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1 Introduction

This article is a review of our recent paper [10]. There we have formulated the elliptic quantum
toroidal algebra Ugt,(gly 4o) associated with the toroidal algebra gl 4, in the same scheme
as the elliptic quantum group U, ,(g) associated with the affine Lie algebra g [9]. The algebra
Uqg,t.p(8l1 1or) is an elliptic analogue of the quantum toroidal algebra Uy, (gl 4,,-) introduced by
Miki as a deformation of the W1 algebra [11].

As for the trigonometric algebra Uy (g, 4,,), various representations have been studied by
many papers such as [1-3,11] and applied to the 5d and 6d lifts of the 4d N'= 2 SUSY gauge
theories, which are the gauge theories associated with the linear quivers.

In [10], we have shown that the elliptic algebra Uy ,(gly ¢5r) 15 @ relevant quantum group
structure to treat the 5d and 6d lifts of the the 4d N' = 2* SUSY gauge theories associated
with the Jordan quiver. The key to this is that Uy (gl 4,-) gives a realization of the Jordan
quiver W-algebra Wq,t(l“(;l\o)) proposed in [6]. In particular, our realization of the generating
function T'(u) of Wq,t(I’(A\O)) as a composition of the vertex operators ®(u) and @*(u) leads
to an identification of it with a refined topological vertex depicted in Fig.6.1. This vertex is a
basic object in calculating Nekrasov instanton partition functions of the 5d and 6d lifts of the 4d

N = 2% U(M) theories, whose instanton moduli spaces are given by the Jordan quiver varieties.

Notations
For p1,p2,p3 € C with |p;] <1 (1 =1,2,3), we set

o0 oo

(zp)eo = [[ A =2p1),  (Epip)e= ] (1—2p0'p5?),

n1:0 m,ng:O
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oo

(zipup2p3)eo = [ (1= 20l pf2p5?),

n1,n2,n3=0
and
(p1p2/%; 1, P2) o0

(2101, P2)00
T3(2; p1.p2,p3) = (25 P1, P2, P3)oo(P1P2D3/ 2 P1. D2, P3) oo

Op, (2) = (2:91)c(P1/25P1)00,  D(z3p1,p2) =

2 Elliptic Quantum Toroidal Algebra U, ,(gl, ;)

2.1 Definition of U,; (gl )
Let p, g,t be generic complex numbers satisfying |p|, |q|, [t| < 1.

Definition 2.1. The elliptic quantum toroidal algebra Uy, = Uyt p(aly 1or) is a C[[p]]-algebra
generated by cu,xt, (m € Z\{0},n € Z) and invertible elements war,fyl/2. We set 1, =
(1%*)*1‘ The defining relations can be conveniently expressed in terms of the generating func-

tions, which we call the elliptic currents,

= E e

nez
1
w*(z)-%*ew( > ol ”%)’”) exp(Zl mamw%)m),
m>0 m>0 p
- — 1 1/2 \m p" 1/2 \—m
U7 (2) = ¥y exp *Zl_ om0 2™ exp | D0 (3127 )
m>0 p m>0 p

The defining relations are

w6r7’yl/2 : central, (2.1)

/s O /58) oy _ TP IO D)

e R e e M A R Ty T e M 22
Gy 'w/2zp*) G (yw/z:p) G~ (P~ "2/wip) G (v2/w;p")
o

T (w) = D (w)pT (2
G~ w/Z;p*)G+("/w/Z;p)¢ () (w) G*(pflz/w;p*)G*(WZ/w;p*)/} (W)y™(2).
(2.3)
3 Gty w/zp*) | Nt () = 33 G
—G (*ﬁ/,lw/z;p*)w (2)a™(w) = — G p) (w)y (), (2.4)
B GTW/zp) sy = 3 G E W) s
o w/z;p*)w (2)a™ (w) G2 w ) (W)Y~ (2), (2.5)



