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1 Introduction 

This article is a summary of [8] on large time behavior of solutions of the 

following system: 

如＋div(pv)= 0, (1.1) 

p（如＋ V・ ▽v)-v△V-(v + V')▽div十▽P(p)＝虎div(p『 F), (1.2) 

OtF + V.▽F =（▽v)F (1.3) 

in IR3. Here p = p(x, t), v = T (v1(x, t), v2(x, t), v3(x, t)), and F = (FJk(x, t))iさj,k:','.3
denote the unknown density, the velocity field, and the deformation tensor, 

respectively, at position x E配 andtime t ~ O; P = P(p) is the given 
pressure; v and v'are the viscosity coefficients satisfying 

v > 0, 2v + 3v'~ O; 

/3 ＞0 is the propergation speed of elastic wave. We assume that P'(l) > 0, 
and we set 1 = ✓戸m.

The system (1.1)-(1.3) is considered under the initial condition 

(p, v, F)lt=O = (Po, Vo, Fo)- (1.4) 

We also impose the following conditions for p。andFi。:

p0det.F;。=1, (1.5) 
3 

こ(F口瓜附— F戸尻F訊）＝ 0, j, k, l = l, 2, 3, (1.6) 
m=l 

div(po TFi。)＝0. (1.7) 
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It follows from [5, Appendix A] and [13, Proposition.l] that the quantities 
(1.5)-(1. 7) are invariant for t ~ 0: 

pdetF = 1, (1.8) 

t(Fmla%戸-F二 pi1)= 0, j, k, l = 1, 2, 3. (1.9) 
m=l 

div(p T F) = 0. (1.10) 

The purpose of this article is to the large time behavior of solutions of the 

problem (1.1)-(1.7) around a motionless state (1, O,I), where I is the 3 x 3 
identity matrix. 

The system (1.1)-(1.3) is treated as a basic model for compressible fluid 
with elastic effect in macroscopic scale. In fact, the elastic effect appear in 

the last term of the right-hand side of (1.2) (See [10, 15] for more detail of its 
physical background). We note that by setting/3 ＝0 formally, the system 
becomes the usual compressible N avier-Stokes equations. 

In the case/3 ＝0, Hoff and Zumbrun [2] derived the following LP (l :S 
p :S oo) decay estimates in町， n~ 2: 

||（4>(t),m(t))llv :<= { 
C(l +t)―?(1-i)ーデ(1-i)L(t), lさp< 2, 

2さpさoo,C(l +t)―?(1-i)' 

where m = pv; L(t) = log(l + t) when n = 2, and L(t) = 1 when n 2: 3. 

Furthermore, the authors of [2] showed the following asymptotic property: 

（位(t),m(t)) -(0，戸（e―vlEl2tp(E)加））） 1 さC(l+t) ―~(1-½)ーデ (1-~)
LP 

e above estimates and for 2 ~ p ~ oo. Here P(E) = I -冒， E€配． Th
asymptotic properties indicate the hyperbolic aspect of the system due to the 

diffusion wave property caused by interaction between viscous diffusion and 

sound wave. In fact, the obtained rate (1 + t) —~ (1一点）ー号（1-皇）L(t)of its V 

norm are slower than the heat kernel when 1さp< 2. Moreover, if 2 < pさ

oo, the convergence rate is improved by cutting off (O, F-1 (e-vlEl2tや(E)加）），
which provides the pure diffusion phenomena. 

We next mention the related works in the case (3 > 0. The existence of 
the strong solution around the motionless state was proved by Hu and Wang 
[4, 5]. It was proved by Hu and Wu [6] and Li, Wei and Yao [9] that the 
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solution satisfies the following V decay estimates for the case 2さPさ OO

and the L2 decay estimates of its higher order derivatives: 

llu(t)IILv :=:; C(l + t)―H1-i), 

II▽%（t) I I £2 :=:; C (1 + t) —¾-~, k = 0, l,..., N -l, 

provided that u。=（Po -1, Vo, Fi。ー I)belongs to H凡 N ~ 3, and is small 
in L1 n H3. Here u(t) =（の(t),w(t), G(t)) = (p(t) -1, v(t), F(t) -I) is 
the perturbation. The above V estimates imply the diffusive aspect of the 

