On tetrahedron type equations associated with B_{3}, C_{3}, F_{4} and H_{3}

Atsuo Kuniba
Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902 Japan

Abstract

Tetrahedron equation is a three dimensional analogue of the Yang-Baxter equation. It allows a formulation in terms of the Coxeter group A_{3}. This short note includes miscellaneous remarks on the generalizations along B_{3}, C_{3}, F_{4} and the non-crystallographic Coxeter group H_{3}. It is a supplement to the author's talk in the online workshop Combinatorial Representation Theory and Connections with Related Fields at RIMS, Kyoto University in November 2021.

1. Introduction

Yang-Baxter equation [7] plays a central role in solvable lattice models in two dimension [1] and integrable quantum field theories in $1+1$ dimensional space time [15]. Tetrahedron equation [16] is an analogue of the Yang-Baxter equation in three dimensional space. It is naturally endowed with the Coxeter group $A_{3}[8]$.

One can generalize the equations and solutions from the viewpoint of finite Coxeter groups [11, 12, 9]. Given a rank n Coxeter group X_{n}, a common feature is the correspondence [10]:

$$
\begin{equation*}
\text { basic operators } \leftrightarrow \text { Coxeter relations in } X_{n}, \tag{1}
\end{equation*}
$$

tetrahedron type equation \leftrightarrow inclusion $X_{n} \hookrightarrow X_{n+1}$ as a parabolic subgroup.
In contrast, the correspondence in two dimension [3] holds between the Yang-Baxter equation and the cubic Coxeter relation $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ of the generators, the reflection equation and the quartic one $s_{i} s_{j} s_{i} s_{j}=s_{j} s_{i} s_{j} s_{i}$ and the G_{2} reflection equation [9] and the sextic one $s_{i} s_{j} s_{i} s_{j} s_{i} s_{j}=s_{j} s_{i} s_{j} s_{i} s_{j} s_{i}$. They may be viewed as
basic operators \leftrightarrow generators in X_{n},
Yang-Baxter type equation \leftrightarrow Coxeter relation in X_{n}.
After reviewing the type A case in Section 2 and BC cases in Section 3, we treat F_{4} in Section 4. Theorem 4.1 is new. It is presented with some details which were not included in [11, Sec.4]. A further generalization to the non-crystallographic Coxeter group H_{3} is given in Section 5. Sections 2,3 and 5 are examples of $(1)_{n=2}$. On the other hand, Section 4 correspond to $(1)_{n=3}$, and the main interest there is how the F_{4} equation is decomposed into those from $B_{3}, C_{3} \subset F_{4}$. Many details are omitted in this brief note. A full treatment can be found in the book [10].

$$
\text { 2. } A_{2} \hookrightarrow A_{3}
$$

We shall exclusively consider a version of the tetrahedron equation having the form:

$$
\begin{equation*}
R_{124} R_{135} R_{236} R_{456}=R_{456} R_{236} R_{135} R_{124} \tag{3}
\end{equation*}
$$

Here R is a linear operator $R \in \operatorname{End}\left(F_{q}^{\otimes 3}\right)$ for some vector space F_{q}. The equality (3) is to hold in $\operatorname{End}\left(F_{q}^{\otimes 6}\right)=\operatorname{End}\left(\stackrel{1}{F}_{q} \otimes \stackrel{2}{F}_{q} \otimes \stackrel{3}{F}_{q} \otimes \stackrel{4}{F}_{q} \otimes \stackrel{5}{F}_{q} \otimes \stackrel{6}{F}_{q}\right)$, where $R_{i j k}$ acts on the components $\stackrel{i}{F}_{q} \otimes \stackrel{j}{F}_{q} \otimes \stackrel{k}{F}_{q}$ as R and elsewhere as the identity. ${ }^{1}$ We assume $R=R^{-1}$ except in Section 5. Recall that the Yang-Baxter equation corresponds to reversing a triangle which is a planar object. The tetrahedron equation (3) is a three dimensional analogue of it in the sense that the

[^0]it is similarly associated with the inversion of a tetrahedron in 3D space. This can be seen by drawing a diagram for (3).

One can formally associate the operator R with the relation $s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$ of the generators of the Coxeter group $A_{2} .{ }^{2}$ Then the tetrahedron equation (3) is a natural consequence of the embedding $A_{2} \hookrightarrow A_{3}$ as a parabolic subgroup. To explain it, consider the reduced expression (rex) graph of the longest element of A_{3} :

Figure 1. The rex graph for the longest element of A_{3}.

The word 121321 for instance means $s_{1} s_{2} s_{1} s_{1} s_{3} s_{2} s_{1}$ with s_{1}, s_{2}, s_{3} being the generators of A_{3}. Two reduced expressions are connected by a solid (resp. dotted) line if they are transformed by a single application of the cubic (resp. quadratic) Coxeter relation $121=212$ or $232=323$ (resp. $13=31) .^{3}$ Every time they are applied, we attach an operator $\Phi=\Phi^{-1} \in \operatorname{End}\left(F_{q}^{\otimes 3}\right)$ (resp. $P=P^{-1} \in \operatorname{End}\left(F_{q}^{\otimes 2}\right)$) with indices signifying the positions of the changing letters. Here P is the exchange of components $P(u \otimes v)=v \otimes u$. Going from 121321 to the most distant 321323 via the lowest path in Figure 1 gives ${ }^{4}$

$$
\begin{equation*}
P_{34} \Phi_{123} \Phi_{345} P_{56} P_{23} \Phi_{345} \Phi_{123} \tag{4}
\end{equation*}
$$

Similarly the most upper path leads to

$$
\begin{equation*}
\Phi_{456} \Phi_{234} P_{12} P_{45} \Phi_{234} \Phi_{456} P_{34} \tag{5}
\end{equation*}
$$

