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1 Introduction

We consider the global well-posedness of the compressible viscous fluid model of Korteweg
type which describes two phase flow with phase transition between liquid and vapor as
diffuse interface models. More precisely, we investigate the following system in the N
dimensional Euclidean space R, 3 < N < 7,

Oyp + divm = 0,

dm + Div (p"'m ®m) = Div (S(p™'m) + K(p) — P(p)I), (1.1)

(p,m)|i=0 = (p« + po, my).
Here, 9, = 0/0t, t is the time variable, p = p(x,t), z = (21,...,25) € RY and
m = (my(z,t),...,my(x,t))T are respective unknown density and momentum, where
MT denotes the transposed M. P(p) is the pressure field satisfying a C* function de-

fined on p > 0, where p, is a positive constant. Moreover, S(u) is the viscous stress tensor
and K(p) is the Korteweg stress tensor read as

S(u) = 2uD(u) + (v — p) div ul,
K
K(p) = 5(Ap" = [Vp)T = Vp & Vp,
D(u) denotes the deformation tensor whose (j, k) components are Dj,(u) = (O;u;, +

Okuj)/2 with 0; = 0/0x;; in addition, divu = Zj\;l O;ju;. For any N x N matrix field
L with (j, k)" components Lj, the quantity DivL is an N-vector with j** component
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Z,]cvzl OkLji; Tis the N x N identity matrix and a ® b denotes an N x N matrix with
(4, k)™ component a;b; for any two N-vectors a = (ay,...,ax)" and b = (by,...,bx)".
We assume that the viscosity coefficients p, v, the capillary coefficient x, and the mass
density p, of the reference body satisfy the conditions:

w>0, 2u+v>0, and k> 0. (1.2)

Furthermore, we assume that the pressure P(p) satisfies
P'(p.) = 0. (1.3)

Models describing two phase flow with phase transition are classified into two different
types: sharp interface models and diffuse interface models. In sharp interface models, two
fluids are separated by a phase boundary of zero thickness and physical quantities, such
as density or pressure, allow for discontinuities across the interface. On the other hand,
in diffuse interface models, the phase boundary is regarded as a narrow layers, which
are called transition layer. In this region, physical quantities vary smoothly across the
interface. Therefore, it is enough to consider a single system in a single spatial domain.
To consider liquid-vapor flows as diffuse interface models, Korteweg [13] proposed the
stress tensor including Vp® Vp based on Van der Waals’s approach [21], later, Dunn and
Serrin [7] derived the system (1.1).

An important aspect of diffuse interface models is that the pressure is non-monotone
in general because we assume that the Helmholtz free energy is a double-well potential
(cf. [6]). Solving the linearized problem around the equilibrium, we can expect the case
P’(p.) < 0 is unstable; hence we mention mathematical results for P'(p.) > 0 below.

There are many results on global strong solutions for P’(p.) > 0. Bresch, Desjardins,
and Lin [2] proved the existence of a global weak solution, later, Haspot improved their
result in [8]. Hattori and Li [9, 10] first showed the local and global well-posedness in
Sobolev space. They assumed that the initial data (pg, ug) belong to H**(RY)x H*(RV)N
(s > [N/2] + 3). Hou, Peng, and Zhu [11] improved the results [9, 10] for small total
energy cases. Wang and Tan [22], Tan and Wang [18], Tan, Wang, and Xu [19], and
Tan and Zhang [20] established the optimal decay rates of the global solutions in Sobolev
space. Li [14] and Chen and Zhao [3] considered the Navier-Stokes-Korteweg system with
external force. Bian, Yao, and Zhu [1] obtained the vanishing capillarity limit of the
smooth solution. We also refer to the existence and uniqueness results in critical Besov
space proved by Danchin and Desjardins in [5]. Their initial data (p, ug) are assumed to
belong to BQ{Q(RN) N BS{Q_I(RN) X Bé\fl/z_l(RN)N. Recently, Murata and Shibata [15]
proved the global well-posedness in the maximal L,-L, regularity class.

