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1 Introduction 

This article is to give a survey of our recent joint papers [8, 23, 29, 30]. We are 
concerned with compressible fluids endowed with internal capillarity, which 

aims to study the dynamics of a liquid-vapor mixture. The model originates 
from the 19th century work by Van der Waals [31] and Korteweg [25]. The 
rigorous derivation of the corresponding equations that we shall name the 

compressible Navier-Stokes-Korteweg system is due to Dunn and Serrin [15], 
where a capillary term related to surface tension is added to the classical 
compressible fluid equations. The Korteweg system is in fact based on an 

extended version of nonequilibrium thermodynamics, which assume that the 
energy of the fluid not only depends on standard variables (density, velocity 
and temperature) but also on the gradient of the density. 
Let us consider the fluid of density p 2'.'. 0 and velocity field u E艮_d_The 

barotropic case is given by 

｛如＋div(pu)＝ 0, 
叫pu)+ div(pu R u)＋▽IT = Au+ divK, 

for股x配， wherethe Korteweg tensor reads 

1 
divK＝▽（pri,(p)△P + ~(ri,(p) + pri,'(p))I▽p|り-div(ri,(p)▽pR▽p).

2 

(1.1) 

The capillarity coefficient r,, > 0 depends on p in general. The pressure 
II = P(p) is a suitable smooth function and the diffusion operator Au is 
denoted by Au全 div(2μD(u))＋▽（入divu),where D(u) = ½(• u +t▽u) 
is the symmetric gradient. The Lame coefficients入andμ (the bulk and 
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shear viscosities) are density-dependent functions, which are supposed to be 

smooth enough and to satisfy 

入＞ 0, V全入＋2μ> 0. 

System (1.1) is supplemented with initial data 

(p, u)lt=O = (Po, uo) (1.2) 

and we investigate solutions going to the constant equilibrium (p00, 0) with 

Poo > 0, at infinity. 
Clearly, System (1.1) reduces to the classical compressible Navier-Stokes 
equations if the capillarity coefficient K,三 0.As we known, so far there is a 

huge literature on the existence and long time behavior of solutions to the 

compressible Navier-Stokes equations in different settings. Here, we focus 

on the non-capillary case of (1.1). The existence of smooth solutions to 
the Cauchy problem (1.1)-(1.2) is known in Sobolev space from those works 
by Hattori and Li [19, 20]. In comparison with the local existence, global 
smooth solutions are obtained for initial data close enough to the stable 

equilibrium (p00, 0) with convex pressure profiles. Inspired by the fact that 

(1.1) is invariant by the transformation 

p(t, x) -v--+ p(l2t, lx), u(t, x) -v--+ lu(l2t, lx), l > 0 

up to a change of the pressure term II into l2II, Danchin and Desjardins [13] 

investigated the global well-posedness of strong solutions to (1.1)-(1.2) in 
critical Besov spaces provided that initial data close enough to (p00, 0) with 

P'(p00) > 0. Bresch, Desjardins and Lin [5] established the global existence 
of weak solutions in a periodic or strip domain. However, the uniqueness 

problem of weak solutions still remains a great open problem. Kotschote 

[26] considered the initial-boundary value problem in bounded domain and 
proved the local existence and uniqueness of strong solutions in maximal 

び—regularity class. Tan and Wang [32] deduced various optimal time-decay 
rates of solutions and their spatial derivatives based on the detailed spectral 

analysis. Chen and Zhao [10] studied the global existence and nonlinear sta— 

bility of stationary solutions to compressible Navier-Stokes-Korteweg system 

with the external force of general form. Charve [6] investigated the Korteweg 

compressible models (including (1.1) and the non-local system) for large ini-
tial data, and established the unique local in time solution in the situation 
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that is not necessarily stable (P'(p00) is non-positive in fact). Bian, Yao 

and Zhu [4] performed the vanishing capillarity limit of smooth solutions to 

the initial value problem. Li and Yong [27] justified the zero Mach number 

limit in the regime of smooth solutions. Germain and Lefloch [16] devel-

oped the finite energy methods and validated the zero viscosity-capillarity 

limit associated with the N avier-Stokes-Korteweg system in one dimension. 

