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A free-boundary problem for the spherically 

symmetric motion of a viscous heat-conducting 

and self-gravitating gas 

宮崎大学・工学部 梅原守道

1 Introduction 

Morimichi Umehara* 

University of Miyazaki 

We consider a system of equations describing a spherically symmetric n-dimensional 

(n：：：：： 3) movement around a rigid core (sphere), of a viscous and heat-conducting gas. 

The gas is bounded by a free-surface, and its motion is driven by both an external body 

force and a surface force on the free-boundary from outside of the media. Equations 

describing the motion mentioned above are, in the Lagrangian-mass coordinate system, 

for (x, t) E Ox (0, oo) with O := (0, 1) 

叫＝ Wx,

Ut = rn-1 (-p十匹） ＋f, 
V IX (1.1) 

et= (-p+ 巳）叫— 2(n -1)μ（乳＋（kr2n-2亨）x'

where w = rn-1u; p = p(v, 0) is the pressure and e = e(v, 0) is the internal energy par 

unit mass; f = f[v] = }(r[v], x) is the external body force per unit mass; r = r(x, t) = 

r[v](x, t) is given by 

r[v](x, t) = (1 + n 1x v(s, t) ds) l/n. 

゜Imposed boundary conditions are 

{ （u，化）に。＝ （0，0)， 

(-p+亨― 2(n-l)μ戸，化） x=l= (u, Q) 
(1.2) 

with given ct = ct(t). Unknown quantities are the specific volume v = v(x, t), the 

velocity u = u(x, t) and the absolute temperature 0 = 0(x, t). In this paper we focus 

*Department of Applied Physics, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen 
Kibanadai Nishi, Miyazaki 889-2192, JAPAN; Fax: +81 985587378; E-mail: umehara@cc.miyazaki-
u.ac.jp 



120

our discussion only on a typical case: 

0 0 
p(v, 0) = ~'e(v, 0) = 

V 1 -1' 

G(x) 
](r, x) = -~, G(x)＝仇(/3+x), 

rn-1' 

a(t) = -Pe, Pe= canst. > 0, 

‘
‘
,
l
)

）
 

3

4

5

 

1

1

1

 

（

（

（

 

where'Y is the specific heat ratio assumed to be a constant with'Y > l; Gn = (n-2)G。
and G。isthe gravitational constant (G。>0);{3 is a constant meaning the mass of 

the central rigid sphere (/3 > 0). Equations (1.3)-(1.5) say, respectively, that the gas is 
ideal; the external body force is given by the gravitation due to both central rigid core 

and the gas itself; the surface force is the external pressure. Here "'and μ are assumed 

to be constants with "'> 0 and O < μ ::; ~ _.: 2(n-1) ・ 

We seek to find unknown functions (v, u, 0) for given initial data 

(v, u, B)lt=O = (v0, u0, 0。)

satisfying the compatibility conditions 

{ （Uo, 0。'）（O)＝ （0, 0)， 

(-po+~-2(n-l)µ言， 0。'） （1) =（a(O), 0) 

(1.6) 

(1.7) 

with p0 = 0。/v。andw。=Ton-luo.
Our system of equations (1.1) and (1.2) ari arises as some stellar models in some 

astrophysical arguments (see, for example, [1]). In the paper [2] a large-time behaviour 

of the flow of a stellar model closely-similar to ours was discussed. However, it seems as 

through some statements and proofs in [2] are with ambiguities: for example, it looks 

rather hard to accept that the estimate 

[JM心 dxdTさC for any t > 0 
0 JO 

holds with some constant C > 0 independent of time (Lemma 9 in [2]), by which the 
proof of the main theorem of the concerned paper was anchored (In our case, we have 

Lemma 3.4). Although the system of equations (1.1)-(1.6) was investigated in [3] by 

Ducomet and Necasova under the condition μ = 0, the asymptotic behaviour of the 
flow was not discussed in that paper. Large-time behaviours of viscous gases have been 

investigated, for example, in [4,6] with no external force fields; in [9] with an attractive 

force due to a central core in a fixed annulus domain; in [8] with the self-gravitation of 

the gas in the framework that the gaseous motion is one-dimensional. 

From physical point of view, it is expected that the solution of our problem (1.1)-

(1.6) converges to a steady state as t→oo in some sense, and the steady state be a 
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certain stationary solution. For some barotropic viscous fluids, Ducomet and Zlotnik 

show this story in [10] under a certain restricted condition. In the present paper we 
obtain the condition similar to the one in [10] (see (2.5) or (2.7)) guaranteeing unique 

existence of the stationary solution of our problem, and by using the stationary solution 

one sees that the solution of our problem converges to the stationary solution as t→00. 

2 Statement of theorems 

Let Qr:= Dx (0, T). First we note that we already have the following result concerning 
temporally global and unique solvability of our problem up to any fixed time T (Some 

notations are found in, for example, [5]). 

