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ION DYNAMICS OF THE EULER-POISSON SYSTEM 

JUNSIK BAE AND BONGSUK KWON 

ABSTRACT. We consider the Euler-Poisson system with Boltzmann relation that is a fun-
damental fluid model describing the dynamics of ions in an electrostatic plasma. It is often 
employed to study phenomena of plasma such as plasma sheaths and double layers. We 
show that the Euler-Poisson system admits a two-parameter family of solitary waves in the 
super-ion-sonic regime, and prove their the convective linear stability. We also propose 
a criterion for the singularity formation of the pressureless case, under which we prove 
that the smooth solutions develop a C1 blow-up in a finite time and obtain their temporal 
blow-up rates. Our blow-up condition does not require the largeness of gradient of velocity. 
k四words:Euler-Poisson system; Boltzmann relation; Solitary waves; Linear stability, 
Singularity formation 

1. INTRODUCTION 

We consider the one-dimensional Euler-Poisson system with the Boltzmann relation, 

which is a fundamental fluid model describing the dynamics of ions in an electrostatic 

plasma. In a non-dimensionalized form, the system is given by 

(1.la) 

(1.lb) 

(1.lc) 

｛ ： ：ロニ[iogp)x=―如，

-¢xx= p-e汽

where p > 0, u and ¢ are the unknown functions of (x, t) E良 x町 representingthe ion 

density, the fluid velocity for ions, and the electric potential, respectively, and K = Ti/Te 2: 
0 is a constant of the ratio of the ion temperature to the electron temperature. In the 

one-fluid model (1.1), the electron density Pe is assumed to satisfy the Boltzmann relation 
Pe= e色whichcan be formally derived from the two-fluid model under the massless electron 

assumption.1 A rigorous justification of this zero mass limit is discussed in [15]. 
The system (1.1) is referred to as the pressureless Euler-Poisson system when K = 0, and 

the isothermal Euler-Poisson system when K > 0, respectively. In plasma physics, it is often 
assumed that K = 0, which is an ideal situation for the case Ti ≪ Te, In a mathematical 

point of view, the absence of the pressure term makes the system weakly coupled, so it 

enables to analyze certain properties of the system significantly easier. These include for 

instance, the existence of solitary waves and the finite time singularity formation. 

Date: January 6, 2022. 
2020 Mathematics Subject Classification. Primary: 35Q35, 35Q53 Secondary: 35Q31, 76B25. 
1The mass of ions is much heavier than that of electrons for plasma environments. Additionally, it is 

assumed that (i) (isothermal) T; and Te are constant, (ii) (electrostatic) the time variation of the magnetic 
field is negligible, (iii) (plane wave) the dynamics of ions and electrons occur only in one direction. We refer 
to [6, 9, 30] for more detailed physicality of the model. 
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Unlike the compressible Euler system, the Euler-Poisson system has a dispersive character 
due to the presence of the electric potential, and this aspect makes the system exhibit rich 
dynamics and interesting phenomena. 

The system (1.1) has been employed to study various phenomena of plasma such as 
plasma sheaths [14, 25], KdV limit [4, 17], KP-II and Zakharov-Kuznetsov limits [21, 32], 
and NLS limit [24]. In particular, effort has been made to mathematically justify the 
phenomena of plasma'solitons'by showing existence of solitary waves [8, 33] and studying 
their interactions [19, 22, 34]. 

Various analytical and numerical studies indicate that in certain physical regime, the 
KdV equation is a good approximation of the Euler-Poisson system (1.1). Moreover, as 
solutions of the KdV equation are dominated by their solitary waves, this gives hope of a 
similar result for the Euler-Poisson system with more general initial data. This motivation 
naturally leads us to the study of stability of solitary waves for the Euler-Poisson system. 
In fact, linear stability of traveling solitary waves for the system (1.1) has been studied 
in [5, 18]. 

