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Abstract

Motivation: With the rapid increase of biomedical articles, large-scale automatic Medical Subject Headings
(MeSH) indexing has become increasingly important. FullMeSH, the only method for large-scale MeSH
indexing with full text, suffers from three major drawbacks: FullMeSH 1) uses Learning To Rank (LTR),
which is time-consuming, 2) can capture some pre-defined sections only in full text, and 3) ignores the
whole MEDLINE database.
Results: We propose a computationally lighter, full-text and deep learning based MeSH indexing method,
BERTMeSH, which is flexible for section organization in full text. BERTMeSH has two technologies: 1) the
state-of-the-art pre-trained deep contextual representation, BERT (Bidirectional Encoder Representations
from Transformers), which makes BERTMeSH capture deep semantics of full text. 2) a transfer learning
strategy for using both full text in PubMed Central (PMC) and title and abstract (only and no full text) in
MEDLINE, to take advantages of both. In our experiments, BERTMeSH was pre-trained with 3 million
MEDLINE citations and trained on approximately 1.5 million full text in PMC. BERTMeSH outperformed
various cutting edge baselines. For example, for 20K test articles of PMC, BERTMeSH achieved a Micro F-
measure of 69.2%, which was 6.3% higher than FullMeSH with the difference being statistically significant.
Also prediction of 20K test articles needed 5 minutes by BERTMeSH, while it took more than 10 hours by
FullMeSH, proving the computational efficiency of BERTMeSH.
Contact: zhusf@fudan.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online

1 Introduction
As a comprehensive controlled vocabulary, Medical Subject Headings
(MeSH) has been developed and maintained by the National Library of
Medicine (NLM) for indexing, cataloging and searching of biomedical
information (Sayers et al., 2020). As of 2020, there are 29,640 MeSH main

headings (MHs)1. One of the most important usages of MeSH is to index
the largest biomedical literature database, MEDLINE, which currently
covers more than 5,200 journals and 26 million citations (Sayers et al.,
2020). Currently each MEDLINE citation is annotated with 13 MHs on
average, which can be utilized in many applications in biomedical text
mining and information retrieval (Lu et al., 2009; Stokes et al., 2009;

1 https://www.nlm.nih.gov/databases/download/mesh.html
© The Author 2015. 1
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Gu et al., 2013; Huang et al., 2011; Zhu et al., 2009). Accurate MeSH
indexing is thus crucial for biomedical researchers, who are generating
new hypotheses and seeking to make new discoveries.

In 2019, 956,390 citations have been added into MEDLINE, which
is around 5% increase over 2018 (904,636)2. The vast majority of these
citations are manually indexed with MHs by human curators in NLM,
with an average annotation cost of $9.4 per citation (Mork et al., 2013). To
deal with the rapid growth of MEDLINE, NLM has developed a software
tool, Medical Text Indexer (MTI), to facilitate the MeSH indexing task
in automated and semi-automated modes (Aronson et al., 2004; Mork
et al., 2017). Currently around 5% of MEDLINE citations are annotated
automatically, where MTI provides MHs without human intervention3. On
the other hand, around 18% of MEDLINE citations are annotated semi-
automatically, where human curators review (and possibly revise) the MHs
recommended by MTI. Note that MTIs use only the title and abstract of
each citation to recommend MHs, while human curators in NLM check
the full text to finish the MeSH indexing task. Meanwhile, the number
of available full text in PubMed Central (PMC) reaches 5.9 million in
Jan 2020 4. With the rapid growth of full text biomedical articles, it is
an imperative task to develop an accurate and efficient automatic MeSH
indexing method for large-scale full text.

From a machine learning perspective, automatic MeSH indexing can
be deemed as a large-scale multi-label learning problem, where MHs
are labels, citations are instances, and each citation is associated with
multiple MHs (Liu et al., 2015). To advance the performance of automatic
MeSH indexing, many advanced machine learning methods have been
developed to address this challenging problem in the last few years,
such as MetaLabeler (Tsoumakas et al., 2013), MeSHNow (Mao and Lu,
2017), MeSHLabeler (Liu et al., 2015), DeepMeSH (Peng et al., 2016),
AttentionMeSH (Jin et al., 2018), MeSHProbeNet (Xun et al., 2019) and
FullMeSH (Dai et al., 2020). Different from all other methods using title
and abstract only, FullMeSH makes use of full text to extract different
sections, and utilizes Learning To Rank (LTR)(Li, 2011) to integrate the
evidence generated from each section to improve the performance of MeSH
indexing. However, FullMeSH suffers from three major drawbacks: 1)
the performance of FullMeSH drops significantly if pre-defined sections
are missed in the full text. This is because FullMeSH relies on pattern
matching to extract five standard sections: Title and Abstract, Introduction,
Methods and Materials, Result and Experiment, Conclusion and Summary.
Many biomedical articles however do not have all these five sections.
Additionally, pre-defined patterns can hardly deal with all kinds of
variations of section names. 2) FullMeSH relies on LTR to integrate
many different types of evidence generated from each section, which is
complicated, laborious and time consuming. 3) although FullMeSH uses
the full text of PMC open access data to train the model, FullMeSH cannot
take advantage of the whole MEDLINE database.