Specifically, they established the existence of finite energy solutions as well 

as their convergence toward entropy solutions to the Euler system. Chika-

mi and Kobayashi [11] established the global existence and decay of strong 

solutions in the critical Besov spaces, where the assumption on the pressure 

law is not necessary monotone increasing. Huang, Hong and Shi [22] also 

considered the similar case and proved the local-in-time existence of smooth 

solutions to (1.1)-(1.2). The global-in-time existence of smooth solutions was 

also established in periodic domain. Murata and Shibata [28] addressed a 
different statement on the global existence and decay estimates of strong 

solutions, where the maximal L凡U regularity to the linearized equation in 

配 ismainly employed. Recently, Antonelli and Spirito [1] constructed the 

global existence of finite energy weak solutions for large initial data, where 

vacuum regions are allowed in the definition of weak solutions. 

The starting point of our research for the Cauchy problem of (1.1)-(1.2) 

is the global existence result achieved by Danchin and Desjardins [13]. To 
the best of our knowledge, there is few results on the global wellposedness 

theory to (1.1)-(1.2) in the general LP critical framework (see Remark 1.1 

below). For the convenience of readers, we would like to present the main 

statement in [13] first. Denote the functional space by 

E = { (a,u)la E心（罠訊翌―1噂，？） nL囀訊;9/12+1噂，:12+2);

u E Cb国；B翌―1)n L噂；B誓り｝．

The reader is referred to [3] for the definition of Besov spaces. 

Theorem 1.1. (/13}) Let p00 > 0 be such that P'(p00) > 0. Suppose that 
. d .  d 1 

the initial density fluctuation p0 -p00 belongs to BI,1 n BI,;i and that the 
initial velocity u。isin i3!,;1. There exists a constant TJ > 0 depending only 
on r,,, μ, v, p00, P'(p00) and d, such that, if 

IIPo -Pooll砧nB〗1-1+ ||Uo||B]1-1ごn,
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then the Cauchy problem (1.1)-(1.2) has a unique global solution (p, u) such 

that (p -p00, u) E E. 

As a matter of fact, only the case of constant capillarity and viscosity 
coefficients has been considered in [13]. The case of smooth coefficients may 

be treated along the same lines (see also the work by Haspot in [17] concerning 
the polytropic case). Referring to [12] in the non-capillary case, we see that 
the internal capillarity can smooth out the density fluctuation in viscous 

compressible flows such that the solution behaves as the heat smoothing 
effect in all frequencies, which indicates that there is no loss of regularity for 
the high frequencies. Inspired by the smoothing property, one can prove the 

solution constructed in Theorem 1.1 is Gevrey analytic. Precisely, 

Theorem 1.2 ([8]). Let p fulfill 

2~p さ min(4,d*) and, additionally, pヂ4if d = 2, (1.3) 

where d*全2d/ (d -2). There exists an integer k。EN and a real number 
T/ > 0 depending only on the functions K,入，μ and P, and on p and d, 
such that if one defines the threshold between low and high frequencies as in 

BP Section 2, if a。全 Po-Poo E 13%,1 and uo E i3;,;・ with, besides, (at ut) in 
均，;1satisfy 

Xp,O全||（a。,uo)II£.li-1 + llaoll~ 4 + lluoll~ 4_1 ~ T/, (1.4) 
Bす

--1 -

2,1 
BP 
p,1 

BP 
p,1 

then (1.1)-(1.2) has a unique global-in-time solution (a, u) in the space XP 

defined by 

XP全{(a,u)l(a, ul E心（股＋麗，1ー 1)nL1国麗：1），
ah E似恥；砧） nL叫心）， uhE Cb図；B［，1-1)nL嗚；叫）｝
Furthermore, there exists a constant c。>0so that (a, u) belongs to the space 

YP全{(a,u) E Xple⑯ Ai (a, u) E Xp}, 

where A1 stands for the Fourier multiplier with symbol凰＝区[=1|＆|． 
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Remark 1.1. In the physical dimensions d = 2, 3, Condition (1.4) allows us 
to consider the case p > d, and the velocity regularity exponent d/p -1 thus 
becomes negative. Therefore, Theorem 1. 2 applies to large highly oscillating 
initial velocities (see e.g., /7, 9} for explanations), which is the main motiva-

tion ofび extension.In addition, Theorem 1.2 tells us if initial data (1.2) 
are sufficiently small in critical Besov spaces, then the solution of System 
(1.1) is globally in the Gevrey class, where the radius of uniform analyticity 
increases like v1t as t→ CX). 