In contrast, only a few results are available for P'(p.) = 0. Kobayashi and Tsuda
[12] proved the existence of global Ly solutions and the decay estimates. Chikami and
Kobayashi [4] improved the result [5]. In particular, for P'(p.) = 0, they proved the
global estimates under an additional low frequency assumption to control a pressure term.
Furthermore, they showed the optimal decay rates of the global solutions in the Lo-
framework.

In this paper, we discuss the global existence and uniqueness of strong solutions to
(1.1) for small initial data under the assumption (1.3). Consequently, we also prove the
decay estimates of the solutions to (1.1). The main tools are the maximal L,-L, regularity
and L,-L, decay properties of the linearized equations.
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1.1 Notations

We summarize several symbols and functional spaces used throughout the paper. N,
R and C denote the sets of all natural, real, and complex numbers, respectively. We set
Ny = NU{0}. Let ¢’ be the dual exponent of ¢ defined by ¢’ = ¢/(¢—1) for 1 < ¢ < oo. For
any multi-index o = (o, ..., ay) € NV, we write |a| = ay+- - -+ay and 9% = 97 -+ - O
with = (z1,...,zy). For scalar function f and N-vector of functions g, we set

Oy f = (03 ol = k), dyg=(90g; | lal =k, j=1,...,N),
aif:azfa aalcg:azg~

For any 1 < p,q < oo, Ly(RY), W/(RY), and B; (R") denote the usual Lebesgue space,
Sobolev space, and Besov space; respectively, || - ||z, @~), || - [lwp@~), and || - |5 @)
denote their norms. We set WO(RY) = L,(R") and W;(R"Y) = Bs (RV) if s € R\ N.
C>(RY) denotes the set of all C* functions defined on RY. For Banach spaces X and
Y, L,((a,b), X) and W]"((a,b), X) denote the usual Lebesgue space and Sobolev space
of X-valued functions defined on an interval (a,b), respectively. The d-product space of
X is defined by X4 ={f = (f,...,fa) | fi € X (i =1,...,d)}; for simplicity, its norm is
denoted by || - ||x instead of || - || x«. We set

W RY) = {(f.8) | f € W['(RY), g€ Wi (RY)"},
I1CFs @)t vy = 1wy + [ llwewm)-

Let F, = F and F ! = F~! denote the Fourier transform and the Fourier inverse
transform, respectively, which are defined by setting

fle) = FAN© = [ e S@dn i) = g [ o€ ae

The letter C' denotes generic constants and the constant C,; = depends on a,b,.... The
values of constants C', and C,, . may change from line to line. We use small boldface
letters, e.g., u, to denote vector-valued functions and capital boldface letters, e.g., H, to
denote matrix-valued functions, respectively. To state our main theorem, we introduce a
solution space and several norms:
Dyp(RY) = By PP(RY) x B~V (RY)Y,
Xpar = {(p,m) | p € L,((0,1), WJ(RY)) n W, ((0,1), W, (RY)),
m € L,y((0,£), WARY)™) AW ((0,1), Ly(RY)Y),  pu/4 < pu+ p(t,x) < 4p.},

(g0 = sup( Y, $)ll,@yy (a=0,2), g = [uge00-

Z Z{[(ai-p, )] x g (1.4)

=0 =1
[( aJc Jm m)] 1,%+%t [(ampa 8] )]qg,%+1+%,t
+ ||<5> (p, m)HLP((o,t),W(i'Q(RN)) +[[{s) 'i(asp; asm)”LP((O,t),W;;O(RN))}v

where (s) = (145), {1 = N/2¢1 — 7, lo = N/2gs + 1 — 7 ;7 is given in Theorem 1.1 below.



1.2 Main theorem

Setting p = p. + 0, we can rewrite (1.1) to the following formulation:

00+ divim =0 in RY for ¢ € (0,7),

1
Om — —DivS(m) — kp,VAO = g(f,m)  inRY for ¢t € (0,7), (1.5)
((9, m)‘tzo = (p07 mO) in RNa

where

. 1 1 1
g(0,m) = —Div {p* +€m@0mf S (<p* i E) m) —K(9)
1
+/ P'(pe+10)(1—1) dT@zI}.
0

We now state our main theorem.

