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1 Introduction

This article is to give a survey of our recent joint papers [8, 23, 29, 30]. We are
concerned with compressible fluids endowed with internal capillarity, which
aims to study the dynamics of a liquid-vapor mixture. The model originates
from the 19th century work by Van der Waals [31] and Korteweg [25]. The
rigorous derivation of the corresponding equations that we shall name the
compressible Navier-Stokes-Korteweg system is due to Dunn and Serrin [15],
where a capillary term related to surface tension is added to the classical
compressible fluid equations. The Korteweg system is in fact based on an
extended version of nonequilibrium thermodynamics, which assume that the
energy of the fluid not only depends on standard variables (density, velocity
and temperature) but also on the gradient of the density.

Let us consider the fluid of density p > 0 and velocity field u € R?. The
barotropic case is given by

Orp + div(pu) = 0,
Ay (pu) + div(pu ® u) + VII = Au + divK, (1.1)

for R x R?, where the Korteweg tensor reads

: 1 :
divk = V(pr(p)Ap + 5 (k(p) + P! (p))|Vp|?) = div(k(p)Vp @ Vp).
The capillarity coefficient x > 0 depends on p in general. The pressure
II = P(p) is a suitable smooth function and the diffusion operator Au is
denoted by Au £ div(2uD(u)) + V(Adivu), where D(u) = (Vu +' Vu)
is the symmetric gradient. The Lamé coefficients A\ and p (the bulk and



shear viscosities) are density-dependent functions, which are supposed to be
smooth enough and to satisfy

A>0, vEX+2u>0.
System (1.1) is supplemented with initial data

(p, w)]i=0 = (po, uo) (1.2)

and we investigate solutions going to the constant equilibrium (p..,0) with
Poo > 0, at infinity.

Clearly, System (1.1) reduces to the classical compressible Navier-Stokes
equations if the capillarity coefficient k = 0. As we known, so far there is a
huge literature on the existence and long time behavior of solutions to the
compressible Navier-Stokes equations in different settings. Here, we focus
on the non-capillary case of (1.1). The existence of smooth solutions to
the Cauchy problem (1.1)-(1.2) is known in Sobolev space from those works
by Hattori and Li [19, 20]. In comparison with the local existence, global
smooth solutions are obtained for initial data close enough to the stable
equilibrium (peo,0) with convex pressure profiles. Inspired by the fact that
(1.1) is invariant by the transformation

p(t,z) ~ p(l%t,1x), u(t,z) ~ lu(l’t,lz), 1>0

up to a change of the pressure term II into {?IT, Danchin and Desjardins [13]
investigated the global well-posedness of strong solutions to (1.1)-(1.2) in
critical Besov spaces provided that initial data close enough to (pu,0) with
P'(pss) > 0. Bresch, Desjardins and Lin [5] established the global existence
of weak solutions in a periodic or strip domain. However, the uniqueness
problem of weak solutions still remains a great open problem. Kotschote
[26] considered the initial-boundary value problem in bounded domain and
proved the local existence and uniqueness of strong solutions in maximal
LP-regularity class. Tan and Wang [32] deduced various optimal time-decay
rates of solutions and their spatial derivatives based on the detailed spectral
analysis. Chen and Zhao [10] studied the global existence and nonlinear sta-
bility of stationary solutions to compressible Navier-Stokes-Korteweg system
with the external force of general form. Charve [6] investigated the Korteweg
compressible models (including (1.1) and the non-local system) for large ini-
tial data, and established the unique local in time solution in the situation
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that is not necessarily stable (P'(ps) is non-positive in fact). Bian, Yao
and Zhu [4] performed the vanishing capillarity limit of smooth solutions to
the initial value problem. Li and Yong [27] justified the zero Mach number
limit in the regime of smooth solutions. Germain and Lefloch [16] devel-
oped the finite energy methods and validated the zero viscosity-capillarity
limit associated with the Navier-Stokes-Korteweg system in one dimension.
Specifically, they established the existence of finite energy solutions as well
as their convergence toward entropy solutions to the Euler system. Chika-
mi and Kobayashi [11] established the global existence and decay of strong
solutions in the critical Besov spaces, where the assumption on the pressure
law is not necessary monotone increasing. Huang, Hong and Shi [22] also
considered the similar case and proved the local-in-time existence of smooth
solutions to (1.1)-(1.2). The global-in-time existence of smooth solutions was
also established in periodic domain. Murata and Shibata [28] addressed a
different statement on the global existence and decay estimates of strong
solutions, where the maximal LP-L9 regularity to the linearized equation in
R? is mainly employed. Recently, Antonelli and Spirito [1] constructed the
global existence of finite energy weak solutions for large initial data, where
vacuum regions are allowed in the definition of weak solutions.