A question of global existence or finite time blow-up of smooth solutions naturally arises 
in the study of large-time dynamics of the Euler-Poisson system (1.1). If the global existence 
of smooth solutions is guaranteed at least near the solita内 waves,then it will be a first 
step to study the nonlinear stability. For the pressureless case, the solutions to (1.1) are 
shown to develop singularities in a finite time, [3, 23, 29]. For the isothermal case K > 0, the 
related questions concerning global existence of smooth solutions and finite-time singularity 
formation are widely open. To the best of our knowledge, no global well-posedness of smooth 
solutions is known except that of [16] for the 3D isothermal Euler-Poisson system, where 
the small and irrotational smooth solutions are shown to persist globally. 

2. SOLITARY WAVES FOR THE EULER-POISSON SYSTEM 

The Euler-Poisson system (1.1) with the far-field condition, (p,u,¢)(s,t)→(1,0,0) as 
S →士()(),admitsa two-parameter family of traveling solitary wave solutions 

(p-1,u,¢)(s,t) =（匹墨c,<Pc)(s -ct+ 1) 

for all c E(』て二iペ'K+1+sx) and 1 E尺， where咋＞ 0i is some critical value depends 
on K 2 0. See [8] for the isothermal case and [22, 33] for the pressureless case for more 

details. The solitary wave for the system (1.1) is super-ion-sonic wave. In fact, ✓「エ1? is 
called the ion sound speed in the context of plasma physics. 

The authors of this paper showed in [4] that (nc,恥，外） convergesto the rescaled solitary 
wave solution of the associated KdV equation as the amplitude parameter c > 0 tends to 
zero. More specifically, in the Gardner-Morikawa scaling (also called as the KdV scaling) 

(2.1) 

it is shown that 

where 

Here ¥JI紅 v(~) satisfies 

(：＝計／2x= s112(s -ct), c =汀可＋c,

叫e―1/2~）一心v(~) = 0（星） ass→0, 

3 い(~) := 7i可 sech2（い万言丘仄）．

1 
峨謹KdV十凶二了叱KdV[)_捜KdV + ~ 8聾KdV= 0. 

2✓「エ
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It justifies that the solitary waves of (1.1) converges to those of the KdV equation as the 
amplitude parameter c: tends to zero. This leads us to the study of linear stability of the 
solitary waves of (1.1). 

2.1. Convective linear stability of small amplitude solitary waves. We present the 
results in [5] regarding the convective linear stability of the solitary waves for the isothermal 
Euler-Poisson system (1.1). See [18] for the pressureless case. Since a standard energy 
method is not applicable for this case, a more detailed spectral analysis is required to study 
the asymptotic stability of traveling solitary waves. See Section 1 of [5] for the discussion 
regarding this issue. 

We introduce the moving frame x = s-ct, in which the linearized system of (1.1) around 
the solitary wave (nc,叩， ¢c)(x)is given by 

(2.2) 

where 

(8t -£)(ii, u汀＝ （o,of, 

£ (:):=-Bx[（―:；Peuc -1e+＋p;C)（：) + (（遁＋eo如戸(ri))]
Due to the translation invariance and the fact that the speed c is a parameter,入＝ 0is 

an £2-eigenvalue of the operator,C with algebraic multiplicity at least two. Indeed, we have 
that that 

虚 (nc,Ucf = (0, of and 虚 (nc,Ucf = -Bx(nc, Ucf-

Thus 

叫 nc墨 c汀(x) and Bc(nc,u氾(x)-t8x(nc,Uc『(x)

are non-decaying (in time) solutions to (2.2). 
Since the solitary waves exponentially decay to zero as lxl→ +oo, the essential spectrum 

of,C in £2-space coincides with that of the associated linear operator at the end state, that 
is confined in the imaginary axis in the complex plane, and the zero eigenvalue is embedded 
in the essential spectrum. Moreover, the point spectrum of,C in £2-space is empty. 

For a Hilbert space 1-i, we denote 1{ x 1{ by (1i)2. We present the result for the spectral 
stability. 

