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Gravitational Collapse for Newtonian Stars 

Mahir Hadzic* and Juhi Jangt 

Abstract 

We report on a recent mathematical development in gravitational collapse for Newto-
nian stars governed by the Euler-Poisson system, which shows the existence of smooth 
initial data that lead to finite time gravitational collapse, characterised by the blow-up 
of the star density. We discuss two distinct regimes describing dust-like collapse and 
self-similar collapse respectively. 
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1 Introduction 

A classical model of a self-gravitating Newtonian star is given by the gravitational Euler-

Poisson system: 

如＋div(pu) = 0, 

p(8心＋ （U・ ▽)u)＋▽p= -p▽屯

△<I>= 41rp,. l.im <I>(t, x) = 0, 
lxl→OO 

(l.la) 

(l.lb) 

(l.lc) 

where p(t, x) ~ 0 is the density, u(t, x) E配 isthe velocity, p(t, x) ~ 0 is the pressure of 
the gas and <I>(t, x) is the gravitational potential. We consider the polytropic equation of state 

given by 

p=p'Y, 1S"f<2, (1.2) 

where the value of I is commonly referred to the adiabatic exponent and 1 = 1 represents 
the isothem叫 gas.

The dynamics of stars described by (1. 1) is broadly speaking characterised by the antag-

onism between the expansive nature of the pressure and the contractive nature of the gravita-

tional field. Depending on their relative strength, we expect to encounter different dynamic 

scenarios. 

• Finite-time gravitational collapse. This behaviour is characterised by the finite-time 
blow-up of the gas density starting from "regular" initial data. In the context of com-

pressible fluid mechanics this scenario is sometimes referred to as implosion. It is clear 

that this type of singular behaviour is not a shock singularity. We present new results 

in this direction in Sections 2 and 3. 

• Global-in-time existence driven by dispersion/expansion. In this setting the pressure 
"wins" over the focusing effects of gravity. We give below open classes of initial data 

that lead to global existence-via-expansion for a large class of polytropic indices'"'/, see 

the discussion in Sections 1.3-1.4. 

• Equilibria, periodic/quasiperiodic solutions, coherent structures. Beyond the existence 
of steady state equilibria, not much is known about other spatially localised global-in-

time structures. We briefly review the known results about the (radially symmetric) 

steady states in Section 1. 1 below. 

1.1 Lane-Emden steady stars 

The most famous solutions to the Euler-Poisson system (1.1) with (1.2) are the so-called 

Lane-Emden steady stars [3]. They are static (nonmoving), radially symmetric equilibrium 

solutions of (l.1)-(1.2) of the form p = p(r), u = 0 where r = lxl and the enthalpy w := 

cp'Yー 1,where c is a normalization constant, satisfies the following Lane-Emden equation 

2 I 1 _＿I 
w" + =w'+ 1rw勺-=0.
r 

(1.3) 

It is well-known [3, 42, 19] that for any I E (i, 2) there exists a compactly supported steady 
solution to (1.3) with the boundary conditions w'(O) = w(l) = 0. The associated steady state 
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density p has finite mass and compact support and therefore represents a steady star [3, 42]. 

The dynamic stability question of Lane-Emden stars is a classical topic. Standard linear 

stability arguments [23] reveal the following dichotomy in the stability behavior of the above 

family of steady stars: 

6 4 
if _::_ 
5 
< 1 < -
3' 
the steady state (p, 0) is linearly unstable; 

4 

3 
ifーさ？く 2,the steady state (p, 0) is linearly stable. 

The case 1 = ½ admits O as the first eigenvalue and it is often referred to as neutrally stable. 
Under the assumption that a global-in-time solution exists, nonlinear stability of Lane-Emden 

steady stars in the range ½ < 1く 2has been shown by variational arguments in an energy-
based topology, see [34]. Nonlinear instability in the range ~ ~ 1 < ½ has been rigorously 
established in [18, 19]. In this case, the instability is induced by the existence of a growing 

mode in the linearized operator, while there are no such modes when ½ ~ 1 < 2. In fact, 
Lane-Emden stars in the case 1 = ½ are nonlinearly unstable despite the absence of growing 
modes in the linearized operator [ 5, 14]. 

