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The possibility to observe and manipulate Majorana fermions as end states of one-dimensional topological
superconductors has been actively discussed recently. In a quantum wire with strong spin-orbit coupling placed
in proximity to a bulk superconductor, a topological superconductor has been expected to be realized when the
band energy is split by the application of a magnetic field. When a periodic lattice modulation is applied, multiple
topological superconductor phases appear in the phase diagram. Some of them occur for higher filling factors
compared to the case without the modulation. We study the effects of phase jumps and argue that the topologically
nontrivial state of the whole system is retained even if they are present. We also study the effect of the spatial

modulation in the hopping parameter.
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I. INTRODUCTION

Much work has been devoted to realize topologically
nontrivial states of matter with topologically protected surface
states. Majorana surface states are expected to be formed
at the boundaries and vortex cores of topological supercon-
ductors (TSs)."”7 Such states have been expected in a one-
dimensional (1D) quantum wire with spin-orbit interaction
(SOI) placed under a Zeeman field and in proximity to a bulk
superconductor,®!! in cold atoms in optical lattices with effec-
tive gauge fields generated by spatially varying laser fields,®
bilayer electron gases in a semiconductor heterostructure with
interlayer Coulomb coupling,'? among others. Several groups
of experimentalists have recently reported that they have
observed the signatures of Majorana fermions appearing at
the ends of nanowires attached to superconductors.'3~'% For a
review we refer to Ref. 17.

The effect of spatial inhomogeneity on a superconduct-
ing quantum wire has been a nontrivial problem.'®2° The
energy distributions of the end states have been obtained
for the Dirac equation with random mass and a 1D spinless
superconductor.’’ The interplay of disorder and correlation
in 1D TSs has also been investigated.”> Among the possible
realizations of spatial inhomogeneity, quasiperiodic (Harper)
potential modulation?’ forms a special class in that in a 1D
system all the single particle eigenstates become localized
at the same modulation strength. Quasiperiodic potentials
have been experimentally studied in optically trapped cold
atom systems?® as well as in solid state, misfit compound®
systems. Signatures of a Hofstadter butterflylike band structure
have been observed in a van der Waals system of monolayer
graphene on top of a hexagonal boron nitrade surface.*

The 1D effective spinless superconductor, expected in
1D superconductors with strong spin-momentum coupling
under magnetic field, is of the D symmetry class.’! There-
fore its topology is classified by a Z, topological number.
This suggests that the boundary between two topologically
nontrivial 1D superconductors would not have a localized
mode. Boundary phenomena between topologically equivalent
or distinct phases, with Harper or Fibonacci potentials, have
been experimentally studied using photonic quasicrystals.*?

1098-0121/2013/88(15)/155428(9)

155428-1

PACS number(s): 74.90.4+n, 71.10.Pm, 03.65.Vf, 67.85.—d

In the scenario of Refs. 8—11 the chemical potential needs
to lie close to the band edge so that the band degeneracy
is removed by the external magnetic field. However, the
present authors have observed that, by a quasiperiodic lattice
modulation with a fixed wave number, an effective single-band
superconductor with end Majorana fermions is realized even
when the chemical potential is closer to the center of the
original cosine band, because energy separations are intro-
duced within each of the Zeeman-split bands.>* We have also
demonstrated that this physics is stable even in the presence of
a Hubbard-like on-site interaction and/or a harmonic trapping
potential. More recently, the effect of incommensurate poten-
tials on 1D p-wave superconductors have been studied.?*-°
Commensurate diagonal or off-diagonal Harper models,*”-*
and the effect of a spatially varying component of the magnetic
field,? have also attracted theoretical attention.

Here we are interested in further characterizing the new
TS regions, focusing on when they emerge, and what happens
when the quasiperiodically modulated quantum wire is con-
nected with other wires with different modulation phases or
an unmodulated one. Particularly, we would like to (i) clarify
the correspondence between the energy spectrum of the single
particle states and the emergence of the TS states, in the pres-
ence of either a quasiperiodic modulation with a general wave
number or the external magnetic field to a general direction,
(i1) understand the effect of phase jumps of the quasiperiodic
modulation and that of a quasiperiodic modulation applied
to only a limited part of the one-dimensional system, and
(iii) study the effect of a quasiperiodic modulation of the
hopping parameter.