In this work, we propose a novel deep learning based method,
BERTMeSH, to improve the performance of large-scale MeSH indexing
with full text. The main contributions of BERTMeSH are as follows:

• To the best of our knowledge, BERTMeSH is the first end-to-end deep
learning based automatic MeSH indexing method for full text of large-
scale biomedical documents (>1M) and all 29k MHs. In contrast to
FullMeSH of LTR, BERTMeSH adopts a deep multi-label model with
attention mechanism to capture the most relevant part of text for each
label. In addition, we use Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) in BERTMeSH to encode
the input text. In general natural language processing (NLP), we can

2 https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
3 https://www.nlm.nih.gov/pubs/techbull/ja18/ja18_indexing_method.html
4 https://www.ncbi.nlm.nih.gov/pmc

find many successful applications of BERT, which can better capture
text context and semantics in NLP. As BERTMeSH is an end-to-end
deep model, it is more convenient for the developer to train, test, deploy
and maintain the model.

• Without relying on pattern matching to distinguish different sections,
BERTMeSH can robustly use the content of full text. Besides the title
and abstract, the top four longest sections of each full text biomedical
article are extracted as input in BERTMeSH. This avoids the missing
section problem, caused by pattern matching and heterogeneous nature
of different articles.

• In addition to utilizing full text in PMC, BERTMeSH can take
advantage of the whole MEDLINE to improve the performance of
large-scale MeSH indexing. The MEDLINE database is utilized in
two distinct ways: 1) the whole MEDLINE has been used as corpus
to train BERT model (BioBERT(Lee et al., 2020)), which can better
reflect the characteristics of biomedical articles, and is used to encode
text in BERTMeSH. 2) the network parameters in BERTMeSH are
pre-trained by millions of MEDLINE citations, which greatly boost
the performance.

• We conducted a thorough experiment for validating BERTMeSH
by using PMC Open Access Subset (>1.4M) with 20,000 test
articles. BERTMeSH achieved Micro F-measure of 69.2%, being
6.3% and 6.0% higher than those of the two start-of-the-art MeSH
indexing methods, FullMeSH (65.1, trained on whole PMC Open
Access Subset) and DeepMeSH (65.3, training on whole MEDLINE),
respectively. Furthermore, BERTMeSH improves around 8.3% in
Micro F-measure over FullMeSH for indexing full text articles with at
least one missing section.

2 Related Work

2.1 Large-scale MeSH indexing based on title and abstract

To the best of our knowledge, all state-of-the-art large MeSH indexing
methods, except FullMeSH, use title and abstract only. A classic method
for large-scale MeSH indexing is NLM-developed MTI (Aronson et al.,
2004; Mork et al., 2017) with two components: PubMed-Related citations
(PRC) and MetaMap Indexing (MMI). PRC is a modified k-nearest
neighbor (KNN) algorithm, to obtain the MHs of some most similar
citations; MMI uses MetaMap to extract biomedical concepts from title
and abstract, which are then mapped to MHs. These two sets of MHs
are combined, ranked and recommended to the NLM curators after some
post-processing, such as applying indexing rules.

Since 2013, many more advanced machine learning based methods
have been proposed to tackle the problem of large-scale MeSH indexing,
which is greatly facilitated by BioASQ challenges (2013-2019) that
provide a practical and realistic benchmark for performance comparison
(Tsatsaronis et al., 2015). Based on the machine learning techniques
used, these automatic methods can be divided into three categories. (i)
Binary relevance (BR); The best system in BioASQ 2013 developed by
Tsoumakas et al. (2013), MetaLabeler, belongs to this category, where a
linear SVM classifier is trained for each MH independently. Given a test
citation, the candidate MHs are ranked according to the prediction score
of each MH classifier. (ii) Learning to rank (LTR); MeSH Now (Mao and
Lu, 2017), MeSHLabeler (Liu et al., 2015) and DeepMeSH (Peng et al.,
2016) are three representative methods in this category. The main idea is to
model MeSH indexing as a problem of ranking multiple MHs, where top
ranked MHs are recommended as true labels. LTR has been successfully
applied in the field of information retrieval, such as web searching. In the
case of MeSH indexing, multiple evidence generated from different text
representations and machine learning models are effectively integrated by
LTR to improve the performance. Note that MeSHLabeler achieved the first
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Fig. 1. The architecture of BERTMeSH

place in BioASQ 2014 and 2015, while DeepMeSH achieved the first place
in BioASQ 2016, 2017 and 2019. (iii) Deep Learning; AttentionMeSH (Jin
et al., 2018) and MeSHProbeNet (Xun et al., 2019) are two recent deep
learning based methods, which both use deep recursive neural network
(RNN) and attention mechanism. Specifically, MeSHProebNet achieved
the first place in BioASQ 2018 and the second place in BioASQ 2019,
while AttentionMeSH achieved the third place in BioASQ 2018.

Note that all these methods used title and abstract only, which cannot
take advantage of rich information in full text. In addition, although
AttentionMeSH and MeSHProbNet are two deep learning based methods,
they cannot enjoy the recent progress in pre-training of language models.