Theorem 1 Let a E (0, 1). Assume that the initial data in (1.6) 

(vo, Uo, 0o) E Cl+"'(D) X (c2+"'(IT))2 

satisfy (1. 7) and v。,0。>0on IT. Then there exists a unique solution (v, u, 0) of the 

initial-boundary value problem (1.1)-(1.6) such that 

(v, Vェ， Vt,u, 0) E (C~亨（切））3 X (C;~"',1+; （切））2

for any positive number T and the following inequalities hold: 

Iv, vェ，叫闊＋ lu,0|悶;a):::;c, v, 0 2:'. c-1 in切，

where C is a positive constant dependent on the initial data and T. 

(2.1) 

(2.2) 

For the proof of Theorem 1, see [7], in which the case of not only ideal gas, but also 

radiative and reactive gas was discussed. 

In order to investigate large-time behaviour of the solution, we need to derive some 

uniform-in-time estimates of the solution. To this end, consider the function V = V(x) 

and the constant 8 satisfying 

{ p(V,0)＝-6+[（三） ds 

e(V, 8) = K -E1[V] 

(x Eり），
(2.3) 

for some constant K. Here 

刷 Vl:＝J （一aV-F[V]) dx, F[V]＝応[V],x), 

゜
where the function F(r, x) is arbitrarily chosen in such a way as to satisfy 

“う^＝ 
8r 

f, ＾ lim P(r,x) = 0 (x E頁）．
r→OO 



122

From j = -G(x)/rn-l we may take 

F(r,x) = 
l G(x) 

n -2 rn-2 ・ 

It is easy to see that (v, u, 0) = (V, 0, 8) becomes a certain stationary solution of the 
problem (1.1) and (1.2). The second equation of (2.3) says that it is the sationary 
solution "having the total energy K" that we especially seek. Namely, by putting 

K=E。in(2.3) for 

E。:=[（い。2+ e(v0, 0。)） dx+E叶Vo]

and noting the equality (see later, Lemma 3.3) 

［ （い2+e(v,0))dx+E伽]=E。, (2.4) 

we may say that our stationary solution (if it exists) also have the energy E。•

Let a := Gn(/3 ＋1/2). The following theorem says that the stationary solution 
uniquely exists under some restricted situation: 

Theorem 2 Assume that K > E叶O]and that 

l a 
> 1+ — +2(n -1)-=-

a K -E1[0] 

'Y -1. ・ Pe ・',  Pe Pe 
(2.5) 

Then there exists a unique solution (V, 8) with V = V(x) and 8 = const. of the 
problem (2.3) such that V E C門TI),V > 0 on TI and 8 > 0. Moreover, the inequality 

K> E咽]holds with 

v := 
(,-l)(K -E叶O])

Pe'  

and the following inequalities hold: 

('Y-l)(K -E咽])
~ V (X) ~ V (X E TT), K -E1位l~ e ~ Pe万．（2.6)

Pe +a 

By using the steady state (V, 0, 8) obtained as above, we reach the following main 
theorem concerning the asymptotic behaviour of the solution (v, u, 0). 

Theorem 3 Let T be an arbitrary positive number, and a and the initial data satisfy 

the hypotheses of Theorem 1. Assume that 

1 a 
>1+ —+2(n -1)~ 

aE。—叫O]

"(-1 
(2.7) 

Pe ・ ・ Pe Pe 

Then there exists a positive constant C independent ofT such that the inequalities (2.2) 

holds for the solution (v, u, 0) of the problem (1.1)-(1.6) in the class (2.1). Moreover, 
the solution (v, u, 0) converges to a steady state (V, 0, 8) with V = V(x) and 8 = const. 
as t→oo in the sense ofが (0)n C（百）． HereV and 8 satisfy the inequalities (2.6) 
with K = E。.
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Remark 2.1 For any (admissible) initial data E。-E1[O] > 0 because of 

釧O]= 11 (-F[O]) dx = 11 (-~) dx =ーニ
3 Outline of proofs of theorems 

3.1 Sketch of the proof of Theorem 2 

Let 

訓p,0) := 1, H[v] :=Pe+[ (—-;b) ds, J[v] := ("Y -l)(K -E1[v]). 

Construct the sequence｛防｝ （防＝防(x))such that 

{ Vi:~ : ;;i, 0i), Pi= H[vi], 0i = l[vi] (i = 0, 1,...), (3.l) Vi十1= v(pi,仇）， Pi=H［叫， 0i= I［叫（i=0,1,...),

where the constant M taken arbitrarily as to satisfy 

旦：＝ v(p,ft),(M,(v(pe, 0*) = ii 

with 

j5 :=Pe+ 11（ゴ（1,x)) dx =Pe+ a, 

゜
fl_:= J[v], 0* := J[O] = ("f-1) (K + ~) 

Noting that, for the function 

E1(Y) :=pey-［加(y))dx, r(y) := (1 + nyx)lfn, x E 0, 

゜
the positivities of Pe and 8 J / or and the negativity off lead Ei'(y) > 0 and Ei''(y) < 0 
for any y E豆wehave bounds of vi and 0i from both above and below uniformly in i. 