In Sec. I we define our model and introduce our
Bogoliubov—de Gennes (BdG) equation approach to study the
system. We find that with a lattice-site energy modulation with
a generic wave number, quasiperiodic or periodic, new topo-
logical superconducting regions with end Majorana fermions
emerge. We also study the effect of the direction of the
external magnetic field. Then in Sec. III we observe that those
regions are stable against phase jumps in one-dimensional
systems, while when the modulated wire is connected with an
unmodulated wire, the locations of the localized modes are
determined by which of the wires becomes TS. We also study
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the case with quasiperiodic modulation in the intersite hopping
parameter, and find that multiple topological transitions into
and out of TS states occur. Finally, in Sec. IV, we summarize
our findings.

II. SITE LEVEL MODULATION BY A SINGLE
(QUASIDPERIODIC LATTICE POTENTIAL

We consider a one-dimensional quantum wire parallel to
the X direction, coupled to a bulk superfluid whose surface is
perpendicular to Z. We study a tight-binding one-dimensional
model of spin-1/2 fermions with the Rashba-type spin-orbit
coupling, the mean-field coupling to the bulk superconductor,
and the Zeeman energy due to the external magnetic field B.

The Hamiltonian we have adopted is
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with I' = 852 B. We set 1 = 1 as the unit of energy and set

h =1 in the following. In the case of B = % the third line
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Here, ¢,; annihilates a fermion with spin o(=%,]) at site
I(=0,1,...,L —1), fi,; = é;lcgil, t determines the nearest-
neighbor hopping, « is the Rashba-type SOI, A is the coupling
to the bulk superconductor, I' is the Zeeman energy, u is the
chemical potential, and €, is the site energy for spin o on
site /.

In this paper we limit our discussion to the case with €, ; =
€;. In the following we introduce a quasiperiodic modulation to
the site energy, and study the energy distribution of the single
particle states and its correspondence with the realization of
Majorana end modes. Here, the single particle Hamiltonian is
obtained by setting A = 1 = 0 in Eq. (1), as
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A. Double Hofstadter butterfly

Let us first consider the case of B = . For an infinitely
long system having A = ¢; = 0 we easily obtain the single
particle energy as a function of the quasimomentum &,

E*(k) = 1[1 — cos(k)] + Va2 sin?(k) + I'2. 3)

We call them the upper and lower Rashba-Zeeman (RZ)
bands.** The mapping of the Hamiltonian to that of a spinless
system is possible if . lies in only one of the RZ bands.!%!1:40
In such a case, by introducing the pairing A such that |[A| < T,
we obtain the topological superconductor phase.

We consider a site potential which is given by

= Vg coslk(l — L) + ¢ol, 4)

in which Vo 20, I = (L —1)/2, ¢y is the phase of the
potential at the center of the system, and k = 2 g, in which g
is a real number such that 0 < g < 1. The potential is periodic
for a rational g, while it is quasiperiodic for an irrational g.
In the following we choose ¢y = 0, except when we study the
effect of ¢y and when we study the effect of phase jumps in
the system.

In a finite length system with L lattice sites, we numerically
obtain the set of single particle level energies. Fora =T" = 0,
each single body wave function is extended for Vo < ¢ and
localized for Vo > ¢ in the L — oo limit.*! The self-similar
structure of the two-dimensional spectrum plotted against k
for Vo = t is called the Hofstadter butterfly.*!*?

When the 2L energy levels obtained are plotted against
various values of «, for Vy ~ ¢, the spectrum shows a self-
similar structure resembling two Hofstadter butterflies shifted
in energy and braided together, as shown in Fig. 1. We call this
structure the double Hofstadter butterfly.>

The spin-orbit coupling o mixes the spin-up states and spin-
down states differently at each value of the quasimomentum
k of the resulting RZ bands. Therefore the spin-independent
site potential, which has components with |k| = *« and |k| =
+(2m — k), further mixes the upper and lower RZ bands. Most
of the states in the resulting double Hofstadter butterfly do not
have a completely polarized spin. We may, however, obtain
the expectation value of the z component of the spin (S;) for
each of the 2L eigenstates. The energy levels plotted in Fig. 1
have been color coded according to the value of (S.).

