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Geometric R matrices and discrete integrable systems: a study
for deriving differential equations

Taichiro Takagi
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National Defense Academy

Abstract

We present two types of systems of differential equations that can be derived
from a set of discrete integrable systems which is associated with the geometric R
matrices. One is a kind of extended Lotka-Volterra systems, and the other seems
to be generally new but reduces to a previously known system in a special case.
Both equations are related to Lax equations associated with the loop elementary
symmetric functions.

It is a related work done after the talk at RIMS on 19 October 2021, and based
on the preprint (arXiv:2203:12325). Interested readers can read the preprint for
details and references.

1 Introduction

In a recent paper [1], the author and T. Yoshikawa constructed a new class of discrete
integrable systems that can be viewed as a geometric lifting of a class of integrable
cellular automata known as the periodic box-ball systems. Since they are related to
a realization of type A,,_1 geometric crystals and geometric R-matrices, we called the
new integrable systems closed geometric crystal chains.

The purpose of this note is to give an outlook for extending the study given in
§2.3.2 of reference [1], which derives a differential equation for n = 2 in such a way
that respects the integrability of the systems, to that for the case of general n. We
present two types of systems of differential equations that can be derived from the
closed geometric crystal chains. One is equation (1), which is a kind of extended
Lotka-Volterra systems. The other is equation (15) with a function egi)l in (3), which
seems to be generally new but reduces to a previously known system by equation
(25) in a special case. An important point here is that both equations are related to
Lax equations associated with the loop elementary symmetric functions. In this note
we restrict ourselves to the former case with n = 4 for an explicit derivation of the
differential equation.



2 Type I differential equations

2.1 Definitions and the first main result

Let L,n be a pair of coprime integers. Then there is a unique integer 0 < p < n such
that the condition Lp = 1( mod n) is satisfied. Let ¢ € R be the time variable and
uga) be a set of dependent variables labeled by («,i) € (Z/nZ) x (Z/LZ). Suppose
that the system of differential equations

du(a) " min(Lp—1,L(n—p)) (k) _ (i)

i +

S R (D SRS S
j=1

is satisfied by them. This is a kmd of the extended Lotka-Volterra systems.
For the set of variables u ) and an integer m, let e\’ (ov € Z/nZ) be the m-th loop
elementary symmetric functzons defined by

TR o
1<j1<je < <jm<L
and e =LY =0m<0 or m> L). In particular, we have ega) = ui“) +
éa 1) -+ u(La_LH), e(La) = uﬁ“)ug‘*) . .u(La), and
L /i-1 L
a e a—1
e(L)lz<Hu§) H ué )). (3)
i=1 \j=1 k=i+1
Let A be an indeterminate and £ be the n x n matrix defined by
L= ('Cij)lgi,jgrn Z eJ(l)H-L 'rnn ’ (4)
m>0

which we call a Laz matriz. Let y(®) = Z?;é I (p/n) " el and Y be the
n X n matrix
y A
1 y®@

V= 1 . (5)

1 y™

Through the variables uga)7 the elements of these matrices are functions of the time
variable .

Theorem 1 Suppose that the variables u( ) are satisfying the system of differential
equations (1). Then the Lax matriz satisfies the equation
dc

=L (6)
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This result implies that conserved quantities of the dynamical system represented
by equation (1) can be given by the coeflicients of the characteristic polynomial of the
Lax matrix £, or equivalently by Tr L™/m (m = 1,...,n).

2.2 Proof of Theorem 1
We define
u =, u™), U=, U, .. up), (7)

and oU = (Us,..., Uy, W), where o denotes the cyclic shift to the left. For the
above defined y(®), we write its dependence on the variable U as y(a)(U ), and define
yi(a> =y (") for any i € Z/L7Z. Let J;, M; denote the n x n matrices defined by

y A uy A
1y 1wl
Vi = 1 - LM, = 1 - )
1 yfn) 1 uf;")

Using the identities £L = M;--- My and ) = ), one sees that the assertion of
Theorem 1 follows from:

Proposition 2 The system of differential equations (1) is equivalent to

dM;
dt

= MViy — ViM,. 9)

Proof. Equation (9) is equivalent to the equations

T (10)
duga) o « o
a ul )(?J§+)1 —y). (11)

Thus the assertion of the proposition is a consequence of the following two lemmas. [J
Lemma 3 The relation (10) holds for any («, i) € (Z/nZ) x (Z/LZ).

