0 in (1), ADy + 5720205 = 0 in Qy(),
= ¢ on I'(¢t), and Dy = ¢y on T'(t),
82(1)1 =0 on 21, Vb - V<I>2 - 57282(1)2 =0 on 22.

It follows from the kinematical boundary conditions on the interface that ¢; and ¢, are
related by A1(¢)é1 + As(()¢p2 = 0. Introducing the canonical variable ¢ := P02 — p b1,
¢1 and ¢y can be written in terms of the canonical variables (¢, ¢) as

dr = —(p,Aa2(¢) + 82/\1(())71/\2(()@57
¢ = (p,A2(C) + p, M1 (€)M AL(Q) g

Therefore, the total energy & can be written in terms of the canonical variables (¢, ¢) as

1 _ ,
¢ = 5((p, A2(0) + p,A1(Q)) PO, Aa(Q))re + 5 HC”LZv
which will be denoted by J#™W((, ¢). This is the Hamiltonian of the full model for the

interfacial gravity waves found by T. B. Benjamin and T. J. Bridges [1]. See also W.
Craig and M. D. Groves [3].

15
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As in the case of the full model, the Kakinuma model (25) has a conserved quantity

1 1
s =3 [ S0 (Ve ) 5 0.8 @,z ) deds 4 [ (et e
) 27 2

=12 "
where @) for £ = 1,2 are given by (28). This is nothing but the total energy, which
can be written explicitly in terms of (¢, @1, ¢2). Now, we define the canonical variable ¢
by (31). Then, by Proposition 2 we can determine (¢, ¢5) from the canonical variables
(¢, ), so that the total energy &™ can be expressed in terms of (¢,¢), which will be
denoted by S#%((,¢). This is a Hamiltonian of the Kakinuma model. In fact, we have
the following theorem.

Theorem 3 ([4]) Let m be an integer such that m > % + 1 and b € W™, Then, the

Kakinuma model (25) is equivalent to Hamilton’s canonical equations

oK ¥
atC7W7 8t¢77 6C ’

(33)
as long as ¢(-,t) € H™ satisfies

. -1 . -1 _ 3,1

Jnf (1—hy'¢(m, 1)) >0, Jnf (1+ hy'¢(z,t) — hy'b(x)) > 0
and Vé(-,t) € L2  More precisely, for any regular solution (¢, ¢y, d2) to the Kak-
inuma model (25), if we define ¢ by (31), then ((,9) satisfies Hamilton’s canonical
equations (33). Conversely, for any regular solution (, @) to Hamilton’s canonical equa-
tions (33), if we define (¢1, ¢p2) as a solution to the compatibility conditions (29) and the
relation (31), then (¢, ¢1, ¢2) satisfies the Kakinuma model (25).

The following theorem states that the Hamiltonian 2% ((, ¢) of the Kakinuma model
is a higher order shallow water approximation of the Hamiltonian 52"V (¢, ¢) of the full

model. This is one version of the consistency of the Kakinuma model with the full model.
We put H™ = {¢; V¢ € H™ 1}

Theorem 4 ([5]) Let ¢, M, h
241 and m > 4(N + 1). There exists a positive constant C such that for any positive

be positive constants and m an integer such that m >

min

parameters p,, p,. by, hy, 6 satisfying the natural restrictions (22), b6, hyd < 1, and the
condition h,;. < hy, hy, and for any canonical variables (¢, ¢) € H™ x H™ and the bottom
topography b € W™ satisfying

(Kl + hg I + fag {[bllwrsroe < M,

Hi(x) >c¢, Hy(x)>c for xeR"

we have

A, 8) = A (G D) < ClIVPl Gpawsa (1y8)™2 + (Ry8) N H).



8 Conditionally rigorous justification of the Kakinuma model

In order to give a rigorous justification of the Kakinuma model as a higher order shallow
water approximation, we need to give an error estimate between the solution to the
Kakinuma model and the solution to the full model. However, we cannot expect to
construct a solution to the initial value problem for the full model in Sobolev spaces with
uniform bounds with respect to the shallowness parameters 6; = h;d and dy = h,0 because
the initial value problem for the full model is ill-posed. Nevertheless, if we assume the
existence of the solution to the full model with a uniform bound, then we can give an
error estimate between the solutions by making use of the well-posedness of the initial
value problem to the Kakinuma model.

To state the result, we remark that the full model (24) for interfacial gravity waves can
be written in a more compact and closed form as

atC + Al(C7 57 ﬁl)gﬁl = 07
atg - AQ(Ca b: 67 ﬁ2)¢2 = Oa

1 2 1 2 (Al(Cﬂ (57 h1>(/}1 - VC : v¢1)2 (34)
Y R e :
o (o o BRI RNy

where ¢y = Oy, for £ = 1,2. Here, we remind that A;((,d,h,) and Ay((, b, 6, hy) are
the Dirichlet-to-Neumann maps for Laplace’s equation defined by (32).