1.2 Scaling symmetry 

Two values'Y = ! and'Y = ~ have a special role in the existence and stability theory of the 
steady states. They are intimately tied to the scaling symmetry of the Euler-Poisson system 

(l.1)-(1.2). If (p, u) is a solution of (l.1)-(1.2), so is the pair (p, ii) defined by 

p(t, x)＝入―丑テ～
t X 
p(-
入2-7
1 9入），

ーユ t x 
p(t, x)＝入 2-＂P(1,-） 

入戸入'

＿ユニi t x 
u(t, x) =入 2-直 (1,-） 

入2-T 入'
(1.4) 

for any入＞ 0.The associated pressure p and the gravitational potentialふrelateto p and<I> 
via: 

-~□ ~t X 
<l>(t,x)＝入 2-7<I>(1, -． 

入戸入
） 

It is easy to check the changes of the mass and energy under the self-similar rescaling (1.4): 

亘
M(p) ＝入 ~M(p),

where the total mass is given by 

and energy 

6-5, 

E(p, u) =入 2—~E(p, ii), 

M(p) := 13 pdx, 
股3

1 1 1 
E(p, u) := 13 [~plul2 + ~成＋ ~p"f] dx. 

(1.5) 

(1.6) 

(1.7) 

The total mass M is invariant under the self-similar rescaling (1.4) when "Y = i and the 
energy E is invariant when "Y = i, so we refer to the cases "Y = ! and "Y = i as the mass-
critical and the energy-critical case respectively. 

As we shall see, the criticality and scaling symmetry play an important role not only 

in the study of Lane-Emden stars but also in global dynamics of other physically motivated 

solutions. 
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1.3 Goldreich-Weber (GW) stars 

It turns out that the classical hydrodynamic model (1.1) for Newtonian self-gravitating gases 

admits a finite-parameter family of time-dependent solutions in the mass-critical case,=ふ
The mass-criticality implies that an effective separation-of-variables ansatz is possible, which 

decouples the spatial-and the time-dynamics. Such solutions were discovered by Goldreich 

and Weber [9] in 1980 and they take the form: 

p(t,x) =入（t)-3wJ（入(t)―1x),u(t, x) =入（t)入(t)―1x (1.8) 

where 

入入2= 8, 入（ー1)=ふ＞ 0, 入（ー1)=入1 (1.9) 

and w/j ： ［0,1]→罠十 isa non-negative enthalpy function solving the generalized Lane-
Emden equation: 

2 I 3 
w" + ~w'+1r研＝―-8 in [O, 1], w'(O) = 0, w(l) = 0. (1.10) 
z 4 

These special solutions were originally referred to as homologous solutions, but it is impor-

tant to note that they are a particular example of so-called affine motions discussed further in 

Section 1.4. In the mathematics community, they were independently discovered and rigor-

ously analyzed by Makino [25], Fu and Lin [8] and in the nonisentropic case by Deng, Xiang 

and Yang [6]. 

We see from the formulas (1.8)-(1.9) that the fixed density profile p/j ＝wJ is modu-
lated by the time-dependent function入(t).Stellar implosion/collapse then corresponds to 

the finite-time vanishing of入(t)and the collapse is homologous in the sense that all the gas 

content shrinks to the singularity instantaneously. By contrast, if入(t)increases indefinitely, 

the density p decays to 0, and we see that the star expansion (the growth of入(t))and dis-

persion (the decay of p) go hand-in-hand. Interestingly, there exist two distinct rates in the 

ODE dynamics both in the case of expansion and in the case of collapse: self-similar rate 
2 

入(t)~t→00 ti and linear rate入(t)~t→00 t in the expansion regime and入(t)~t→o-(-t)a 
and入(t)~t→o-(-t) -t) in the collapse regime. 
Besides the remarkable fact that the above solutions exist, they lead to the physically 

important question of understanding their stability. It is already suggested in the above dis-

cussion that the mechanism for the stability of the expanding GW  motions is in some sense 

already covertly present in the formulas, and we elaborate on this in Section 1.4. The nonlin-

ear stability of the collapsing OW-motions, even under the assumption of radial symmetry, is 

an open question. 

1.4 Disp ・ers1on via expansion 

The GW  stars form a finite-parameter family of solutions, characterized by the parameter 

8 E股 andthe initial velocity ふ€股． When the total energy E is strictly positive, the 
result of Makino and Perthame [26] suggests a possibility of globally defined expanding 

solutions, however the result does not apply to the case E = 0. In [14], we have shown the 

nonlinear radial stability results for the expanding OW-solutions, both the ones expanding at 
2 

the linear rate ~ t and the ones expanding at the self-similar rate ~ t瓦 Inthe latter case, 
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the perturbations are restricted to have the same energy as the expanding background GW-

solution. Therefore, when we work with zero-energy perturbations (E = 0) we obtain a 
co-dimension one stability result, assuming that J < 0 is sufficiently close to 0. In the case 
of the linearly expanding GW-stars, these restrictions are not necessary. 