2.2 BERT: Bidirectional Encoder Representations from
Transformers

Deep learning models for NLP tasks used raw texts as inputs to capture rich
semantic context information. Previously deep learning methods for NLP
tasks usually used word embeddings (Mikolov et al., 2013) pre-trained on a
large corpus to covert words to their corresponding dense semantic vectors,
such as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014). In spite of some successful applications in NLP including MeSH
indexing (Peng et al., 2016), this type of word embedding uses an identical
vector (representation) for the same word in different sentences, which
cannot model the local context very well. Some pre-trained contextual
text representations were then developed for replacing the single word
embedding, such as ELMo (Embeddings from Language Models) (Peters
et al., 2018) and BERT (Bidirectional Encoder Representation from
Transformers) (Devlin et al., 2019). Different from previous language
representation models like ELMo, BERT considers both left and right

context of text when learning the language representation. The pre-trained
BERT model has found many successful applications in NLP. Given the
excitement about BERT, it was noted that it should be applied to biomedical
NLP (Burns et al., 2019). Most recently, based on BERT, Lee et al.
(2020) trained a biomedical domain specific language model BioBERT
using biomedical text corpus such MEDLINE and PMC. They found
that BioBERT improved the performance of several typical biomedical
text mining tasks, such as biomedical name entity recognition, relation
extraction and question answering. In this work, we used BioBERT for
text representation, which greatly improves the performance of large-scale
MeSH indexing.

3 Methods: BERTMeSH

3.1 Overview

Fig. 1 shows the architecture of BERTMeSH. For each biomedical article,
we use the raw text from title and abstract and the M -1 longest sections
from body text as our inputs. A pre-trained BERT layer (Devlin et al.,
2019) is employed to obtain deep contextual representation of each word.
For reducing the scale (the number of parameters) of our model, we use
an identical BERT layer for all sections. Then we concatenate the outputs
of all sections after the BERT layer as the representation of a given article.
Following AttentionCNN, a deep component model of FullMeSH (Dai
et al., 2020), we use a multi-label attention over the gained representation
to capture the most relevant parts to each label, resulting in a different
representation to each label. Finally, we use fully connected layers with
sharing weights to obtain the predicted score to each label. To take
advantage of both full text from PMC and a large amount of labeled
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citations from MEDLINE (which have title and abstract only), we use
a transfer learning strategy. Specifically, BERTMeSH is pre-trained with
millions of MEDLINE citations first, and then fine tuned with PMC full
text data.

3.2 Input Layer

For each sample, we use the raw text ofM sections as our inputs, including
the title and abstract section and the M -1 longest sections from the body
text. The input Xk of the k-th section for a given sample is as follows:

Xk = (xk,1, xk,2, ..., xk,i, ..., xk,T ) (1)

where the xk,i is the i-th word in the k-th section and T is the text length
of each section.

3.3 BERT Layer

We use BioBERT (Lee et al., 2020) as our text representation model.
BioBERT initializes its weights from BERT-base, and is fine-tuned on
MEDLINE and PMC corpus. The output Hk of the k-th section is as
follows:

Hk = BERT(θBERT,Xj) = (hk,1, hk,2, ..., hk,T ) (2)

where Hk ∈ RT×n, n is the hidden size of BERT, θBERT is the weight
parameter of BERT Layer, and hk,i ∈ Rn is the representation of the i-th
word in the k-th section.

3.4 Concatenated Layer

For a given biomedical article, we concatenate M outputs of BERT layer
over all M sections as follows:

H = H1 ⊕H2 ⊕ ...⊕HM (3)

where H(∈ RMT×n) is the concatenated output, and MT = M ×
T . We denote hi(∈ Rn) as the representation of the i-th word in the
concatenated output H .

3.5 Multi-label Attention

We use a multi-label attention to capture the most relevant part of text to
each label to have different representations for each label. We use different
attention parameters for each label. For the jth label, the attention we use
is as follows:

mj =

MT∑
i=1

αijhi, αij =
ehiwj∑MT

t=1 e
htwj

, (4)

where wj is the attention weight for the j-th label and mj is the attention
output for the j-th label.

3.6 Fully Connected Layer and Output Layer

BERTMeSH has one fully connected layer and one output layer. We set up
that the fully connected layer and the output layer share the same parameter
values for all labels, to emphasize the differences of attention among all
labels and reduce the number of parameters. Finally, predicted probability
ŷj for the j-th label can be computed as follows:

ŷj = σ(W2f(W1mj + b1) + b2), (5)

where W1(∈ Rc×n) and W2(∈ Rc) are parameters of the fully
connected layer and output layer, respectively, and b1(∈ Rn̂) and
b2(∈ R) are bias terms, and f is a non-linear (activation) function.

3.7 Loss Function

BERTMeSH uses the binary cross-entropy loss, as the loss function, which
is given as follows:

J(θ) = −
1

NK

N∑
i=1

K∑
j=1

yij log(ŷij) + (1 − yij)log(1 − ŷij), (6)

whereN is the number of samples,K is the number of labels, ŷij ∈ [0, 1]

and yij ∈ {0, 1} are the predicted probability and true value, respectively,
for the i-th sample and the j-th label.