Let us postulate that such a composition of operators along any nontrivial loop in the rex graph yields the identity. It amounts to setting $(4)=(5)$. We further relate Φ to R by $\Phi_{i j k}=R_{i j k} P_{i k}{ }^{5}$ Substitute it into $(4)=(5)$ and send all the $P_{i j}$'s to the right by using $P_{34} R_{123}=R_{124} P_{34}$ etc. The result reads $R_{124} R_{135} R_{236} R_{456} \sigma=R_{456} R_{236} R_{135} R_{124} \sigma^{\prime}$ with $\sigma=P_{34} P_{13} P_{35} P_{56} P_{23} P_{35} P_{13}$ and $\sigma=P_{46} P_{24} P_{12} P_{45} P_{24} P_{46} P_{34}$. Since $\sigma=\sigma^{\prime}$ is the reverse ordering of the six components, (3) follows. Different choices of the initial point and the branches of the paths in the rex graph lead to apparently different guises which are all equivalent to (3).

The formal connection of the tetrahedron equation (3) to A_{3} explained so far is known to admit a concrete realization in the representation theory of quantized coordinate ring $A_{q}\left(A_{3}\right)$, which leads to a solution such that F_{q} is a q-oscillator Fock space [8]. ${ }^{6}$

[^1]$$
\text { 3. } B_{2} \hookrightarrow B_{3} \text { AND } C_{2} \hookrightarrow C_{3}
$$

Parallel results for the quantized coordinate rings $A_{q}\left(B_{3}\right)$ and $A_{q}\left(C_{3}\right)$ have been obtained in [11, 12].

Figure 2. Dynkin diagrams of C_{3} (left) and B_{3} (right). The operators associated with the Coxeter relations are also indicated under them. The both R and S correspond to the type A cubic one, and they are simply related as $S=\left.R\right|_{q \rightarrow q^{2}}$ in the concrete realization by quantized coordinate rings. K corresponds to the quartic Coxeter relation $s_{2} s_{3} s_{2} s_{3}=s_{3} s_{2} s_{3} s_{2}$ for C_{3}. For B_{3}, the role of the short and the long simple roots are exchanged, hence $K_{i j k l}^{\vee}=P_{i l} P_{j k} K_{i j k l} P_{i l} P_{j k}=K_{l k j i}$.

We formally attach the operators $\Phi=\Phi_{123}, \Phi^{\prime}=\Phi_{123}^{\prime}, \Psi=\Psi_{1234}$ and $\Psi^{\prime}=\Psi_{1234}^{\prime}$ to the transformations of the subword in the reduced expressions as follows ${ }^{7}$:

$$
\begin{array}{ll}
C_{3}: \Phi=R P_{13}: 121 \leftrightarrow 212, & \Psi=K P_{14} P_{23}: 2323 \rightarrow 3232 \\
B_{3}: \Phi^{\prime}=S P_{13}: 121 \leftrightarrow 212, & \Psi^{\prime}=K^{\vee} P_{14} P_{23}: 2323 \rightarrow 3232 \tag{7}
\end{array}
$$

Since the role of the short and the long simple roots are exchanged between B_{2} and C_{2}, K and K^{\vee} are related by $K_{i j k l}^{\vee}=P_{i l} P_{j k} K_{i j k l} P_{i l} P_{j k}=K_{l k j i}$. We assume $K=K^{-1}$ in what follows. It formally implies $\Psi^{\prime}=\Psi^{-1}$. We also attach P to $13 \leftrightarrow 31$ for the both of B_{3} and C_{3}.

The rex graphs for the longest element of B_{3} and C_{3} are identical and consist of 42 reduced expressions. An example is 123121323 in terms of indices. Demanding again that the compositions of $P, \Phi, \Phi^{\prime}, \Psi, \Psi^{\prime}$ along nontrivial loops in the rex graph becomes the identity, we get

$$
\begin{align*}
C_{3}: & R_{689} K_{3579} R_{249} R_{258} K_{1478} K_{1236} R_{456}=R_{456} K_{1236} K_{1478} R_{258} R_{249} K_{3579} R_{689} \tag{8}\\
& \in \operatorname{End}\left(\stackrel{1}{F}_{q^{2}} \otimes \stackrel{2}{F}_{q} \otimes \stackrel{3}{F}_{q^{2}} \otimes \stackrel{4}{F}_{q} \otimes \stackrel{5}{F}_{q} \otimes \stackrel{6}{F}_{q} \otimes \stackrel{7}{F}_{q^{2}} \otimes \stackrel{8}{F}_{q} \otimes \stackrel{9}{F}_{q}\right) \\
B_{3}: & S_{689} K_{9753} S_{249} S_{258} K_{8741} K_{6321} S_{456}=S_{456} K_{6321} K_{8741} S_{258} S_{249} K_{9753} S_{689} \tag{9}\\
& \in \operatorname{End}\left(\stackrel{1}{F}_{q} \otimes \stackrel{\rightharpoonup}{F}_{q^{2}} \otimes \stackrel{3}{F}_{q} \otimes \stackrel{4}{F}_{q^{2}} \otimes \stackrel{5}{F}_{q^{2}} \otimes \stackrel{6}{F}_{q^{2}} \otimes \stackrel{7}{F}_{q} \otimes \stackrel{8}{F}_{q^{2}} \otimes \stackrel{9}{F_{q^{2}}}\right) .
\end{align*}
$$

