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Bilinear estimates for functions with the Dirichlet boundary 
condition and an application to SQG 

Tsukasa Iwabuchi 

Mathematical Institute, Tohoku University 
Sendai 980-8578 Japan 

ABSTRACT. We discuss the validity of the bilinear estimate of functions satisfying the 
Dirichlet boundary condition on the two dimensional half space. For two functions f, g, 
we compare two nonlinearity of the standard product f g and the gradient off and the 
perpendicular component of the gradient of g, and we show that the first case needs a 
restriction for the regularity index, while the second case does not. We also introduce an 
application to the surface quasi-geostrophic equation with the critical dissipation. This 
paper is a survey of these results. 

1. INTRODUCTION 

Let us consider problems on the half space, 

記：＝ ｛X E  (x1辺） E股21砂 ＞ O},

and we consider the Dirichlet Laplacian―△か

{D(—知）＝｛f E HJ(9) 1△f Eび（記）｝，

→f=―△f=一言はf, f ED（一ふ）．

We also write Av the square root of —砂

AD :＝《二ぷ．
The aim of this paper is to discuss a simple problem of partial differential equations on 
domains with the boundary. To this end, we start by the bilinear estimates in Besov 
spaces for product of two functions and for the nonlinear term appearing in the surface 
quasi-geostrophic equation. 

When the domain is the whole space配， thenit is well-known that 

llfgllBp,q s c(11111B出，qllgll£P2 + IIJll£P3 llgllBぬ，q)，

where 
1 1 1 1 1 

s>O, I::;p,p1,qさoo(j = 1,2,3,4), ~ =—+ -=—+ -． 
p Pl P2 p3 p4 

As for the nonlinearity for the surface quasi-geostrophic equattion, this kind of estimates 
for （▽刊—△)-1/2f • V) g is known, since the Riesz transform is bounded in the homogeneous 
Besov spaces, where V_j_ ＝ （-8四 9辺）． Wediscuss the validity of such inequalities on the 
half space with regularity number s measured by the Dirichlet Laplacian, and we will find 
possible range of s. 
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We introduce Besov spaces associated with the Dirichlet Laplacian along [10, 16]. It is 
known that —• D is a self-adjoint operator and we can apply the spectral theorem. We 
then have a partition of identity { E（入）｝入EIRsuch that 

00 
f = J dE（入）finび（記）， fE L2(記），

-oo 

00 
心 f=J 入dE（入）finび（記）， fED(—ふ）．

-oo 

Moreover, for every measurable function cp :恨→ (C,we can define cp(—知） by

『位（ー△叫） ＝ ｛f Eび（記）［00や（入）12d||E（入）f|出＜ 00｝， 

cp（一凶）f＝J00ゃ（入）dE（入）f, f E D(cp(—ふ））．

゜We next introduce a partition of unity仇｝jEZCC,合（股） suchthat 

suppのoC [2―1,2]，い） ＝のo(2―J入） for入E股，とい） ＝1 for入＞ 0.
JEZ 

It is known in [21] (see also [15]) that the functions of the square root of the Dirichlet 
Laplacian is uniformly bounded. 

sup II的(Av)IILP→LP<00, 1さp::::;00. 
jEZ 

We can then define the test function spaces of non-homogeneous type and homogeneous 
type. 

X :={! E L1 n L2 IPM(f) < 00 for all M = 1,2,... }, 

PMU) := llf llu + IIAぢfllu,

z :={! E L1 n L2 I q叫f)< oo for all M = 1,2,... }, 

qM(f) := PMU) + sup 2聞j1IIAげがA叫f||Ll.
廷 0

It can be checked that X, Z arc Frcch6t spaces, and we denote by X', Z'their topological 
duals. We then define Besov spaces as follows. 

Definition. For s E股 and1 ::::; p, q ::::; oo, we define 

叩＝｛f E Z'I llflls;,,q := { ~ (2叫 I的 (Av)JIILP『}¼ < 00} 

The following is our result for the bilinear estimates. 