3G (pw/zp) 4 N~ (w) = ,«w*37G7(pZ/w;p)af w)pt (2
Grwfzp) ¢ =T G gy ) .
3G*(p7*1w/z;p) 3G (pyz/w;p)

—T zZ)r (w) = 3w r (w z .
e A LR (W) (2), 27)

ot (2), 0~ (w)] = 2= DA =1/

GT(vz/w;p)

(OO z/wppt (w) = 8(yz/w)e™ (v w)) . (2.8)

(1—-q/t)

G (w/zp") _ G*(z/w;p") ,
3W.’E+(Z’)I‘+(w) = —’U)BW$+(M)$+(Z), (29)
375+(;12//Z;7]2) 7 (2)x” (w) = —ws—g+(;zz//g;12):f(w):cf(z), (2.10)
GT(p*%p") GT(p" 50" GH(p*4p") fw w2 w
G (pr3ip") G- (0 5 p%) G (0" 35 p%) (5 T 5) = (@t ()t o)
+ permutations in z,w,u = 0, (2.11)
G~ (p%;p) G (pyip) G~ (p%ip) fw w2z w _
GH(p%;p) GT(pL;p) GH(pL;p) (5 T E) v (@ W)
+ permutations in z,w,u = 0, (2.12)

2

where we set p* = py~* and

G=(21p) = (€2 )oc (T2 9) o ((£/0) ' 2 D) o

T % — (.
GH(zp") = GH(21p)] -
We treat these relations as formal Laurent series in z,w and u. The coefficients such as

53%2237 gi&j?;g; should be expanded in w/z. All the coefficients in z,w,u are well defined

in the p-adic topology.
Note that the relations (2.2)-(2.7) are equivalent to

[(Ym7 (l/n] — _%(’Ym o V7"L)’y7m%5m+n,07 (213)
_ _Fm 1ZP sy 2" (z) (m

i (2)) =~ 2L ) (£ 0) (2.14)

[am, z7(2)] = %’y_m/zzmaﬂ_(z) (m #0), (2.15)

where we set

fm = (1=¢™) A =t7")(1 = (t/q)™).

It is sometimes convenient to set

U, (m € Zsg)
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which satisfy

Remark. On U, ,-modules, the central element +y

1 — ptm
G- (2.16)

m 1—pm

1/2 takes a complex value. Then assuming

Ip| < 1, [p*| = [py~2| < 1, one can rewrite (2.2)-(2.7), (2.9)-(2.10) as follows.

where

P ()t (w) = LEERLy (w)y(2),

g(w/zp)

V() (w) = LEE )y )yt (2),
YH()at (w) = g(v )z ")t (W)t (2),
Y (2)at () = g(w/z; )t (W) (2),

YH()e (w) = g(z/wip)a (w)t(2),
¥ () (w) = g(yz/wip)z (W) (2),

wH()at (w) = g(w/zp )t (w)at (2),

7 (2)r (w) = g(=/wip)a (w)a (2),

0p(q"2)0,((q/1)2)0,(t2)
0p(q2)0p((q/t)12)0p(t712)’
9(z:p*) = g(z;p)|

g(z:p) = (2.17)

. (2.18)

2.2 Hopf algebroid structure

For F(z,p) € C[[z, 2!

11[[p]], let ® denote a tensor product with the following extra condition

F(z;p")a®b = a®F(z; p)b. (2.19)

Define two moment maps ju, pr : C[[z, 2~ H][[pl] — Uyepllz, 271 by

w(F(z,p) = F(z,p), pr(F'(2,p)) = F(2,p%).