They are called 3D reflection equations and represent a "factorization of the three string scattering amplitude" in the presence of a reflecting plane. See also [6]. Solutions of (8) and (9) associated with the quantized coordinate rings $A_{q}\left(C_{3}\right)$ and $A_{q}\left(B_{3}\right)$ have been obtained in $[11,12]$. At $q=0$ they yield the set theoretical versions where F_{q} and $F_{q^{2}}$ are replaced by $\mathbb{Z}_{\geq 0}{ }^{8}$ The both R and S reduce to the map on $\left(\mathbb{Z}_{\geq 0}\right)^{3}$ as

$$
\begin{equation*}
(a, b, c) \mapsto\left(b+(a-c)_{+}, \min (a, c), b+(c-a)_{+}\right), \tag{10}
\end{equation*}
$$

where $(x)_{+}=\max (x, 0)$. Similarly K becomes a map on $\left(\mathbb{Z}_{\geq 0}\right)^{4}$ defined by

$$
\begin{align*}
& K:(a, b, c, d) \mapsto\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \\
& a^{\prime}=x+a+b-d, \quad b^{\prime}=c-x+d-\min (a, c+x) \tag{11}\\
& c^{\prime}=\min (a, c+x), \quad d^{\prime}=b+(c+x-a)_{+}, \quad x=\left(c-a+(d-b)_{+}\right)_{+} .
\end{align*}
$$

[^2]Let us present an example of the set theoretical version of (8) and (9), which are equalities of maps on $\left(\mathbb{Z}_{\geq 0}\right)^{9}$.

Type C	
$R_{456} \swarrow \swarrow^{(211202341)}$	
(211020341)	(211205314)
$K_{1236} \downarrow$	$\downarrow R_{689}$
(301021341)	(213205118)
$K_{1478} \downarrow$	$\downarrow R_{249}$
(301021341)	(223105119)
$R_{258} \downarrow$	$\downarrow R_{258}$
(321001361)	(213115109)
$R_{249} \downarrow$	$\downarrow K_{1478}$
(311101360)	(313015119)
$K_{3579} \downarrow$	$\downarrow K_{1236}$
(313101164)	(313015119)
$R_{689} \searrow$	$\swarrow R_{456}$
	(313106119)

Type B

$(401021341) \quad(213205116)$
$K_{8741} \downarrow$
(301021431) (223105117)
$S_{258} \downarrow$
(321001451)
$S_{249} \downarrow$
(311101450)
$K_{9753} \downarrow$
(314101153)

$\downarrow S_{258}$
(213115107)
$\downarrow K_{8741}$
(413015117)
$\downarrow K_{6321}$
(314014117)
$S_{689} \searrow$
(314105117)

Figure 3. Examples of the set theoretical solution of the 3D reflection equations for type B and C on $\left(\mathbb{Z}_{\geq 0}\right)^{9} . R$ and S are given by (10). $K_{i j k l}$ is given by (11) if $i<j<k<l$ and by $\bar{P}_{i l} P_{j k}\left(K_{l k j i}\right.$ by (11)) $P_{i l} P_{j k}$ if $i>j>k>l$.

$$
\text { 4. } B_{3} \hookrightarrow F_{4} \hookleftarrow C_{3}
$$

Let us consider F_{4} which contains B_{3} and C_{3} as parabolic subgroups. Compare Figure 2 and Figure 4.

Figure 4. The Dynkin diagram of F_{4}. The operators R, S and K are associated according to Figure 2.

As before we attach P to the quadratic Coxeter relation $i j=j i$ (in terms of indices of the generators) with $|i-j| \geq 2$. Furthermore in view of (6) and (7), we set

$$
\begin{equation*}
\Phi=R P_{13}: 121 \leftrightarrow 212, \quad \Upsilon=S P_{13}: 343 \leftrightarrow 434, \quad \Psi=K P_{14} P_{23}: 2323 \rightarrow 3232 \tag{12}
\end{equation*}
$$

We have used the symbol Υ refreshing Φ^{\prime} in (7) since the relevant letters are now 3 and 4 instead of 1 and 2. We keep assuming $\Phi=\Phi^{-1}, \Upsilon=\Upsilon^{-1}$ and $R=R^{-1}, S=S^{-1}, K=K^{-1}$. They imply $R_{i j k}=R_{k j i}, S_{i j k}=S_{k j i}$ and $\Psi_{i j k l}^{-1}=K_{i j k l}^{\vee} P_{i l} P_{j k}=K_{l k j i} P_{i l} P_{j k}$ as before.