Theorem 1.1. Assume that conditions (1.2) and (1.3) hold and that 3 < N < 7. Let ¢,
G2, and p be numbers such that

1 1 N
2<p<OO, q1<N<Q272<q1§4a_:_+_a + —

2
- < 1. 1.6
q @2 N p @ ( )

Let T be a number such that
N 1
—<T< —+—. (1.7)
p qa p
Then, there exists a small number ¢ > 0 such that for any initial data (pg, mg) €

M2, Dy, »(RNY N WO (RN satisfying

q1/2

2
= |l(po, mo)| p,, &™) + ||(P0am0)||w%f<RN) + ol gy @y <
i=1

with my = d,ng, problem (1.5) admits a solution (6, m) with
(0. m) € Ny Xy g, 00,
satisfying the estimate
N (0, m)(c0) < Le
with some constant L independent of €.
Remark 1.2. (1) In Theorem 1.1, the constant L is defined from several constants
appearing in the estimates for the linearized equations and the constant ¢ will be chosen
in such a way that L% < 1.
(2) We only consider the dimension 3 < N < 7. For N =2, ¢; <2, and so ¢;/2 < 1. In

this case, our argument does not work. Furthermore, we need a restriction N < 8 by the
condition ¢; < 4.
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2 Analysis for the linear problem

In this section, we consider the maximal L,-L, regularity and decay properties of solutions,
which are the key tools for the proof of Theorem 1.1.

2.1 Maximal L,-L, regularity

In this subsection, we state the maximal L,-L, regularity for the linear problem:

0,0 + divm =0 in RY for t € (0,7),

1
Om — —DivS(m) — kp, VAl =g  in RY for t € (0,T), (2.1)
(6, m)|;=0 = (po, my) in RY.

If we extend g by zero outside of (0,T), by Theorem 2.6 in [16] and the uniquness of
solutions, we have the following result.

Theorem 2.1. Let T)R > 0 and 1 < p,q < oo. Then, there exists a constant 5y > 1
such that the following assertion holds: For any initial data (po,mg) € D,p(RY) with
| (po, mo)||p, , @~y < R satisfying the range condition:

pe/2 < pe +po(z) < 2p,  (z € RY), (2.2)

and right member g € L,((0,T), L,(RM)N), problem (2.1) admits a unique solution
(0, m) € X, ,r possessing the estimate

Ep,q(é’, m)(t) < Cp,q,Nﬁo,Reét (||(,007 mo)HDq,,,(RN) + HgHLP((O,t),Lq(]RN)N)) (23)
for any t € (0,T] and & > 0y. Here, we set
Epq(0,m)(t) = (0501, 0.0,wp ™)) + 101,00, w2@Y))
+110m]| 1, 0,),,@¥)v) + ”mHL,,((O,t),Wq?(RN)N)-
Constant Cp g n.o,r 15 independent of 6 and t.

Remark 2.2. Using Theorem 2.1 and employing the same argument as in the proof of
Theorem 3.1 in [15], we also have the local well-posedness for (1.1).

2.2 Decay property of solutions

In this subsection, we consider the following linearized problem:

9,0 + divm = 0 in RY for ¢ € (0,7),
om — a,Am — 3.V divm — kp,VAO =0  in RY for t € (0,7), (2.4)
(67m>|t:0 = (fa g) in RNv

where a,, = p/p. and S, = v/p.. Then, by taking Fourier transform of (2.4) and solving
the ordinary differential equation with respect to t,

Si(t)(f,g) =0, Sa(t)(f,g) :=m (2.5)

satisfy the following formula



(i) If 8, := (au + B.)? /4 — pu # 0, we have

At

AeMt— )\ e et
0=-F' {—A — } Zf {7@%},

m= ‘Fg 70*‘5‘2 Z}" { *a*|5|2t|§§|’;A } _ { |£2676)\tz§f}
N
- {(a* + ﬁ*>|£|2 + A*}6A+t — {(O(* + 5*)‘£|2 + )\+}e>\_t ~
- ;}—E 1 [ [€12(A — A2) ffk!}k} ,

where

o + B
—Tlé\gi\/(ilfl? d. >0,

Ay =
Oy + P = i
- €12 £i/]o.l€* o < 0.