Let vq) = 7@1,y(2) = 1®y. We also define two algebra homomorphisms A : U tp
Z/{qJ,p é qu,typ and € : Z/[q,tp —C by

A(FY2) = AF125,%1/2, (2.20)
A*(2) = v (0 " 2)Eut () ), (2.21)
A(at(2) = 18w mm“z) + a7t (1g )@Y () *2), (2.22)
A(a™(2) = 27 (1) 2281 + ¥ (1) P2)2 (3]} 2), (2.23)
A(u(F(z,p)) = m(F(,p)@1,  Alur(F(2,p) = 1€ (F(2,p)),  (2.24)
(M) =) =1, cWEE) =1, e(a*() =0, (2.25)
S(u(F(2,)) = (i (F(z.))) = F(2,p). (2.26)
The map A is the so-called Drinfeld comultiplication. We have
Proposition 2.2. The maps € and A satisfy
(ARid) 0 A = (Id®A) o A, (2.27)
(e®id) o A = id = (id®e) o A. (2.28)

One also has an algebra anti-homomorphism S : Uy 1, — Uy 1 p and makes (Ugt p, A, €, i, pir, S)
an Hopf algebroid. See [9,10] for details.
3 Representations of U, ,(gl; ;)

Definition 3.1. Let V be a Uy p-module. For (k,1) € Z%, we say that V has level (k,1), if the

central elements v/ and 1§ act as
VP =t/ v, Yfe=(t/g) Py Veev.

Hence on the level (k,1) module, p* = p(q/t)k. We assume |p*| = |p(q/t)¥| < 1.
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3.1 Level (1, N) representation of U,; (gl )

For u € C*, let ]-](LLM =Cla_m (m> 0)]11(LN) be a Fock space on which the Heisenberg algebra

{owm (m € Zso)} and the central elements v'/2, 9" act as

YA = @/, g A = (/)TN a1 =0,
[ 6 = o— m£7

€= =1 gy LD

*nzaa

13
¥ _ (1,N)
for m > 0, £ € F. Note that p* = pg/t on F, " .

Theorem 3.2. The following assignment gives a level (1, N) representation of Ug s, on ]:(1 M,

3 . t n/4 N t 3n/4 .
2t (2) = uz N (t/q)* M exp {—nzw %a_nz }exp {nz>0 %anz } , (3.1)

() = u 2N (t/q) TNV A exp {Z (Wfar o/nz"} exp {— Z (o o z"} , (32)

=1 (/" =1 (t/gm "

n n/4 n/4
$H(=) = (ta) N2 exp { S, } exp {Z %a} , (3.3)
n>0 n>0
n/4 n —n/4
¥ (2) = (t/q)N? exp {— Z (i/z)p” anz"} exp { %anz_"} . (34)
n>0 n>0

3.2 Vector representation and the ¢-Fock space represenattion

We next consider the elliptic analogue of the level (0,1) representation of Ug+(gly 40r) ( [3];
Corollary 4.4). We call it the g-Fock space representation.
For v € C*, let V(u) be a vector space spanned by the symbols [u]; (j € Z).

Proposition 3.3. By the following action, V(u) is a level (0,0) Uyt p-module. We call V(u) a
vector representation.
at(

F (¢’ u/2) g1,

o™ (2.p)[ulj = a” ()3(¢’ " u/2)[ulj-1.

£, p(th "u/2)0p (@7 tu/2)
P = )

z.p)ulj =a

[ul;,
+
Wi ulj = [ul;,
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where we set

oy 1 (P a5 P)so(p/ti D)o
ap) = (1-1) (D)oo (P/ @)oo (35)
- (p) = (1_t71)(pq/t;p)oo(pt;p)oo' (3.6)

(25 1) o0 (PT; D)oo

Let us consider a tensor product of the vector representations. Define
VO () = V@)@V (ult/q) )@V (u(t/q) )@ @V (ult/q)"" ).
Set

PN = A=, A, AN) €ZY [ A > > > Ay b

N = [l ®u(t/a) " Do -1 Blut/a) g2 - Elult/a) ™ ay-n11

and define W& (1) be a subspace of V(™ (u) spanned by {|)\)1(LN) | A € PO}, The action of
Uy tp on WM () can be constructed by using the comultiplication A repeatedly.
We then take the inductive limit N — oo in the same way as in the trigonometric case [3].