An example of reduced expressions of the longest element of the Coxeter group F_{4} is $\mathbf{w}_{0}=$ 434234232123423123412321 in terms of indices. It has length 24 . The rex graph for it consists of 2144892 vertices. Let $\tilde{\mathbf{w}}_{0}$ be the reverse ordering of \mathbf{w}_{0}, which is most distant from it in the graph. One way to go from \mathbf{w}_{0} to $\tilde{\mathbf{w}}_{0}$ is shown below, where the underlines indicate the changing part and the relevant operators are given on the right for each step.
$\mathbf{w}_{0}: \underline{434234232123423123412321}$
$34 \underline{3232432123423121342321}$
$3 \underline{42323432123423212342321}$
$3243 \underline{24} 3212 \underline{434} 232123 \underline{42} 321$
$32 \underline{4342321234323212324321}$
323432321234232132324321
$323 \underline{42} 321 \underline{3232432123234321}$
323243212323432123423214
$232 \underline{343212} 3 \underline{24} 3212 \underline{434} 23214$
232432124342321234323214
232432123432321232432134
$2324 \underline{31234123213232432134}$
$232 \underline{413234123212323432134}$
$23214323412 \underline{3123124321434}$
232143234121323124321434
232143234212323124321434
232143232143232124321434
$232142321 \underline{343231243121434}$
232124321432434123212434
$2 \underline{31214324312341323212434}$
$21321 \underline{4342312134232132434}$
$2132 \underline{13432321232432132434}$
213234123213232432132434
213234123212323432132434
213234123123124321432434
213234121323124321432434
213234212323124321432434
213232143232124321432434
212321343231243121432434
123121432434123212432434
123214232341323212432434
123214323421232132432434
$1232143213 \underline{42312132432434}$
$P_{6,7} P_{18,19} P_{19,20} \Upsilon_{1,2,3}$
$\Psi_{3,4,5,6}^{-1} \Phi_{16,17,18}$
$P_{2,3} P_{10,11} P_{9,10} P_{8,9} \Upsilon_{6,7,8}$
$P_{5,6} P_{20,21} \Upsilon_{11,12,13}$
$\Upsilon_{3,4,5} P_{16,17} \Psi_{13,14,15,16}^{-1}$
$P_{8,9} \Psi_{5,6,7,8}^{-1} P_{12,13} \Psi_{17,18,19,20}^{-1}$
$P_{4,5} \Psi_{9,10,11,12}^{-1} P_{19,20} P_{23,24} P_{22,23} \Upsilon_{20,21,22}$
$\Psi_{1,2,3,4}^{-1} P_{16,17} P_{15,16} P_{14,15} \Upsilon_{12,13,14}$
$\Upsilon_{17,18,19} P_{11,12} P_{8,9} P_{7,8} P_{6,7} \Upsilon_{4,5,6}$
$\Upsilon_{9,10,11} P_{18,19} P_{22,23} \Psi_{19,20,21,22}^{-1}$
$P_{9,10} P_{8,9} \Phi_{6,7,8} P_{14,15} \Psi_{11,12,13,14}^{-1}$
$P_{5,6} \Psi_{15,16,17,18}^{-1}$
$P_{4,5} P_{15,16} \Phi_{13,14,15} P_{21,22} P_{20,21} \Upsilon_{18,19,20}$
$P_{12,13}$
$\Phi_{10,11,12}$
$P_{10,11} P_{9,10} \Psi_{12,13,14,15}$
$P_{9,10} \Psi_{6,7,8,9}^{-1} P_{18,19} P_{17,18} \Phi_{15,16,17}$
$P_{5,6} P_{12,13} \Upsilon_{10,11,12} P_{15,16} P_{16,17} \Phi_{19,20,21}$
$\Phi_{3,4,5} P_{10,11} P_{9,10} P_{15,16} \Upsilon_{13,14,15}$
$P_{2,3} P_{8,9} P_{13,14} P_{14,15} P_{19,20} \Psi_{16,17,18,19}^{-1}$
$\Upsilon_{6,7,8} \Phi_{11,12,13} P_{15,16}$
$P_{6,7} P_{5,6} P_{11,12} \Psi_{8,9,10,11}^{-1}$
$\Psi_{12,13,14,15}^{-1}$
$P_{12,13} \Phi_{10,11,12} P_{18,19} P_{17,18} \Upsilon_{15,16,17}$
$P_{9,10}$
$\Phi_{7,8,9}$
$P_{7,8} P_{6,7} \Psi_{9,10,11,12}$
$P_{6,7} \Psi_{3,4,5,6}^{-1} P_{15,16} P_{14,15} \Phi_{12,13,14}$
$P_{3,4} \Phi_{1,2,3} P_{9,10} \Upsilon_{7,8,9} P_{12,13} P_{13,14} \Phi_{16,17,18}$
$P_{6,7} \Phi_{4,5,6} P_{12,13} \Upsilon_{10,11,12}$
$P_{10,11} \Psi_{7,8,9,10} P_{16,17} \Psi_{13,14,15,16}^{-1}$
$P_{9,10} P_{10,11} P_{13,14} \Phi_{11,12,13}$
$P_{11,12} \Phi_{14,15,16}$
$\tilde{\mathbf{w}}_{0}: 123214321324321232432434$.

Let us write (13) schematically as

$$
\begin{equation*}
\mathbf{w}_{0} \xrightarrow{O_{1}} \mathbf{w}_{1} \xrightarrow{O_{2}} \cdots \xrightarrow{O_{N-1}} \mathbf{w}_{N-1} \xrightarrow{O_{N}} \mathbf{w}_{N}=\tilde{\mathbf{w}}_{0}, \tag{14}
\end{equation*}
$$

where $O_{m} \in\left\{P_{k, k+1}, \Phi_{k, k+1, k+2}, \Psi_{k, k+1, k+2, k+3}^{ \pm 1}, \Upsilon_{k, k+1, k+2, k+3}\right\}$ and $N=126$. For instance $O_{1}=\Upsilon_{1,2,3}$ and $O_{126}=P_{11,12}$. Considering the inverse procedure reversing the length 24
arrays at every stage, one finds another route going from \mathbf{w}_{0} to $\tilde{\mathbf{w}}_{0}$ as

$$
\begin{equation*}
\mathbf{w}_{0}=\tilde{\mathbf{w}}_{N} \xrightarrow{\tilde{O}_{N}^{-1}} \tilde{\mathbf{w}}_{N-1} \xrightarrow{\tilde{O}_{N-1}^{-1}} \cdots \xrightarrow{\tilde{O}_{2}^{-1}} \tilde{\mathbf{w}}_{1} \xrightarrow{\tilde{O}_{1}^{-1}} \tilde{\mathbf{w}}_{0} \tag{15}
\end{equation*}
$$

where $\tilde{\mathbf{w}}_{r}$ denotes the reverse word of \mathbf{w}_{r}. The operators \tilde{O}_{m} is chosen according to O_{m} as

$$
\begin{array}{llll}
O_{m}: P_{k, k+1}, & \Phi_{k, k+1, k+2}, & \Upsilon_{k, k+1, k+2}, & \Psi_{k, k+1, k+2, k+3}^{ \pm 1} \\
\tilde{O}_{m}: P_{j+1, j+2}, & \Phi_{j, j+1, j+2}, & \Upsilon_{j, j+1, j+2}, & \Psi_{j-1, j, j+1, j+2}^{\mp 1} \tag{16}
\end{array}
$$

with $j+k=23$. The reason for exceptionally inverting Ψ is that the reverse ordering of 2323 into 3232 interchanges the role of two sides in (12). As in the preceding cases of A_{3}, B_{3}, C_{3}, we define the F_{4} analogue of the tetrahedron equation to be the condition that the composition of the operators along the nontrivial loops in the rex graph for the longest element is the identity:

$$
\begin{equation*}
O_{N} \cdots O_{2} O_{1}=\tilde{O}_{1}^{-1} \tilde{O}_{2}^{-1} \ldots \tilde{O}_{N}^{-1} \tag{17}
\end{equation*}
$$