As mentioned above, the GW-solutions are in fact a special class of the so-called affine 

solutions, which have a long tradition in the broader context of fluid mechanics. By def-

inition, an affine motion has both the flow map and the velocity field governed by some 

time-dependent linear map t→A(t): 

豆(t,y) = A(t)y, u(t, y) = A(t)A―1(t)y, A(t) EGL +(3). (1.11) 

The above introduced GW-motions (l.8)-(1.9) fit into this framework by letting A(t) = 
入(t)hx3.In the absence of gravity, a family of global-in-time affine solutions surrounded 

by vacuum to compressible Euler system were constructed by Sideris [39], while the ideas of 

affine motions and ODE solutions can be tracked back to earlier works by Ovsyannikov [30] 

and Dyson [7]. 

For the compressible Euler affine flows, A needs not to be diagonal in the case of the 

Sideris flows [39] -in fact the motion is supported on ellipsoids. However, these affine 

motions are global-in-time and eventually expand (i.e. the support of the solutions eventually 

grows "in all directions"), which should be contrasted to GW  affine motions. This highlights 

the special role of gravity, which can cooperate with affine ansatz to generate imploding 

solutions. Global-in-time stability of Sideris'affine motion has been shown by the authors 

[15] for 1 < 1 ::::; %, Shkoller and Sideris [37] for 
3' 

,>百.Seealso [36, 35] for stability of 

non-isentropic affine motions. 

As it turns out, the presence of exact expanding affine motions is in itself not crucial to 

the existence of open classes of data leading to global existence, but are instead suggestive 

of a more fundamental stabilisation mechanism. As the support of the fluid spreads out, 

this acts as a defocusing mechanism preventing for example shock formation -one of the 

main enemies of global well-posedness in the context of compressible fluids. Motivated by 

this observation, it is possible to prove the existence of global-in-time expanding solutions 

assuming that the density is suitably small and the velocity suitably "outward pointing", and 

thereby not relying on the existence of exact background affine solutions, see [32]. For the 

Euler-Poisson system (in both the gravitational and the electrostatic case), small perturbations 

of Sideris affine solutions can launch global-in-time solutions [16]. See also [31] for the 

application of these ideas to the existence of globally expanding N body solutions of the the 

Euler-Poisson system. 

1.5 Gravitational collapse in the mass super-critical regime 

We now turn our attention to collapsing solutions. The Euler-Poisson system (l.1)-(1.2) 

admits finite-time blowup solutions such as the Goldreich and Weber collapsing solutions 

when'Y = ! describing gravitational collapse, where the density blows up on approach to the 
singularity. For'Y > !, the mass subcritical regime, it was shown in [5] that the collapse by 
density concentration cannot occur. See a recent work [4] for global radial weak solutions 

with finite energy for'Y > !. 
A narural, interesting question is then the existence or nonexistence of density blowup 

solutions in the super-critical regime for 1 ::; ::;'Y < l The super-criticality is supposed to 
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be even more "encouraging" of the collapse. From the physics point of view, the lower the 

polytropic index'Y, the heavier the gas molecules, so that gravitational forces are greater. 

Despite its physical importance, the rigorous proof of Newtonian gravitational collapse in the 

super-critical regime has not been given until recently. 

For the rest of the paper, we discuss mathematical construction of gravitationally collaps-

ing radial solutions to (l.1)-(1.2) obtained in [11, 12, 13]. In Section 2, we discuss dust-like 

collapse in the mass-supercritical regime 1く 'Y< 1 where we can construct an infinite di— 

mensional family of collapsing solutions. In Section 3, we discuss the self-similar collapse 

in the supercritical regime 1さ'Y< 1 ・ Section 4 contains some remarks on future works and 
related problems. 

We point out that in the case of compressible Euler flows, collapsing solutions cannot be 

realized as affine motions, but recent breakthrough works [27, 28] by Merle, Raphael, Rodni-

anski, and Szeftel show that through the self-similar blowup, collapsing (imploding) solutions 

do exist for compressible Euler and Navier-Stokes equations starting out from smooth initial 

data. 

2 Dust-like collapse for 1 < 1 < 4 
3 

The results in this section are motivated by the simple question of trying to find at least some 

examples of collapsing solutions in the supercritical regime. A simple separation-of-variables 

like in the mass-critical case simply fails when 1 < 1 ・ One natural possibility however is to 
construct solutions that in some sense mimic the behaviour of solutions to an a priori simpler 

problem -the pressureless (or dust-) Euler-Poisson system, which is well-known to admit 

collapsing solutions. We see immediately that there is a serious obstacle to such an attempt 

-the pressure always enter the problem at the highest level of regularity, and it is not clear 

in what sense we can hope to treat the pressure as a structural "perturbation" away from the 

pressureless problem. A hint that a result in this direction may be possible comes from a 

suitable scaling analysis. 