3.8 Threshold for Each Label

After training, we compute the optimal threshold for each label over a
threshold validation set, following (Pillai et al., 2013). We then select MHs
with higher scores than the threshold as the final recommended MHs.

3.9 Pre-training with MEDLINE citations

Citations in PMC have full text, which has more useful information than
title and abstract only. While the number of citations in MEDLINE with
only title and abstract, is much larger than the number of citations in PMC.
To improve the performance, we use transfer learning, to take advantage
of both PMC and MEDLINE citations. Thus we first train BERTMeSH on
MEDLINE citations with only title and abstract, and then fine-tunes this
model with PMC citations.

4 Results

4.1 Data collection

We downloaded the whole PMC open access subset (by Oct. 2019)5 and
obtained 3,221,713 citations. We also downloaded the whole MEDLINE
collections (by Oct. 2019)6 and obtained 16,677,027 citations with
abstract. For reducing the bias, we focused on manually indexed citations
(not annotated by a "curated" or "auto" modes in MEDLINE) only in
our work, which also have full text in PMC open access subset. Then we
obtained a set of 1,495,063 PMC articles. Out of all these PMC articles, we
used the latest 20,000 articles as the test set, another latest 200,000 articles
except the test set as the threshold validation data set for all MHs, and the
remaining 1.27M articles as the training set. We used the latest 3,000,000
MEDLINE citations as our MEDLINE pre-training dataset, which were
annotated before the earliest date of the threshold validation data set. This
means that this 3M MEDLINE citations have no overlap with our threshold
validation and test datasets. Following the pattern matching method in
FullMeSH, in addition to Title and Abstract, we extracted the 4 pre-defined
sections from the test data, Introduction, Methods and Materials, Result
and Experiment, Conclusion and Summary. Out of all 20,000 test articles,
13,641 (67.3%) articles had all these 5 sections, and the remaining 6,359
articles (32.7%) lost one or more sections in full text, where we call these
two subsets the complete subset and incomplete subset, respectively.

4.2 Experimental Settings

As BERT Layer (with 12 transformer layer), we used BioBERT (Lee et al.,
2020), which fine-tuned pre-trained BERT-base (Devlin et al., 2019) on
MEDLINE and PMC open access subset with n = 768 and T = 512. If
an input section is longer than 512, we will truncate it and only consider
the first 512 tokens. We used the Adam optimizer (Kingma and Ba, 2014).
Also we used a dropout with the drop rate of 0.5 and early stopping to avoid
overfitting. We used five sections for training by PMC articles, including

5 ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
6 ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
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Table 1. Performance comparison of BERTMeSH and DeepMeSH by using title and abstract only.

Method Training pre-trained Full Text MiF MiP MiR MaF MaP MaR EBF EBP EBR

DeepMeSH PMC × × 0.639 0.669 0.612 0.495 0.633 0.502 0.631 0.667 0.627
DeepMeSH MEDLINE × × 0.653 0.690 0.621 0.540 0.657 0.545 0.646 0.687 0.638

BERTMeSH w.o. BERT Layer MEDLINE × × 0.662 0.695 0.631 0.525 0.668 0.526 0.652 0.700 0.643
BERTMeSH PMC × × 0.667 0.696 0.640 0.512 0.663 0.517 0.657 0.700 0.650
BERTMeSH MEDLINE × × 0.678 0.705 0.653 0.550 0.678 0.555 0.670 0.711 0.663

Table 2. Performance comparison of BERTMeSH and FullMeSH by using full text.

Method Training pre-trained Full Text MiF MiP MiR MaF MaP MaR EBF EBP EBR

FullMeSH PMC × X 0.651 0.683 0.623 0.512 0.647 0.516 0.643 0.680 0.639
BERTMeSH PMC × X 0.684 0.711 0.660 0.526 0.666 0.532 0.674 0.715 0.667
BERTMeSH PMC PMC X 0.685 0.713 0.659 0.528 0.670 0.533 0.675 0.717 0.667
BERTMeSH PMC MEDLINE X 0.692 0.719 0.668 0.562 0.683 0.568 0.683 0.724 0.676

title and abstract, and the four longest sections (M = 5). There are six
variants of BERTMeSH. First three variants use title and abstract only. The
first two use PMC data and MEDLINE citations, respectively. The third
variant, BERTMeSH w.o. BERT, uses MEDLINE citations and replaces
BERT layer with a word embedding(Mikolov et al., 2013) layer and a
bidirectional LSTM(Hochreiter and Schmidhuber, 1997) layer. The other
three variants use full text, and in practice, use PMC data only without
pre-training, PMC data with pre-trained network by PMC abstracts, and
PMC data with pre-trained network by MEDLINE citations.

Since the implementation of MeSHProbNet and AttentionMeSH for
large-scale MeSH indexing is not available, we used DeepMeSH and
FullMeSH as two competing methods, which are the state-of-the-art MeSH
indexing methods using abstract and full text, respectively. Following
the original paper (Dai et al., 2020), we implemented DeepMeSH and
FullMeSH. Specifically, the same 20,000 latest PMC articles were used
as the test set. Other 40,000 latest PMC articles were extracted, and half
of the 40,000 articles were randomly chosen to train the ranking model,
and the rest were used to train the model to predict the number of MHs
annotated for a given article. Finally the remaining 1.4M articles were used
as the training data. Note that FullMeSH used the full text of PMC, while
DeepMeSH used the title and abstract only. In addition, we also checked
the performance of DeepMeSH using the whole MEDLINE collection as
the training data, after removing the above 60,000 citations.