From (13) one obtains, after cancelling the product of $P_{i, j}$'s, the following equation:

$$
\begin{align*}
& \quad R_{14,15,16} R_{9,11,16} K_{7,8,10,16} K_{17,15,13,9} R_{4,5,16} S_{7,12,17} R_{1,2,16} S_{6,10,17} R_{9,14,18} \\
& \quad \times K_{17,5,3,1} R_{11,15,18} K_{6,8,12,18} R_{1,4,18} R_{1,8,15} S_{7,13,19} K_{19,11,6,1} K_{19,15,12,4} S_{3,10,19} \\
& \quad \times R_{4,8,11} K_{20,14,7,1} R_{2,5,18} S_{6,13,20} S_{3,12,20} R_{1,9,21} K_{20,15,10,2} R_{4,14,21} K_{3,8,13,21} \\
& \quad \times R_{2,11,21} R_{2,8,14} S_{6,7,22} K_{22,4,3,2} R_{5,15,21} K_{22,14,13,11} S_{10,12,22} K_{23,9,6,2} S_{3,7,23} \\
& \quad \times S_{19,20,22} K_{22,18,17,16} S_{10,13,23} K_{23,14,12,5} S_{3,6,24} K_{23,21,19,16} K_{24,9,7,4} S_{17,20,23} \\
& \quad \times K_{24,11,10,5} S_{12,13,24} S_{17,19,24} K_{24,21,20,18} R_{5,8,9} S_{22,23,24} \\
& = \tag{18}\\
& \text { product in reverse order, }
\end{align*}
$$

where the reverse ordering does not change the indices of $K_{i, j, k, l}$ internally into $K_{l, k, j, i}$. There are 50 operators in total on each side; $16 R$'s, $16 S$'s and 18 K 's. They all have distinct set of indices.

Given a reduced expression of the longest element $\mathbf{w}_{0}=i_{1} \ldots i_{24}$, one can get another one by $\mathbf{w}_{0}^{\prime}=\left(5-i_{1}\right) \ldots\left(5-i_{24}\right)$. Suppose the F_{4} analogue of the tetrahedron equation for \mathbf{w}_{0} is $Z_{1} \cdots Z_{50}=Z_{50} \cdots Z_{1}$ where Z_{r} is one of $R_{i j k}, S_{i j k}$ and $K_{i j k l}$ for some $i, j, k, l \in\{1, \ldots, 24\}$. Then the equation for \mathbf{w}_{0}^{\prime} takes the form $Z_{1}^{\prime} \cdots Z_{50}^{\prime}=Z_{50}^{\prime} \cdots Z_{1}^{\prime}$, where $R_{i j k}^{\prime}=S_{i j k}, S_{i j k}^{\prime}=R_{i j k}$ and $K_{i j k l}^{\prime}=K_{l k j i}$. The F_{4} analogue of the tetrahedron equation which appeared first in $[11$, eq.(48)] is related to (18) by this transformation.

In Figure 4 one observes the mixture of the B_{3} and C_{3} structures in Figure 2. This is made precise in

Theorem 4.1. [10, Th.7.2] The F_{4} analogue of the tetrahedron equation (18) is reduced to a composition of the 3D reflection equations for B_{3} (9) and C_{3} (8) twelve times for each.

Proof. Let X_{0} denote the expression in the LHS of (18) which consists of $16 R$'s, $16 S$'s and 18 K's. It can be transformed to the RHS along the following steps:

$$
X_{0} \rightarrow Y_{0} \rightarrow X_{1} \rightarrow Y_{1} \rightarrow \cdots \rightarrow X_{24} \rightarrow Y_{24}=\text { reverse ordering of } X_{0}
$$

Here rewriting $X_{i} \rightarrow Y_{i}$ only uses trivial commutativity of operators having totally distinct indices. On the other hand, the step $Y_{i} \rightarrow X_{i+1}$ indicates an application of a 3D reflection equation, which reverses seven consecutive factors somewhere in the length 50 array Y_{i}. Let us label the 50 operators in X_{0} with $1,2, \ldots, 50$ by saying that $X_{0}=1 \cdot 2 \cdots \cdots 50$. Thus for instance $1=R_{14,15,16}$, $2=R_{9,11,16}, 3=K_{7,8,10,16}$ and $50=S_{22,23,24}$. To save the space, we specify a length 50 array in two rows. Thus X_{0} is expressed as $\binom{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25}{26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50}$.