The starting point of our research for the Cauchy problem of (1.1)-(1.2)
is the global existence result achieved by Danchin and Desjardins [13]. To
the best of our knowledge, there is few results on the global wellposedness
theory to (1.1)-(1.2) in the general L? critical framework (see Remark 1.1
below). For the convenience of readers, we would like to present the main
statement in [13] first. Denote the functional space by

E - {(CL,U) a & C‘Vb(Rﬁ_;Bg,/lz 1m Bd/2> m Ll(R+7Bd/2+1 ﬂ Bd/2+2)7

we (R, BYN M L (R, B‘W“)}.

The reader is referred to [3] for the definition of Besov spaces.
Theorem 1.1. ([13]) Let ps > 0 be such that P'(ps) > 0. Suppose that
d Ld_
the wnitial density fluctuation py — p belongs to B3y N B3y ' and that the
nd_
initial velocity ug is in By, ' There ewists a constant 1 > 0 depending only

ON Ky [, V, Pocy P'(poo) and d, such that, if

lpo — pWHBﬁlmBﬁ;l + |\Uo||B§I_I <,



then the Cauchy problem (1.1)-(1.2) has a unique global solution (p,u) such
that (p — peo,u) € E.

As a matter of fact, only the case of constant capillarity and viscosity
coefficients has been considered in [13]. The case of smooth coefficients may
be treated along the same lines (see also the work by Haspot in [17] concerning
the polytropic case). Referring to [12] in the non-capillary case, we see that
the internal capillarity can smooth out the density fluctuation in viscous
compressible flows such that the solution behaves as the heat smoothing
effect in all frequencies, which indicates that there is no loss of regularity for
the high frequencies. Inspired by the smoothing property, one can prove the
solution constructed in Theorem 1.1 is Gevrey analytic. Precisely,

Theorem 1.2 ([8]). Let p fulfill
2 <p<min(4,d") and, additionally, p#4 if d=2, (1.3)

where d* = 2d/(d — 2). There exists an integer ko € N and a real number

n > 0 depending only on the functions k, A, pu and P, and on p and d,

such that if one defines the threshold between low and high frequencies as in
. d .49

Section 2, if ag = po — Poe € Bl and ug € B, with, besides, (ag, uf) in

d_1 .
B3, satisfy

XI%O = H(GOaUO)Hz. g1 + HaOHh
BZI B

o™, <, (1.4)
BP

d
P
p,1 p,1

then (1.1)-(1.2) has a unique global-in-time solution (a,w) in the space X,
defined by

5 ‘é—l . d 1
X, & {(a,u)|(a,u) € G(Ry; By, )N LY(Ry:; 3221“ ),

ho~ A o5 1 o5 +2 ho- A ! 1 e
a E Cb(R+’ Bp,l) ﬂ L (R+, Bp,l )7 u 6 Cb(R+, Bp,l ) ﬂ L (R+7 Bp71 )}
Furthermore, there exists a constant co > 0 so that (a,u) belongs to the space
Y, £ {(a,u) € X[V ™ (a,u) € X},

where Ay stands for the Fourier multiplier with symbol ||, = Zle ;]
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Remark 1.1. In the physical dimensions d = 2,3, Condition (1.4) allows us
to consider the case p > d, and the velocity reqularity exponent d/p — 1 thus
becomes negative. Therefore, Theorem 1.2 applies to large highly oscillating
initial velocities (see e.q., [T, 9] for explanations), which is the main motiva-
tion of LP extension. In addition, Theorem 1.2 tells us if initial data (1.2)
are sufficiently small in critical Besov spaces, then the solution of System
(1.1) is globally in the Gevrey class, where the radius of uniform analyticity
increases like \/t as t — 0o.

The proof of Theorem 1.2 can be finished by means of the standard fixed
point theorem. To do this, a priori estimates are necessary, which mainly
depend on the L? energy argument and nonlinear estimates involving Gevrey
regularity.