4.3 Performance evaluation measures

Let K be the size of all labels (MHs), and N be the number of instances
(citations). Let yi and ŷi ∈ {0, 1}K be the true and predicted labels
for instance i, respectively. For performance evaluation, we used the three
groups of most common metrics: Micro (precision (MiP), recall (MiR) and
F-Measure (MiF)), Macro (precision (MaP), recall (MaP) and F-Measure
(MaF)) and Example Based (precision (EBP), recall (EBR) and F-Measure
(EBF)), which are defined as follows:

MiP =

∑K
k=1

∑N
i=1 y

k
i · ŷki∑K

k=1

∑N
i=1 ŷ

k
i

, (7)

MiR =

∑K
k=1

∑N
i=1 y

k
i · ŷki∑K

k=1

∑N
i=1 y

k
i

. (8)

MiF =
2 ·MiP ·MiR
MiP + MiR

. (9)

MaPk =

∑N
i=1 y

k
i · ŷki∑N

i=1 ŷ
k
i

, (10)

MaRk =

∑N
i=1 y

k
i · ŷki∑N

i=1 y
k
i

. (11)

MaF =
1

K

K∑
k=1

2 ·MaPk ·MaRk

MaPk + MaRk
. (12)

EBPi =

∑K
k=1 y

k
i · ŷki∑K

k=1 ·ŷki
, (13)

EBRi =

∑K
k=1 y

k
i · ŷki∑K

k=1 y
k
i

. (14)

EBF =
1

N

N∑
i=1

2 · EBPi · EBRi

EBPi + EBRi
. (15)

.

4.4 Experimental results

By using the 20,000 benchmark test articles, we compared the performance
of BERTMeSH with DeepMeSH using title and abstract only, and then
with FullMesH using full text. We mainly focused on MiF, the primary
evaluation metric in the BioASQ challenge.

4.4.1 Performance comparison with title and abstract only
Table 1 shows the performance comparison result of two settings of
DeepMeSH (trained with PMC and trained with MEDLINE) and three
settings of BERTMeSH (trained with PMC, trained with MEDLINE,
and trained with MEDLINE using a word embedding layer and a
bidirectional LSTM layer instead of BERT Layer) trained on titles and
abstracts. In Table 1, BERTMeSH outperformed DeepMeSH under all
settings. BERTMeSH trained on MEDLINE achieved the best performance
among the five settings. Specifically, BERTMeSH trained on MEDLINE
achieved MiF of 0.678, being followed by BERTMeSH trained with
PMC (0.667), BERTMeSH trained with MEDLINE using Word2Vec
and RNN instead of BERT layer (0.662), DeepMeSH trained with
MEDLINE (0.653), and DeepMeSH trained with PMC (0.639). We can
see that with more training data (using MEDLINE instead of PMC),
the performance of both DeepMeSH and BERTMesH was improved
significantly in all three F-measures. For example, the MaF of DeepMeSH
increased from 0.495 to 0.540. Another finding is that, without BERT
layer, the performance of BERTMeSH trained with MEDLINE is even
worse than BERTMeSH trained with PMC. For example, BERTMeSH
trained with MEDLINE without BERT layer achieved MiF of 0.662, where
BERTMeSH trained with PMC achieved MiF of 0.667. This highlights the
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Table 3. Performance over full text with full sections.

Method Training pre-trained Full Text MiF MiP MiR MaF MaP MaR EBF EBP EBR

DeepMeSH PMC × × 0.646 0.679 0.616 0.501 0.637 0.507 0.639 0.677 0.630
FullMeSH PMC × X 0.661 0.705 0.623 0.516 0.662 0.516 0.654 0.703 0.637

BERTMeSH PMC × X 0.691 0.714 0.669 0.533 0.666 0.541 0.681 0.718 0.676
BERTMeSH PMC MEDLINE X 0.698 0.721 0.676 0.563 0.680 0.572 0.688 0.725 0.684

Table 4. Performance over full text with missing sections.

Method Training pre-trained Full Text MiF MiP MiR MaF MaP MaR EBF EBP EBR

DeepMeSH PMC × × 0.621 0.644 0.601 0.494 0.613 0.506 0.616 0.647 0.621
FullMeSH PMC × X 0.626 0.628 0.625 0.512 0.604 0.531 0.620 0.633 0.645

BERTMeSH PMC × X 0.666 0.700 0.634 0.528 0.656 0.535 0.659 0.709 0.648
BERTMeSH PMC MEDLINE X 0.678 0.714 0.646 0.559 0.677 0.564 0.672 0.722 0.661

Table 5. Statistical significance test by bootstrapping

Method Training pre-trained Full Text MiF MiP MiR MaF MaP MaR EBF EBP EBR

DeepMeSH MEDLINE × × 0.653 0.690 0.621 0.539 0.656 0.549 0.646 0.687 0.638
1.91e-169 7.66e-144 3.56e-168 3.92e-109 3.62e-110 2.96e-110 3.20e-164 1.65e-150 4.04e-159