Let
PN+ —xePW™ | Ay >0}

and define W)+ () be the subspace of W) (1) spanned by {|>\)1(LN), A e PN Let us

define 7y : PO+ 5 pINHL+ 1y
TN()\) = ()\17)\27' o 7)\N70)-

This induces the embedding W)+ — WN+D:+ We then define a semi-infinite tensor product

space J, by the inductive limit
Fu = lim W’(N)’Jr(u).
N—oo
The space F, is spanned by the vectors [A), (A € PT), where
P ={xA= (1,2, ) | Xi > Niv1, i €7Z, N\ = 0 for sufficiently large [ }.  (3.7)

We denote by £()) the length of X € PT i.e. Aypy > 0 and Ayry41 = 0. We also set || = dis1 A

and denote by A’ the conjugate of A. The action of Uy, on F, is defined inductively as follows.
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Define

“1-N+1y,/,
() = (g0 Pt ),
Byl )

wHN(E) = (o) P

Nle u
s ) = (/) P ),
Then we have

Lemma 3.4. For x = z*, 4+, we have
(@M@ = @ (0E).
Thanks to this Lemma, one can define the action of Uy ¢, on Fy by
()W) = Jim 2 (@) (2, A) .

Theorem 3.5. The following action gives a level (0,1) representation of Uy, on Fy. We

denote this representation by ]_-uo (©.1)
YN0 = N (3.8)
1?(/\)(+1)
7 (2)|\),, Z AL (P)0(ui/2) A+ 13),, (3.9)
o)
= (2)|\), = (¢/t)"2a” ZAM 8(q tui/2)|\ = 14),, (3.10)
PH(R)IN), = (Q/t)l/QBY(U/Z;p)I)Oua (3.11)
U7 ()N, = (a/t) By (2/u; )| N),- (3.12)
where
o) 1) +1
P Op(tui/u;) Op(qui/tu;)
AL = jg1 B (quefo) :2111 Gy e (3.13)
. B p(tws /i) Op(qug /tu;)
A)\'L(p) - 1;[ 0 (]ZL]/Uq) (uj/uz) (314)

Remark 1. For a representation with 'yl/ 2 = 1, there is an opposite comultiplication [10] and it

yields the same level (0,1) representation as Theorem 3.5 except for replacing the coefficients



Af; (p) with the non-primed ones given by

ALilp) = %%@(p) (3.15)
+1;
Ayilp) = Ziggzzjg;fl;}(p). (3.16)

where ¢y (p), ¢} (p) are given by

DM g, p)
ex(p) = H Gp(q“(D)tl(D)“) = H SV , (3.17)
OeA 1<i<<e(N) SCARL L

D(M 177 g, p)

/ _ O)+1,.6(0)\ s 4y

) = | | Op(q" D11y = | | T~ g.p) (3.18)
Oex 1<i<G<O(N) T

Here a(U) = ax(0) = N —j, £(0) = &61(0) = X —i for O = (,j) € A\. The resultant
representation is a direct elliptic analogue of the one in [3].
These two level (0,1) representations are related by the gauge transformation

_alp)

- (3.19)

Namely, changing the basis from {|\),} to {|\)},} in Theorem 3.5, one gets the 2nd representa-
tion.
Note also that cy(p),c)(p) are elliptic analogues of the combinatorial factors cy, c), respec-

tively, appearing in the inner product of the Macdonald symmetric functions as

/
[
(P, Pa)gs = 2, (3.20)
C)
Ni—Aj pj—i+1.
_ @) eO)+1y (gh Nt ;@)oo
C,\*H(l gt )= H (A= g)
Oex 1< <G <O(N) ?1/00
Ni—Aj+1pj—i.
;o _ a@)+1,@) _ (@ T @)oo
(‘,A*H(l q ) = H (N ) (3.21)
DeA 1<i<G<e(\) e