Lemma 1.1. There exists some constant C' such that for all t > 0,
Xy(t) < C(Xp0 + X (1) + X)), (1.5)

where

) = @ wll g+l )]l

L2, o
Hlal® o gl (1.6)
L= (B ONLE(BE ) By nnksh)

By denoting A £ eVeothig and U £ eVeorty, furthermore, we have

Lemma 1.2. If ||A|. 4 s small enough, then the following a priori
Le=(By,)
estimate holds true ’

V(1) < C(Xpo+ Va(t))  forall t>0, (1.7)

where

Yolt) = (A 53 L I U)HZ 54

+]| A" +||U .
l ||L°°(Bi1) <:1+2> | ”wagl - +1)

+1
,1

)

As the direct consequence of Gevrey smoothing, the regularizing decay
for higher-order derivatives of solutions can be available.



Theorem 1.3. Let (o, u) be the solution constructed in Theorem 1.2. Then,
for any s > 0, there exists a constant Cy such that for allt > 0, it holds that

lo(t) = pecll 4 1y < Cokpot 3, @I’ 4 ... < Copot 2,
BQ’1 32,1

p(t) = pocll” 4, < Colpot 2 u(®)]"4_,,, < Cilkpot 36"
B;’J Bﬁl

Theorem 1.3 exhibits algebraic time-decay estimates in critical Besov s-
paces (and even exponential decay for the high frequencies) for arbitrary
derivatives of the solution. However, those decay rates of solutions in low
frequencies are not optimal in contrast to that of the heat kernel. It is found
that there are no existing papers on the optimal time-decay estimates of
solutions addressed by Theorem 1.2. Generally speaking, the elaborate spec-
tral analysis may be always effective. By exploring the parabolic diffusion of
(1.1), here, we developed more elementary energy argument (independent of
spectral analysis), which leads to desired time-decay estimates of LI-L" type.

Denote the pseudo differential operator A* by A*f £ F~1(|¢]° Ff) for
seR.

Theorem 1.4. ([23]) Let (p,u) be the global solution of (1.1)-(1.2) in The-
orem 1.2. Let the real number oy satisfy

2 %l- (1.8)

1—§<01§00 with O'Oé——

There exists a positive constant ¢ = c¢(p,d, \, u, P, k) such that if in addition
the initial data (ag,ug) satisfy

Dyo 2 [|(a0, o) [fyos < e (19)

then the solution (p,w) fulfills

4o

1A @, )| S 9() 3G~ (1.10)

%—1—1 and 9(t) == (t)(E V1 +12) if =6, < 1+ d(% —1) < ]%l — 1 satisfying
612 o1 +d(1/2 —1/p).

fort > 0,p <r < oo andl € R, where ¥(t) ::tif—61<l+d(i—%)<
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It is well-known that the low-frequency assumption usually plays a key
role in the large-time asymptotics of solutions. To capture the optimal de-
cay rates of L%-L" type, the low-frequency assumption in (1.4) is reasonably
strengthened by (1.9). In fact, (1.9) can be regarded as a natural general-
ization of the L! assumption due to the Sobolev embedding L' < B, 42 (if
taking oy = 09 = d/2 and p = 2). The proof of Theorem 1.4 lies in the
following time-weighted inequality

D,(t) < (Dyo + ||(Vag, up)||" a_,) for all ¢ >0, (1.11)
BP

~Y
p,1

o1to

Dy(t)=  sup (1) (a,u)

¢
lge g,

I (Va, )l 4 D (Va, )]t L (112)
)

I I"
LBy, LEBl)
for 8 =01+ %41 —¢e (¢ > 0 sufficiently small). Proving (1.11) consists of
two steps. The first step (bounding the low-frequency part of D, in (1.12)) is
devoted to refined time-weighted estimates. In the second step, we establish
gain of regularity and decay altogether for the high frequencies of solutions.
The step strongly relies on the elementary LP energy approach, since the
capillarity tensor behaves like the heat diffusion of density fluctuation. The
strategy is in the spirit of Hoff’s viscous effective flux (see [21]), which was
developed by Haspot [18] in the critical framework.

Furthermore, the smallness requirement of low frequencies in terms of
D, can be removed by using energy methods of Lyapunov type.

Theorem 1.5. (/25]) Let the real number oy satisfy
A 2d d

l—=<o0 < ith = — ——.