FullMeSH PMC × X 0.651 0.683 0.623 0.513 0.645 0.522 0.643 0.680 0.639
1.48e-176 4.35e-16 2.41e-169 2.43e-144 1.38e-124 3.92e-143 1.32e-169 5.14e-160 7.84e-158

BERTMeSH MEDLINE × × 0.678 0.705 0.653 0.551 0.677 0.562 0.670 0.711 0.663
3.58e-142 7.23e-129 1.83e-136 1.72e-97 1.06e-51 2.26e-98 9.39e-136 8.18e-127 1.44e-128

BERTMeSH PMC MEDLINE X 0.692 0.719 0.668 0.561 0.681 0.572 0.683 0.724 0.676

power of deep contextual representation for improving the performance of
MeSH indexing.

4.4.2 Performance comparison with full text
Table 2 shows the performance comparison result of FullMeSH and three
settings of BERTMeSH (pre-trained with PMC, pre-trained MEDLINE
and without pre-training) trained on full texts. In Table 2, BERTMeSH
outperformed FullMeSH under all settings, and BERTMeSH pre-trained
with MEDLINE achieved the best performance. Specifically, BERTMeSH
pre-trained with MEDLINE achieved MiF of 0.692, which is 6.3% higher
than FullMeSH (0.651). Even without pre-training, the performance of
BERTMeSH reached MiF of 0.684, which is still much higher than the
performance of FullMeSH. Note that if BERTMeSH is pre-trained with
PMC itself, the performance increase is slight. For example, MiF of
BERTMeSH increases from 0.684 to 0.685.

4.4.3 Performance comparison with missing sections: validation on
robustness

In Section 4.1, we divided the whole test data into two subsets: complete
subset and incomplete subset. Again the complete subset consists of 13,461
(67.3%) test articles, each with all five sections, and the incomplete
subset consists of 6,539 (32.7%) test article, each losing at least one
section. In Table 2, BERTMeSH pre-trained with PMC had only
little improvement, and then we examined the performance of three
methods: BERTMeSH without pre-training, BERTMeSH pre-trained with
MEDLINE, and FullMeSH. In addition, DeepMeSH using PMC abstracts
was also examined as a baseline. Tables 3 and 4 show the performance
results of all competing methods over the complete and incomplete
subsets, respectively. BERTMeSH pre-trained with MEDLINE achieved
the best performance in both cases, being followed by BERTMeSH
without pre-training, FullMeSH and DeepMeSH. For example, over the

complete subset, BERTMeSH pre-trained with MEDLINE achieved MiF
of 0.698, which was followed by BERTMeSH without pre-training (0.691),
FullMeSH (0.661) and DeepMeSH (0.646). Another point of note is that
BERTMeSH is more robust than FullMeSH regarding missing sections,
which can be seen from two viewpoints: 1) with missing sections, the MiF
of BERTMeSH pre-trained with MEDLINE decreased 2.9%, i.e. from
0.698 to 0.678, and also that of BERTMeSH without pre-training decreased
3.6%, i.e. from 0.691 to 0.666. However, the decrease of FullMeSH was
5.3%, i.e. from 0.661 to 0.626. 2) over the complete subset, the MiF
of BERTMeSH was 5.6% higher than that of FullMeSH, while over the
incomplete subset, the MiF of BERTMeSH was 8.3% higher than that of
FullMeSH. All these suggest BERTMeSH is more robust than FullMeSH
with respect to the organization of sections in full text.

4.4.4 Statistical performance superiority confirmation
By using the test set of 20,000 articles, we repeated boostrap with
replacement 100 times, to generate 100 data sets. We then conducted
paired t-test over 100 trials to examine the statistical significance on
performance improvement between BERTMeSH and two state-of-the-art
competing methods (DeepMeSH and FullMeSH). For BERTMeSH, we
consider the two best settings: BERTMeSH with MEDLINE pre-training
and BERTMeSH trained with MEDLINE. For DeepMeSH, hereafter we
consider its best setting, which was trained with MEDLINE abstracts.
Table 5 reports the predictive and statistical results of BERTMeSH,
being compared with DeepMeSH and FullMeSH. In this table, below the
performance values, the corresponding p-values are shown. Regarding the
performance, BERTMeSH with PMC full text pre-trained with MEDLINE
achieved the highest MiF of 0.692, being followed by BERTMeSH
with MEDLINE abstract (0.678), DeepMeSH (0.653) and FullMeSH
(0.651). Also from the p-values, which are far smaller than the regular
statistical significance level, such as 0.05, the performance improvement
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(d) BERTMeSH Improvement by Instance

Fig. 2. Performance comparison of DeepMeSH, FullMeSH and BERTMeSH. (a) MHs
distribution and MHs indexing distribution in the training set. (b) MaF performance of
DeepMeSH, FullMeSH and BERTMeSH among different MeSH groups. (c) Percentage of
best performed MHs of DeepMeSH, FullMeSH and BERTMeSH among different MeSH
groups. (d) The average EBF improvement of BERTMeSH over FullMeSH by instance.

by BERTMeSH was statistically significant. Overall the experimental
results can be summarized into the following three points: 1) BERTMeSH
outperformed other baselines for large-scale MeSH indexing, being
statistically significant; 2) the performance of BERTMeSH was improved
with full text; and 3) BERTMeSH shows the robustness over FullMeSH
regarding missing sections in full text.