Lemma 3.1 If the conditions K > E1[0] and 

~~1+%; （口）
ar.esatisfied, then, for any K > E1 [O], it holds that (}_ > 0 and 

11.:::::;vi::;;v, (}_::;;0i<0* (i=0,1,...) 
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Next, let（△g)i := 9i+l -9i・ From (3.1戸wehave 

1 
（△v)i+i =（（△0)t―叫△p)t)．

Pi+l 

We note that, for any k E N and乃＝ r［叫 (j= 1, 2), 

ふ(r1，乃） ：＝ー（喜—~)［［伍一巧） ds] ―1
is a function of r1 and r2, and has the estimate 

0くふ(ri,r2):<:;; k. 

Then we have from (3.2) 

Pi+l（ふ）i+l= -(,-1) 11 (Pe+［三r，こ1；八）（~G(s) ds)心）i(s)dx 

-vi 11い（rr+l,ri)(s)G(s)(［い(s')ds') ds 

(3.2) 

Estimating the left-hand side of this equality from below and the right-hand side, 

from above, with using upper bound of v; obtained in Lemma 3.1, one can get the 
convergence of the numerical sequence { J;} for J; =|（△v);l(o) (i = 0, 1,...) under the 
condition (2.5). Thus we obtain 

Lemma 3.2 If K > E1 [O] and the condition (2.5) is satisfied, then there exists a 
function v* = v* (x) such that v* E C（百） and防→v*as i→oo in the sense of C(O). 

Put 0* := I[v*]. And see that仇→ 0*in C(O) (i→oo) by virtue of Lemma 3.2. 
The conbination of the function v* and the constant 0* becomes the soluion CV, 8) in 
Theorem 2. 

3.2 Outline of the proof of Theorem 3 

To prove Theorem 3, first we get the following estimates in suitable Sobolev spaces. 

Namely, for some generalized derivatives of the solution 

(Vxt, Vtt, Uxxx, Uxt, Bxxx, Bxt) E （び（0,T; L2(D)))6 

we find a constant C independent of T such that 

l’□||v8:／TV/]；□□',四一迄，叩）（t)II'dt <; C, 

c-1 ::; v, 0 ::; C, lul ::; C in切：
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with the norm 

llulle(QT) := llull1::1(QT) + lluxll1::1(QT) + lluxxll1::1(QT) + llut||、gl(QT)9

（ T う

llu||ら（む） := t:~;rl llu(t)ll2 + 1T lluェ(t)112 dt) 

In addition to these uniform bounds, we will also obtain 

llv -VIIH1(!1)nc(豆)+||u, 0 -8IIH2(!1)nC(!1) + llut, Btll + SU~ lux, Bxl→0 (t→ CX)）． 
xE百

Here let us get 

Lemma 3.3 The equality (2.4) holds for any t E [O, T]. 

Proof. One can rewrite (1.1)2 as 

（二）t=（亨＋q-pt
with 

q := fj-2(n -2)µ~(1, t) + 11 (n -2) 戸~ds, fj :=―if+ 11二ds
a: 

Note that from (1.2) it holds 

（匹十q-P) ＝ 0. 
V I lx=l 

From (3.3) we also have 

切＝ rn-1（亨＋0-P)． 

(3.3) 

Multiplying this equation by u, adding it to (1.1)3 and integrating that over [O, 1], we 
have 

蓋［（炉＋ 1 ／ 1)心＝ー［(_jwxdx, 

whose right-hand side becomes 

d r1 
―面1'(-iJv-P) dx 

゜by using (1.1)1, the equation乃＝ uand integration by part. This gives (2.4) by the 
integration with respect to t. ロ

The next lemma plays an essential roll in deriving estimates in Sobolev spaces. 



126

Lemma 3.4 If the condition (2.7) is satisfied, then it holds 

1t ll(v-V)(T)ll2dT:::; C 

゜for any t E [O, T], where C is a positive constant independent of T. 

(3.4) 

In order to prove this lemma, focus the following equality got from (3.3) for any differ-
entiable and integrable function g (v) 

蓋(Jvg(v) dv + ~□ 1x vg(v) ds) + v(q -p)g(v) 

゜
= [(~+q-p) 1x vg(v)ds]の十~1x (vg(v))v叫 ds

(3.5) 

Substituting g(v) = v-V into (3.5), noting 

v(q -p) = q(v -V) -[0 -8 -V(q―り）］

with j5 := H[V]皿 dintegrating it with respect to both x and t, one can get (3.4). 
Detailed proofs of Theorems 2 and 3 will be found in forthcoming publications by 

the present authors. 
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