Remark 2. Tn the trigonometric case, the level (0,1) representation of Uy (gl 40) with u = 1
is identified with the geometric representation of the same algebra on @ K (Hilby (C2)), the
T = C* x C* equivariant K-theory of the Hilbert scheme of N points on C? [3]. There the basis
{|A\);} in F is identified with the fixed point classes {[\]} in K¢ (Hilby(C?)). We conjecture that

the same is true in the elliptic case. Namely, if one could properly formulate a geometric action
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of Uy 1, on the equivariant elliptic cohomology € Er(Hilby (C?)), it should be identified with
the level (0,1) representation in Theorem 3.5 by identifying |\); with the fixed point class [A] in
@ Er(Hilby(C?)) in the similar way to the case on the equivariant elliptic cohomology of the
partial flag variety [8].

4 The Vertex Operators

We summarize a construction of the type I vertex operator ®(u) and its shifted inverse ®*(u).
These vertex operators are used to realize the affine quiver W algebra and to calculate instanton
partition functions.
4.1 The type I vertex operator
The type I vertex operator is the intertwining operator
D(u) : .7:(,11;5,er1) — féo’l)éfél’]v)

satisfying

A(z)®(u) = O(u)x Vo € Uy p. (4.1)

We define the components of ®(u) by

)= Y N Ee(wE) Ve e FLIHY. (4.2)
Aep+

Lemma 4.1. The intertwining relation (4.1) reads

At ((t/9)*2) = (a/t) /2By (u/ 2z p)yt (1)) *2) @ (u), (4.3)
@5 (u)y((t/q)"V42) = (a/t) 2By (2/wsp)y ™ ((t/q) " 42) x(w), (4.4)
Oy (uw)at ((t/q) 1 2) = a T ((t/q) "/ 2)Dx(u)
£(N)+1
+af (L) T () 7V 2) Y a () Ay (0)0(g i/ 2) @Ay, (w),  (4.5)
i=1
Oy (u)z((t/q)12) = (¢/t)2BY (w2 p)a™ ((t/q)/42) @ (u)
L(N)+1
+q L) (/02 Y at ()AL (0)0(ui/2) Pata, (u). (4.6)

i=1



By using the representations in Theorem 3.2 and 3.5, one can solve these relations, and

obtain the following result.

Theorem 4.2.
"YINy(p)t* (A, u, v, N) ~

Dp(u) = o Dp(u),
~ ) i . .
Dy (u) =: Py(u) H H%f((t/q)l/‘lqultfﬁlu) 5
i=1 j=1
Dy(u) = exp { > ;a'_m«t/q)l/?u)m} exp { > ;a:n«t/q)”?u)fn}
m>0 """ m>0"""
where () = u= 12N (t/q) NG (2) on FY and
a0 =SG-1x, ) =Y -N =3 % @.7)
i>1 i>1 i>1
(N u, v, N) = (¢ o) P (=) NP £y (g, ), (4.8)
falg.t) = (_1)IAIqn(A’)+\A|/2fn(>\>*l)\l/2_ (4.9)

The factor t*(\, u,v, N) was introduced in [1]. We also need new factors N, (p) and N (p)
characterized by N,(0) =1 = N;(0) and

oN)+1

N)\(p) _ 1:[ (pu]/tul,p) (ptuj/qu27 o H pquz/u]7 H puz/“j:
N)Hrl,(p) J=1 (pu]/quzyp)oo(puj/uu S ptuz/u]7 j=itl pquz/tu]vp)
(4.10)
/ i—1 LX)
Nip) 11 (pui/uj; p)oo(Pqui/u;; p)oo (puj /tui; p)oo H " (ptuy /quis p)so
Nypa,(p) 2 (paui/tugs p)oo(ptui/ugi oo (20, (Puj/quisplec 27, (Puj/uis p)oo
(4.11)
In later sections the following formula is useful.
Proposition 4.3.
o 11— / 1/2, \—m
Oy(u) =exp [ Y Exm0im ((t/q)"/"u) 5 (4.12)
Km
m#0
where we set
e