4.5 Result Analysis

4.5.1 Performance comparison of three methods under different
frequencies of MHs and articles

By using the number of occurrence of MHs in the training set (3000000
citations), we divided the MHs into five groups: [0, 100), [100, 500),
[500, 1,000), [1,000, 5,000) and [5000,). [0, 100) means the group of
MHs, each having the number of occurrences between more than zero
to 100 in the training set. Fig. 2(a) shows the distributions of MHs
and MHs indexing. Fig. 2(b) shows the performance (average MaF) of
BERTMeSH, FullMeSH and DeepMeSH, in each of the above five groups
of MHs. For all groups, BERTMeSH achieved the best performance, being
followed by DeepMeSH and FullMeSH. This highlights the advantage of
BERTMeSH over DeepMeSH and FullMeSH, regardless of the frequency
of MHs. Fig. 2(c) shows the distributions of the three methods regarding
the best predictive methods (allowing ties) for each MH, for each of
the five frequency groups. From Figs. 2(b) and 2(c), BERTMeSH
outperformed DeepMeSH and FullMeSH, particularly more significantly
for higher frequency groups. Another point of note is that for the most
infrequent group, MaF of FullMeSH is much worse than DeepMeSH,
while for the most frequent group, MaF of FullMeSH is only slight lower
than DeepMeSH. This might be because: the size of the training set
(MEDLINE) of DeepMeSH (which uses title and abstract only) is much
larger than that (PMC) of FullMeSH (which allows to use all full text).
That is, DeepMeSH would have used much more positive samples than
FullMeSH. This might be very helpful for predicting infrequent MHs.
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Fig. 3. Performance comparison of BERTMeSH trained on MEDLINE, PMC and PMC
with a pre-training over MEDLINE. (a) MaF performance of BERTMeSH trained on
MEDLINE, PMC and PMC with a pre-training over MEDLINE among different MeSH
groups; (b) Percentage of best performed MeSHs of BERTMeSH trained on MEDLINE,
PMC and PMC with a pre-training among different MeSH groups; (c) The average EBF
improvement of BERTMeSH trained on PMC with a pre-training over BERTMeSH trained
on MEDLINE by instance. (d) The average EBF improvement of BERTMeSH trained on
PMC with a pre-training over BERTMeSH trained on PMC by instance.

Furthermore, we compared the performance of BERTMeSH with
FullMeSH with respect to instances (articles). We changed the size of
test data, using EBF of each article by FullMeSH as the cut-off value,
and then checked the performance improvement in the average EBF by
changing the cut-off value. Fig. 2(d) shows the average EBF improvement
of BERTMeSH over FullMeSH. From this figure, the improvement of
BERTMeSH becomes larger, as EBF of FullMeSH became smaller,
meaning that the article for which prediction is hard by FullMeSH can
be better predicted by BERTMeSH.

4.5.2 Performance comparison of different data usage for BERTMeSH
under different frequencies of MHs and articles

We consider three data usages for BERTMeSH: 1) MEDLINE:
BERTMeSH trained on only title and abstract in MEDLINE, 2) PMC:
BERTMeSH trained on full text in PMC and 3) PMC+MEDLINE:
BERTMeSH trained on full text in PMC with pre-training on MEDLINE.
Fig. 3(a) shows the performance (MaF) of these three cases. First, focusing
on MEDLINE and PMC only, MEDLINE outperformed PMC for all
groups, except the most frequent group, particularly the performance
advantage being wider for the groups with lower frequencies. This
highlights the advantage of using MEDLINE for predicting less frequent
MHs, which would be a large portion of the data set. On the other hand,
PMC made better prediction on the high frequency group, although PMC
had less training data (#articles would be smaller). For these most frequent
MHs, which are usually important and general biomedical concepts,
related information may be described in the full text other than abstract.
In this case, PMC would be more advantageous than MEDLINE. Also
Fig. 3(b) shows the distributions of the three data usages regarding the best
predictive usage for each MH, for each of the five frequency groups. From
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Figs. 3(a) and 3(b), PMC+MEDLINE always outperformed the other two
usages. This demonstrates that PMC+MEDLINE can enjoy the advantages
of both pre-training by MEDLINE and training by full text of PMC.

Furthermore, we again changed the size of test data, using the EBF of
each article by MEDLINE (or PMC) as the cut-off value, and examined
the performance improvement by PMC+MEDLINE. Figs. 3(c) and 3(d)
show the average EBF improvement of PMC+MEDLINE over MEDLINE
and PMC, respectively. The improvement of PMC+MEDLINE becomes
larger, as the EBF of MEDLINE (or PMC) became smaller, meaning that
the article for which prediction is hard by MEDLINE (or PMC) only can
be better predicted by PMC+MEDLINE.