Lemma 4 The following relation holds:

min(Lp—1,L(n—p))

A D DR ST § (12)

J=1



Remark 5 Let the loop elementary symmetric functions e(a) be denoted by e(a)(
showing their dependence on the variable U. Suppose p = 1 or the condition L
mod n) is satisfied. Then the set of differential equations (1) is written as

duz(a> a Q) i Q) i
L (e<1 (o'U) — (o 1U)) . (13)

In particular, consider the case of n = 2. By the reason that can be shown easily,
we can set u< )u@) = 1. So if we define u; = uz(»l), then uEQ) = 1/u;. In this case
one has e} (0"1U) = 32700 (i) ™ = wi + 70 (Vuiny) TV and e (0'U) =
Z];/;()l(qli+j+1)(7l)] = Z]L:l(uiﬂ')(fl)]il = u; + 25;11@”]_)(,1)]71’ because L is odd.
Therefore equation (13) is written as

C:: = ui:(l)jl (Uz‘+j - ) : (14)

U) for
=1

Uit

This is the system of differential equations that we obtained in §2.3.2 of reference [1].

3 Type II differential equations

3.1 Definitions and the second main result

As in §2.1, let ¢t € R be the time variable and uz(-a) be a set of dependent variables
labeled by (a,4) € (Z/nZ) x (Z/LZ), but now the integers L and n are not necessarily
coprime. Suppose that the system of differential equations

()
S (T T = s T T ) o
-1

-1 I=1 k=i+1 k=i+1

is satisfied by them.
It is easy to see that e( ) is a conserved quantity for any «. Recall that the Lax
matrix £ was defined by equation (4), and let Z be the n X n matrix

0 ~(2)
0o 203

)
2D/ 0

where 2(® = 1/e{®),

()

Theorem 6 Suppose that the variables v, are satisfying the system of differential

equations (15), and that the condition e( of _ = 1 s satisfied for any . Then the Lax
matriz L satisfies the equation

dL

= =2l (17)
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By Theorems 1 and 6, we see that the dynamical systems represented by equations
(1) and (15) share a common Lax matrix defined by (4) in some cases. As a result,
they share a common set of conserved quantities in such cases.

3.2 Proof of Theorem 6

For the above defined z(*), we write its dependence on the variable U in (7) as 2(®(U),
and define 2* = 2 (0" U) for any i € Z/LZ. Let M; be the matrix in (8) and
define the matrix Z; as

0 Fe)

e
zi(l)/)\ 0

Proposition 7 The system of differential equations (15) with the condition e( @) = 1
s equivalent to
dM;
dt

This together with the relations £ = M --- M and Z = Z; yields the assertion of
Theorem 6.
Proof. The differential equation (19) is equivalent to

= Mz'ZiJrl — ZZMZ (19)

u® V20 = u® 2, (20)
duia) « a+1
T f+)1 P (21)

Thus the assertion of the proposition is a consequence of the following two lemmas. [

Lemma 8 If e(La) does not depend on «, then the relation (20) or equivalently the
following relation holds:

(a)

e (0'U) <= p] = e (o"'0). (22)

Lemma 9 Suppose e(La

l(jwr)l (a+1) l ( = Hu(a) H ](goé_l) <La+11) H (a41) H u(a)) ) )

-1 I=1 k=i+1 k=i+1

) =1 for any a. Then




Remark 10 There is a simple expression for the system of differential equations (15)
that can be compared with equation (13) in the type I case. In fact, we see that equation
(15) is written as
a1 1
e (i) e (o)

(24)

In particular, consider the case of L = 2. If we define ul® = uga), then we have

u = 1/u(® because we set ¢\ = 1. Therefore one has

du(® u(@ u(@)

At u@yl-D 11 ylyle+) £ 1° (25)

This is a previously known differential equation, whose discretization was referred to
as a lattice KdV equation.