Theorem 1.1. ([13,14]) Let 1::::; P,Pj,q::::; oo(j = 1,2,3,4) satisfy the condition of the 
Holder inequality. 

1 1 1 1 1 
-=—+ - ＝—＋ー·
p Pl P2 p3 p4 

(1) Let O < s < 2 + 1/p. Then 

IIJgll均，q::::;c(llflls出，qllgllLP2 + IIJIILPa llglls和，q）
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for all f Eか n圧 andg E 炉 n狐，q・ ifs = 2 + 1/p and 1 :S qく oo,or P1,q 

s > 2 + 1/p, then it does not hold. 
(2) Lets > 0. Then 

||（炉A訂）．▽g||B;q三C(1|f||Bも，q1|g||Bら1+ llflls瓜1||g||B叫
for all f E i3;,,q n B似 andg E礼，1n Bにふ

We give some comments about the optimality of s = 2 + 1/p in Theorem 1.1 (1). For 
the sake of the simplicity, let us discuss the case when p = 2. For every smooth f, g such 
that(―△D沖f,（―△D四gE L2 for all m = 0, 1, 2,..., we easily see that the product f g 
is also in the domain of the Dirichlet Laplacian, since the value of f g on the boundary is 
zero and 

(―△)（Jg)=（―△f)g-2• f• • g+f(—• g), 
and each term in the right hand side is justified in L}。cat least. If we consider derivatives of 
higher order, we need to consider whether or not(―△)（f g) again belongs to the domain of 
the Dirichlet Laplacian. On the boundary value of(―△)（f g), it is easy to see that(―△f)g 
and f(―△g) have the boundary value zero, however,▽f・ ▽g does not necessarily satisfy 
such condition on the boundary. Therefore, we would not be able to justfy(―△研(Jg)
in general. On the other hand, it is still possible to apply the fractional Laplacian of small 
order close to zero. When O < a < 1/2 = 1/p, the multiplication by the sign function with 
respect to四 isbounded operator in the Sovolev spaces on the entire space (Lemma 2.2), 
which allows us to approximate the function(―△)（f g) by some functions with the zero 
boundary value. We can then deduce that s = 2 + a < 2 + 1/p should be the threshold to 
assure the bilinear estimate. In contrast, no restriction appears for the regularity number 
in Theorem 1.1 (2), since the derivative広， othogo叫 tothe boundary, changes the 
boundary condition. In fact, we explain the Dirichlet condition by the odd extention with 
respect to x2 and the Neumann condition by the even extention with respect to x2 in this 
paper, and the derivative by四 changesthe two conditions each other, which allows us to 
obtain that for instance f 8x2g satisfies the Dirichlet boundary condition (see Lemma 2.3 
for more detail). We also refer to [11] for the relation between boundary value and the 
derivative of the orthogonal direction to the boundary. 

We next apply Theorem 1.1 (2) to the surface quasi-geostrophic equation on the two 
dimensional half space. 

閲＋（▽_j_知 0)．VO十知0= 0, t > O,x E記，

0|8畔＝ 0, 0(0, x) = 00(x). 

The equations are known as an important model in geophysical fluid dynamics, which is 
derived from general quasi-geostrophic equations in the special case of constant potential 
vorticity and buoyancy frequency (see [18, 19]). 