(2.6)

(i) If 0, = 0, we have

N
9 = ]:5_1 |:€/\0t(1 — )\ot)_]g:| — Z}_g_l [ /\0t7fkgk]

k=1

a 39
o ]—‘gl[e*“*‘g‘ztg] B Z]_—gl o—a-l€2t SSk o :| _ ];-gl [ Aot |£|225f:| (2.7)

2
p €]

N
_ 1+tA .
+y ! {e’\ot BE Uffkgk] :
s

where + 5
a* *
Ao = €.

To state decay estimates of # and m, we divide the solution formula into the low and
high frequency parts. For this purpose, we introduce a cut off function p(£) € C°(RY),
which equals 1 for [§] < e and 0 for |§| > 2¢. Here, € is a suitably small positive constant.
Let @y and @, be operators acting on (f,g) € W;*O(RN); they are defined as

o(f,8) = F ' [p(©)(F(9), &), Pu(f.8) = F¢ (1~ 0())((),8(€))

Theorem 2.3. Let S;(t) (z = 1,2) be the solution opemtors of (2.4) gwen by (2.5
)

S1)(f.8) = (S(1)(f. 8), SUD(f,g)) and 5°°( )(f,8) = (ST()(f, &), S5°(t)(f
SP(t)(f.8) = Si(t)Po(f,8) and S*(t)(f,8) = Si(t) P (£, 8)- Then St ) and S
the following decay properties

(i)

I

) and let
,8)) with
(t) have

J

, N1y g
102.5° () (f, )|, vy < Ot 2072 (f, )|, ey (2.8)
with g = d,h, j € Ny, and some constant C' depending on j, p, q, .. and Py, where

{1<q§p§ooand(p,q)7é(oo,oo) ifo<t<l1, (2.9)

1<q¢<2<p<ocoand(pq)# (c0,00) ift>1.
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(i1)
; N1 1y
1025 (8) (£, &) lwro@ny < C 24P 72|(f, ) lyaogen) (2.10)

with 7 € Ny and some constant C' depending on j, p, q, o, and B, where

1<q<p<ooand (p,q) # (c0,00). (2.11)

Proof. First, we consider the case . # 0. The difference between the cases P'(p.) = 0
and P’(p,) > 0 is that AL satisfies (2.6) not only for the high frequency part, but also for
the low frequency part. Owing to this difference, the second term of S;(t) given by (2.5)
is troublesome because A\, — A_ = C,[¢|?, where C, = 21/0, for 0, > 0 and C, = 2i\/|d.]
for 0, < 0. Due to the condition g = d,h, the second term of S;(¢) satisfies

t )\

N A
e +
I
3 * _
k=1 A+

so that we can employ the same calculation as in the proof of Theorem 4.1 in [15].

Next, we consider the case d, = 0. By using the condition g = d,h and the estimate
(|€[t1/2)Ie=ColéPt < Cle=(Co/IEPt for j € N, with some constant Cy depending on o, and
Bs, the solution formula (2.7) can be estimated in the same manner as in the proof of
Theorem 4.1 in [15]. This completes the proof of Theorem 2.3. O

At

2§k9k:| Z]: {*W(ifk)(z{)“ﬁk

3 A proof of Theorem 1.1

We prove Theorem 1.1 by the Banach fixed point argument. Let p, ¢1, and ¢ be exponents
given in Theorem 1.1. Let € be a small positive number and let A'(6, m) be the norm
defined in (1.4). We define the underlying space Z, as

1= {(67 m) € Xp,q1,00 N Xp,qzyoo ‘ (9 m)|t=0 = (va m0)7 ./\/(9 m)(oo) < L€}, (31)

where L is a constant that will be determined later. Given (6, m) € Z., let (w,w) be a
solution to the equation:

Ow + podivw =0 in RY for t € (0,7),

1
oW — p—DiV S(w) — kp.VAw = g(0, m) in RN for t € (0,7), (3.2)
(w, W)|i=0 = (po, myp) in RY.