Proposition 2.1 (Spectrum of,C in £2-space, [5]). Consider the operator,C : (L叩→ (L叩
with dense domain (H叩． Then,for all sufficiently smalls > 0, it holds that 

び(£)=(Jess(£) =｛入 EC:Re入＝ O}.

However, in terms of a standard semigroup approach, the spectral stability itself is not 
sufficient to conclude the asymptotic linear stability. We resolve this issue by employing 
the exponentially weighted spaces defined by 

llf(x)||店(m:= ||e(3X f(x)||び（照） and llf(x)||男(賊)：= ||e(3x f(x)IIH• （艮），

where H刊股） isthe usual £2-Sobolev norm, and /3 ~ 0, s > 0. Since O < <f>c E £00偉）， the
linear operatorー洸＋砂 isinvertible on店（股） for/3E[O, l]. 

We first present some preliminary results for the linear asymptotic stability. 

Proposition 2.2. Consider the operator,C: (Lザ→ （砂）2with dense domain (HJ)2. For 

any fixed co E (0, j"iri言］， let(3＝Co計／2.Then there exists s0 > 0 such that for all 

s E (0, so), the following holds: 
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Im入
Im入

Re入 Re入

(a) Spectrum in L2 (b) Spectrum in L~ 

FIGURE 1. The bold curves indicate the essential spectrums of£. In (b), 
the zero eigenvalue of£ is isolated in Li for sufficiently small /3 > 0. 

(i) £ generates a C。-semigroup,e旦
(ii)入＝ 0is an isolated eigenvalue of£ with algebraic multiplicity two. 
(iii) （入— £)-1 is uniformly bounded on Re入?:0, outside any small neighborhood of the 

origin. 

Our main result follows from Proposition 2.2 and the Gearhart-Pruss stability theorem 
[1,31]. Let Po be the spectral projection associated with the isolated eigenvalue A= 0. 

Theorem 2.3 (Asymptotic linear stability in weighted L2-spaces, [5]). Under the same 

assumptions as in Proposition 2.2, the following statement holds: for any given (no, uof E 

(Li)2 satisfying Po(no, uo汀＝ O,it holds 

(2.3) lle£t(no,uof||（号）2~ C1e-c2tll(no,uo)TllcL~)2, Vt?: 0, 

for some constants C1, C2 > 0 depending on E:. 

The semigroup estimate (2.3) holds for any solution to the linearized Euler-Poisson system 
(2.2) with no component of the non-decaying modes. 

2.2. Ingredients of the stability analysis. The proof of Proposition 2.2 is broken down 
into the following steps. For more details, we refer to [5]. 

Step 1: Characterization of the essential spectrum. For appropriately chosen/3 ＞0, the 
essential spectrum of £ is strictly shifted into the open left-half plane (see Figure 1). This is 
due to the fact that the end state of solitary wave solutions lies in a super-ion-sonic regime, 

i.e., C > ✓「立．

Step 2: Characterization of the point spectrum. One of the main tasks in our analysis is 
to characterize the eigenvalues of£. We aim to show that入＝ 0is the only L炉—eigenvalue of 

£ on some closed set containing the closed right-half plane, and its algebraic multiplicity is 
two. The corresponding eigenvector and the generalized eigenvector are given by Ox(nc,匹）T

and Oc(nc,%）互 respectively.
For this part, we employ the Evans function techniques, [2, 10-13, 20, 26, 35]. The Evans 

function is an analytic function of the spectral parameter入， andon the natural domain, 
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the location and order of zeroes of the Evans function coincide with those of eigenvalues of 
£. For the associated eigenvalue problem, the natural domain of the Evans function is｛入：

Re入＞ 0}in L2 space, and the natural domain can be extended to contain ｛入： Re 入~ O} 
in the exponentially weighted space Li. 