We find that, for a fixed value of «, the sets of states from
two Hofstadter-butterfly-like structures with separated values
of spin polarizations overlap within some energy ranges. In
some regions in energy there are no single particle states, even
inside the range of |¢ —¢| < ¢t + I, which was occupied by
states of Eq. (3) before the introduction of the site potential
modulation Eq. (4). Other regions are occupied by states
in only one of the Hofstadter-butterfly-like structures. We
study the consequences of the site potential modulation on
the realization of TS states for the many-body states with a
finite chemical potential in the following.

B. Bogoliubov-de Gennes equation:
Zero modes and Majorana fermions

The Hamiltonian (1) is bilinear in operators ¢ and ¢&f.
It can be exactly diagonalized in the Nambu spinor space
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FIG. 1. (Color online) The distribution of single particle state en-
ergy of Eq. (2) for L = 200, (I',) = (0.3,0.3), Vo = 0,0.2,0.6,1.25,
B = 2. The single particle Hamiltonian (2) is diagonalized for
Kk =2mj/400 (j =0,1,...,400) and each eigenstate is plotted in
a color corresponding to the expectation value of the z component of
the spin for that eigenstate. The plot for Vo = 1.25 is similar to that
for Vo = 0.8 (not shown) except that the former is scaled horizontally,
because of the duality of the lattice between Vo = x and 1/x. Vo =1
is the self-similar point, at which the modulation potential equals the
unmodulated bandwidth for ' = a = 0.

{(wy,uy,v4,0 i)T}, with the basis obtained as the set of the
eigenvectors of the Bogoliubov—de Gennes (BdG) equation.

Alternatively, fermion pairing via a short-range attractive
interaction can also be simulated by introducing a pairing
constant g and solving the Bogoliubov—de Gennes equation
self-consistently. In a lattice system the energy cutoff which
renormalizes g can be in principle determined from the
lattice constant. However, here we fix the value of A, a
homogeneous proximity pairing, by hand. This is because we
do not expect that the BdG approximation, which simulates
the pair formation within the 1D wire, directly corresponds to
our Hamiltonian (1).

We solve*3+4

Hy Hy 0 A
Hy Hy A 0
0 —A —Hy —Hy
A0 —Hy
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in which U = (uy,u;,v4,v))" is a 4L-dimensional vector and
H,, are the single particle components of the Hamiltonian,
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in which (=)? = 8, — 8,4. In the following we call the 4L-
dimensional matrix in the left hand side of Eq. (5) Hgqg-
We work in the limit of low temperature 7 — 0. We obtain
the particle distribution by

nes =Y [f(e) luos* + f(—€)lvosl], ®)
q

in which f(e) =[1+ e/®D] 5 O(—€) (T — 0) is the
Fermi distribution function, with ®(x) being the step function.
The total number of fermions with spin o is obtained as
Ng = Zl Ng .

The sum in Eq. (8) is taken over all g. Hpgqg i
Hermitian, and has pairs of positive and negative
eigenvalues with equal absolute values, because if
HBdg(uT,ui,vT,m)T :e(uT,u¢,vT,v¢)T, we have
Hpac(v4,v),up,u))" = —€(vy,vy,uy,u))". For a positive
(negative) eigenvalue, only |vf,,1|2 (|ug,1|2) contributes to the
particle distribution in the 7 — O limit.

1. Distribution of eigenvalues

For L sites in the system, because of the spin and particle-
hole degrees of freedom, we have 4L eigenstates of the
BdG equation (5). The introduction of A opens a gap in the
eigenvalue spectrum of Eq. (5) in the absence of the spin-orbit
coupling « or the Zeeman field I". With the spin-orbit coupling
and the Zeeman field, when the chemical potential p satisfies

(lower band bottom) < u < (upper band bottom)

so that the Kitaev model? is effectively realized in the spinful
case, the system is a topological superconductor for 0 < A <
I' when B is in the z-x plane.>'"!7 In this case the BdG
equation has two eigenstates with € ~ 0.