We shall prove the following inequality in several steps:
N(w,w)(t) < C(Z +N(0,m)(t)?), (3.3)
where Z is defined in Theorem 1.1. Throughout the following steps, we use the estimate

p4* < p. +0(t,x) <Adp,, (34)

which is obtained by (6, m) € X, 4, o0 N X} 45.00-



3.1 Estimates of (d/w,dw) for j =0,1
3.1.1 Case: t>2

In order to estimate (w, w) for ¢t > 2, we write (w, w) by Duhamel’s principle as follows:

(wMzﬂMwm@ﬁAﬂﬁﬂﬁﬂw%~ (3.5)

Because S(t)(po, mg) can be estimated directly by Theorem 2.3, we only estimate the
second term for low and high frequencies below. For ¢ > 2, we divide the second term
into three parts as follows:

o t/2 t—1 t _
AH%W@—QQQQW«%—<A +Lg+1}>mw%—9m@@nuw

=y Iy (3.6)
k=1

where d = 0, oo and X = o0, ¢, ¢a.
Estimates for the low frequency part in L.

Using (3.4) and Theorem 2.3 (i) with (p,q) = (00, ¢1/2) and Hélder’s inequality under
the condition ¢;/2 < 2, we have

t/2 N /2 N _j
B<C [ =) b, e ds <C [ -9 S A BYds 3D
0 0

where
A = ([0, m)[[7, @ny + 110, m)| 1, @) [1(0:0, Dom)| 1, vy + 1020117, ey,
B, = ||9||L41(RN)||a£9||Lq1(RN)~
A and By satisfy:
Ay < (s) %[(9’ m)]z ot (s) (%Jr%)[(ea m)]q1 ~ (9.8, axm)]ql Al
t 1oy ; 5

(Ilaqu 5 2q1

+ (s)" @ [0,0)2

N 1
Q154 T30t

_N .
<) (@)l s, [0 )], e (00,00, yy (0,00 s ) (B8)
(N N
By < ()"0 [0y, e ()5 1llwg, ) (3.9)

Because 1 — N/q; < 0 and 1 — (N/qy — 7)p’ < 0, which follow from ¢; < N and 7 <
N/q2 + 1/p, using (3.7), (3.8) and (3.9), we obtain

Liggy ot

[(8197 azm)]ql,%-ﬁ—%,t + [azo]zhiJﬁl t)

2q1 "2

N_j [t? N
110 < o /0 (s) o ds([(0,m)[2,
+[(0,m)],,

N
T

J

N t/2 R 1/p o
e /0 (s) "o ds | [0y, e all(s) P Ol o, w3 vy

< ot T EEN®), (3.10)
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where

Ey() = [0, m)]} ~ ,+[(6,m)],, ~ [(0:6,0,m)], ~ 1, +[0:6]]

241’ a1 2111+ it

+ [ﬂqn%,t”( >2‘“ QHLP ((0,0),W2, (BRN))-

Similarly, we have
N_j
120 < Ct o 2B (). (3.11)
We now estimate I2°. Using (3.4) and Theorem 2.3 (i) with (p, q) = (o0, ¢2), we obtain

t . t .
I'g(,)O < C/ (t—S)_%_EHh”LqQ(RN) ds < C/ (t_s)_%_E(AQ"_BQ)dS, (312)
t—1 t—1

where

Ay = [0, m)|| L) (10, m) |, &y + [[(0:0, Do) ||, @3)) + (020 1o ) [|020]| L, )
By = 0]l 0@ 10201 ., &)

Ay and By satisfy:
N N
Ay < ()" (0, m)) v [0 m)],, ~

(N4 N 3
+ (s) a2z (9, m)] 21020, 0mm)], s,

+(s) Gt aDa,0), 51 (020, 0:m)],, s, (3.13)
q2
By < (s)" @m0 < )25 7110wz - (3.14)