In general, an explicit form of the Evans function is not available except for a few cases. 
To overcome this issue, we make use of a specific scale, related to (2.1), 

(2.4) ~ = c1/2x, 入＝ c3/2A,

and observe that as r:: tends to zero, the rescaled eigenvalue problem for the Euler-Poisson 
system can be formally reduced to the eigenvalue problem for the associated KdV equation 

(2.5) A広ー 8邑＋ v'l+KfJe(¥J!KdV広）十 8託＝ 0, （広（~) :=れ(x)),
2✓「喜

for which an explicit form of the Evans function DK<lv(A) is established in [27]; it vanishes 
only at A = 0 with multiplicity of two. 

We apply the approach developed in [28] to show that in the scaling (2.4), the Evans 
function D（い） forthe Euler-Poisson system converges to that for the associated KdV 
equation as c tends to zero, and that the convergence is uniform on a domain containing 
the closed right-half plane. Together with some additional arguments, we deduce that入＝ 0 
is a zero of D（入，r::)with multiplicity two, and there is no other zero. The relations between 
the Evans functions and the associated eigenvalue problems are summarized in the following 

diagram: 

芯＝A(x，入，e:)y ⇔ 閤＝ふ(~,A,c)p, →悶＝人(~,A,O)p ⇔ Eq. (2.5) 

as E:→ O 

D（入，e） D.(A,c) → D,(A,O) DKdv(A) 

↓ 

〇＃罰ニ一］ I 0 = Dkdv(O) ＝虹kdv(O)＃咲DKdv(O),
0 # D（入，e）for入ヂ oI <= 。#Dkdv(A) for A # 0 

Step 3: Uniform resolvent bounds. Another key ingredient in the analysis of the linear 
asymptotic stability is establishing Proposition 2.2.(iii). To accomplish this, we consider 
the Green function for the first-order ODE system associated with the eigenvalue problem 
for the Euler-Poisson system and apply a perturbation argument involving the so-called 

roughness of exponential dichotomies, [7]. 

2.3. (Linear) Instability criterion for large amplitude solitary waves. From some 
observations using the Evans function, we obtain the following instability criterion. 

p roposition 2.4 (L -instability criterion, [5]). Let 

Q(c) ：=J00 (P心）（x)dx. 
-oo 

I”心(c)< 0 for some c, the operator£ on (L叩 hasa positive eigenvalue. 

Seeking unstable solitary waves of large amplitude in accordance with this criterion, we 
numerically evaluated the integral Q(c). In fact, it turned out that the instability criterion 
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is inconclusive. More precisely, our numerical data show that Q(c) is strictly increasing, so 
one cannot conclude that there is a positive eigenvalue; this is in contrast to the numerical 
result found in [18] for the pressureless case. See Section 8 of [5] for more details. The 
questions regarding instability will be investigated in the future study. 

2.4. Large amplitude solitary wave profiles of the Euler-Poisson system. One 
of the remarkable differences between the pressureless and the isothermal Euler-Poisson 
systems lies in their density profiles of large amplitude solitary wave solutions. More 
precisely, from the proof of existence of the solitary waves in [4], one can see that while 

吋：＝ SUPx匹 (x)remains bounded above for the case K > 0,心approachesto infinity as 
E /'E0. Several numerical experiments for the large amplitude solitary waves are presented 
in Section 8 of [5]. 

The feature of L(X)-blow-up of density profile for the case K = 0 may be closely related 
to the fact that the pressureless Euler-Poisson system can develop the delta shock in finite 
time. Specifically, if the initial data (no, uo) (x) satisfies 

(2.6) 8四 o(x):S -,/'.玩石〗
at some point x E恥 thenthe maximal existence time of the smooth solution is finite, 
see [23]. For the singularity formation at finite time T*, one can further show, by a simple 
comparison technique for ODE, that the gradient of velocity blows up in a non-integrable 
way in time, i.e., 

(2.7) -fJ四え (T*―t)-1as t /'T,. 

From (2.7), together with the continuity equation (1.la), we see that L00 norm of density 
becomes unbounded邸 t/'T*. This non-physical singular behavior emerges since the 
pressure term is artificially ignored. As we discussed earlier, this is not the case in the 
presence of the pressure, in general. We suspect that it would be due to this singular 
behavior if the large amplitude solitary waves for the pressureless case are unstable. 