If the domain is the entire space配， thereare plenty of literature which studies the 
existence of global solutions with the fractional Laplacian(—• )a/2, O < a :S 2. The global 
regularity for any smooth data is known in the subcritical case, a > 1, and let us focus on 
the critical case, a = 1. The global regularity with small data was proved by Constantin, 
Cordoba and Wu [2] (see also Constantin and Wu [8]). The poroblem for large data case 
was solved by Caffarelli and Vasseur [1], Kiselev, Nazarov and Volberg [17]. As another 
approach, Constantin and Vicol [7] established the nonlinear maximum pronciple to prove 
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the global regularity. On the other hand, in the super-critical case, the regularity only for 
small data is known (see [9]), and blow-up for smooth solutions is an open problem. On the 
bounded domains with the smooth boundary, local exitence of strong solutions and small 
data global solutions are known, and was shown by by Constantin and Nguyen [6]. Related 
to weak solutions, we refer to the papers by Constantin and Ignatova [3] and Constantin 
and Nguyen [5]. The global solvability for large data is an important problem, but it has 
not been settled, and let us refer several recent papers by Constantin and lgnatova [4], 
Stokols and Vasseur [20]. 
In this paper, the purpose of our application is to give a simple example with the 

boundary, and by the help of the odd extention, we can handle the boundary value of 
functions with the Dirichlet boundary condition appropriately to obtain the existence of 
global solutions with arbitrary smooth data. 

The following is our result for the surface qu邸 igeostrophic equation. 

Theorem 1.2. ([14]) Let 0。E鷹，1.Then the integral equation 

0(t) = e―tA鳴 ーJe―(t-T)Av ((U.▽)0) dT, u =炉A戸

゜
（）  

posseses a unique global solution 0 such that 

0 E C([O, oo), B如） nL1(0,oo；尻，1).

Furthermore, 0 = 0(t, x) is continuous fort ~ 0 and x in the closure of記 and0 is 
identically zero on the bounda咄

Let us give few remarks to prove Theorem 1.2. The local solvability follows from 
an analogous argument to [22] throught the odd extention and the bilinear estimate in 
Theorem 1.1 (2). We there need maximal regularity estimate proved in [10]. To extend 
the local solution, we can apply the nonlinear maximum principle by [7] to guarantee 
the uniform boundedness of the Holder space with the order a sufficiently smaller than 
1/110。||£00,which allows us to solve the equation in a certain length of the time interval 
any number of times. We refer to the paper [14] for the proof of Theorem 1.2. We give a 
comment that the half space case is settled naturally by the argument above and moreover 
the a叫 yticityin spacetime is obtained in [12, 14]. 

In the next section, we give proof outline of Theorem 1.1. We refer to the paper [13] 
for the detail of the bilinear estimate of the standard product, f g, the paper [14] for 
(V_j_A訂）• ▽g with the application to the critical surface quasi-geostrophic equation. 

Notation. We denote by IJ'the Lebesgue spaces, iI; the Sovolev spaces associated 

with the Dirichlet Laplacian, and iJ~n the Besov spaces associated with the Dirichlet p,q 

Laplacian. When the domain is the entire space記 weclarify the domain of the function 
spaces to write explicitly,び（配），的（配）， B伝（配）． Wealso write —知 the Dirichlet 
Laplacian, Av its square root on the half space, —△即 the Laplacian and知 itssquare 
root on the entire space as an operators on S'（配）．



74

2. PROOF OURLINE OF THEOREM 1.1 

We investigate the behavior of functions with the Dirichlet boundary condition throught 
the odd extent ion with respect to x2. 

fodd(x心）：＝｛f（x心） for四＞〇，
-f(x1，四） for四 <0.

We write the Laplacian on 記—△即， and its square root, 

知：＝《二瓦;.

Let us focus on the case when 2 :S s < 2 + 1/p. We will argue as follows. To consider the 
norm of the product f g with the regularity numbers, we write Aら(Jg)as 

(odd extention of Aら(Jg))=A如(fg)odd= A冒(-号）（sign X2 ・ f oddgodd) 

If f, g satisfy the Dirichlet boundary condition, then we can suppose that 

fod鵡odd,v'fodd伽dd= 0 on 8記，

which implies that 

亨(-峠）（sign X2 ・ f oddgodd) = Aば (sign叫—△JR2)Uoddgodd)) 
Here it will be proved in Lemma 2.2 below that the multiplication by sign四 isa bounded 
operator in H/（配）， wherethe norm is defined by 

||f||H戸（配） ：＝ IIA冒f||LP（約・

We can then apply the standart bilinear estimate to obtain the first inequality. In what 
follows, we introduce two lemmas on the relation of the Laplacian between the entire 
space and the half space with the Dirichlet condition, and finally we explain our idea of 
the proof of Theorem 1. 1. 