Because 1 — (N/2¢2 + j/2) > 0, 1 — (N/2¢s +j/2)p’ >0, and N/2¢s +1—7 > j/2 as
follows from N < g2, 2/p+ N/q2 < 1 and 7 < N/gs +1/p, using (3.12), (3.13) and (3.14),
we obtain

t
]30 < Ct +345 No11) / (t— s)_(%-‘-é) ds|(#, m)]oo’l (6, m)]q2 iy
1 a1’ 2q3

q2, 2q2+ R

t N J
4O At / (t— 5) @+ ds[(0,m)], x ,[(0,0, 0,m)],,
t—1 a’

t
+ Ottt / (t— )" ds[0,0]., v 1 [(0:0,0,m)],, x 3,
t—1 q1 q2

Xt1-71) ! —(E+d)p v o1
@ ([ g )l Bl
_N_
<Ot w 2E(t), (3.15)
where
Eg(t) = [(97 m)}oo,%,t{[(67 m)]qQ,%+1,t + [(519, azm)}qg,%-‘—%,t}

N o7
+ [5x9]w7%+%,t[(5x91 axm)]qz,%%,t + (0] lI(5) 22" Oll L, (0.0,w2, &)




Using (3.10), (3.11) and (3.15), we obtain

/0 10959 — $)(0, &(5)) |l ds < Ot 4 (B(t) + EO(1). (3.16)

Estimates for the low frequency part in L,

Using (3.4) and Theorem 2.3 (i) with (p,q) = (¢1,¢1/2) and employing the same
calculation as in the estimate in L., we obtain

I 4 120 < O A EY(L). (3.17)
Using Theorem 2.3 (i) with (p,q) = (g1, ¢1) and employing the same calculation as in the

estimate in L., under the conditions 1 — (j/2)p’ > 0, and 3N/2¢; — 7 > N/2¢q; + j/2,
which follow from p > 2 and 7 < N/¢s + 1/p, we obtain

130 < ot m (1), (3.18)
where

B9(0) = [(0,m))c v L0 )], -+ (0,0, 0], x 1}

BN _
+[0ul]oc, 21 1,4[(000, Oem)] g 1+ [0, 20 11 (5) ™ Ol 0. w3, ) -

Using (3.17) and (3.18), we obtain
t N
/ 1025°(t = 5)(0, 8(5)) Iz, ds < Ct™25 2 (E(t) + E7(1)). (3.19)
Jo

Estimates for the low frequency part in L,
Using (3.4) and Theorem 2.3 (i) with (p,q) = (g2, ¢1/2) and (p, q) = (g2, ¢2), we obtain

/O 155t = 5)(0, &(5)) 1, ds < Ot 2 E (Y1) + ES(1). (3.20)

Estimates for the high frequency part
Employing the same calculation for the low frequencies, we have estimates for the high
frequencies under the conditions (1.6) and (1.7) as follows:

/0 OISt — 5)(0,&(s))ll1 ds < Ot (ER () + B (1),

N
a1

/0 1075 (¢ — 5)(0,8(5)) |1, ds < C 22 (EZ(t) + Bf(#)), (3.21)

N
a2

/0 10257t — $)(0,(5))|1,, ds < Ct 35~ "S(E(t) + EF (1)),
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where

B2 (0) = [0, m)],, s (026, 0,m)], 4
0 b e Pl i O

+ e
U [OE O] P
+(Im LM o+ 0.0, 1 D)l 00
B () = [(0.m)), x [(0:0, )], v 1o
+[0:0]g,, 2 44 t[m]io,%,t H 10000, 20 4 1,,[0pmm]g v 1y
o B, 20 (5570 0y
(], + 008 3 V() B 1, 000, 2
(1) = [(0.m)) 2,100, 0,m)],, ~ g,
+[0:6],, it 5 4[m ]oo ]\I’t_‘— [awe]oo,%+%,t[8wm]q2,%+%,t
.
o B, 20 (555 70,10 | 002
+(m ]oo,%,t + (026,243 ) O 0, -

Using (3.5), (3.16), (3.19), (3.20) and (3.21), we obtain

1
> (@, BW)eo, 215 007 < Ol (o, m0)llyy 0 + ol + Eo(t) + Ex(t)),
§=0 ' 7

1
Z[(&;w, 5.%W)]ql,%+%,<2,t) < C(ll(po, mo) |y 10 + ||no||LqT1 + Eo(t) + Ev(2)),
Jj=0 Z

1

j=0
where Ej(t) = EX(t) + EX(t) with i = 0,1, 2.