5)\,m = 1_m + Z(qim/\j — 1)tm(J71) (m S Z#O)
A =

35
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4.2 The shifted inverse ®*(u) of ®(u)

Let us consider the linear map

o (u) : FOVEFLN o pUNHD, (4.13)
whose components are defined by
O (u) (IN),®16) = PR(w)E),  VIE) € F§HY, (4.14)
% (u) = qn(X)N“p)ti,A’ 0w N) s (4.15)
A

Proposition 4.4. The vertex operator ®3(u) satisfies the following relations.

ST/ )V A B (u) = (t/q) 2B (07 /2 p) By (W)t (t/q)42), (4.16)
G ((t)a) M) D3 (w) = (/q) 2By (p2/u; p) @3 (w)y ™ ((t/q) "/ 42), (4.17)
at((t/q) 7 2) @4 (u) = 3 (w)at ((t/q) 7 2)
I(A)+1
+H(t/q) M2t (p Z AT ()3 (™ tui/q2) @3, (W ((E/9) gz /t), (4.18)

77_((t/q)1/4/2)‘1’x(“):(lf/q) 1/2B)\( Yu/zp) @ (W) ((t/9)*2)

+(t/q)a ZAM 171i/z)11>§,11(1t). (4.19)

These relations are quite similar to those derived from a naively expected intertwining rela-

tion given by

O (u)A(x) = 2D"(u) Vo € Uy p-
But they are not exactly the same. This discrepancy is probably due to a lack of understanding
the dual representation to Fﬁo’l). In this sense we have not yet found a representation theoretical
meaning of ®*(u).

~

5 Jordan quiver W-algebra W, ,-(I'(Ap))

One of the import feature of the elliptic quantum group is that it gives a realization of the
deformed W algebras and provides an algebraic structure i.e. a co-algebra structure, which
enables us to construct vertex operators as intertwining operators [9]. In this section, we realize
the deformed W algebra W, ,+ (I'(Ap)) associated with the Jordan quiver A [6] by using the level
(1, N) representation of Uy, given in §3.1 in the same way as Uy ,(g) realizes W, +(g) [7,9].



5.1 Screening currents

Let us set

L (/g™ _ (t/™?

Sp, = Sy =

O O R R (P (T

Then from (2.13) and (2.16), one obtains the following commutation relations

+ ot ! 1_pm m —m\ 5
[vasn] = _El _p*m(l —q )(1 -t )Om+n,07
o 11— p*fm B
(S Sy ] = —— (1= ¢™(1 =t ™)dmtno0-

m 1 — p*’"L
Moreover one can rewrite the elliptic currents 2% (2) in Theorem 3.2 as
w5 (t/9)12) = (/)P uf/N ) rexp { £ D s
m#0
Hence one of z%((t/q)*/*z) coincides with the screening currents of Wp,p*(l"(go)) [6]* with the
SU(4) Q-deformation parameters p,p*, ¢, t [12] satisfying

p/p* =1t/q.

5.2 Generating function

To obtain the generating function of W), (1“(110))7 we apply the same scheme as used in [7].
Namely we compose the vertex operators ®(u) and ®*(u) constructed in § 4 as follows.
T(w) = (o)=Y B : FL" - FOI.
AeP+
Note that v € C* and N € Z can be chosen arbitrarily. In the summand, taking the normal
ordering one obtains

B (w)Px(u) = Ca(g,t,p) : DrA(w)D3(u) : .

