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By viewing A and D type cluster algebras as triangulated surfaces, we find 
all cluster variables in terms of either (i) the frieze pattern (or bipartite belt) 

or (ii) the periodic quantities previously found for the cluster map associated 

with these frieze patterns. We show that these cluster variables form friezes 

which are precisely the ones found in [1] by applying the cluster character to 

the associated cluster category. 

This is a summary of the results of arXiv:2105.11682, as presented at a 

RIMS workshop in October 2021. 

1 Introduction 

The main results of [8] we wish to document here are that the cluster variables ofふ，p

type are given by the union of three sets 

{xnlnEZ}U｛Dl(Jjp) I~:~: ：： □~} u{ぴ（ふ） J l : ：： :：□ ：｝ 
each of which forms a frieze living on a cylinder. The Xn satisfy the recurrence 

Xn+p+qXn = Xn+pXn+q + 1 

which has periodic quantities [6, 5] 

Jn = 
Xn+2p + Xn 

Xn+p 

7 Xn+2q + Xn 
Jn = 

Xn+q 
(1) 

with period q and p respectively. The D1 (Jjp) and D1（ふ） aredeterminant functions of 

the Jn and ln, respectively. 
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We also have that the恥 clusteralgebras have cluster variables 

｛況二 'N+l}u{Di（Jj)I~:~: ：: □: } U rexcept 

where the X~ satisfy a system of N + l recurrences with a periodic quantity J~ and 
the Di (Jj) are determinant functions of the J~. The first set forms a frieze of the form 

iJN x Z, the second forming a frieze on a cylinder and the third set is a set of three 

exceptional cluster variables. 

uiver mutation and cluster mutation 2 Q ・

Let Q be a quiver without loops or 2 cycles. Quiver mutation (Fomin-Zelevinsky, [4]) at 

a vertex k, written μk, is defined as follows: 

(i) For each length 2 path i→ K →j add a new arrow i→j. 

(ii) Reverse each arrow touching vertex k. 

(iii) Delete all 2 cycles that have appeared. 

Example 2.1. We mutate at vertex 3 of the following quiver on the left. The first step 

gives the right quiver 

1口／ 2

1 ~ 2 

~3/ 
and the second and third steps give the following left and right quivers, respectively. 

1 ~ 2 1)  2 

¥3/ ¥3/ 
We consider叩 (theinitial cluster variables) to be attached at each vertex i. Mutation 

at k will fix all variables叩 withi -/-k but Xk becomes x~, a new cluster variable at k, 
defined by 

咋＝：（且巧＋圧）
Example 2.2. In our example above we mutated the following quiver at vertex 3, re-

sulting in the new cluster variable x如

192 1 
唸＝ー(x1＋碕）

X3 
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3 Dynami namical systems from cluster mutation 

We do not give the general definition of how we can obtain a dynamical system from 

any acyclic quiver. Instead we work with an example: an orientation of an affine A type 

quiver, A3,1 
尤1

/ ＼ 
X4 X2 

¥／  
X3 

named since it has 3 clockwise arrows and 1 anticlockwise. Performing μ1 gives a new 

cluster variable, let's call it x5, defined by 

窃お1=四四＋ 1.

皿 da new quiver: 
X5 

// ＼ 
X4 X2 

¥／  
X3 

Now四 givesa new cluster variable, let's call it x6, defined by 

X6四 ＝ 店X3+ 1. 

We can see that this formula is the same as the previous one, except the subscripts 

have increased by 1. We continue to mutate clockwise around the quiver, we define the 

resulting cluster variables as a sequence (xn)-since the mutation formula is the same 

each time we find the recurrence 

Xn+4Xn = Xn+3Xn+l + l 

satisfied by the cluster variables Xn-More generally Aq,p quivers are A diagrams with 

q arrows pointing clockwise and p arrows pointing anticlockwise. As for A3,1 they give 

the recurrences [6, 5] 
Xn+p+q咋＝ ％＋qXn+p + l. (2) 
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4 Friezes 

Friezes were defined by Coxeter [2], they were originally arrangements of integers in the 

plane like 

1 1 4 
2 3 15 

5 5 11 
12 18 8 

7 43 13 

a 

satisfying (31 -a<5 = l for each diaII1ond f3 'Y and bounded above and below by a 

8 

row of ones and then a row of zeroes. Due to (2) we have frieze diamonds 

Xn+p 

Xn Xn+p+q 

Xn+q 

for all n E Z. We can join many of these diamonds to form a frieze 

X-2q Xp-q X2p 

X -q Xp 

X-q-p x。 Xp+q (3) 

X-p Xq 

X-2p Xq-p X2q 

where we have set n = 0 for readability, as this picture is fixed by shifts in n. We note 

that starting at Xn and moving q steps north-east increases the subscript by q times p, 

so we land at Xn+pq・ Conversely if we start at Xn and move p steps south-east we will 

also arrive at Xn+pq・ By identifying the duplicate values that appear on (3) we obtain a 

frieze on a cylinder. 