3.1.2 Case: 0<t<?2

Estimates in L, for i =1,2
Using Theorem 2.1 and the following estimate

&l (0.).Lq, V) < CEZ(H),

which is calculated in 3.1.1, we obtain

10, W)l 0.2 w2y + 100w, W)l (0,2, wto vy

< C{l[(po, mo)| p,, , ) + Ei(2)}

Z[(aiwv aiw)]qz,%+1+%,(2,t) < C(H(p()vm())”W}l’lo + HnOHLg} + E[](t) + EQ(t))7
o

(3.22)

(3.23)



fori=1,2.
Estimates in L
Using Lemma 1 in [17] and Lemma 3.3 in [15], we obtain

[[(w, W)l Lo (0,20 w2 @) < C{ll(po, mo) I, , &) + E2(2)} (3.24)

3.1.3 Conclusion
Combining (3.22), (3.23) and (3.24), we obtain

1

> (@, BW)] oo g, < C(T+ Eo(t) + Ea(t)),

7=0

1
> (@, Ry, v < CT+ Eolt) + Ev(t)), (3.29)
j=0

> (P, ajw)]qqu““ < C(Z + Eo(t) + Ea(t)).
j=0
3.2 Estimates of the weighted norm

In order to estimate the weighted norm in the maximal L,-L, regularity class, we con-
sider the following time shifted equations, which is equivalent to the first and the second
equations of (3.2):

9s({s)"w) + o (s)“w + p. div ((s)"w)

= do(s)"“w + (9s(s)")w

D5({s)iw) + 8o (s)iw — a,. A({s)iw) — B.V(div (s)"W) + rkp, VA(s)w

= (s)"g(0, m) + 0 (s)"w + (9s(s)")w,
where t = 1,2, {1 = N/2¢; — 7 and ¢y = N/2¢, + 1 — 7. By Theorem 2.1, we have

()" (w, W)l 0.2 @y + 1) (0w, BwW)ll 1 0,00 w20 vy
< C(H(Pmmo)HDq S@®N) T (s > (evm)”Lp((O,t),Lqi(]RN))
+ () (WvW)HLP((O,t),W;f(RN)) + [[(0s(5)" ) (w, W)

Ly((0,), WL ®N))- (3.26)

We can estimate the left-hand sides of (3.26) by the same calculation as in [15], we have

() (s Wl 0.0, w2wry + 1) (90, D)L 0.0 wito oy

)
< C(T + Bo(t) + Ei(t)). (3.27)

3.3 Conclusion

Combining (3.25) and (3.27), we have (3.3). Recalling that Z < ¢, for (f,m) € Z, we
have
N(w,w)(c0) < C(Z + N (0, m)(c0)?) < Ce + CL*. (3.28)
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Choosing ¢ so small that L*¢ < 1 and setting L = 2C in (3.28), we have
N(w, w)(o0) < Le. (3.29)

We define a map ® acting on (6, m) € Z. by ®(f,m) = (w,w), and then it follows
from (3.29) that ® is the map from Z, into itself. Considering the difference ®(6;,m;) —
O (0, my) for (0;,m;) € Z, (i = 1,2), employing the same argument as in the proof of
(3.28) and choosing € > 0 samller if necessary, we see that ® is a consraction map on Z,
and therefore there exists a fixed point (w, w) € Z, which solves the equation (1.5). Since
the existence of solutions to (1.5) is proved by the contraction mapping principle, the
uniqueness of solutions belonging to Z, follows immediately, which completes the proof of
Theorem 1.1.
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