Theorem 5 ([5]) Let co,c, M, b, be positive constants and m an integer such that
m > § + 4N + 5. Then, there exist a time T" > 0 and a constant C' > 0 such that
the following holds true: Let Bl,gg,ﬁl.,l_b, 0 be positive parameters satisfying the natural
restrictions (22), h,0, hy0 < 1, and the condition h,;, < hy,hy and let b € WL satisfy
ho t||bl[wmiree < M. Suppose that the full model for interfacial gravity waves (34) pos-
sesses a solution ((™, o'W, oW € C([0, T1]; H™H' x H™ x H™) satisfying a uniform

bound

Y N Fmes + Y 2l VO @) < M,
=12

L—h ' ¢W(x,t) > ¢, 14+ hy'¢™W(,t)—hy'b(z) >c for = €R" t€[0,Th]

Let (o) :== ("]izo and ¢y := (p, W qubllw)\tzo be the initial data for the canonical
variables, and let (1), P2(0)) be the initial data to the Kakinuma model constructed from
(C0), G0)) by Proposition 2. Assume moreover that the initial data ({o), P1(0), P2(0)) satisfy
the stability condition (27), let (C¥, @K, d%) be the solution to the initial value problem

17
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for the Kakinuma model (25) and (19) on the time interval [0, T] whose unique existence

18 gquaranteed by Theorem 2, and put

N N*
K _ 2j K K _ Pj K
1= ZHI ¢1¢]’7 by = ZH2J¢2,j'
j=0 j=0

Then, we have the error bound

I1CK() = VOl m-anes + D ([l VOE () = Vo (8)]

=172

Hm—(4N+5)

< C((hy0)™2 + (hy0)™%)

for 0 <t <min{T,T1}.

Acknowledgements This work was partially supported by JSPS KAKENHI Grant
Number JP17K18742 and JP17H02856.

References

[1] T. B. Benjamin and T. J. Bridges, Reappraisal of the Kelvin-Helmholtz problem. I.
Hamiltonian structure, J. Fluid Mech., 333 (1997), 301-325.

[2] D. Bresch and M. Renardy, Well-posedness of two-layer shallow-water flow between
two horizontal rigid plates, Nonlinearity 24 (2011), 1081-1088.

[3] W. Craig and M. D. Groves, Normal forms for wave motion in fluid interfaces, Wave
Motion, 31 (2000), no. 1, 21-41.

[4] V. Duchéne and T. Iguchi, A mathematical analysis of the Kakinuma model for
interfacial gravity waves. Part I: Structures and well-posedness, arXiv:2103.12392.

[5] V. Duchéne and T. Iguchi, A mathematical analysis of the Kakinuma model for
interfacial gravity waves. Part II: Justification as a shallow water approximation, in

preparation.

[6] T. Iguchi, Isobe-Kakinuma model for water waves as a higher order shallow water
approximation, J. Differential Equations, 265 (2018), 935-962.

[7] T.Iguchi, A mathematical justification of the Isobe-Kakinuma model for water waves
with and without bottom topography, J. Math. Fluid Mech., 20 (2018), 1985-2018.

[8] T. Iguchi, N. Tanaka, and A. Tani, On the two-phase free boundary problem for
two-dimensional water waves, Math. Ann., 309 (1997), 199-223.



19

(9] #HiyA AKER, FERRIERR AL T RE X D NI~ DFRAR, Wi L en s, 56 47 & (2000),
TARZE 1-5.

[10] T. Kakinuma, A set of fully nonlinear equations for surface and internal gravity waves,
Coastal Engineering V: Computer Modelling of Seas and Coastal Regions, 225-234,
WIT Press, 2001.

[11] T. Kakinuma, A nonlinear numerical model for surface and internal waves shoaling on
a permeable beach, Coastal engineering VI: Computer Modelling and Experimental
Measurements of Seas and Coastal Regions, 227-236, WIT Press, 2003.

[12] V. Kamotski and G. Lebeau, On 2D Rayleigh-Taylor instabilities, Asymptotic Anal-
ysis, 42 (2005), 1-27.

[13] D. Lannes, A stability criterion for two-fluid interfaces and applications, Arch. Ration.
Mech. Anal., 208 (2013), 481-567.

[14] Y. Murakami and T. Iguchi, Solvability of the initial value problem to a model system
for water waves, Kodai Math. J., 38 (2015), 470-491.

[15] R. Nemoto and T. Iguchi, Solvability of the initial value problem to the Isobe-
Kakinuma model for water waves, J. Math. Fluid Mech., 20 (2018), 631-653.

Department of Mathematics

Faculty of Science and Technology

Keio University

3-14-1 Hiyoshi, Kohoku-ku

Yokohama 223-8522

JAPAN

E-mail address: iguchi@math.keio.ac. jp

BERERTRE - LIPS RO ERE