Let us consider the (2L)th and (2L 4+ 1)th smallest
eigenvalues, €~ and €™, which satisfy —e~ = €™ because
eigenvalues appear in pairs with the same absolute value and
opposite signs, as mentioned above. We can only have an even
number of vanishing eigenvalues, and if we have them €~ and
et should be included in them, otherwise e~ < 0 < €.

For u <« {—t, min(¢;)}, the number of fermions in the
system is negligible. As u is increased, N, increases, with
N, > N; for T > 0. €* initially decreases linearly in g,
reflecting the linear decrease of the required energy to add
a single particle in the system. When it is closer to zero,
however, the value of €1 approaches more slowly to zero,
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especially for a smaller system. When we fit the decrease by
a function of the shape exp (—c|u — wol), the exponent c is
roughly in proportion to the system size L. This also suggests
that the modes corresponding to € are spatially localized.

2. Detection of end Majorana fermions

From the eigenvector of Hggg corresponding to the eigen-
value €™, (uy,uy,vy,0 ¢)T, we define the averaged separation
from the system center

(x?) = [Z(z - zc>2|va,z|2} / [Z |va,z|2}.
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FIG. 2. (Color online) (a),(b) Largest negative (—) and smallest
positive (4) eigenvalues of the BdG equation (5) plotted against
the chemical potential u for g = J5-2, (Ta,A) =(0.2,0.3,0.1),
and (a) Vo =0, (b) Vo = 0.5. Dots in the upper halves of the plots
show the expectation value of the z component of the spin (right axis
and color code) against the energy (top axis) for the single particle
states of the nonsuperconducting version of the system, for the same
sets of parameters except that A is set to zero. (c)—(e) Amplitudes
of the particlelike and holelike parts of the eigenvectors Y |us|%,
> |v, |? plotted against the lattice site for (I',a, A) = (0.2,0.3,0.1)
and (¢) u = —0.04, (d) u = —0.02, (e) u = —0.01.
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If the modes localize to the system ends, /(x2) are close to
l., the maximum value it can take. Note that, when €~ and
€t are numerically degenerate (¢* < 107!2 in our work), any
linear combination of the two eigenvectors that correspond
to these eigenvalues would be obtained as the eigenvector
corresponding to €, so within our BAG calculation we do not
directly observe eigenmodes that are localized at only one of
the ends of the system.

In the density-matrix renormalization group (DMRG) sim-
ulations of the same model,>**? however, a pair of Majorana
modes localized at each end of the system have been obtained.
We believe that the DMRG calculation, with a limitation on
the entanglement entropy between the two ends of the system,
automatically chooses less entangled degenerate ground states,
which are connected to each other by operating either of
the two Majorana operators, for the subspaces with even
and odd numbers of fermions. We find that the localization
of u,; and v,,, in terms of /(x2), precisely corresponds
to the localization of the Majorana operators observed by
DMRG.*?

We have plotted the values of €* as a function of x along
with the single particle state energy in Figs. 2(a) and 2(b). In
Fig. 2(a) with Vu = 0, the overlapping RZ bands are clearly
observed, and €* vanish only when the chemical potential
crosses only one of the RZ bands.

In Fig. 2(b) with Vo = 0.5 several regions with vanishing
e* are found, each corresponding to the energy region with
states from just one of the two Hofstadter-butterfly-like
structures. The components of the eigenvector corresponding
to the eigenvalue e are shown in Figs. 2(c)-2(e) for values of
w approaching to one of the regions with vanishing €*. The
localization of the mode is clearly observed with an increase
of v/ (x2). In all regions with vanishing e*, we observe a clear
localization of the corresponding eigenvectors of Hgyg-

C. Dependence on the lattice modulation wave number

In Ref. 33 we fixed the wave vector k of the quasiperiodic
lattice modulation. However, as we have observed in Fig. 1,
we have effective single-band regions of the chemical potential
for a wide range of the value of k. Therefore it is interesting
to study the dependence of the appearance of a topologically
nontrivial superfluid with end Majorana fermions on the value
of . Especially, it is intriguing whether a « such that 27 /k is
an integer has any difference.