The intermediate forms $Y_{0}, Y_{1}, \ldots, Y_{23}$ are listed below in such a notation. ${ }^{9}$
$\binom{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25}{26,27,28,29,30,31,32,33,34,35,36,39,40,41,43,45,46,37,38,42,44,47,48,50,49}$
$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$
$(26,27,28,29,30,31,32,35,36,41,43,33,34,39,40,45,46,50,48,47,44,42,38,37,49)$
($1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25$ $(26,27,28,29,32,30,31,35,36,41,43,50,46,45,40,49,39,34,33,48,47,44,42,38,37)$
($50,1,2,3,4,5,6,15,7,8,9,10,11,12,13,14,16,17,19,18,20,21,22,23,24$ $(25,26,27,28,29,43,41,36,35,31,30,46,32,45,40,49,39,34,33,48,47,44,42,38,37)$ $50,1,2,3,5,19,4,6,15,7,8,17,10,16,14,9,13,20,24,26,43,18,12,22,23$ $27,41,46,36,11,21,25,28,32,45,48,29,35,40,49,47,39,44,42,31,30,34,33,38,37)$ $50,1,2,3,5,19,4,6,15,7,8,17,10,16,14,9,13,20,24,26,43,18,12,22,23$ $27,41,46,48,36,45,47,32,28,25,21,29,35,40,49,39,44,42,31,30,34,11,33,38,37)$
($50,1,2,3,5,19,4,6,15,7,8,17,10,16,14,9,13,20,24,26,43,48,46,18,41$ $27,23,22,36,45,47,32,28,25,12,21,29,35,40,49,39,44,42,31,30,34,11,33,38,37)$
($50,48,1,2,3,5,19,4,6,15,17,43,46,7,8,10,16,14,26,24,20,13,18,41,45$ $27,23,22,36,47,32,28,25,9,12,21,29,35,40,49,39,44,42,31,30,34,11,33,38,37)$
($50,48,1,2,3,5,19,4,6,15,17,43,26,46,7,8,10,16,18,41,45,47,14,24,27$ $(32,49,20,23,36,40,28,22,25,35,39,29,13,21,44,42,31,12,30,34,9,11,33,38,37)$ $50,48,1,2,3,5,19,4,6,15,17,43,46,47,26,45,41,18,7,16,10,14,24,27,32$ $(49,20,23,36,40,28,8,22,25,35,39,44,29,13,21,42,31,12,30,34,9,11,33,38,37)$
($50,48,47,46,1,2,3,5,19,43,45,41,17,15,6,26,18,7,16,4,10,14,24,27,32$ $49,20,23,36,40,28,8,22,25,35,39,44,29,13,21,42,31,12,30,34,9,11,33,38,37)$ $50,48,47,46,1,2,3,5,19,43,45,49,41,17,15,6,26,18,7,16,32,27,24,14,10$ $(20,23,36,40,28,4,8,22,25,35,39,44,29,13,21,42,31,12,30,34,9,11,33,38,37)$
($50,48,47,46,1,2,3,5,19,43,45,49,41,17,15,26,18,7,16,32,27,24,14,6,10$ $20,23,36,40,44,39,28,35,42,25,22,29,13,21,31,8,12,30,34,4,9,11,33,38,37)$
$\binom{50,48,47,44,46,1,2,3,5,19,43,45,49,41,17,15,26,18,7,16,32,27,24,14,40}{36,23,20,10,6,39,28,35,42,25,22,29,13,21,31,8,12,30,34,4,9,11,33,38,37}$
$\binom{50,49,48,47,46,45,44,43,41,19,1,5,17,3,15,26,32,18,40,27,36,39,2,7,16}{24,28,35,42,14,23,20,25,22,29,10,13,21,31,6,8,12,30,34,4,9,11,33,38,37}$
$\binom{50,49,48,47,46,45,44,43,41,19,1,5,17,26,32,40,3,15,18,27,36,39,42,35,28}{24,16,7,14,23,20,25,22,29,10,13,21,31,6,8,12,30,34,2,4,9,11,33,38,37}$
$\binom{50,49,48,47,46,45,44,43,41,19,1,5,17,26,32,40,42,39,36,27,18,15,35,28,24}{16,3,7,14,23,20,25,22,29,10,13,21,31,6,8,12,30,34,2,4,9,11,33,38,37}$
$\binom{50,49,48,47,46,45,44,42,40,39,43,41,36,19,32,26,35,27,28,24,17,18,23,15,16}{5,1,3,7,14,20,25,29,22,10,13,21,31,6,8,12,30,34,2,4,9,11,33,38,37}$
$\binom{50,49,48,47,46,45,44,42,40,39,43,41,36,19,32,26,35,27,28,24,17,18,23,15,16}{5,29,25,20,14,7,3,22,10,13,21,31,6,8,12,30,34,1,2,4,9,11,33,38,37}$
$\binom{50,49,48,47,46,45,44,42,40,39,43,41,36,19,32,26,35,27,28,24,17,18,23,29,25}{15,16,20,14,5,7,22,10,13,21,31,3,6,8,12,30,34,38,33,37,11,9,4,2,1}$
$\binom{50,49,48,47,46,45,44,42,40,39,43,41,36,19,32,26,35,27,28,24,17,18,23,29,25}{15,16,20,22,14,5,7,10,13,21,31,38,34,30,33,37,12,11,8,6,3,9,4,2,1}$
$\binom{50,49,48,47,46,45,44,42,38,40,39,43,41,36,19,32,26,35,27,28,17,18,23,29,25}{31,34,24,15,16,20,22,30,33,37,21,14,13,12,11,9,10,8,7,5,6,3,4,2,1}$
$\binom{50,49,48,47,46,45,44,42,38,40,39,43,41,36,19,32,26,35,27,28,29,17,18,23,25}{31,34,37,33,30,22,24,20,16,15,21,14,13,12,11,9,10,8,7,5,6,3,4,2,1}$
$\binom{50,49,48,47,46,45,43,41,44,42,40,39,38,37,34,36,35,32,19,26,27,28,29,31,33}{25,23,18,30,22,24,20,17,16,15,21,14,13,12,11,9,10,8,7,5,6,3,4,2,1}$

[^3]The blue (resp. red) ${ }^{10}$ neighboring seven numbers specify the place and operators to which the B_{3} (resp. C_{3}) reflection equation is applied. For example X_{1} is obtained from Y_{0} by replacing $37 \cdot 38 \cdot 42 \cdot 44 \cdot 47 \cdot 48 \cdot 50=S_{19,20,22} K_{22,18,17,16} K_{23,21,19,16} S_{17,20,23} S_{17,19,24} K_{24,21,20,18} S_{22,23,24}$ with the reverse ordered form $S_{22,23,24} K_{24,21,20,18} S_{17,19,24} S_{17,20,23} K_{23,21,19,16} K_{22,18,17,16} S_{19,20,22}=$ $50 \cdot 48 \cdot 47 \cdot 44 \cdot 42 \cdot 38 \cdot 37$ by (9). The numbers of red and blue sequences are both twelve.