5 Dynamical systems (again) 

In order to study the recurrences (2) more we use the following determinant theorem. 

Theorem 5.1 (Desanot-Jacobi). Let M be an n x n matrix. Then 

IMI= 
INWIISEI-INEIISWI 

|C| 
(4) 
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where, for example, NW  denotes the connected (n -l) x (n -l) matrix in the upper left 

(no叫h-west)。1M and C is the (n -2) x (n -2) matrix in the centre of M. 

Looking again at (2) we see that the following determinant is zero 

Xn Xn+p Xn+2p 

Xn+q Xn+p+q Xn+2p+q 

Xn+2q Xn+p+2q Xn+2p+2q 

=0 

because each of NW, SE, NE and SW are of the form 

Xn Xn十p
=1 

Xn+q Xn+p+q 

up to a shift in n. Taking a kernel vector we have (after scaling) 
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Here 

Jn = 
Xn+2p + Xn 

Xn+p 

is period q. The kernel vector on the other side gives period p 

(5) 

Jn = 
7 Xn+2q + Xn 

Xn+q 

These immediately give linear relations between the cluster variables xn: 

Xn+2p -JnXn+p + Xn = 0, Xn+2q -J砂 n+q+ Xn = 0 

with periodic coefficients. In [5] these are exploited to give the constant coefficient linear 

relation 

Xn+2pq -Kxn+pq + Xn = 0 

At this point we can pause to ask two questions. We took a specific sequence of mutations 

to generate !he cluster variables Xn. What variables lie outside of this sequence? Are 

the Jn and Jn cluster variables? This is the starting point for the preprint [8] that this 

summary is based on. To answer these questions we utilize a different point of view. 

6 Triangulated surfaces and cluster algebras 

Following [3] we consider triangulations of surfaces with marked points on boundary 

components. Each triangulation gives rise to a quiver as follows: 

(i) Attach a vertex to every (non-boundary) arc. 
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(ii) For every pair of vertices i and j that are part of the same triangle we draw an 

arrow i f-t j if, while travelling clockwise around the triangle, j comes directly after 

i. If no arcs lie on a boundary then the situation looks as follows: 

） 

＼ ／ 

Example 6.1. For the following triangulation of_ an annulus with 3 and l marked 

point(s}。neach bounda可 component,we find the A3,1 quiver. 

\\—-1[□4一—¥;＼¥ 
(6) 

The annulus is given by glueing along the dotted lines, the two copies of "4" should be 

identified. 

We glue cluster variables Xi to each arc i and assign boundary arcs the value 1. In this 
picture the analogue of mutation μk is given by flips: 

匹↓/
 

L
d
/
 

パ―aプ
d k'b  

Lc-Y 
with a new cluster variable satisfying the Ptolemy relation 

Xk1Xk = Xa叩＋ X紅 d・ (7) 

If we can construct an initial quiver from a surface triangulation, then the arcs obtained 

by sequences of flips (this gives all possible arcs) are in bijection with the cluster variables 

obtained by sequences of mutations (all cluster variables in the cluster algebra). 

The above example giving theふ，1quiver can be generalised to an annulus with q and 

p marked points on either boundary, which gives Aq,p・ With this in mind, if we wish to 

solve our earlier questions forふ，Ptype quivers, we need to identify the Xn as arcs, and 
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see what ~ther arcs are possible. To avoid cumbersome diagrams we just demonstrate 
with the A3,1 quiver (6). The effect of μ1 is: 

＼ ＼ 
4¥＼[¥／＼¥ 

Next μ2 gives: 

＼ ＼ 
4¥：ーミ/-4¥-_

Finally we show the composition μ4μ3: 

｀＼  --------4二：：-口＼／こロ
We define this composition asμ:=μ研 3呻 1-As can be observed in these pictures the 

effect of μ on the initial quiver is: 