system (1.1)-(1.3). However, in expectation of the diffusion wave phenomena 
of the system (1.1)-(1.3) due to tripartite interaction of sound wave, viscous 
diffusion and elastic wave, the obtained LP decay estimate had room for 

improvement. Motivated by the work [2], the author of [7] improved and 

generalized the results of [6, 9] by showing the following estimates for 1 < 
p :=:; oo: 

llu(t) IILP ~ C(l + t) —H1-})-½(1-~), i < Pさoo,

provided that u。=（Po -1, Vo, Fi。— I) is small in £1 n H3. This gives the 
hyperbolic aspect of the system which does not appear in the results in [6, 9] 
and the work [2] of the case (3 = 0 due to elastic wave. We also refer to 
[3, 11, 16] in recent progresses. 

We point out that the case p = l was not discussed. In [7], the material 
coordinate transform and the non-local operator were used to get over the 

obstruction of applying the semigroup theory to the nonlinear problem. In 
fact, we made use of the following function to reformulate the nonlinear 
problem for u: 

w(x, t)：＝▽心(x,t)，心(x,t) :=炒（x,t) -（—△)―1divT(¢▽炒＋（1 ＋</J)h（▽;fi)). 

Here炒(x,t) = x -X(x, t) is the displacement vector; X = X(x, t) is the 
inverse of the material coordinate x = x(X, t) satisfying the flow map: 

｛翌＝ V（x(X,t)，t)，

x(X,O) = X; 

（△）-1 denotes (△） 1 = ;::-1lfl 豆 h（▽1/J)is a function determined from 

F-1＝▽砧＋h（▽炒） ＝． We then obtained the linear condition ¢ + tr¥J! = 0 
which eliminates non-~ecaying apd L1 unbounded terms in the expression 
of the semigroup e―tL{Ji。,whereUi。=（¢。,Wo,叫）， W。＝ '1!(0). Therefore we 
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investigated the problem for U(t) = (c/>(t), w(t), w(t)) and derived the desired 
estimate from the following integral equation: 

釘t)= e―tL{Ji。+J e―(t-s)L N(U(s))ds, 

゜when~ L is a liE-earized operator around the motionless state; N(U(s)) = 
(N1(U(s)),_N2(U(s)), N3{U(s))) is a nonlinear term satisfying the linear con-
dition N1(U(s)) +trN3(U(s)) = 0. However, we cannot conclude that the £1 
norm of u(t) is controlled by U(t) due to the £1 unboundness of the Liesz 
operater appearing in the definition of ¥[J. 

In this article, we solve the above difficulty by changing the reformulation, 
and show that the following £1 estimate hold for t 2:: 0 uniformly: 

llu(t)II さ C(l+t)½,

provided that u0 is small in £1 n H4 and belongs to w2,1. Moreover, the 

obtained (1 + t)互 issharp under some low frequency assumption considered 

in [6]. 
We give an outline of the proof of the main result. We first notice that 

the constraint (1.9) is read as p = detF-1. Then we see from the definition 
of the determinant that 1> is handled by -div炒

1>=ー div厄＋O(lv7臼）， 1|▽厄llc(o,oo;L=)≪ 1. 

For simplicity, we omit the tilde 7 of ;fJ here. We confirm that the L1 norm 

of u = (c/>, w, G) is estim~ted ~y U = (-div心， W，▽心）． Thereforewe arrive 
at the problem for U = (c/>, w, G) = (-div心， W，▽砂

{ ：ロニ冒ロ
Ult=O = Ui。,

(1.11) 

where N(U) = (N1(U)，ふ(U)，芯(U))is the nonlinearity such that N1(U) + 
tr芯 (U)= 0. We point out that since U and N(U) hold the same linear con-
straint as in [7], the semigroup e―tLu。andthe Duammel term Ji。te―(t-s)L N(U(s))ds 
do not have terms which are time-independent and unbounded in L1. Con-
sequently, the desired L1 estimate follows the following integral equation of 

U: 
t 

U(t) = e―tLu。+J e―(t-s)L N(U(s))ds. 