9 01 = 0p wt oh)) B

If Dyo = ||(ao,uo)\|%,g1 is bounded, then the solution (a,u) constructed in
2,00

Theorem 1.2 fulfills

1A a, )| < (1+1)"2G——"2" (1.13)

fortZO,pSrSooanleRsatisfymg—&l<l+d(%—%)§%—l.



In comparison with the time-weighted energy method in Theorem 1.4,
the proof of Theorem 1.5 is totally different and resorts to a Lyapunov-type
inequality in time for critical energy norms:

d l h
i (@)l + (Ve “’”Bg;)

I = e
ol (@l g+ I(Vau), ) 7

2,1

"y, <0. (1.14)
B},
for some constant ¢y > 0. Solving (1.14) yields the desired optimal decay
estimates directly.

In order to show (1.14), the main task is to establish the nonlinear evo-
lution of Besov norm BQ_ 71 (restricted in the low-frequency of solutions) for

both non oscillation case (2 < p < d) and oscillation case (p > d). That is,
it suffices to bound

(a0t os < Co (1.15)
for all t > 0, where Cy > 0 depends on the norm H(amuo)H%,gl and X, .
2,00

The crucial inequality is included in the following lemma.

Lemma 1.3. Let 1 — g < o1 < 09 and p satisfy (1.3). It holds that

(I w)®n) S (a0, w0l )
+ / t (M) +AZ() (r|<a,u><r>\\g;g)2df+ / Wl W)y,
(1.16)

where

Ny () = l(a,u)]’

L
g I

NR () = a]®

411 P
p,1 B

)

+lal”
B 1

h
+lul’,

2,1

d
pt2
p,1

ST

N 2 (@ wll 4, + lall"
B B

P
2,1

h h h
lul® ) (lal g+ el . ).

1 p,1 p,1 p,1

SRSTY
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Indeed, based on (1.16), it follows from Young’s inequality that

(I @21 ) 5 (o, w0l - /N3
/) (Npl(”+N5<T>+N£<T>)(H<a,u>< Mo ) . (117)

Furthermore, according to the definition of A}, in (1.6) and Theorem 1.2, we
arrive at

t
/ (N () + M) )dr < %, + X2 < Cy,
0

since A,y < 1. On the other hand, we use the interpolation inequality and
get

N 4 <l 1 el

lall” 4 S e ¥
L3(B)) LEBE ) LB

<|la l a l
:—1) ~ || ||L§’°(BQ%;1)H |‘L%(B§1+1

and
"1? S ||a||h HaHh o s
t p,1 t p?l) ( ;51

la

which lead to
t
/ ./\/;f(T)dT < Xp2 < CX,p.
0

Therefore, (1.15) is followed by Gronwall’s inequality.

2 Zero sound speed P'(p,) =0

Most of previous efforts are dedicated to the stable case P'(ps) > 0 with
Poo > 0, except for [11, 22, 26]. It is well-known that the Navier-Stokes-
Korteweg system (NSK) was deduced by using Van der Waals potential
([15, 25, 31]), where the pressure law is not necessary monotone increasing.
Therefore, it is interesting to investigate more physical case P'(py,) = 0 (ze-
ro sound speed) and P’'(p) < 0. In those cases, the pressure term couldn’t
provide any dissipation.

For simplicity, let us consider the case of zero sound speed with the far-
field ps > 0, which indicates vacuum is ruled out on this stage. We recall



briefly the Fourier study of the corresponding linearized system as in [13]. A
simple calculation leads to the following linear perturbation system

{ oa + divm = 0,

Om — o divD(m) — (floo + Aoo)Vdivin — ko VAa = 0,

(2.1)

where m is the scaled momentum. Denote P = Id — Xdiv (Leray Projector).
Hence, m = Pm + Qm where Pm is the divergence-free part and Qm is the
compressible part. Consequently,

Oia + divQm = 0,
0,9m — Vo AOM — ko VAa = 0, (2.2)
atpm - ,U/OOAPm = 07

where Vo = Ao + 2l > 0. Clearly, Pm just satisfies an ordinary heat
equation. Regarding for Qm, it is convenient to introduce

YV £ AN divm.
Consequently, the new variable (a, V) satisfies the coupling 2 x 2 system:

3ta + AV = O,
(2.3)
0,V — vAY — kA3a = 0.