The proof of Theorem 1.2 can be finished by means of the standard fixed 

point theorem. To do this, a priori estimates are necessary, which mainly 
depend on theび energyargument and nonlinear estimates involving Gevrey 
regularity. 

Lemma 1.1. There exists some constant C such that for all t 2:: 0, 

ふ(t)::; C（ふ，o＋芥(t)＋羽(t)),

where 

、1合（t) 全 ll(a,u)II~ -l!-1 + ll(a,u)W 
圧 (BT―

1 d+1 
t 2,1) L}（吐）

(1.5) 

+ ||a||h d 

年(Bふ）nL}(Bふ）
.ぃ +||u||h 4_1 凸 1.. (1.6) 

年（虎，1~)nL} （況，1)

By denoting A全e⑯ Aiaand U 全€ぷ恥u, furthermore, we have 
9 9 

Lemma 1.2. If IIAII_ _. g _ is small enough, then the following a priori 
炉 (Bふ）

estimate holds true 

晶(t)::-; C（ふ，o＋況(t)) for all t 2: 0, 

where 

Yp(t)全II(A, U) II~. lt-1. + II (A, U) 11£.. it 
圧 (B2― +1 
t 2,1) L}(Bも）

(1.7) 

+||A||h d.ぃ+||U||h d 

年（砧）nL}（B[，1)
凸 1.

年（況，1 ）n店（況，1 ）

As the direct consequence of Gevrey smoothing, the regularizing decay 
for higher-order derivatives of solutions can be available. 
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Theorem 1.3. Let (12, u) be the solution constructed in Theorem 1.2. Then, 
for any s 2:'. 0, there exists a constant Cs such that for all t > 0, it holds that 

||p(t) -POO||t d < cぷ，0t―!'
B2 -l+s -
2,1 

-1+s < cぷ，ot―!'||u(t)||£ d 
Bふ

llp(t) -Pooll~ 4+8 :SC'ぷ，0t―託—c,/t,
BP +s 

llu(t) II~ g_1十s::; Cぷ，ot―!e―c../t.
Bふp,1 

Theorem 1.3 exhibits algebraic time-decay estimates in critical Besov s-
paces (and even exponential decay for the high frequencies) for arbitrary 
derivatives of the solution. However, those decay rates of solutions in low 
frequencies are not optimal in contrast to that of the heat kernel. It is found 
that there are no existing papers on the optimal time-decay estimates of 

solutions addressed by Theorem 1.2. Generally speaking, the elaborate spec-
tral analysis may be always effective. By exploring the parabolic diffusion of 
(1.1), here, we developed more elementary energy argument (independent of 
spectral analysis), which leads to desired time-decay estimates of U-Y type. 
Denote the pseudo differential operator As by As f全 r-1(|~Is.町） for
sE賊．

Theorem 1.4. (/23}) Let (p, u) be the global solution of (1.1)-(1.2) in The-
orem 1.2. Let the real number <Y1 satisfy 

d △ 2d d 
1ーー＜び1:Sびowith びo= ---
2 p 2. 

(1.8) 

There exists a positive constant c = c(p, d,入，μ,P, "') such that if in addition 
the initial data (a。,uo)satisfy 