The operator part turns out to be given by

R (W) = [T Yw/d) [ Y(a/t)u/d™ (5.1)

OecA(N) HMcR())

'In [6] only one type of screening current is given. However it is natural for the (deformed) W algebras that

there are two types of screening currents. In this sense our realization completes the construction.
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with

Y (u) =: exp Z Ymu i (5.2)
m#0

. . 1 . m
Here we set ¢0 = ¢/ l¢7F! for O = (4,5) € A etc., and y,, = L (t/q)_m/Zo/m. The
symbols R(\) and A()\) denote the set of removable and addable boxes in the Young diagram

A, respectively. The combinatorial structure of (5.1) is due to Proposition 4.3, which yields
. 1—tm)(1 — pm B
L@ ()@ (u) =texp [ Y (1‘1#8/\#”04,,‘((15/@1/2@ m (5.3)
m#0 m

and the following formula.
Proposition 5.1.

1 mlU] m mll
Exm = 1—m Z q" = (t/q) Z q (5.4)

OeA(N) BeR(N)

Moreover from (2.16) with v = (t/q)'/?, one finds the following commutation relation.

1TA-pmM-p™)
m (1—g¢m)(1—t"m)

[y’rm yn] = - 5m+n,0~

This agrees with the one in [6].
The coefficient part in ®3(u)®)(u) can be calculated by combining the normalization factors
of the vertex operators and the OPE coefficient. The calculation of the latter coefficient is

essentially due to the following formula.

Proposition 5.2.

1—¢m

_1_—qmg)\,7m5u,m
tm —m(a —m

= —(1 — m)(l — tm) 4 Z qma)\(D)t'rn(ZM(D)-FI) + Z q ( u<.)+1)t ZA(I). (55)
q Oep Hc)

Then one finds

Crlg,t,p) = CqM 2 (1,7 . p),



where

a=p""p" 1 t/9)" 2, (5.6)

_ o a@)H100) (1 o —a(D)p—0(0)—1

Aoy —1 17 1—Pg )1 = pg— e )
Z)\ (t7 q 7]7) - Dl_Ie)\ (1 _ q“(D)“te(D))(l _ qia(D)tig(D)il) ’ (57)

(p':0,t,p)o0

C=-_ D7/ 5.8
(44,1, P)oo (5.8)

Note that the sum >, = Zfo (t,q 1, p) coincides with the equivariant x,-genus of the Hilbert
scheme of n points on C2, Hilb, (C?) with y = p. The space Hilb, (C2) is isomorphic to the
moduli space of the rank 1 instantons with charge n.

Note also that one can rewrite (5.7) as

Aoy — Nax(pg/t)
2o, g p) = 2222 5.9
\ta ) Nox(a/0) (5.9)
in terms of the 5d analogue of the Nekrasov function given by
Nyu(z) = H(1 — a;q*au(r‘)*lt*lx(r‘)) H (1— :[:qa’\(-)t[“'<.)+1). (5.10)

Oex Hcy
Hence the whole operator
Tw) = ¢> aMziottgp): [[ Y/ [[ Ya/bu/d™™:  (5.11)
A OeA(N) BeR(N)

agrees with the generating function of W), (I'(Ag)) in [6] up to an over all constant factor.

5.3 The higher rank extension

To extend W p+ (F(gg)) to the one associated with the higher rank instantons, one needs to take
a composition of T'(u)’s. By using (5.3) and Propositions 5.1 and 5.2, one obtains the following

expression.

= k it N,\(z)/\u) (pqui,j /t)
T(uy) - T(up) = CMZQM Z Ny o (quis /)
F=0 A aO) dg=1 1 AOND (GG /T

5 1IN =k

M
<[] I Y/ [ YUa/w/d™™": (512)

I=10eA(\D) WcR(AD)
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where we set u;; = uj/u;, and

ar = qp~ MY = pIpMEN (/)12 (5.13)
_ M _
Cor — ((p 1t§Q7t7p)oo) I (P t1055 ¢, )oo (PGU535 95 oo (5.14)
' (¢, P)oo reiciens (15505 D)oo (quis 4, Voo
In fact, the sum
M
W) =Y [ ot/ (5.15)

AL . A(M) =1 N)\(I))\(]) (quzvj/t)

5, A0 =k
coincides with the equivariant x, (y = p) genus of the moduli space of rank M instantons with
charge k.