2.1 Rescaling and Lagrangian formulation 

For any乞＞ 0consider the mass preserving rescaling applied to the Euler-Poisson system: 

p=乞―3り(s,y),U=乞―1/2ii(s,y),<I> ＝乞―1む(s,y), (2.12) 

where 
s=t―3/2t, y = t―lx. 

It is easy to see that the above rescaling is mass-critical, i.e. M[p] = M[p]. A simple cal-

culation reveals that if (p, u, cp) solve (1.1)-(1.2), then the rescaled quantities (p, ii,む） solve

8ふ十div（屈） ＝0, 

P(8ふ＋（ii・ V)ii) + c▽（炉）＋P▽む＝o,
頌＝4サ， limむ(t,x)=O,

国→00

(2.13a) 

(2.13b) 

(2.13c) 
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Figure 1: Dust collapse in Lagrangian coordinates 

where 
c :=ぎ-3冗

We observe that forも≪ 1 the factor c in front of the pressure in (2.13b) is small precisely in 

the supercritical range 1 < 1 < !-The system obtained by dropping the s-term in (2.13b) is 
known as the pressureless-or dust-Euler system. 

Let T/ be the flow map associated with ii of the rescaled system defined on the unit ball, 

which is a reference domain. For radially symmetric flows, the flow map T/ takes the form of 

ry(s,y) :=x(s,r)y, r= IYI, rE [0,1], (2.14) 

and the Euler-Poisson system reduces to a nonlinear second order degenerate hyperbolic 

equation for x [11] 

Xss+~) 十 EP[x] = 0, P[x] = ~（噂） （Wl十プ[x]→） （2.15) 

where G(r)＝占J。r47rWa召dT,w°'= po(xo(r)r)/[xo](r) and the Jacobian /[x] = 
x2は＋喝x). Here a =— .In this formulation, the collapse is characterised by the ,-1 

vanishing of x and /, which in turn implies the blowup of the Eulerian density because 

p(s, x(s, r)) / [x(s, r)]＝研holdsdue to the continuity equation. Therefore, our goal is to 

show that there exists a spacetime point (s*, r*) such that x(s*, r*) = / (s*, r*) = 0. 

In the absence of the pressure, solutions do collapse. For instance, a pressureless collapse 

solutions satisf ymg Xss + 
G(r) 
2 = 0 is given by 

Xdust(s, r) = (1-g(r)s)i, g(r) = 3/0{i (2.16) 

which vanishes along the space-time curve r := {(s,r)ll -g(r)s = O}. Dynamics in the 
presence of pressure is much more involved as it can be seen from (2.15) the pressure enters 

the equation at the top order in terms of the derivative count. In [ 11], we showed the existence 

of solutions x to (2.15) whose leading order behavior is described by the dust collapse (2.16). 
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Theorem 2.1. For any I E (1, 1) there exist classical solutions x(s, r) of (2.15) defined in 
己＝｛（s,r) 11 -g(r)s > 0}. The solution behaves qualitatively like the collapsing dust 
solution Xdust and in particular 

1< X.--1 1.-- /[x] ～乏 1, 1乏乏 1, (s,r)E三
Xdust ~ -, -~ /[Xdust] (2.17) 

Funher,forany r E [O, 1] 

lim X = lim /[xl 1 = 1. 
S→記 Xdust s→元 /[Xdust]

(2.18) 

In Theorem 2.1, the enthalpy profile w and therefore the initial density p0 are free to be 

chosen as long as they satisfy the following geometric conditions: (i) w is smooth and it 

satisfies the physical vacuum condition [20, 21]: w E C00(0, 1), w > 0 on [O, 1), w(l) = 0 
and w'(l) < 0, (ii) g is monotonically decreasing on [O, 1], and (iii) for a sufficiently large 
natural number n E N 

g(r) = g(O) -—戸＋ Or→o （戸）．
n 

In particular the expansion (2.19) measures the flatness of the initial density p near the centre 

and, as we shall see below, the choice of a sufficiently high n = n(1) is a key geometric 
condition to ensure the leading order approximation by the dust solution. 

The fragmented collapse described by (2.16) implies that a particle with a label r is ab-

sorbed into the singularity at time t* (r) = -;;f;;). Since g is a decreasing function, particles g(r) 
that start out closer to the boundary of the star take longer to vanish into the singularity. So 

by letting the particle density be space-inhomogeneous on the support of the fluid, we allow 

for the physically realistic inhomogeneous collapse. 