Another interesting observation is that our numerical experiments demonstrate that 

inf（如cl年） ＼ーy'2 as c / ca ~ 0.5852. 
xE股

See Figure 2 for the numerical plot of如 c1岳 withc = 0.585 < co・ From this numerical 
experiment together with the above mentioned study of [23], one may expect that there 
may be a certain critical threshold phenomena in the pressureless Euler-Poisson system. 
However, the situation is not so simple as we will see in the next section. 

3. SINGULARITY FORMATION FOR THE PRESSURELESS CASE 

In this section, we establish a criterion for singularity formation of (1.1) with K = 0, 
under which we show the smooth solutions develop a C1 blow-up in a finite time along 
with the temporal blow-up rates. In general, it is known that smooth solutions to nonlinear 
hyperbolic equations fail to exist globally in time when the gradient of initial velocity is 
negatively large. Specifically, if the initial data satisfies (2.6), then the smooth solution 
breaks down in a finite time, [23]. Roughly speaking, this means that if the given initial 
data is near the shock waves, then the corresponding solutions develops into the shock waves. 
In contrast, our blow-up condition does not require the largeness of gradient of the initial 
velocity. In particular, our results demonstrate that C1 norm of velocity blows up even if 
the initial velocity has trivial gradient. From a physical point of view, this phenomenon 
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FIGURE 2. The graph (solid) of q四 c(x)／《云同 forc = 0.585 < c0. The 

horizontal (dashed) line represents -y'2. 

is caused by the effect of the electrostatic repulsive force. For instance, when the initial 
density is locally lower than the background density, i.e., ion density is locally rarefied, 
the electrostatic potential is determined in a way that the fluid momentum with negative 
gradient is generated at later times, resulting in the finite-time singularity formation. See 
a numerical simulation in Figure 3. 

We consider the pressureless Euler-Poisson system (1.1) around a constant state, i.e., 

(p,u,¢)→ （1, 0, 0) as lxl→oo. It is known that the system (1.1) with K = 0 admits a 
unique smooth solution locally in time for the smooth initial data, for instance, (po -1, uo) E 
H信） x炉 (JR).Furthermore, as long as the smooth solution exists, the energy 

1 1 
H(t) := 1 ~pu2 +―|8犀＋ （¢-1）虐＋ 1dx 

沢 2 ' .2 

is conserved, that is, H(t) = H(O) for all t E [O, T]. We refer to [21] for more details. 
We state our main theorem of this section. 

Theorem 3.1 ([3]). Let f-: (-oo,O]→[O, oo) be a strictly increasing function defined in 
(3.2). For the initial data satisfying 

(3.1) exp(!三(H(O)))> 2po(a) for some a E恥

the maximal existence time T. for the smooth solution to the Euler-Poisson system (1.1) is 
finite. In particular, 

li.!!! sup p(x, t) = +oo 
tj"T. xEIR 

for all t < T. sufficiently close to T.. 

Theorem 3.1 demonstrates that singularities in solutions to (1.1) can occur in a finite 
time if the initial density at some point is small compared to the initial energy. In fact, the 
negativity of the initial velocity gradient is not required. Moreover, there is a fairly wide 
class of the initial data satisfying the condition (3.1). From the elliptic estimates for the 
Poisson equation (1.lc), we have 

〇こ H(O)5 supXE股Poj 2 1 
2 

luol2 dx + i 11Pa -112 dx =: C(po, ua), 
R K。R

and 
1 

inf Ux(x, t) ~ 
x€R t-T* 
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where K。:=（1 -inf po)/ (-log inf po). On the other hand, since lim(",,O f□(() = 0, for 

any given constant O < c < 1/2, there isふ＞ 0such thatく＜ふ impliesexp(J_=-1(()) > 2c. 
Thus, (3.1) holds for all initial data satisfying inf Po = c E (0, 1/2) and C(po, uo) <ふ≪ 1. 
In particular, one can take uo = 0. 