4 Connection to the closed geometric crystal chains:
A case study for n =4

4.1 A review of the closed geometric crystal chains

We briefly review on the closed geometric crystal chains for the totally one-row tableaux
case ([1], §3. 1). We introduce the set Y; = (R-o)" ' xR.g. Let (x, s) denote an element
of Y; with x = (2,..., 2" Y) and let 2 := s/(z" ... 2= Y). Furthermore, we
define ) for arbitrary i € Z to be a variable determined from x by the relation
2@ = g+ In what follows, we set n = 4. Given (x,5) € (Rs)? x Ryg, we define
the matrices ¢* and g by

20 1) N w® @0
W@ @ 1)@ \ @
vie v | 2Wa WMy T
gEsN=1 " 0 2021 23040 \ o (20)
] ) @0 32,6,

zM 0 0 A

g(x,5A) = (27)

0 0 1 z¥

Actually, any element of the matrix ¢*(x, s; A) is so defined as to be an order 3 minor
of the matrix g(x, s; A). For instance, the top-left element of the former is equal to the
determinant of the top-left 3 x 3 submatrix of the latter.

By Theorem 16 of [1], we see that for any s,/ € Ry and (by,...,bz) € (Rsg)*%,
there is a unique positive real solution (v, b, ..., b}) € (Rso)** Y to the equation

g(bi,s;A) - g(br, ;N g(v,[;\) = g(v,[; A)g(b}, 53 ) - - - g(b, 5, A). (28)
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For any |b) = (by,...,byz), let £(|b); A) be the matrix
L(|b); A) = g(by,s:A) -~ g(bz,s17), (29)
which is called a Lax matrix, and let l\/ll(l)(\b>) be the matrix

MD(Ib)) = g*(by, 5:1) -+ g" (g, 5:1), (30)

which we call the monodromy matrix of the Lax matrix £(|b); \) with A = . Note
that every matrix element of Ml(l)(|b>) is an order 3 minor of £(|b);1).

Let E be the largest eigenvalue in absolute value of matrix M§1>(|b>), and P =
(P1,Pa, P3,1)" be an eigenvector corresponding to E. By the Perron-Frobenius theo-
rem, F is real positive, P is uniquely determined, and Py, Ps, Ps are all positive. Then,
the solution v € (R¢)? of equation (28) is given by v = (P, Py/Ps, P1/P2) (Proposi-
tion 15 of [1]). This unique solution v allows us to define 7" : (Rug): — (Rsg)3" to
be the map given by

TV (by,...,br) = (b,...,b), (31)
which is called a time evolution. Due to equation (28), this time evolution (31) is
described by a discrete time analogue of the Lax equation

LTObY; ) = g(v, 1, A) " L(b): N g(v, 15 ). (32)

In what follows, we are going to show that this equation reduces to the continuous time
Lax equation (6) in the limit I — oo by making several reasonable assumptions.

4.2 Limit for the type I Lax equation

We assume L = 1( mod 4), and set L = 4k + 1. Recall that |b) = (by,...,b.) and
b, = (b§1)7b§2),b§3)). By the reason explained above Proposition 2, the Lax matrix
(29) can be identified with the matrix £ defined by (4), in which the loop elementary
symmetric functions are defined by (2) but with the substitution uﬁo‘) = bﬁ‘”. Using
the explicit expression (4) and the condition L = 4x+ 1, we can obtain the asymptotic

form of the Lax matrix £(|b);) under the limit [ — co as

egl)ln eél) IF e(ngn er»l

I® 652)1'6 €<22>l'€ 62(32)”
[,(|b>,l)% eég)l,‘{—l & €§3>ZK €§3)ln : (33)

624)15-’71 6:(;1) lh‘,fl & 654)114‘,

We assume that the eigenvalues 7, (¢ € Z/47) of the Lax matrix £(|b); ) for sufficiently
large ’s are given by the Puiseux series expansion

e Z Cm exp< ‘/_mq> i, (34)

m=—1



where c_; = land ¢g = (30, (a)) /4. This assumption is consistent with the relations

(s — ) = det £(|b);1 an L O(1'),

4

O e™)ir + o) = Tr L(|b); 1 an = 4l%coy + O(I" Y,

a=1 q=1
where O denotes Landau’s symbol, and we used the identity det g(b;, s;1) = s — 1 for
1 < ¢ < L and the asymptotic form (33) Then, the asymptotic form of the largest
eigenvalue of the monodromy matrix M (\b)) is given by

B = mngny = BT 4 ool 4 (35)

In view of (33), we see that the asymptotic form of the monodromy matrix Ml(l)(|b>)
under the limit [ — oo is given by

O(l“) [3r+1 e§3)l3n’+1 O(l3n+1)
O(l?m) O(l%) [3rt1 652)l3n+1
egl)l?’” O(lg'g) O(Z3K) [3r+1