Theorem 4.1 confirms that the triad (R, S, K) satisfying the 3 D reflection equations also yield a solution to the F_{4} analogue of the tetrahedron equation (18). We remark that the tetrahedron equations $R R R R=R R R R$ and $S S S S=S S S S$ have not been used. R and S act as catalysts for the main reactions which are 3D reflection equations (8) and (9) involving K. According to [14, Th. (2.17)], for any element of a Coxeter group, loops in its rex graph are generated by the loops in the rex graph of the longest element in finite parabolic subgroups of rank 3. Theorem 4.1 is consistent with it and provides a finer information distinguishing B_{3} and C_{3} structures within F_{4}.

An analogue of Theorem 4.1 for $A_{3} \hookrightarrow A_{4}$ can be found in [10, eq.(3.101)].

$$
\text { 5. } H_{2} \hookrightarrow H_{3}
$$

This section is a supplement concerning the non-crystallographic Coxeter groups H_{2}, H_{3}, H_{4} and presents the H_{3} analogue of the tetrahedron equation. Although there is no associated quantized coordinate ring, they are treated formally in a similar manner to the preceding cases of A_{3}, B_{3}, C_{3} and F_{4}. The Coxeter diagrams of H_{2}, H_{3}, H_{4} are given in Figure 5 .

Figure 5. The Coxeter diagrams for non-crystallographic Coxeter groups H_{2}, H_{3} and $H_{4} . H_{2}$ is customarily denoted also by $I_{2}(5)$, which is the $m=5$ case of the dihedral groups $I_{2}(m)(m \geq 3)$.

They indicate that H_{n} is generated by $s_{1}, s_{2}, \ldots, s_{n}$ obeying the relations $s_{i}^{2}=1(1 \leq i \leq n)$, $\left(s_{1} s_{2}\right)^{5}=1,\left(s_{i} s_{i+1}\right)^{3}=1,(1<i<n)$ and $\left(s_{i} s_{j}\right)^{2}=1(|i-j|>1)$. The groups $H_{2} \subset H_{3} \subset H_{4}$ are of order $10,120,14400$ with longest elements of length $5,15,60$, respectively. H_{3} is known as the symmetry of the icosahedron or equivalently the dual dodecahedron [5]. The relations of the generators s_{1}, s_{2}, s_{3} are given as $s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=1$ and

$$
\begin{equation*}
s_{1} s_{3}=s_{3} s_{1}, \quad s_{1} s_{2} s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} s_{1} s_{2} \tag{19}
\end{equation*}
$$

Following the preceding examples, we attach the operators to (19) as

$$
\begin{align*}
& P=P^{-1}: 13 \leftrightarrow 31 \tag{20}\\
& \Phi: 232 \rightarrow 323, \quad \Phi_{i j k}=R_{i j k} P_{i k} \tag{21}\\
& \Omega: 21212 \rightarrow 12121, \quad \Omega_{i j k l m}=Y_{i j k l m} P_{i m} P_{j l} \tag{22}
\end{align*}
$$

where, as before, the indices i, j, k, \ldots specify the components that they act non-trivially. ${ }^{11}$ The operators Ω and Y are the characteristic ones which emerges from H_{2}.

[^4]A reduced expression of the longest element of H_{3} is 121213212132123 in terms of indices of s_{i}. Now a process analogous to (13) reads as

$1212 \underline{13212132123 ~}$	$P_{5,6}$
121231212132123	$\Omega_{6,7,8,9,10}^{-1}$
$121 \underline{23121232123 ~}$	$\Phi_{4,5,6} \Phi_{10,11,12}$
$12 \underline{132312} \underline{1323123}$	$P_{3,4} P_{6,7} P_{9,10} P_{12,13}$
$123121 \underline{323121323}$	$\Phi_{7,8,9}^{-1} \Phi_{13,14,15}^{-1}$
123121232121232	$\Omega_{9,10,11,12,13}$
$1231212 \underline{31212 \underline{132}}$	$P_{8,9} P_{13,14}$
123121213212312	$\Omega_{4,5,6,7,8}^{-1}$
$1 \underline{23212123212312 ~}$	$\Phi_{2,3,4} \Phi_{8,9,10}$
$132 \underline{312132312312}$	$P_{4,5} P_{7,8} P_{10,11}$
$\underline{132132312132312}$	$P_{12} \Phi_{567}^{-1} \Phi_{11,12,13}^{-1}$
312123212123212	$\Omega_{7,8,9,10,11}^{-1}$
$3121231212 \underline{13212}$	$P_{6,7} P_{11,12}$
$3 \underline{12121321231212 ~}$	$\Omega_{2,3,4,5,6}^{-1}$
$32121 \underline{2321231212}$	$\Phi_{6,7,8}$
$3212 \underline{13231231212}$	$P_{5,6} P_{8,9}$
$32123121 \underline{3231212}$	$\Phi_{9,10,11}^{-1}$
321231212321212	$\Omega_{11,12,13,14,15}$
321231212312121.	