3.1. Ingredients of the blow-up analysis. The proof of Theorem 3.1 is broken down 
into the following steps. Detailed proofs of the results in this subsection can be found in [3]. 

Step 1: Uniform boundedness of ¢. One of our key observations is that as long as the 
solution exists, </>(x, t) is uniformly bounded in x and t. Let us define the functions 

応）：＝JZ ✓2 ((s -1)が＋ l)dsforz2'.0, 

f(z) := < J~o 
J_(z) :=ju~ ds for z :c:; 0. 

三gl'［一espheaCVtelVte『ye1悶r[：ここnrcet,10fn:zs口［い瓜'+昇：二゚`ご二；g［;-：nse[°叫ご， We

(3.2) 

Lemma 3.2. As long as the smooth solution to (1.1) exists fort E [O, Tl, 

f~1 (H(O)) ::;; cp(x, t) ::;; f+1 (H(O)) for all (x, t) E屈 x[0,T]. 

Step 2: Second order ODE. For u E C1, the characteristic curves x(a, t) are defined as 
the solution to the ODE 

x'= u(x(a, t), t), x(a, 0) = a E良， t?:0, 

where':= d/dt and the initial position a is considered as a parameter. From (1.1), one can 
easily obtain that 

2 P = -UxP, 妬＝一四＋ p -e， ¢ 

where・:= 8t + ufJx. We define 
枷

w(a,t) :=-;;-=. 
8a 

(a, t) 

and show that w satisfies a certain second-order ordinary differential equation: 

(3.3) w" + e¢(x(a,t),t)w = po(a), w(a, 0) = 1, w'(a, 0) = Uox(a). 

Using Lemma 3.2 for (3.3), one has 

(3.4) w" + efう（H(O))W：：：：：： po(a), w(a,0) = 1, w'(a,0) = uox(a). 

Step 3: Blow-up criterion. It is obvious that for each a E恥

0 < w(a, t) < +oo ~ 0 < p(x(a, t), t) < +oo, 
limゾr.w(a,t)=O ⇔ limvr.p(x(a, t), t) = +oo. 

We show that supxE股 |p(x,t)I and supxEIR匹(x,t) I blow up at the same time, if one of them 
blows up at a finite time T.. Moreover, Ux'¥(-oo as t / T. at a non-integrable order in 
time t. Using Lemma 3.2, we obtain 

Lemma 3.3. Suppose that the smooth solution to (1.1) exists for all：゚：：：：： t< T. < +oo. 
Then the following statements hold. 
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FIGURE 3. Numerical solution to the pressureless (1.1). p(O, t) and ux(O, t) 

are getting larger as time t goes by. 

(1) For each a E lll, the following holds true: 

(3.5) lim w(a,t) ＝ 0 
t/T* 
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liII!_infux(x(a,t),t) = -oo. 
t/'T, 

{2) If one of (3.5)―(3.6) holds for some ci E股， thenthere are uniform constants co, c1 > 
0 such that 

Co Cl 

t -T* 
く 四 (x(a,t), t) < 

t -T* 
(3.7) 

for all t < T* sufficiently close to T和

Step 4: Zeros of the second-order ordinary differential inequality. The observation in Step 

3 leads that one may apply some comparison arguments to study the existence of zeros of 

w for (3.4). We prove the following lemma. 

Lemma 3.4. Let a and b be positive constants. Suppose w(t) satisfies 

(3.8) w" + aw'.Sb 

for all t 2: To and w(To) 2: 1. If a/2 > b and 

(3.9) 
a|w(To)|2|W'(T。)|2

-w(To)b + ~ > 0, 
2 2 

then w(t) has a zero on the interval (To, +oo). 

Now by applying Lemma 3.4 for (3.4), and by Lemma 3.3, we prove the assertion of 

Theorem 3.1. 
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