In Figs. 3 and 4 we plot the value of €™ in a color code,
along with the single particle state energies obtained from
Eq. (2). For smaller values of A, we notice that the vanishing
eigenvalue corresponds to regions covered by a single band
of single particle eigenstates, regardless of the value of «.
Particularly, even for values of « such as 7/3 and 7/2, €*
vanishes when the chemical potential lies in the region where
single particle eigenstates are effectively spinless.

In these regions, because of the effective single-band
structure of the noninteracting Hamiltonian, the Kitaev model
is realized, with Majorana fermion modes localizing at the
system ends.** The value of e* becomes closer to 0 as L is
increased, reflecting that the end modes are more separated.
For smaller L, the separation between the single particle
eigenstates is comparable to A when A < {I',#}. In this case,
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FIG. 3. (Color online) Top: Single particle eigenstates of Eq. (2)
(nonsuperconducting case) color coded according to the value of
S. for B =2, L = 400, (T,a,Vy) = (0.3,0.3,0.2), and 0 < x < 7.
Lower: Grayscale plots of €t for the same parameters with A =
0.05,0.1,0.15,0.2 and —0.6 < p < 1.

the strength of the induced superconductivity depends on the
relative location of a level and the chemical potential. When the
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FIG. 4. (Color online) Top: Single particle eigenstates of Eq. (2)
color coded according to the value of S, for B=12 L= 400,
(I'a, V) = (0.3,0.3,0.5), and 0 < k < 7. Lower: Grayscale plots
of €t for the same parameters with A = 0.05,0.1,0.15,0.2 and
—06< u<l.
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separation is larger (the density of states is lower) the value of
€™ usually stays larger, but changes rapidly. e becomes more
homogeneous and generally reduced as A is increased inside
each subband which does not overlap in energy with another.

We note that, while N is always larger than N4 for I" > 0,
there are subbands having fermions almost polarized in the
+2 direction ({(S,) ~ 1/2) even when u < 1 with less than
half filling factor (N, + Ny < L). Remarkably, even when
the chemical potential lies in one of such bands, a TS state
with end Majorana fermions can be formed.

However, as A is increased, smaller features in the single
particle state distribution, which remained in the structure
of the value of et for smaller A, gradually disappear and
only the widest single-band regions remain visible. A similar
simplification of the phase diagram is also observed in Fig. 2
of Ref. 34 for a quasiperiodic system of spinless fermions.
Finally, for A > T, the in-gap state disappears and the
eigenvalue spectrum of Hpgg has a gap of the order of A,
regardless of the value of Vg, so that the system is topologically
trivial.

In summary, the new topologically nontrivial regions
with end Majorana fermions appear for general site energy
modulations of the type of Eq. (4), and their existence is not
limited to some special irrational values of ¢ = k/(27). The
commensurate case can be considered as a kind of multiband
wire. The possibility of TS states with end Majorana modes
has also been studied in multiband systems.*#’ We have
observed that while the range of the chemical potential strongly
reflects the single particle eigenstate spectrum, the value of A
also plays an important role. If A is too small €* vanishes
only for regions with a higher density of states. If A is too
large, smaller features in the single particle spectrum become
smeared. This occurs before A exceeds I so that the system
becomes topologically trivial regardless of the values of .

D. Dependence on the direction of the external magnetic field

The existence of the Majorana end fermions depends
on the direction of the applied magnetic field.>'! Namely,
the effective magnetic field introduced by the Rashba spin-
momentum coupling needs to have a perpendicular component
to the external magnetic field. In our model the Rashba spin-
momentum coupling is in the y direction, so the perpendicular
directions lie in the z-x plane, Here we ask, can the spin-
insensitive quasiperiodic modulation change this situation?

To answer this question we now consider B = & cos6 +
ysin6, with 0 < 6 < /2. We plot the value of €' in a
grayscale plot in Fig. 5(a). While the region with vanishing e *
persists up to 6 < /4, which corresponds to I'y = I" cos6 2>
0.2, for larger 6 with I', < 0.2 we no longer have a vanishing
eigenvalue of the BAG equation and the system is topologically
nontrivial.