It reverses the initial reduced expression. There is another route achieving the reverse ordering in the same manner as explained in (15) for F_{4}. Equating the two ways, substituting (20) - (22) and using $P_{4,7} Y_{1,3,4,9}=Y_{1,3,7,9} P_{4,7}$ etc, we get the H_{3} analogue of the tetrahedron equation [10, eq.(9.12)]:

$$
\begin{align*}
& Y_{11,12,13,14,15} R_{15,10,9}^{-1} R_{5,7,15} Y_{15,6,4,3,2}^{-1} Y_{2,5,8,10,14} R_{14,7,3}^{-1} R_{13,9,2}^{-1} R_{1,6,14} \\
& \times R_{3,8,13} Y_{13,10,7,4,1}^{-1} Y_{1,3,5,9,12} R_{12,8,4}^{-1} R_{11,2,1}^{-1} R_{6,10,12} R_{4,5,11} Y_{11,9,8,7,6}^{-1} \\
& =Y_{6,7,8,9,11} R_{11,5,4}^{-1} R_{12,10,6}^{-1} R_{1,2,11} R_{4,8,12} Y_{12,9,5,3,1}^{-1} Y_{1,4,7,10,13} R_{13,8,3}^{-1} \tag{24}\\
& \times R_{14,6,1}^{-1} R_{2,9,13} R_{3,7,14} Y_{14,10,8,5,2}^{-1} Y_{2,3,4,6,15} R_{15,7,5}^{-1} R_{9,10,15} Y_{15,14,13,12,11}^{-1}
\end{align*}
$$

The two sides have the form of the inverse of each other if the indices within each operator were reversed. There are $3 Y^{\prime}$'s, $3 Y^{-1}$'s, $5 R$'s and $5 R^{-1}$'s on each side.

If $Y_{i j k l m}^{-1}=Y_{i j k l m}=Y_{m l k j i}$ and $R_{i j k}^{-1}=R_{i j k}=R_{k j i}$ are valid, the above equation reduces to [10, eq.(9.13)]:

$$
\begin{align*}
& Y_{11,12,13,14,15} R_{9,10,15} R_{5,7,15} Y_{2,3,4,6,15} Y_{2,5,8,10,14} R_{3,7,14} R_{2,9,13} R_{1,6,14} \\
& \times R_{3,8,13} Y_{1,4,7,10,13} Y_{1,3,5,9,12} R_{4,8,12} R_{1,2,11} R_{6,10,12} R_{4,5,11} Y_{6,7,8,9,11} \tag{25}\\
& =\text { product in reverse order. }
\end{align*}
$$

It remains a challenge to construct a solution of (24) or the reduced version (25). A planar graphical representation of (25) has appeared in [4, eq.(4.9)]. In view of $H_{3}, A_{3} \subset H_{4}$, the H_{4} equation should be decomposed into the tetrahedron equation and the H_{3} equation similarly to Theorem 4.1.

Acknowledgments

The author thanks Kohei Motegi for invitation to the workshop and Toshiyuki Tanisaki for useful communication.

References

[1] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, New York (1982)
[2] V. V. Bazhanov, S. M. Sergeev, Zamolodchikov's tetrahedron equation and hidden structure of quantum groups, J. Phys. A: Math. Theor. 39 3295-3310 (2006)
[3] I. V. Cherednik, Factorizing particles on a half-line and root systems, Theor. Math. Phys. 61 977-983 (1984)
[4] B. Elias, G. Williamson, Soergel calculus, Represent. Theory 20 295-374 (2016)
[5] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Univ. Press (1990)
[6] A. P. Isaev, P. P. Kulish, Tetrahedron reflection equations. Mod. Phys. Lett. A12 427-437 (1997)
[7] M. Jimbo, eds. Yang-Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, World Scientific (1990)
[8] M. M. Kapranov, V. A. Voevodsky, 2-Categories and Zamolodchikov tetrahedron equations. Proc. Symposia in Pure Math. 56 177-259 (1994)
[9] A. Kuniba, Matrix product solutions to the G_{2} reflection equation, J. of Integrable Syst. 3 1-28 (2018)
[10] A. Kuniba, Quantum groups in three-dimensional integrability, to appear
[11] A. Kuniba, M. Okado, Tetrahedron and 3D reflection equations from quantized algebra of functions, J. Phys. A: Math.Theor. 45465206 (27pp) (2012)
[12] A. Kuniba, M. Okado, A solution of the 3D reflection equation from quantized algebra of functions of type B, in Nankai Series in Pure, Applied Mathematics and Theoretical Physics 11, p181-190, World Scientific (2013)
[13] H. Matsumoto, Génŕateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris, $2583419-$ 3422 (1964)
[14] M. Ronan, Lectures on buildings, updated and revised, University of Chicago Press, Chicago IL (2009)
[15] A. B. Zamolodchikov, Al. B. Zamolodchikov, Factorized S-matrices in two-dimensions as the exact solutions of certain relativistic quantum field theory models, Ann. Phys. 120 253-291 (1979)
[16] A. B. Zamolodchikov, Tetrahedra equations and integrable systems in three-dimensional space, Soviet Phys. JETP 79 641-664 (1980)

[^0]: ${ }^{1}$ The set theoretical versions is obtained by replacing F_{q} by a set and \otimes by the product of sets.

[^1]: ${ }^{2}$ In this note, the symbol like A_{2} will be used either to mean the classical simple Lie algebra or the Coxeter group arising as its Weyl group.
 ${ }^{3}$ The rex graph is connected [13].
 ${ }^{4}$ Indices of the operators referring to the positions should not be confused with the numbers in Figure 1 signifying the labels of the generators.
 ${ }^{5} R=R^{-1}$ and $\Phi^{-1}=\Phi$ amount to assuming $P_{i k} R_{i j k} P_{i k}=R_{i j k}$ or equivalently $R_{i j k}=R_{k j i}$.
 ${ }^{6}$ The solution in [2, eq.(30)] coincides with the one in [8, p194] (up to typo) as shown in [11, eq.(2.29)].

[^2]: ${ }^{7}$ For K one needs to specify the direction of the map as opposed to the cubic Coxeter relation because the two sides are not invariant under the reverse ordering.
 ${ }^{8}$ It also emerges by a tropical variable change from another set theoretical version where the R, S, K become birational maps.

[^3]: ${ }^{9}$ Thus the first one Y_{0} already differs from X_{0} slightly.

[^4]: ${ }^{10}$ Even if not visible, they can be distinguished as explained below.
 ${ }^{11}$ Unlike the R for $A_{3}, B_{3}, C_{3}, F_{4}$, we do not assume $R^{-1}=R$ nor $R_{i j k}=R_{k j i}$ in this section.