4.5.3 Performance comparison of data usages on high frequency MHs
by using Check Tags

Check Tags are a set of most frequent MHs, such as human, male, female
and animal, meaning that Check Tags are likely to be mentioned in each
article. In Section 4.5.2, we found that PMC (trained by full text) performed
well for the most frequent MHs. We further check a similar but different
setting of BERTMeSH by using Check Tags. We found 19 Check Tags
that occur more than 150 times in our test set. Table 6 shows the F1-
score of BERTMeSH by using three different data usages: MEDLINE,
PMC and PMC+MEDLINE (which are the same as mentioned in Section
4.5.2) on the 19 Check Tags. In this table, PMC+MEDLINE achieved
the highest F1-score in 14 out of 19 Check Tags, being followed by
PMC, which achieved the highest in 6 Check Tags. Also both PMC and
PMC+MEDLINE achieved the same average F1-score of 0.841. This result
also suggests that the full text of PMC is useful for BERTMeSH to achieve
good performance for highly frequent MHs.

4.5.4 Case Study
We present the results of a sample article with PMID=31261512
(PMCID=PMC6616313) in the supplementary materials.

4.6 Computation time

In our experiments, we used a server with 2 Intel Xeon E5-2678 V3
2.5GHz CPUs, 256G memory and 8 NVIDIA GTX 1080TI GPUs.
Training BERTMeSH needed around 4 days, including pre-training, while
FullMeSH needed around 7 days with a cluster server of six nodes, each
being equipped with 128 GB RAM and two Intel XEON E5-4650 CPUs.
Prediction by BERTMeSH needed around 5 minutes for 20,000 articles,
while FullMeSH needed over 10 hours for 20,000 articles, mainly due to
high computational cost of k-nearest neighbors.

5 Discussion and Conclusion
The full text of citations is helpful for accurate MeSH indexing. However,
the length and content of the full text in PMC are much longer and richer
than those of title and abstract in MEDLINE. This makes it difficult to
utilize them. Another problem is that the number of citations in PMC
is much smaller than that of MEDLINE. For making full use of full text,
BERTMeSH used a pre-trained BERT representation. Firstly, the improved
performance of BERTMeSH over MEDLINE (with title and abstract
only) highlights the power of deep contextual representation. Secondly,
BERTMeSH trained on full texts in PMC performed slightly better than
BERTMeSH trained on MEDLINE. This indicates that full text provides
more information for MeSH indexing than their titles and abstracts.
Thirdly, for taking advantage of both titles and abstracts in MEDLINE
and full texts in PMC, BERTMeSH employed a transfer learning strategy
by using the network that was first pre-trained by MEDLINE citations and
was then trained on the full text of PMC. As such, BERTMeSH trained
on PMC with a pre-training over MEDLINE had been demonstrated to
perform better than BERTMeSH trained on either MDELINE or PMC

Table 6. Performance (F1-score) comparison over Check Tags in test
set (number of occurrence more than 150).

Check Tags #N MEDLINE PMC PMC+MEDLINE

Humans 14,121 0.955 0.958 0.960
Female 8,336 0.873 0.897 0.898
Male 7,842 0.863 0.885 0.886

Animals 5,810 0.916 0.922 0.925
Middle Aged 4,520 0.841 0.885 0.888

Adult 4,288 0.788 0.842 0.848
Aged 3,145 0.765 0.836 0.837

Young Adult 1,897 0.652 0.748 0.748
Mice 1,895 0.808 0.829 0.828

Adolescent 1,601 0.661 0.775 0.778
Aged, 80 and over 1,189 0.528 0.734 0.742

Child 1006 0.747 0.832 0.831
Child, Preschool 703 0.722 0.808 0.803

Rats 647 0.804 0.818 0.801
Infant 618 0.711 0.806 0.801

Pregnancy 604 0.887 0.886 0.889
Infant, Newborn 442 0.673 0.720 0.721

Cattle 212 0.872 0.872 0.876
Dogs 197 0.890 0.920 0.926

Average - 0.787 0.841 0.841

only. Finally, BERTMeSH is robust to the missing sections in the full
text. In contrast, the performance of FullMeSH drops significantly in the
presence of missing sections.

With the rapid growth of biomedical articles, automatic MeSH
indexing with full text is becoming increasingly important. FullMeSH,
only method of using full text for large-scale MeSH indexing had two
serious problems: FullMeSH 1) uses LTR, which is laborious and time
consuming, 2) can use only pre-determined sections in full text, limiting the
advantage of using full text, and 3) ignores the whole MEDLINE database.
To address these challenges, we have developed a computationally lighter
model, BERTMeSH, which is flexible in section organization of full
text, by using the state-of-the-art, deep contextual representation, BERT.
Also BERTMeSH has pre-training, which allows BERTMeSH to use
both MEDLINE (with only title and abstract) and PMC (with full text).
Extensive experiments using 20K full text articles of PMC showed
the efficiency, effectiveness and robustness of BERTMeSH over recent
cutting-edge baselines. An interesting future work would be exploring
the performance of BERTMeSH with other pre-trained transformer-based
models with different corpus such as BlueBERT (Peng et al., 2019), and
larger text length limit such as Longformer (Beltagy et al., 2020).
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