Therefore, the introduction of the site level modulation still
does not lift the limitation in the direction of B for TS states to
be observed. Because A = 0.1 still does not exceed I', and the
region with vanishing €* is more fragile compared to the case
with Vo = 0 in Fig. 5(b), the result above indicates that the y
component of the applied magnetic field is rather detrimental
for the realization of a TS in our model.
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FIG. 5. Grayscale plot of the value of €™ for (a) Vo = 0.5 and
() Vo=0, B==#xcosh+ysind, L=200, (IaA)=

0.3,0.3,0.1), g = (+/5—1)/2,and —0.6 < u < 1,0 < 6 < /2.

E. Dependence on the phase of the modulation potential

It has been known (see, e.g., Refs. 38 and 48-50) for
systems with I' = o = 0 that when we fix the value of «,
one or more in-gap states emerge within the energy gaps due
to the potential ¢;. Such in-gap states also exist in our model
with nonzero I" and «, and can cross each other or another
subband because the RZ bands are shifted in energy. As we
change the value of the phase of the site energy modulation
¢, the energies of these in-gap states change rapidly, while
other states in “bulk” subbands do not change significantly.

InFig. 6 we change the value of ¢ to study the effect of such
in-gap states. We have plotted the single particle state energies,
color coded by the value of (S.), as well as the value of €™ for
different system sizes. The plot at the bottom with L = 200
looks similar to that of the single particle state energies at the
top, except that the regions with two overlapping subbands do
not have a vanishing €.

A quasiperiodic system is related by a Fourier transform
to a periodic system with a gauge field in a higher spatial
dimension,”’*?> and the flow of the in-gap states as a function
of ¢y here corresponds to the existence of edge states in two-
dimensional (2D) topological insulators.**=>! However, in our
1D system the quasiperiodicity coexists with topologically
nontrivial superconductivity. Therefore it is not presently clear
whether this flow, also appearing as a flow of narrow regions
with vanishing €% in the case with A > 0, corresponds to the
existence of a corresponding topological superconductivity in
2D. This is an interesting issue for future research.

We observe that the dependence of the eigenvalues on the
choice of the phase ¢y becomes weaker as L increases. Bulk
subbands are not shifted, and crossing with a single in-gap
state does not usually break the effective single-band situation.
Therefore the topological equivalence between systems with
different modulation phases is clear. In the next section we
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FIG. 6. (Color online) Top: Single particle eigenstates of Eq. (2)
color coded according to the value of S, for g = V5-2,B=3%1L=
200, (I',a, V) = (0.3,0.3,0.5), and 0 < ¢9 < 7. Lower: Grayscale
plots of €™ for the same set of parameters except that A = 0.1 and
—0.6 < u < 1 are introduced and L = 50,100,200.

study what happens if the modulation phase abruptly changes
inside the quantum wire, or if the modulation disappears from
a part of the wire.

III. EFFECTS OF DIFFERENT TYPES
OF LATTICE MODULATION

A. Effect of phase jumps

In applications to the quantum information field, namely,
quantum computation utilizing the pair annihilation or creation
of multiple Majorana fermions via gates,’” end Majorana
fermions should be stable against minor changes of the
condition of the internals of the one-dimensional system,
which would occur when two or more quantum wires are joined
via gates. Our model of modulated lattices is characterized by
the pair of the wave number « and the phase ¢. Here, it is
of much interest what happens if we have phase jumps of the
lattice modulation, which would correspond to joints between
quantum wires, in our system.

Let us consider a system with Ny phase jumps,

€ = Voceos[k(l — 1)+ ¢o + |1/ W]der], 9)

in which |x] denotes the largest integer not exceeding x and
W = L/(Ny + 1) is the distance between phase jumps of ¢;. If
the phase jumps do not affect the Majorana modes, the regions
of p with vanishing €* should not change, and when they
vanish, the corresponding eigenmodes should occupy the ends
of the system in spite of the internal phase jumps.