(2.19) 

2.2 Methodology 

The proof of Theorem 2.1 involves new ideas and several steps. Here we only discuss the 

main ideas. We first introduce the foliation by the level sets of Xctust by the change of variables 

as we want to build a solution to (2.15) around the dust profile (2.16): 

T := 1 -g(r)s, cp(T,r) := x(s,r), (2.20) 

SO that Q :'S Tさ 1,and T = 0 corresponds to the space-time blowup curve r and T = l 
corresponds to the initial time. The new unknown ¢ solves 

2 
¢TT + +eP［のl= o, 
9炉

P［の］：＝
¢2 

炉(r)wデ
A(wl+a/［¢戸）， (2.21) 

rg'(r)（1-T) 2 where A:= - g(r) OT + r8r and /［叫：＝¢~ (¢ + A¢). In (T, r) coordinates, the dust 
collapse solution is explicitly given by伽(T,r) = T3. A simple computation shows that 

rn 
／［如l＝碕（伽＋A伽） ～T2(1 + ~) 

T 
(2.22) 
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wherefrom the scale ~ naturally emerges. The goal is to construct ¢ solving (2.21) and 
圏satisfying 1乏←こ1.To that end, we seek a special solution ¢ of the form 
／如］

m 
¢ = ¢ 

T 
app + ~H 
r 

(2.23) 

where ¢app is chosen as a good approximate solution of (2.21) and the remainder His suitably 

controlled in some function space. 
M To construct ¢app, we set up the ansatz ¢app = ¢0 + E釘＋・・・十€ 如I,M ≫ l, Taylor 

expand the pressure term EP［伽十E<p1+ • • • ] into the powers of E, and compare the coefficients 
in E in (2.21) to obtain a hierarchy of ODEs satisfied by the切：

4 
如 ¢Hl―戸釘＋1= Jj+1[¢。9釘，．．．，句],j = 0, 1,..., M. (2.24) 

Functions fi+1, j = 0, 1,..., Mare explicit and generally depend nonlinearly on峠 0:::;
k :::; j, and their spatial derivatives (up to the second order). The system of ODEs (2.24) can 

be solved iteratively as the right-hand side Ji+i is always known as a function of the first j 
iterates. To show that <Papp are good approximate solutions of (2.21), we must prove that the 

iterates外 j;::,: 1, are effectively small with respect to ¢。.Themechanism by which this 
is indeed true is one of the key ingredients, in both the conceptual and the technical sense. 

In particular we select special solutions of (2.24), as they are in general not unique (the two 

general solutions of the homogeneous problem are 74/3 and T―113), which will allow us to 

see the gain. Recalling n is the flatness index introduced for g, we now fix a sufficiently large 

n so that 

8=2G-,-¾)>o (2.25) 

which is possible thanks to the super-criticality of 1 < f Then we can construct切'ssuch 
that 

閲（喝）％』 '.SCjkmTj+jo-m.fr. 
（亡）入—t

(1 +竺）X
2 for some入＞ー whichin tum leads to 
n' 

/[c/>app]乏C2M+l T 3 ＿丘(M+1)8-1

(2.26) 

(2.27) 

With </>app at hand, thanks to the crucial gain of r1/jand in the presence of戸 factor,now 

the remainder H satisfies the following quasilinear wave-like equation: 

g° 如゚H+2g゚ 虹H十竺闘＋［m（m-1) ＿ 4 H 

T 一巧C[¢:：8r(W〗]p;r]［r罰） ＝F, (2.28) 
where at the leading order 

5 

g°° = g°°［cp] ~ 1, g°l = g叫］~ ~'c[c/>] ~ c[c/>app] ~ 
T3 7 

T T + rn • 

，
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We note that 
m(m -1) _ 4 1 

T2 9¢3 2' app 

for m sufficiently large, which gives a coercive positive definite control of the solution at the 

singular surface { 7 = 0}. 
The analysis of the solutions to (2.28) proceeds by using suitable weighted energy meth-

ods. The difficulty in producing energy estimates for (2.28) comes from two different singu-

larities present in the equation. At 7 = 0, the coefficient c[</Japp] and various others formally 
blow up to infinity. This is the singularity associated with the collapse at the singular surface 

7 = 0 and it is important to work with carefully chosen 7 weighted functionals. At r = l, 
we have w = 0 and therefore the elliptic part of the quasilinear operator on the left-hand side 
of (2.28) does not scale like the Laplacian as r→1. This is a well-known degeneracy associ-
ated with the presence of the vacuum boundary and we adapt the well-posedness framework 

developed in [21, 19, 14, 15]. We refer to [11] for more details. 