割，0全II(a。,Uo)||`::;c, (1.9) 

then the solution (p, u) fulfills 

IIA1(a, u) llu 乏 rJ(t) ―§(｝-｝）—苧 (1.10) 

fort~ O,pさrさ(X)andl E股， wherev(t) := t if―ふく l+ d(} -~）さ
名＋ 1and v(t) :=〈t〉（全 v'f+i2)if -&1 < l + d(} 一~)ご名ー 1 satisfying 
&1全び1+ d(l/2 -1/p). 
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It is well-known that the low-frequency assumption usually plays a key 
role in the large-time asymptotics of solutions. To capture the optimal de— 

cay rates of L生Y type, the low-frequency assumption in (1.4) is reasonably 

strengthened by (1.9). In fact, (1.9) can be regarded as a natural general-

ization of the L1 assumption due to the Sobolev embedding L1 c......+ 13~~2 (if 
takingび1=び0= d/2 and p = 2). The proof of Theorem 1.4 lies in the 
following time-weighted inequality 

where 

'Dp(t)~ ('Dp,O +||（▽a。墨o)II~g_1) for all t ~ 0, (1.11) 
BP 
p,l 

叩 t)全 sup||〈T〉
竺
2(a,u)II L戸 (B~,1)

6E[e-61，炉＋1]

+ IIT13(v'a, u)II~. 4+1 +||〈T 〉13(v'a,u)II~.1「 (1.12)
圧 (BPt p,1) 年 (Bふ）

for(3 ＝び1+~+ 』 -E (E > 0 sufficiently small). Proving (1.11) consists of 
two steps. The first step (bounding the low-frequency part of DP in (1.12)) is 
devoted to refined time-weighted estimates. In the second step, we establish 
gain of regularity and decay altogether for the high frequencies of solutions. 

The step strongly relies on the elementary V energy approach, since the 
capillarity tensor behaves like the heat diffusion of density fluctuation. The 

strategy is in the spirit of Hoff's viscous effective flux (see [21]), which was 

developed by Haspot [18] in the critical framework. 
Furthermore, the smallness requirement of low frequencies in terms of 

乃0can be removed by using energy methods of Lyapunov type. 

Theorem 1.5. (/23}) Let the real numberび1satisfy 

d △ 2d d 
1 --＜ (J"1 < (J"。with びo= ---
2 p 2. 

”巧o全 ll(a。,u0)11:-"1is bounded, then the solution (a,u) constructed in B―"l 
2,= 

Theorem 1. 2 fulfills 

IIA¥a,u)||じこ (1+ t) ―~(½-~)—苧 (1.13) 

fort~ 0, p Srさooand l E股 satisfying-8-1 < l + d（土一~) s ~ -1. 
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In comparison with the time-weighted energy method in Theorem 1.4, 
the proof of Theorem 1.5 is totally different and resorts to a Lyapunov-type 
inequality in time for critical energy norms: 

d i (11 (a, u)cll3j,-1 + ll(v'a, u)II~ 且＿ 1
2,1BP  

+ c。(I|（a,U)£||B;；1) +||（Va,U)||：[;1)1+d/2-t勺さ 0. (1.14) 
for some constant c。>0.Solving (1.14) yields the desired optimal decay 
estimates directly. 
In order to show (1.14), the main task is to establish the nonlinear evo-
lution of Besov norm B2,~ (restricted in the low-frequency of solutions) for 
both non oscillation case (2さp::; d) and oscillation case (p > d). That is, 
it suffices to bound 

II (a, u)(t,•)||`；□ < c。 (1.15) 

for all t 2". 0, where C,。>0depends on the norm 11 (a。,Uo)|『 and品，O・
B 
・ -61 
2,oo 

The crucial inequality is included in the following lemma. 

Lemma 1.3. Let 1 d 
2 
くのさ a。andp satisfy (1.3). It holds that 

(11 (a, u)(t)い）2乏(ll(a。,uo)I三）2

+ 1t（心(T)＋塵））（ll(a, u)(T)い）2心＋［N;(T)ll(a,u)(T)||凶戸
(1.16) 

where 

心（t)全1|（a,U)||[ ＋||a||h +||u||h 況(t)全IIall 2. !!, 
叫古古＇ 砧

亭）全 (ll(a,u)ll:t-1 + 11a11:1.i + llu||：』-1)(llall::,:2 + llull::,:1) 
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Indeed, based on (1.16), it follows from Young's inequality that 

(11 (a, u)(t) Iい） 2 こ (ll(a。 ,uo)II~;悶『＋［N;(T)dT 
+ 1t（心(T)＋塵）＋塵））（ll(a,u)(T)|い)2心 (1.17) 