In Fig. 7 we plot the value of €™ for (a) a single jump with
different sizes of phase jump ¢;, and (b) different numbers of
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FIG. 7. (Color online) (a) Grayscale plots of € for g = J35-2,
B =13 L =200, (T, Vo) =(0.3,0.3,0.5), A =0.1, =0.6 < pu <
I, Ny=1, and 0 < ¢y < 7. (b) Value of e* plotted against u for
Ny =1,3,7 and ¢y = 7. Eigenstates for © = 0.04 are plotted for
(c)Ny=1,(d) Ny=3,and (e) N; = 7.

phase jumps with ¢; = 7. In Fig. 7(a), ¢y = 0 corresponds to
a system without a phase jump. Introduction of a single phase
jump almost does not change the locations of the regions with
vanishing €%, though we observe a few curves of kinks in €™
corresponding to a single particle state running between RZ
bands as ¢; is changed, in a way similar to what we have
observed in Fig. 6. Increasing the number of phase jumps does
not change the picture significantly, as long as the localization
of the end modes is almost within a single section between
phase jumps. This is observed in Fig. 7(b); while the values of
€' sometime differ between systems with different numbers of
phase jumps of 7, the regions with €t « 1 are not shifted or
removed. Also we find in Figs. 7(c)-7(e) that the eigenvalues
of Hpyg other than €* do not vanish in this case. There is only
one pair of Majorana fermions appearing at the both ends of
the system, rather than more than one pairs of them appearing
also at phase jumps.

The results above reflect the fact that a phase jump does not
change the topological character of the system. If both sides
of the introduced phase jump are in the state characterized by
the same topological quantum number, boundary states do not
form at the phase jump.
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FIG. 8. (Color online) (a) Value of €% plotted against u for ng =
0,200 (upper panel) and for ng = 100,140,180 (lower panel) and
g=+5-2,B=2 L =200, (T, Vq) = (0.2,0.3,0.5), A =0.1.
Eigenstates for ng = 100 are plotted for (b) © = —0.28 (only the
right side of the system is single band), (c) u = 0 (both sides are
single band), and (d) © = 0.1 (only the left side is single band).

B. Site level modulation limited to a part of the system

The view above is further confirmed when we remove the
lattice modulation from some part of the system, by having

(0 <1 <np),

(g <1 < L). (10)

o
U= Vi cosli(l — 1.)]

In the lower panel of Fig. 8(a) we plot the value of €t for
different values of np for the case in which the part of the
system to the left of site ng has the same parameter as in
Fig. 2(a) [plotted again in the upper panel of Fig. 8(a) as
np = 200], whereas the right part has the same parameter as
in Fig. 2(b) (plotted again in the upper panel as np = 0). For
ng = L/2 = 100 we observe that e ™ vanishes when it vanishes
either in Fig. 2(a) with Vo = 0 or in Fig. 2(b) with Vo = 0.5.
In Figs. 8(b)-8(d) we have plotted the spatial distribution of
eigenvectors of (5) corresponding to €*. In Fig. 8(b) with
n = —0.28, only the right side of the system with Vo = 0.5
is an effective single-band system at the chemical potential
and becomes a topological superconductor. The eigenvector
has most of its amplitude localized equally to the two ends
of this region, and the value of /(x2) is close to L/(2+/2),
as expected in such a case. Also, in Fig. 8(d) with u = 0.1,
only the left side of the system without the lattice modulation
becomes a topological superconductor, and the eigenvector is
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this time localized to the two ends of the left part, with the
value of /(x2) similar to that in Fig. 8(b). On the other hand,
in Fig. 8(c) both sides are topologically nontrivial, and the
eigenvector has its amplitudes localized at the two ends of the
whole system.

As we enlarge the part without lattice modulation by
increasing the value of ng in the lower panel of Fig. 8(a),
the plot of €™ approaches that in Fig. 2(a). This is because the
part with the lattice modulation with L — np sites cannot form
a well-defined topological superconductor if it is too short.

In summary, when two TS regions are joined, the resulting
system become a TS with end Majorana states at the ends. On
the other hand, if a TS is joined with a topologically trivial
chain, the resulting system becomes a TS whose Majorana
states appear close to where they had been in the original
TS. This does not depend on which of the chains has spatial
modulation. If the chemical potential can be controlled in the
system, one can control which region has boundary Majorana
modes in the setting above.