* * * *

M{"(|b)) ~ : (36)

where the last row is omitted because we do not need it. Let M;; denote the ij element

of Ml(1>(|b>). Then, the eigenvector P = (P1, Pa, P3, 1) corresponding to the eigenvalue
E' is determined by the linear equation

Mii—FE My M3 P1 Mis
Moy Moy — E Mas Po| =— My |. (37)
M3y M3 Mss —E/ \Ps My

Let [ = 1/6*. By expressing the solution of this equation by the Cramer formula and
then substituting the asymptotic forms (35) and (36) into it, we obtain the expressions

1
7’1:53+( eV el 1 el - 30)52+0< ),

1 1
7)_52"‘((1)4'6(2) 0)5‘*‘0(1)7

Py =1+( Y =)+ 0(9).

Therefore, the asymptotic form of the matrix g(v,l;\) with v = (P3, Py/Ps, P1/P2)
and [ = 1/6% is expressed as

Ps A
]. 7)2/7)3
]. P]/P2
1 1/(6*Py)

§-g(v,1/6%\) =6 - =H4+5-y+0(52)7 (38)
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where Y is a matrix of the form (5) with n =4,p = 1.

Now, recall the discrete time Lax equation (32), and let £(|b); ) and LI(TZ(U|b>; A)
be denoted by L(t) and L(t + 0), respectively. Then by using the expression (38), we
obtain the continuous time Lax equation (6) in the limit § — 0.

4.3 Limit for the type I differential equation

The discussions for deriving the Lax equations in the previous subsection can be gen-
eralized to for derivations of equations (1). Consider the following matrix equation

g(b,s;N)g(a,l;\) = g(&’,1; \)g(b', 55 \). (39)

For any s,l € Ry and (a,b) € (R5()°, there is a unique solution (a’,b’) € (Rs()°
to this matrix equation. Let R®D : (Ry()® — (Rso)® be a rational map given by
R®D . (b,a) — (a’,b'). This is the geometric R-matrix in the present case. An
explicit expression for the rational map is written as

1 a@a@al® 4 a@a®p0 4+ @pOHD 4 HODHD

(1) _

T @60 1 aWa@p@ 1 aWp®p@ 1 p@pB @
@ aPaWa + a®a@Wh@ 1 g@pH) 1 ppVH
@ T ®Da®a® 1 a@a®p0 + a@p@p0 + p®p@p0
@ e PaWa® 4 aWaWpE) 1 g Dp@HE) 1 ppDH

a =a

a®a®a) 4+ @ a@pR) + ¢@pMpR2) + pBHHMHH2)’
and '@ = a@p® /a'® . Let the map R : (b,a) + (a’,b’) be depicted as
b
b

Then the solution of equation (28) must satisfy the diagram

b, b, br-1 by
V~|—V2+V3+ ...... ~|—VL—1 VL~|—V c (R>0)3,
by by b b (40)

where v;’s are defined by the downward recursion relation R (b;,v;y1) = (vi, b!)
with the initial condition vy, 1 = v. As in §2.2 let o denote the cyclic shift to the left,
so we have o|b) = (by,..., by, by). It is easy to see that an obvious generalization of
equation (32) is

LI (01 b)); ) = g(vi, ;A L (0" [b); Ng(vi, 13 A). (41)

This equation implies that v; can also be obtained in the same way as for v in §4.1,
by simply replacing M{"(|b)) by M{")(¢~!|b)). Based on this fact, one can generalize
equation (38) as

5 g(vi1/50) =L+ 8-+ O (%), (42)



where ); is a matrix of the form (8) with n =4,p = 1.
We consider type I case, where [ = 1/6*. As a vertex in the diagram (40) we have
the relation

g}, s30) = (6 g(vi, ;X)) g(bi, 5 M) (6 - g(vigr, [ ).
Then by setting
M;(t+0) = g(bl, s; \), M;(t) = g(bi, 55 M),

and using (42), we can derive equation (9) in the limit § — 0. Therefore, equation (1)
for p = 1 is derived from the closed geometric crystal chains by the above discussions
and using Propositions 2.

5 Concluding remarks

We restricted ourselves to the case of type I, n = 4 for deriving the differential equa-
tions. Type II case for equations (15) and (17) can be treated similarly. It seems that
the above derivations can also be applied to the case of general n. It also seems that the
derivation is not restricted to the totally one-row tableaux case but can be generalized
to the rectangular tableaux cases [1]. We hope that we can report a result for such
cases in the near future.
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