Furthermore, according to the definition ofふ in(1.6) and Theorem 1.2, we 
arrive at 

[ （心(T)＋塵））むさふ＋x;~c品，o,
゜since品，0≪ 1. On the other hand, we use the interpolation inequality and 

get 

Ilaり12.4 乏1|at|| ||at|| < ||a||£ ||a||t 
L;(Bふ）応(B[；1) L}（Bい～応(B[1-1) L} (B>1+1)

and 

llahll2 _ st. ~ llallh _ s1 llallh 
L印(Bふ）
~ d+2' 
L戸(Bふ） L}（吐）

which lead to 

Jt況(T)dT乏立さ C品，O・

゜Therefore, (1.15) is followed by Gronwall's inequality. 

2 Zero sound speed P'(p00) = 0 

Most of previous efforts are dedicated to the stable case P'(p00) > 0 with 
p00 > 0, except for [11, 22, 26]. It is well-known that the Navier-Stokes-
Korteweg system (NSK) was deduced by using Van der Waals potential 

([15, 25, 31]), where the pressure law is not necessary monotone increasing. 
Therefore, it is interesting to investigate more physical case P'(p00) = 0 (ze-
ro sound speed) and P'(p00) < 0. In those cases, the pressure term couldn't 
provide any dissipation. 
For simplicity, let us consider the case of zero sound speed with the far-

field p00 > 0, which indicates vacuum is ruled out on this stage. We recall 
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briefly the Fourier study of the corresponding linearized system as in [13]. A 
simple calculation leads to the following linear perturbation system 

｛如＋divm = 0, （2.1) 

8tm -μ00divD(m) -(μ00＋心）▽divm一応00▽△a=0, 

where m is the scaled momentum. Denote P = Idー艮div(Leray Projector). 
Hence, m =Pm+ Qm where Pm is the divergence-free part and Qm is the 
compressible part. Consequently, 

，
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(2.2) 

where l/00 =心＋ 2μ00> 0. Clearly, Pm just satisfies an ordinary heat 
equation. Regarding for Qm, it is convenient to introduce 

v全A―1divm.

Consequently, the new variable (a, V) satisfies the coupling 2 x 2 system: 

{知+AV=0, 
砂— i)△V- "'A3a = 0. 

Taking the Fourier transform with respect to x E配 impliesthat 

羞(t)= A(~) (t) with A(~)= （ふ—:1i112)'
where~ E配 isthe Fourier variable. It is not difficult to check that 

(i): If v~ 2 4心00,then A(~) has two real eigenvalues: 

入士＝
-Voo土V'唸ー4位OO

2 
1~12; 

(ii): If炉 <4"'00,then A(~) 00 has two complex conjugated eigenvalues: 

心＝
-Voo 土 iv/4脳—唸 2

2 
|（|， 

where i = ✓コ~ is the unit imaginary number. 

(2.3) 



138

Remark 2.1. Let us underline that the case (i) or (ii) is of "regularity-
gain type" according to the dissipation notion for general hyperbolic-parabolic 

system with dispersion formulated in /24} recently, which implies that the 
solution admits parabolic regularization in all frequency space. In particular, 
the K orteweg system is purely dissipative in the case (i), and is a dissipative-
dispersive hybrid in the case (ii). 

Also, we would like to survey the recent results on the case (i). Firstly, 
we give the definition of hybrid Besov spaces as follows. 

Definition 2.1. Let s, t E股， p,q,r1,r2E [1,oo] 
. s,t 

E 11, ool. We denote B (p,r1),(q,r2) by 
the space of functions f E Sb (the subspace of those tempered distributions 
module polynomials) equipped with norm: 

上

||f||Bst = ｛区2汀 1IIA』恥｝T1+｛L2加2II△f||zq｝土(p，門），（q,r2)
j~jo j<jo 

for some integer j。.Forconvenience, we write IIJll8~,t 全 llflli. + (p,r1),(q,r2) BS p,r1 
| | f | | ； t • q,r2 
Moreover, one can define the hybrid Chemin-Lerner spaces L忙 (Bs,t(p,n)，（q,r2)) 
with norm: 

llfllt忙（B(土r1),(q,r2))={炉 ||A1fll叩LP}仇。+{沙|1△JIIL四｝仇。

for T > 0. 