゜This article is organized as follows. In Section 2 we state the main result 
of this article. In Section 3 we give the outline of the proof of the main result. 
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2 Main Result 

In this section we summerize the results in [8]. 

To state the main result, we first introduce the problem for the pertur-

bation u(t) = (cp(t), w(t), G(t)) = (p(t) -1, v(t), F(t) -I): 

-Oゆ＋divw= 91(u), 

知— u△w -vV'divw + 12▽¢ー伊divG=釦（u),

8ぶ―▽w= g3(u), (2.1) 

▽q> + div Tc= g4(</>, G), 

ult=O = uo = (</>o, wo, Go). 

Here v = v + v'; gj(u),j = 1, 2, 3, g4(</>, G) denote the nonlinear terms; 

叫u)= -div(cpw), 

</> I A -.-, 1• • ?,.-, 1¥ 1 
g2(u) = -w ・ V'w + ~(-v△w-v▽divw 十召▽¢) - VQ（の）

1+¢ 1+¢ 

132¢ 使
- divG+ div（のG＋びG+</>G℃)，
1＋の 1+ </> 

船 (u)= -w• • G+ (• w)G, 

叫</>,G) = -div（ふG),

where 
1 

Q(¢) = ¢21~ P"(l + sり）ds.

゜The main result of this article is stated as follows. 

Theorem 2.1. (i) Assume that¢。andG。satisfy▽⑳+div℃。 =g4位o,G。)
and (I+ G。戸＝ ▽X。forsome vector field X。.Thereis a positive number 

E such that if u。=（りo,wo,G。)satisfieslluollH4 + lluo||ぃ:::;E and u。Ew2,1, 
then there exists a unique solution u(t) E C([O, oo)；が） ofthe problem (2.1) 
satisfying 

llu(t)IIL1:::; C(l +t)½(lluollw2,1 + lluollH4) 

uniformly fort 2: 0. Here C is a positive constant. 

{ii)In addition, if there exists a positive number r > 0 such that the following 

low frequency condition holds for 0 こ l~I さ r:

|忍o(~)Iミ:Co,Im。 (~)I+ 19。（く）― Tg。 (~)I :::; C叶~11)0'(2.2)
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where (mo, g。)：＝ （PoVo, PoF;。— I); c0, c1 and TJo are positive numbers in-

dependent oft, u(t) satisfies the following lower L2 estimate uniformly for 

t 2: R: 

llu(t)||ぃ2':c(l + t)½. (2.3) 

Here R is a large positive number, and c is a positive number independent of 

t. 

Remark 2.2. In a similar manner to the following proof and the previous 

result [7], we can generalize the above L1 estimates as 

llu(t)IILP ~ C(l + t) —i(1-½)-½(l-i) (lluo 111ン1+ I I uo I I H3), tミ0

llu(t)lb 2: c(l + t) —H1-½)-½(1-i), t 2: M. 

for 1 < p ~ oo. We also note that the condition▽の0-div 丁(I+G。□= 0 
imposed in [7] is not necessary. 

3 Outline of the proof of Theorem 2.1 

In this section, we briefly explain the outline of the proof of Theorem 2.1. 

We only show the upper £1 estimate (i). The lower £1 estimate (ii) im-

mediately follows from the interpolation inequality and the lower £2 estimate 

llu(t)IIL2 2: c(l + t) —¾, t 2: M, 

provided that the low frequency condition (2.2) holds (See [6] for the proof). 
We obtain the following integral equation from (2.1) by using the Duammel's 
principle: 

t 

u(t) = e―tLUo + J e―(t-s)L g(u(s))ds. 

゜Here L is a linearized operator defined as 

L= （炉：▽―▽:Vdlv -~:div) 

The first term of the right hand side is formally estimated as 

lie―tLUo 11£1さC(l+ t)½ lluollL1 + Ce―ctlluollw2,1, t 2:: 0, 
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provided that the conditions ¢。 +trG。=0and G。＝ ▽珈 hold.Here廣o
is some vector field. On the other hand, since we cannot determine whether 

the nonlinear terms g1 (u) and g3 (u) satisfy these same conditions for ¢。 and
G。ornot, the estimate of the Duammel term Jc。:e―(t-s)Lg(u(s))ds becomes 

difficult. Therefore, inspired from the idea of [14, 15], we rewrite the problem 
into the suitable form by using the material coordinate transform to enable 
the application of the linear semigroup theory. 