Taking the Fourier transform with respect to € R? implies that

il v)=20(y) wo a0=( 0 )

where ¢ € R? is the Fourier variable. It is not difficult to check that

(i): If V2 > 4Ky, then A(€) has two real eigenvalues:

Voo £ A/VE — 4k
Ar = 5 ‘f|2;

(i1): If V2 < 4koo, then A(€) has two complex conjugated eigenvalues:

) —Vooj:i\/4/{00—u§o|€|2
+ = )

2

where i = v/—1 is the unit imaginary number.
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Remark 2.1. Let us underline that the case (i) or (ii) is of “regularity-
gain type” according to the dissipation notion for general hyperbolic-parabolic
system with dispersion formulated in [24] recently, which implies that the
solution admits parabolic reqularization in all frequency space. In particular,
the Korteweg system is purely dissipative in the case (i), and is a dissipative-
dispersive hybrid in the case (ii).

Also, we would like to survey the recent results on the case (7). Firstly,
we give the definition of hybrid Besov spaces as follows.

Definition 2.1. Let s,t € R, p,q,1m1,7m2 € [1,00]. We denote B(prl) (ara) OY

the space of functions f € S (the subspace of those tempered distributions
module polynomials) equipped with norm:

1 1
e = {2 A )+ { S 20 A, 1
Jj=jo J<jo

for some integer jo. For convenience, we write || f]

L
171,

S h
B o) il 51 +

st
Morcover, one can define the hybrid Chemin-Lerner spaces L2 (Ba’) . TQ))
with norm:

o _ [osiA. } {2“ A, }
Hf”L?pQ(B@t,rl),(q,rz)) { | JfHL;le l;12j0+ | ]fHLg?Lq 2,
for T > 0.

Theorem 2.1. (/29]) Let ps, > 0 such that P'(ps) = 0. Let v2, > 4Ky and
1 <q<p<min{d,2q} with

<-4 (2.4)

Q| =
D=
&.M—‘

There exists a positive n > 0 dependmg on functwns Ky, A, pand P and on p, q

and d such that if (ag, mo) € pr1 X B |, besides, (af, uf) € quo X Bioo
satisfying

H(va07m0)H cdo1,d_3 <,

(p,1),(q,00)



then (1.1)-(1.2) admits a unique global-in-time solution (a,m) in the space
EP1 satisfying
I m) g < (a0, mo)l| g 25)
(p,1)(g,00)

for any T > 0, where

(@, m)llgee = [(Va,m)|| . o yay +[[(Va,m)| aya, .
? o 7 L%‘“(Bé,lié,of)) ’ LlT(B{;j,(q,oi))

Moreover, if those functions \, u, k and P are assumed to be real analytic near
zero, then for d >3 and 1 < q < p < min{d,2q} with 1/q < 1/p+ 1/d, the
solution (a,m) fulfills em/\l(a, m) € EP1 where ¢o = ¢o(d, fhoos Aoos Koos Poo)
18 some positive constant.

Clearly, Theorem 2.1 indicates that the Korteweg system (1.1) is purely
dissipative in the case of 12 > 4k, and acoustic waves are not available.
Consequently, the usual L2-type bounds on the low frequencies of solutions
are improved to the LP framework in contrast to the priori study of compress-
ible Navier-Stokes equations ([7, 9, 12, 18]) or compressible Navier-Stokes-
Korteweg equations ([8, 11, 13]). Similar to Theorem 1.2, the system with
zero sound speed enjoys the Gevrey analyticity too, where the radius of u-
niform analyticity increases like v/f as t — co. As a next step, one wonder
what the global strong solutions constructed in Theorem 2.1 look like for
large times. For that end, we develop an idea (see [30]) in Besov framework
as follows:

N ull gy S 2 [y for 1> —0. (2.6)

The key estimate lies in uniform bounds on the growth of the radius of
analyticity in negative Besov norms

HeﬁAlvHB;a < C for t>0.

Consequently, choosing a suitable regularity (for instance, o = d/2) enables
us to get the same time-decay estimates as heat kernel.

Theorem 2.2. (/30]) Let (a,m) be the global solution addressed by Theorem
2.1. Suppose that the real number oy fulfills 2 — CEZ <o <d-— g, if 1 <

p < 2 and 2 —g <o < %d — g, if p > 2. If in addition initial norm
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|(Vay, 7710)Hj']_t.;,‘,1,1 is bounded, then the solution (a,u) satisfies the following
q,00

decay estimates

IAlal|pr < Clt—to)" 272, 1> —5y: (2.7)

g1 1 1

A'm| - <CE—to) 27272, I >—6,—1, (2.8)

forallt >ty and r > p, where to > 0 is some certain transient (sufficiently
small) time, &, L4 — % + g.