Theorem 2.1. (/29}) Let p00 > 0 such that P'(p00) = 0. Let v~ 2'. 41,,00 and 
1さq:::;p:::; min{ d, 2q} with 

1
-
d
 

＋
 

1
-
P
 

VI 

1
-
q
 

(2.4) 

There exists a positive'T/ > 0 depending on functions K,入，μ and P and on p, q 
• d 2 .  d 3 

and d such that if (a。,mo)E砥 X尻，1―,besides,(at ut) E Bに xBJ,こ
satisfying 

ll(Va。,mo)II. g-d-3 :::;'T/, 
Bp,q  
(p,l),(q,=) 
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then (1.1)-(1.2) admits a unique global-in-time solution (a, m) in the space 
EP,q satisfying 

ll(a,m)IIE!i,'q乏ll(v'a。,mo)II.,,~-1,~-a 
Bp,q  
(p,l)(q,oo) 

for any T > 0, where 

ll(a,m)IIE『'q全 1|（Va,m)|| £l-1 gi-3 + ||（▽a,m)II~,,,.J+1,~-1 ・
砕 (Bむ，1），'（い心）） L｝（B心，1）,心,0:))

(2.5) 

Moreover, if those functions入，μ,K, and P are assumed to be real analytic near 
zero, then ford：：：： 3 and 1く q'.Sp'.Smin位iけ訓幼 1/q'.S1/p + 1凪珈
solution (a, m) fulfills e心 Ai(a, m) E EP,q, where c0 = ca(d, μ=,入CXl9KCXl, pCXl) 
is some positive constant. 

Clearly, Theorem 2.1 indicates that the Korteweg system (1.1) is purely 

dissipative in the case of v 2 (X) ：：：： 4氏CXland acoustic waves are not available. 
Consequently, the usual £2-type bounds on the low frequencies of solutions 
are improved to theび frameworkin contrast to the priori study of compress-

ible Navier-Stokes equations ([7, 9, 12, 18]) or compressible Navier-Stokes-
Korteweg equations ([8, 11, 13]). Similar to Theorem 1.2, the system with 
zero sound speed enjoys the Gevrey a叫 yticitytoo, where the radius of u-
niform analyticity increases like v't as t→oo. As a next step, one wonder 
what the global strong solutions constructed in Theorem 2.1 look like for 

large times. For that end, we develop an idea (see [30]) in Besov framework 
as follows: 

||Alu||B!,1 乏 t―も一各 lle0A1ull132,~ for l>一び． (2.6) 

The key estimate lies in uniform bounds on the growth of the radius of 
analyticity in negative Besov norms 

lle0A1vlli32,~ さ C for t > 0. 

Consequently, choosing a suitable regularity (for instance,び＝ d/2)enables 
us to get the same time-decay estimates as heat kernel. 

Theorem 2.2. (/30}) Let (a, m) be the global solution addressed by Theorem 

2.1. Suppose that the real number 0'1 fulfills 2 - ~ ~び1 < d -~'if 1 < 
q q' 

p ~ 2 and 2 d 2d d --＜ < ---
q - び1 ~ ~ - ~, if p > 2. If in addition initial norm 
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ll(Va。,mo)ll:-a-,-1is bounded, then the solution (a,u) satisfies the following 
B心

decay estimates 

IIA!a||じ ~c〈t -t0〉ーザー½' l>ー五 (2.7) 

IIAl叫Iいさ C〈t-to〉与—½-½, l > -a-1 -1, (2.8) 

for all t ~ t。andr ~ p, where t。>0is some certain transient (sufficiently 
small) time，ふ全。1--+ -d, d r'q・ 

In the case of zero sound speed, we see that the density decays at a slower 

time-rate than the velocity owing to the absence of a lower-order dissipation 

arising from the pressure. It is worth noting that those decay rates for 

1 < r < 2 are totally new, which provide a hint for long-time behaviors of 
compressible fluids. The mathematical analysis for another case (ii) is under 

working, the elaborate dissipative-dispersive coupling structure need to be 

treated. The vacuum mechanism (for instance, p00ミ0)is ruled out in our 
present analysis. In the presence of vacuum, the mathematical theory for 

viscous fluids is still far away from well known in critical spaces, which may 

be of interest. In addition, the study for the unstable case P'(p00) < 0 is also 
left to the future consideration. 