We emphasise that the assumption of compact support for the star is in fact not necessary 

in the analysis, and Theorem 2.1 can easily be relaxed to include densities with infinite extent, 

that decay sufficiently fast to allow for finite mass. The presence of the vacuum boundary 

makes the analysis strictly harder and our approach highlights the flexibility of the well-

posedness framework introduced by Jang-Masmoudi [21] to handle the presence of vacuum. 

Remark 2.2 (Open questions). It is a priori not clear if the near-dust collapse above is in any 
sense stable. A careful choice of the high-order "flatness" encoded in the assumptions (2.19) 

and (2.25) suggests that the initial density profiles that lead to the near-dust collapse are not 

generic in the space of initial data. It is important to clarify the answers to both questions. 

3 Self-similar collapse for 1 :::;: 4 
-1 < 5 

In the study of the near-dust collapse from Section 2, one could say that we have prepared 

our initial data to effectively put us in a situation where the inertial forces balance out the 

gravity, and the pressure remains "under" control. It is however natural, in fact necessary in 

the light of Remark 2.2, to look for examples of collapse where all three participating forces 

-inertia, pressure, and gravity -balance each other out. This leads us naturally to the study 

of self-similar solutions to the Euler-Poisson system. 

There have been numerous studies of self-similar collapse in the astrophysics literature 

and self-simlar solutions play an important role in the study of so-called critical phenom-

ena [10]. Among others, using numerical integration, in 1969 Penston [33] and Larson [22] 

independently discovered a self-similar solution to (1.1) describing the collapse of a self-

gravitating, asymptotically flat, isothermal sphere (1 = 1). In 1977 Hunter [17] numerically 
discovered a further (discrete) family of smooth self-similar solutions, commonly referred to 

as Hunter solutions, see also [38, 40]. In 1988 Ori and Piran [29] gave numerical evidence 

that the Larson-Penston (LP) collapse is the only stable self-similar solution in the above fam-

ily of solutions, and therefore physically the most relevant. Brenner and Witelski [1], Maeda 

and Harada [24] reached the same conclusion after careful numerical analysis of the collapse. 

In 1983 Yahil [41] found polytropic analogues of LP solutions to (l.1)-(1.2) for 1 < 1-
In this section, we discuss the mathematical construction of Larson-Penston solution and 

Yahil solutions, exact self-similar solutions to the Euler-Poisson system (l.1)-(1.2) in the 
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口―
Figure 2: Schematic depiction of the sonic line, across which the solution has to be smooth. 

As we approach the origin O = (0, 0) the density blows up. 

super-critical regime obtained in [12, 13]. We start with the LP solution. 

3.1 Self-similar Euler-Poisson system and the sonic point -the isothermal case 

Motived by the self-similar scaling invariance (1.4) for'Y = 1, we seek a self-similar solution 
of (1.1) of the form: 

p(t,r) = ~p(y), u(t,r) = u(y), y := ~ (3.29) 
（亭t)2

孤y)+ywhere u(t, r) is the radial velocity. By introducing the relative velocity w := ~, the 

Euler-Poisson system (l.1)-(1.2) with'Y = 1 (i.e. p = p) reduces to the non-autonomous 
system of ODE 

p'=-
2ywp 

l-y知2
(p-心），

~， 1 -3i 2y訊
w = ＋ 
y,  l -y知2

(p-心），

(3.30) 

(3.31) 

where the derivative notation'is short for oy. We are interested in smooth solutions to 

(3.30)ー(3.31).Notice that the assumption of smoothness on the self-similar profiles p and u, 

by (3.29) implies the blow-up of the density p(t, r) as t→o-. A simple Taylor expansion 
at the origin y = 0 and the asymptotic infinity y→十ooshows that in order for a solution 
(p, w) to (3.30)--{3.31) to be smooth and decaying at infinity, we must have 

1 
心(0)＝ー， p(O)> 0, 
3 

p(y) ~y→oo Y,  
-2 lim心(y)= 1. 
y→OO 

(3.32) 

(3.33) 

By continuity, for any continuous solution satisfying (3.32)-(3.33) there must exist at least 

one point y* such that 1 -y;研（y*)= 0. At such a point the system (3.30)-(3.31) is in 
general singular. This leads us to one of the central notions in the construction of self-similar 

solutions. 