Lemma 2.1. Lets~ 0 and 1 :Sp :S oo. Then AらfEび（記） ifand only if(—芸）s/2f E 
び（配）． Wealso have that 

2½ IIAbfllLP(IRt) ＝||（—△艮2)812fllLP（約
provided that AらfEL叩吐）．

Proof outline. We write the kernle of the semigroup generated by the fractional Lapla-
cian on股2

We write 

and 

几(t)= Ps(t, x) = F-1[e—tl~l"](x), t > 0,x E記

e―tAけ(x)= 12 (Ps(t, X -y) -Ps(t, X1 -YI心＋叫f(y)dy
茸

= J尺(t,x-y)fadd(Y) dy 
R2 

=Ps(t) * fodd(x), XE記，

Abf 
e-tAもf-f 尺(t)* fodd田ー f

=lim~=lim ＋ 
＝ 

t→0 t t→0 t 
(―△R2)s/2f。ddl股2,

＋ 
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if the limit exists inび（記）． Thisallows us to have the equivalency of AらfEび（記）
and (-~JR2)•/2 f E £P（配）． Thenorm relation follows from 

IIAらfllfp（訊） ＝ ；ll(Aらf)oddllf疇） ＝ ；1|知 foddllfP（即）’

ロ

Lemma 2.2. Let O < s < l/p and l < p < oo. Then on the entire space 

II (sign x2)flliI;国)::;Cllf||均（即）

for all f E的（配）．

Proof outline. We introduce <p8 an approximation of the sign function with respect to 
X2 defined by for an odd function <p E Co園 with<p(x2) = 1 (x2 2: 1), 

叫叫：＝ゃ(5―1四）， X2E応＞ 0.

We start by proving that 

1にf||均(即)::;Cllfll均（即） forall s > 0. 

By the decomposition of the frequency of <p0 and f, 

¢』=（ L+L)（叫知）り（仰（知）!)=（旦）I+ （やef)II
k<:::l+3 k>l+3 

The first term is handled by the standard bilinear estimate, 

II (<p』)III府（即）さ C||<pe||LOOm)||f|1印（即）::;CllflliI:（砂

since the frequency off is higher than that of s. On the other hand, we apply the bilinear 
estimate for四 variablefor the second term. Let 1/p = 1/p1 + 1/p2, s = l/p, from which 
we haves= l/p -1/p2. It follows from the bilinear estimate and the Sobolev embedding 
that 

II (<p』）n||況（即）さC||<pe||互(JR)llllfllm(氏)|LP(JR叫

三C||］|H訂(JR)II 11f lliI$（氏） LP（四）

さC||¢l|| 1 

硲（股）
||戸|＆|Srf||か（即）’

By applying the Fourier multiplier theorem to a multiplier 161• /1~1•, we have 

||ァ-1|l2|．srf||H;(R‘2)< C||r-1|l|Srf||H;(R2)さC||f||Hg（政：、')'

which proves the inequality. 
By considering the limit as s→0 with taking a subsequence if necessary, we conclude 

that 

II (sign叫f||H炉 ） こ li四閉fll'PcflliI$（即）さ CllflliI謬）’

ロ
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Proof of Theorem 1.1 (1) when 2 ::; s < 2 + 1/p, 1 < p,pj < oo. Lemmas 2.1,2.2 
imply that 