In the case of zero sound speed, we see that the density decays at a slower
time-rate than the velocity owing to the absence of a lower-order dissipation
arising from the pressure. It is worth noting that those decay rates for
1 < r < 2 are totally new, which provide a hint for long-time behaviors of
compressible fluids. The mathematical analysis for another case (i7) is under
working, the elaborate dissipative-dispersive coupling structure need to be
treated. The vacuum mechanism (for instance, p,, > 0) is ruled out in our
present analysis. In the presence of vacuum, the mathematical theory for
viscous fluids is still far away from well known in critical spaces, which may
be of interest. In addition, the study for the unstable case P'(p) < 0 is also
left to the future consideration.

3 Appendix

In the last section, we would like to present useful notations and nonlinear
tools for this survey. The reader is also referred to [3] for the definitions of
the Littlewood-Paley decomposition and Besov spaces.

Let A and Sj, be the Fourier cut-off operators (see [3]). Fixed ko € Z
(the value of which follows from the proof of the high-frequency estimates
in fact), we denote 2* = S'koz and z" £ z — 2. Restricting Besov norms to
the low or high frequencies parts of distributions will be fundamental in our
methods. For instance, we put!

é o A h ol A
105y, 2 > 2% 1A f Nl and [, & D" 21 Akf Lo,

k<ko k>ko—1

Note that for technical reasons, we need a small overlap between low and high fre-
quencies.



14 o A h - .
||f”i;9(3;1) . Z 2 HAkaL%O(LP) and Hf”i%O(Bg’l) = Z 2k ”AkaL%O(LP)-

k<ko k>ko—1

In what follows, we give nonlinear estimates in the proofs of Theorems 1.2,
1.4 and 1.5. Firstly, by using Bony’s decomposition and Fourier multiplier
theorems, one may deduce the following Gevrey product estimates in Besov
spaces. The interesting reader is referred to [8] for more details.

Proposition 3.1. Let 1 < p < 00, $1, 82 < d/p with s1+ s3 > dmax(0, —1+
2/p). There exists a constant C' such that the following estimate holds true:

le¥™™ (fg)]

s < Ol Gl (3.1

.51+52—;
p,1

. d
Remark 3.1. Proposition 3.1 ensures that the space {f € By, eVt f ¢
. d
B;l} 1s an algebra whenever 1 < p < oo.

The product estimates (3.1) also holds in the framework of Chemin-
Lerner’s spaces, whereas the time exponent just fulfills Holder inequality.

Proposition 3.2. Let1 <p <ooandl < q,q1,q2 < 00 such thaté = qil—i—q%-
If 51,89 < d/p and s+ s9 > dmax(0, —142/p), then there exists a constant
C > 0 such that for oll T > 0,

DI g, < Ol (32
p,

Secondly, System (1.1) also involves compositions of functions (through
k, A and p) and they can be bounded according to the following composition
estimates by real analytic functions.

Proposition 3.3. Let ® be a real analytic function in a neighborhood of
0, such that ®(0) = 0. Let 1 < p < oo and —min(%,l%) < s < g with
1 =1 — 1. There exist two constants Ry and D depending only on p, d and
® such that if for some T > 0,

leVe™ 2| 4 < R, (3.3)
BBl

then we have for all q € [1, o0,

¥ B(2) 24 55 ) < Dlle¥™ 2l g 5. (34)
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Finally, we end the section with the endpoint maximal regularity prop-
erty of the heat equation, which is adapted to the case of complezr diffusion
coefficient. The proof is similar to the case of real coefficient as in [3].

Proposition 3.4. Let T >0, s € R and 1 < py,p,r < 00. Let u satisfy

ou — vAu = f,
3.5
{ uli=o = uo(), 39

where v € C is a compler number with Rev > 0. Then, there exists a
constant C' depending only on d and such that for all p; € [p2, 00|, one has

1 1 _
Rev)oiffull |z < C(luollsy, + Rev)s M Ifl oz )- (36)

~ . ~ . S—
Lg-‘l (Bp,”‘pl ) L;Q (BPJ‘ = )
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