3 Appendix 

In the last section, we would like to present useful notations and nonlinear 

tools for this survey. The reader is also referred to [3] for the definitions of 

the Littl~wood-P_aley decomposition and Besov spaces. 
Letふ andSk be the Fourier cut-off operators (see [3]). Fixed k。EZ
(the value of which follo"'.'s from the proof of the high-frequency estimates 

in fact), we denote zc全fA0zand zh全z-zc. Restricting Besov norms to 

the low or high frequencies parts of distributions will be fundamental in our 
methods. For instance, we put1 

llfll~;.1 全 L 2ka11A』||LPand llf||i;,1全 L2ka11ふf||LP,
k:S:ko k2':ko-1 

1 Note that for technical reasons, we need a small overlap between low and high fre-
quencies. 
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||f||l芹(Bわ）全 L2kallふf||L戸(LP)and 111111加(B恥）全ど 2ka11ふJIIL芹(LP)・
k::;'.ko k2".ko-l 

In what follows, we give nonlinear estimates in the proofs of Theorems 1.2, 
1.4 and 1.5. Firstly, by using Bony's decomposition and Fourier multiplier 

theorems, one may deduce the following Gevrey product estimates in Besov 

spaces. The interesting reader is referred to [8] for more details. 

p roposition 3.1. Let 1 < p < oo, s1, s2 ::; d/p with釘＋的＞ dmax(O,-1 + 
2/p). There exists a constant C such that the following estimate holds true: 

lie況 A1(fg)||B;］1+S2-gこC||F||B;！1||G||B芦' (3.1) 

Remark 3.1. Proposition 3.1 ensures that the space {f E iJ;,1, e冨 A1JE 

砧｝ isan algebra whenever 1 < p < oo. 
The product estimates (3.1) also holds in the framework of Chemin-
Lerner's spaces, whereas the time exponent just fulfills Holder inequality. 

p roposition 3.2. Let 1 < p < oo and 1さq,q1, q2さoosuch that!. =—+-· 1, 1 

q q1. q2 

If s1, s2 ~ d/p and s1＋的＞ dmax(0,-1+2/p),then there exists a constant 
C > 0 such that for all T ~ 0, 

lie嘉 A1(Jg)IIL戸(B;］1+S2-g)こC||F|1砕(B;¥)IIGIIL界(B芦）・ (3.2)

Secondly, System (1.1) also involves compositions of functions (through 

K,,入andμ)and they can be bounded according to the following composition 

estimates by real analytic functions. 

Proposition 3.3. Let <I> be a real analytic function in a neighborhood of 

0, such that <1>(0) = 0. Let 1 < p < oo and -min（号，及） ＜ sさgwith 
上=1-!..There exi 
p' 

ere exist two constants R。andD depending only on p, d and 
p 

<I> such that if for some T > 0, 

ーさ R。,lie嘉 AE||d
砕(Bふ）

then we have for all q E [1, oo], 

lie冨 Al<I>(z)||L各（競，1)三D||e況 A1zll1各(13;,1).

(3.3) 

(3.4) 
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Finally, we end the section with the endpoint maximal regularity prop-
erty of the heat equation, which is adapted to the case of complex diffusion 

coefficient. The proof is similar to the case of real coefficient as in [3]. 

p roposition 3.4. Let T > 0, s E罠 and1 ~ P2, p, rさoo.Let u satisfy 

｛如— v△u=f, 
ult=O = uo(x), 

(3.5) 

where v E (C is a complex number with Rev > 0. Then, there exists a 
constant C depending only on d and such that for all p1 E [p2, oo], one has 

...!.. 

(Reu)Pl ||u||L;1(B;：丸~ c(lluollsi,r + (Rev)古ー1llflll.,臀(B;r2＋i)・ (3.6) 
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