We define X = X(x, t) as the inverse of x = x(X, t) which is the solution 

of the following flow map: 

｛麿(X,t)＝v(x(X,t)，t)，

x(X,O) =XE記

According to the continuum theory, the deformation tensor F and its inverse 
F-1 are given by F =骰 andF-1 =岱＝ ▽X, respectively. We next set 

the displacement vector心(x,t) := x -X(x, t). We see that心(x,t) satisfies 
the following properties: 

伽— V= -V• ▽心，

G=F-I=(I —▽切―1-I.

In addition, since the constraint (1.8) is rewritten as p = detF-1, we have 

¢ = p -1 = det F-1 -1 = -divゆ＋ （tr（▽心）2ー (tr（▽心））り＋det（▽ゆ）．

These impliy that the behavior of ¢ and G are confirmed from the first order 

derivatives of似

We next set心o=心|t=O,¢=-div心， G＝▽ゆ， andU(t) := T位(t),w(t), (う(t))= 
T(-div心(t),w(t)，▽心(t)).We then see from the following lemma that llu(t)||い

is estimated by 11 U (t)||且

Lemma 3.1. There exists E1 < 1 such that if 11Gllc([o,oo);H3) ~ E1, then the 
following estimates hold uniformly fort ~ 0: 

(i) c-111喜(t)||ぃ~ IIG(t)||ぃ<C|1匹（t）||L1,

(ii)|| ▽k+1心 (t)||い~ { ~~誓喜〗!i］＇1 + 1|▽叩(t)||い)， K = 2, 

C(II▽G(t)||ぃ|1▽幻(t)IIH1+ II炉 G(t)||L2), k=3, 

k = 1, 

(iii)||▽K+1心ollL1~ CII▽⑫||L1, k = 1, 2, 

(vi) 11¢(t)||い~ lldiv心(t)||ぃ＋ C(I|▽心(t)IIL= +||▽心（t)lli=)I|▽ゆ(t)||且
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The proof can be found inn [7, 8]. 

Remark 3.2. We note that the non-local operator(―△)-1 does not appear 
in this reformulation. Therefore we do not face the difficulty caused by the 
Liesz operator. 

In view of Lemma 3.1, we focus on the problem for U(t) instead of u(t): 
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(3.1) 

We obtain the following integral equation from (3.1) by using the Duammel's 
principle: 

t 

U(t) = e―tLu。+J e―(t-s)L N(U(s))ds. 

゜
(3.2) 

By direct calculation, N1 (U) and凡(U)also hold the same linear condition 

as¢ and G: 

N1(U) + tr芯(U)= 0. (3.3) 

Therefore we see from the condition (3.3) that the right-hand side of (3.2) is 
estimated as follows. 

Lemma 3.3. The following estimates hold uniformly fort~ 0: 

lie―tLu。||I、1::;C(l +t)½IIUi。||ぃ +Ce―ctII Uo llw2,1, 

Jte―(t-s)L N(U(s))ds 
O L1 

::; C 1t (1 + t -s) ½ 11 N (U (s)) I I L1 ds + C 1t e―c(t-s) IIN(U(s)) llw2,1ds. 
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The proof can be found in [7, 8]. It remains to estimate Ui。andN(U(s)) 

in L1 and w2,1. Thanks to Lemma 3.1 and the results in [6, 9], we have 

IIUollL1 + IIUollw2,1さC(lluollw2,1+ lluollH4), 

IIN(U(s)）||いさ C(l+ s)-2(lluollL1 + lluollH3), 

IIN(U(s))llw2,1 ~ ClluollH4・ 

These inequalities and Lemma 3.3 yield 

llu(t)IIL1さ;CIIU(t)IIL1::; C(l +t)½(lluollw2,1 + lluollH4)-

This completes the proof of Theorem 2.1 (i). 
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