C. Case of a hopping modulation

The correspondence between the “diagonal” modulation
in the lattice-site energy and the “off-diagonal” one in the
hopping amplitude in quasiperiodic systems has attracted a
renewed attention.*®>3 Here we study the effect of such a
modulation in the hopping amplitude in our system, in which
case the Hamiltonian is given by

L-2

I
H=- EUZN(C(,ICUZH +H.c.)

-2

IL
~ ©

[(éi,léﬁlﬂ - 51,15¢,z+1) +H.c.]

+
R
T

_|_
INghi
(=3 Y N
——1 °

A(@TJCA’%[ + H.C.)

+—B Si+ ) (= Wiy | | (11
o=t}

with
r=t{l+Vycos[k(l+1/2—1.)+ ¢ol}. (12)

In Fig. 9 we plot the single particle state energy as well
as the value of et obtained by solving the BAG equation
similar to (5) but the diagonal (spin-preserving) blocks of the
kinetic term substituted by the one with the modulated hopping
parameter. We observe that, while the details of the single
particle spectrum are changed, the correspondence between
the effective single-band region in the spectrum and the zeros
of the € is also observed here.

The symmetry of the Hamiltonian is not changed by going
from the site level modulation to the hopping parameter
modulation. Therefore a similar response to phase jumps or
partial modulations inside the system is expected for the latter
case as in the former case, which has been studied above.

PHYSICAL REVIEW B 88, 155428 (2013)

7T 0.5
o3 4 025
¥ <4 0
/3 4 -0.25
ot 0.5
T
- 102
2n/3 4 10
® _ -6
3 10
— 10°
-10
%6 04 ©02 0 02 04 06 o8 1 10

Chemical potential u

FIG. 9. (Color online) Effect of quasiperiodic modulation of the
hopping parameter. Top: Single particle state energy for the single
particle Hamiltonian obtained by setting A = u = 0in Eq. (11), with
B =2 L =200, (V) =(0.3,0.3,0.5),and 0 < ¥ < 7. Bottom:
€* calculated for Eq. (11) with the same set of parameters except that
A =0.1and —0.6 < pu < 1 are introduced.

IV. CONCLUSION

In summary, we have studied the effect of different types
of spatial modulations on the realization of a topological
superconductor in a 1D conductor with proximity-induced
superfluidity and spin-orbit coupling, extending our previous
work, Ref. 33.

The combination of a quasiperiodic site energy modulation
with the external Zeeman field and the spin-orbit coupling
results in a single particle state energy distribution having a
fractal pattern, called the double Hofstadter butterfly. Within
the mean-field, Bogoliubov—de Gennes approximation, our
model Hamiltonian can be diagonalized. We have demon-
strated that the smallest positive eigenvalue of the Hamiltonian
is strongly governed by the single particle energy spectrum for
relatively weak induced superfluidity. Localized end modes,
which are Majorana fermions, exist when two eigenvalues
are degenerate at zero energy. As we change the chemical
potential or the modulation wave number, we observe multiple
reentrant transitions into and out of topologically nontrivial
states. However, for stronger superfluidity, small patterns
of the double Hofstadter butterfly are smeared from the
eigenvalue plot showing the topologically nontrivial parameter
ranges. The resulting topological superconductor is sensitive
to the direction of the magnetic field, while the phase of the
modulation does not affect the system.

We have also studied the effects of the phase jump of the
quasiperiodic potential and what happens when the potential
is applied to only a part of the quantum wire. The results
reflect that the system is characterized by a Z, quantum
number, that is, all the topologically nontrivial states are
indistinguishable, and if two regions with such states are
joined, the Majorana end modes appear only at the ends
of the resulting system. If the chemical potential can be
changed, the locations of the end modes can be manipulated.
A quasiperiodic hopping modulation also exhibits a similar
phase diagram with reentrant topological transitions.

Recently a scheme for topological superconductivity with-
out a proximity effect has been proposed.”* Our study of
the correlation between the band structure and realization of
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topological superconductivity could also be relevant in such
cases.
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