2½ IIAb(f g) IILP（聾） ＝ 1 亨 (sign 叫—凶）（foddgodd))
LP（即）

gC||A知(foddg。dd)IILP(IRり・

It follows from the bilinear estimate on the entire space配 that

IIAら(fg)IILP（記）::;c(IIA缶foddllLP1（即）llgoddll£P2(1R2)+ llfoddll£Pa(IR2)IIA和goddllLP4（]R2))'

and by Lemma 2.1 

IIAら(fg)||LP（疋）::;c(IIAらJll£Pl（記）llgll£P2(IR2)+ llf 11£P3（配）IIAらgll£P4（記））．

For the proof of the inequality in Besov spaces, we apply the Bony paraproduct formula 
and the above inequality in the Sobolev spaces to obtain the bilinear estimates in Besov 
spaces. ロ

Optimality of s = 2 + 1/p in Theorem 1.1 (1). We can see that the optimality 
is independent of dimensions and let us focus on the case when the space dimension is 
one. The reason is due to the boundary value of the function, and the crucial point is the 
boundary value of the function with the x2 direction orthogonal to the boundary. 

Let us consider the half line股十 andwe construct f, g such that 

f,g,Aらf,AらgEび（阻l+)for alls> 0, but Ab+1(Jg) (/. LP（恨：＋）．

Let cp be such that 

and we define 

~EC;,([O,oo)), 0：：：：：ゃ：：：：： 1， cp(x) ＝ ｛1 

゜
J(x) = g(x) = xr.p(x). 

1 
for o < x < -- -2' 

for X ~ 1, 

We notice that f, g, Aらf,AらgEび（恥） foralls> 0, 

度(Jg)=（吃f)g+ 2()』•加＋ f災g,

and 

叩）g,f吃gE Cg"((O, oo)). 

On the other hand, 

幻•知＝厨＋ 2x匹＋ x亨）2, 2x匹＇＋丑（汀 ECg"((O, oo)), 

and we need to investigate cp叫andwill prove that A l/p信） ¢び（正）． Wewrite 

心 (x)= Ai心 (x)= C 1 心(x) —心(y)dy.
政 |x-y|l+i 

By a direct calculation, there exist c, J > 0 such that 

A砂~dd(x) ~ 
C 
l for o < X < 6, 

国＂

A応危dd(x)：：：：：
C 

for -J < X < 0, 
|x|P 
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which imply that A砂~dd Eび（股） andA伝峡€び（恥）． We then conclude that 

L 

Ai(a』むg)(j_ザ（恥＋），
2+.l 

and therefore, A;・ p (Jg) (j_び（正）． 口

To prove Theorem 1.1 (2), we need the following lemma. 

Lemma 2.3. ([14]) Let f E B!.1 ni3~_1. Then f，▽f are regarded as continuous functions 
and we have the following relation between the odd extention and the even extention. 

(8x1nodd = Oxifodd, (8x2neven = Oxzf,。dd,
where 

feven(X心）：＝｛f（三） for四＞〇，
f(x1,―四） for四 <0.

Proof of Theorem 1.1 (2). We have 

（▽心f・ ▽)g= -(8の心f)い＋叫A訂）虹•
By Lemma 2.3, we write the first term, 

and the second term 

（仇ぷf)い）。dd=（仇A訂）even（佐g)odd

鴫心f)odd)（8x1godd)

噸心f。dd)（加/odd)

（四邸f）い）＝（8おlA訂）。dd似 g)even
odd 

＝似(A戸）。dd)(8鵡 odd)

=(8エlA贔fodd)(8縛 odd)-

We here notice that there does not appear the sign function with respect to x2, the bilinear 
estimate in the entire space is possible to be applied, and we then deduce from the bilinear 
estimate that 

| （炉A砧f).▽gl． ::::;c（▽心fodd).▽g。dd
靡 q 知（約

さc(11t。dd||B；訳）llgoddll靡（即） ＋llfoddll鴨訳）llgoddlli3悶，↓

:::::c(111||均,q||g||Bら，1+ llf lli3此，11|g||Bm)，

where we have applied the relation similarly to Lemma 2.1, between the Besov spaces 
associated with the Dirichlet Laplacian and the Besov spaces on the entire space through 
the odd extention. ロ
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