Definition 3.1 (Sonic point). A pointy* > 0 is called a sonic point for the flow(} (•), w(·)) if 

l-y：足（y*)= 0. (3.34) 

11 



112

For a solution to be smooth through the sonic pointy*, it has to be the case that the sonic 

point is a removable singularity. Assuming smoothness, we can formally compute the Taylor 

coefficients of (p, w) around y*. Two possibilities emerge (see e.g. [1]) -either 

1 1 -y: ＋ 6y* -7 
p(y) =—―万(y-y』+ （y-y＊戸＋O(ly-y＊良） （3.35) 
y* Y* 2y:(2y* -3) 

1 1 2 -5y: ＋ 19y*―17 
心(y)=—+ -（1-~)(y -y*) + ~(y -y.)2 + O(IY -Y*l3); (3.36) 
Y* Y* Y* 2成(2y*―3)

we refer to this as the Larson-Penston (LP)-type solution, or 

励）＝上十¾ (1 -t) (y -y*) + 0 ((y -y＊戸），
y* y* ¥ y* 
1 

と(y)=— +O((y -y*）り，
y* 

which we refer to as the Hunter-type solution. The main result of [12] is the following: 

(3.37) 

(3.38) 

Theorem 3.2 (Existence of a Larson-Penston self-similar collapsing solution). There exists 

a y* E (2, 3) such that (3.30)-(3.33) possesses a real-analytic solution (p, w) with a single 
sonic point at y*. Moreover the solution satisfies the Larson-Penston expansion (3.35)-(3.36) 

at y = y* and 

2 
p(y) > 0, "i;yさu(y)< 0, y E [O,oo). 

3 
(3.39) 

There are two known explicit solutions to (3.30)-(3.33). One of them is the Friedma皿

solution 

1 
加(y)＝切F(Y)三一

3 

and the other one is the far-field solution 

1 
Pao(Y) = _:;,, woo(Y) = 1. 

y 2' 

(3.40) 

(3.41) 

The Friedman solution (3.40) is the Newtonian analogue of the classical cosmological Fried-

mann solution -it satisfies the boundary condition (3.32), but the density does not decay to 0 

at spatial infinity. On the other hand, the far-field solution (3.41) does decay as y→oo, but 
blows up at the origin y = 0. The LP solution constructed in Theorem 3.2 provides a smooth 
solution connecting these two solutions at two boundaries y = 0 and y = oo. Although not 
exactly true, it is useful to think of it as a heteroclinic orbit in the language of dynamical 

systems. 

3.2 Proof ideas 

The main difficulty of Theorem 3.2 is the presence of an a priori unlmown sonic pointy*, 

since we cannot use any standard ODE theory to construct a real analytic (or a C(X)）solu-

tion. The subtlety of sonic points of compressible Euler system is well illustrated in a recent 

pioneering work [27], where C(X)self-similar imploding solutions to the compressible Euler 
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wo(Y,1), 

西(y.,)

Y•1 払 y,2 3 

Figure 3: Schematic depiction of the shooting argument. The critical point払 isobtained by 

sliding to the left inside Y starting from y* = 3, until we hit the topological boundary of Y. 

system were constructed. We note that in the Euler case the associated ODE-system is au-

tonomous. Our system (3.30)-(3.33) is non-autonomous and we develop a different strategy. 

We first identify a "good" guess for the location of the sonic point -the so-called sonic win-

dow [2, 3]. We then try to extend the local smooth solution to the left and to the right. These 

are two separate arguments. The somewhat more "regular" direction is the construction of 

the global solution to the right. The solution to the left, which connects the sonic point to the 

origin y = 0 and the corresponding Friedmann-like boundary conditions (3.32) is more diffi-

cult. We design a shooting method to construct this Friedmann connection based on dynamic 

invariances to the flow. 

Step 1. Analysis around the sonic point. The sonic point, or more precisely the sonic hy-

persurface, corresponds to the boundary of the backward sound cone emanating from the 

singularity (0, 0). It separates the semi axis y 2'. 0 into an inner region [O匁＊]and an outer 
region [y.,(X)）． The starting point of our analysis is to look for the local analytic solutions 
around y = y. of the form j5 = ~ oo N OO N c::J=o PN(y-y.)1v and心＝こN=0ぶ (y-y.)N.The sonic 
condition determines the zero order coefficient f5o＝ら。＝一， andwe demand 151 = -

1 Y＊ 五
andw1 =ー（1-与sothat the LP type condition (3.35) is satisfied. This LP type condition 

y. y. 

uniquely specifies a real analytic solution in a neighborhood of y = y. for any y.＞ふ
Step 2. Analysis to the left. With local analytic solutions at hand, we continue to solve the 

system (3.30)-(3.33) to the left of each sonic pointy.. The goal is to find y. for which the 

solution extends all the way to y = 0 and satisfies limy→0訓(y;y.) = !c.. Invariances of our 
ODE system (3.30)-(3.33) allow us to limit the values of Y• to Y• E [2, 3]. In particular, 
for y. close enough to 3, the solution w(y; y.) to the left meets with the Friedmann curve 

西 (y)= ½ for some y < y., and it never comes back above the curve. This motivates us to 
consider 