Note that T'(u) gives a non-commutative 5d-analogue of Nekrasov’s gg-character of the N =
2* U(1) theory [6]. We expect that T'(uy)---T(ups) gives a non-commutative 5d-analogue of
Nekrasov’s gg-character of the N' = 2* U (M) theory.

6 Instanton calculus in the Jordan quiver gauge theories

By using the generating function 7'(u) of W, ,» (I‘(ﬁo)), one can derive various instanton partition

functions of the 5d and 6d lifts of the 4d N' = 2* SUSY gauge theories.

6.1 The 5d and 6d lifts of the /' = 2* U(1) theory

From (5.11) it is immediate to obtain the rank 1 instanton partition function of the 5d lift of

the 4d N = 2* theory [4] by taking the vacuum expectation value :
OIT@)0) = > a2t ¢, p). (6.1)
A

For further calculation, it is important to recognize that 7'(u) can be identified with a basic
refined topological vertex depicted in Fig.6.1, which was introduced in [4,5]. This is due to the
result (6.1) and our realization T'(u) = >, ®}(u)®x(u). Then one can apply T'(u) to various
instanton calculus.

An immediate application is to take a trace of T'(u). Let d be the degree counting operator

satisfying

[d,al,] = mal, m € L.



F(I,N+1)

—uv

}-(1,N+1)

—uv

Figure 6.1: Graphical expression of 3, ®}(u)®(u). The two horizontal lines with || are glued
together.

Then the following trace yields the 6d version of the partition function of the rank 1 instantions.
trfg;zﬁu@d T(u)=Cq Y aMNz{°(t.q ', pQ), (6.2)
A

where

1 (00,6 p)e0 (071Q5 6,1, Q)os(pqQi ¢, 1, Q) oo
i, N\ (pa/t; Q)
zZM0 g7 p Q) = S N2 6.4
Lt a Q) N0 (a/6:Q) (6.4)

Co=

Here N)\ou(z; Q) denotes the theta function analogue of the Nekrasov function given by

N)\eu(;g; Q) = H QQ(wqfau(D)*lt*ZA(D)) H QQ(wqu(.)teu(.)+1). (65)
Oex IS

In fact the sum ZM/\IZH Zfo(t, ¢ %, p; Q) gives the equivariant elliptic genus of Hilb,, (C?).
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6.2 The 5d and 6d lifts of the ' = 2* U(M) theory

The higher rank instanton partition functions can be obtained from the composition 7"(u1) - - - 1'(ups)
in (5.12). The vacuum expectation value gives the instanton partition function of the 5d lift of

the 4d N' = 2* U(M) theory.

(OIT (u1) -+~ T(urn)|0) = Car_ s Xp(Mi,r), (6.6)
k=0

where xp, (9 ar) is given by (5.15).

Furthermore taking the trace of (5.12), one obtains

o0
tr}.(1,N+1)Qd T(ul) .. ~T(’LLM) = CQyM Z q?w Spr(Emk_,ML (6.7)
Zuqvy =
where ujv1 = ugve = - -+ = upsvp with arbitrary vy, .-+, vy € C*. We here also set

M 0
Nyoam (Pauij/t: Q)
EpoMpar) = Z H /\é IAG) . ’
A A(M) §j=1 N)\(,)/\(]>(qu,;’j/t; Q)

;5 A =k

_ M _
1 ((t; q,t)ocT3(p 't me)) I Ds(ptuj i q,t, Q)T s(pqujsi; q.t, Q)
Q;Q)oo \ (P75 q.t)c'3(t; 4,1, Q) La(tuji; q,t, @)3(quyi; g, t, Q)

(6.9)

(6.8)

Canr =7
1<i<j<M

The sum &, (M as) gives the equivariant elliptic genus of the moduli space of rank M in-
stantons with charge k. Hence (6.7) gives the instanton partition function of the 6d lift of the
N =2* U(M) theory.
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