(i) Move the top of each arc one node to the left 

(ii) Move the bottom of each arc one node to the right 

Recall that the sequence of cluster variables Xn (2) is given by applying μn for n E.Z. In 
our annulus picture μn will give all arcs connecting the top boundary to the bottom, so 

these arcs correspond to the Xn-We should now ask which possible arcs are not obtained 

by μn, i.e the cluster variables that lie outside of the Xn-
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Of course, the remaining possibilities are the "curved" arcs connecting one boundary 

component to itself, for example these: 

ヘ・

If we return to our initial quiver (6) and instead mutate at 2 we obtain one of these 

curved arcs: 

＼八4 

and by the Ptolemy relation (7) this new arc is given by 

叫＋ X1

x2 

which is J1 (see (5)). The other Jn can be obtained similarly they are the arcs that 

connect the bottom boundary to itself and "jump" one marked point. Theぷlookthe 

same but on the top boundary (note that in ourふ，1example we have no curved arcs on 

the top boundary, as there aren't enough marked points). We label the bottom boundary 

such that these arcs, Jj for j = l, 2,..., q, look like 

Jj 

( 
j j+l j+2 

The remaining curved arcs are those that jump more that one marked point, which we 
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call Jい(startingat j and jumping l -l points): 

j+2 

We can calculate these in terms of the Jn by the following result. 

Lemma 6.2. The arcs JJ satisfy the recurrence relation 

J；一1＝ JJ+l-2J戸— Jj-3 (8) 

for l = 3, 4,..., q, with initial values JJ = 1 and J} = Jj. 

Proof. We apply the Ptolemy relation to the green quadrilateral with red diagonals J~ l-2 

皿 dJj+l-2 

JJ-1 

j j+lj+2 j+l-2 j+l-l j +l 

ロ

We also note a determinant formula for J~: l 
J 

Jj 1 

゜1 Jj+1 1 

゜゜
1 Jj+2 1 

JJ =げ（Jj)== I 

゜
1 Jj+3 

゜
゜ (9) 

1 

1 Jj+l-1 

since, by expanding along the last row, we obtain the same recurrence (8). 

As noted above every arc either conn_ects the two boundaries (one of Xn) or connects 
one boundary to itself (a D%り)orD⑰)） sowe how have a description of every cluster 

variable, as follows. 



141

Theorem 6.3. /8} The cluster variables for A.q,p cluster algebras are 

{xn In E Z} U{び(Jjp)I~:::::::: □~} u{び（ふ） J l : ：： ：：□ ：｝ 
where the determinants D1(Jjp) and D1（ふ） areas in (9). 

7 Friezes (again) 

We have seen previously that the cluster variables Xn form a frieze on a cylinder. What 

about the other cluster variables? We apply the Desanot-Jacobi identity (4) to the 

determinants (9) to see that 

D⑫ )Dl-2(JJ+1) ＝Dl-1（み）Dl-l(Jj+1)-1 

giving frieze diamonds of the form 

Dl-2(Jj+1) 
Dl-l（み） Dl-l(Jj+l) 

Dl（み）

which we can glue together to form the frieze 

1 1 1 

J1 み J3
炉 (Jo) D2（み）び（J2)

D刊Jo) D刊J1) D3(Jz) 

Dq-1(L1) Dq-1(Jo) Dq-1(J1) 

which is finite in the vertical direction and periodic in the horizontal, so again we can 

consider it as lying on a cylinder. 

8 Remarks 

The cluster frieze was defined by Assem-Dupont [1] and is a structure on the cluster 

category. For A type this structure agrees with the frieze structure we have found. There 
the injective modules correspond to Xn for n < 0, the projective modules correspond to 
Xn for n > N and the shifted projective modules Pi[l] correspond to xo,..., x N. The 

remainder, the regular modules, correspond to the D1(Jjp) andび(Jjq)-

For応 typeinstead of the single recurrence (2) we have a system of N + 1 recurrences 
in the cluster variables X~ where i runs over the vertices and n E Z. Nonetheless a 

periodic quantity J~ was obtained [7] for this system. The result given in [8] gives a 

similar structure for the cluster variables. 
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Theorem 8.1. The広 clusteralgebras have cluster variables 

｛況二'N+l}u{Di（打） J l :］： ::□: } U rexcept 

with the first set forming a frieze of the form恥 xZ, the second forming a frieze of the 

form (7) and the third set is a set of three exceptional cluster variables. 

The two friezes here again match the cluster frieze of [1]. 
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