Y :=｛糾E[2,3] Iヨysuchthatw(y;fj*) =~for all払 E[y*, 3]}, (3.42) 
3 

and set fj* := inf Y. The idea is that&（・；恥 willachieve the value ½ exactly at y = 0 and 
this will lead to an LP-solution, see Figure 3. Using the minimality of払itis indeed possible 

to show that the solution exists on (0ふ]and satisfies lim infy→0心(y；払） > 4c. To show that 
3 

the limit i mit is百， weuse the intermediate value theorem to match the solution emanating from 

the origin via upper and lower solutions. 
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Step 3. Analysis to the right. In the outer region, we can show that a unique LP-type solution 

exists to the right on [y*, oo) for ally* E [2, 3], thereby satisfying the necessary far-field 

conditions (3.33). Therefore, we obtain the desired global smooth solution for y＝屈

3.3 Self-similar Euler-Poisson system and the sonic point -the polytropic case 

The strategy developed in [12] provides a general recipe to construct a solution connecting a 

sonic point and a singular point, such as the origin y = 0 in this case. Recently, this method 
has been further developed in [ 13] to construct the polytropic analogue of the LP solution, also 

called Yahil solutions, which are self-similar solutions to (l.1)-(1.2) in the full super-critical 

range of 1 < 1 < !. The polytropic self-similar problem is considerably more complex than 
the isothermal case. The part of the strategy shared with the isothermal case 1 = 1 is to solve 
away from the sonic point and connect it toy = 0 (to the left) and y = oo (to the right) in two 

separate steps. However, some completely new ideas are introduced to handle serious new 

difficulties that arise, most notably due to the complicated nonlinear structure of the ODE 

analogous to (3.30)-(3.31): 

YP (2研＋（1-l)w-匹＋（,-1)(2-,)
p'= 

） 
,p,-1 -y知 2

(3.43) 

, 4-37-3w 四 (2研＋（1-l)w -跨＋（1 -1)(2-分）
w = 
y,p,-1  -y知2

. (3.44) 

The sonic denominator,p,-1 -y2研 hasa strong nonlinear dependence on the self-similar 

density p and the numerators in (3.43)-(3.44) are considerably more complicated than their 

isothermal analogues in (3.30)-(3.31). Even if one could hope to use techniques very similar 

to the ones from [12] in the regime where O < 1 -1 ≪ 1, as I approaches ! we expect 
to see completely new phenomenology as the problem becomes less and less supercritical. 

This is indeed the case, and we provide a self-contained and new approach to identify various 

dynamically invariant (trapped) regions. These include the most important new realisation: 

we show that for the corresponding LP-type solution -we call it the Yahil solution -the 

relative velocity w is monotonically decreasing. This completely removes the need to use the 

upper and lower solutions strategy from [12], and instead provides a conceptually clean and 

elegant way of connecting the sonic point to the origin y = 0. 
The details of the proof of the existence ofYahil solutions to (3.43)-(3.44) is given in [13]. 

4 Some open problems 

A somewhat vague, but useful conjecture toward the understanding of gravitational collapse 

in astrophysics, aptly termed similarity hypothesis (see e.g. [2]), states that there should exist 

open (and therefore "generic") classes of data that lead to solutions whose long-term evolution 

is approximately self-similar. From the rigorous point of view, the works [12, 13] are the first 

step towards a precise resolution of such a conjecture, as they identify possible attractors for 

the collapsing dynamics in the framework of self-gravitating Newtonian compressible gas 

dynamics. 

Perhaps the most important open question in this context is 

14 



115

1. to prove the nonlinear radial stability of the LP and the Yahil solutions. There do 

exist numerical indications that the LP solution is stable under suitable radial perturba-

tions [24 ], but a rigorous proof is yet to be given. 

The Goldreich-Weber collapsing solutions are an important object in the description of the 

mass-critical dynamics, as discussed in Section 1.3. They form an essential part of the under-

standing of the nonlinear dynamics near the mass-critical Lane-Emden stars. In this context, 

one of the key open questions is to understand 

2. the stability of the collapsing GW-stars. 

Finally, in both the mass-critical and the mass-supercritical case, nothing is rigorously 

known when we leave the realm of radial symmetry. 

3. Non-radial collapse is a wide open playground for interesting dynamics. It is of partic-

ular interest to see how different characteristic spatial scales can "form" in the collapse 

process and thus generate asymmetries. 

Many other interesting problems arise in the presence of important physical effects such 

as the viscosity, or by including relativistic effects. We hope that the methods described in this 

paper will prove itself useful to other physically important models pertaining to the dynamics 

of collapse and imploding behaviour. 
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