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1 Introduction

It has been known for a long time that the velocity distribution function
(VDF) of molecules in a rarefied gas has a jump discontinuity, in general, on
the boundary in the direction of molecular velocity parallel to the boundary,
e.g. see Refs. [1,2]. Originating from this feature, the macroscopic quantities
defined as the moment of VDF change steeply near the boundary in the direc-
tion normal to it. Here, the steep change does not mean the Knudsen layer (the
kinetic boundary layer) in slightly rarefied gases, but rather means the singu-
lar behavior of those quantities at the bottom of the ballistic non-equilibrium
region with the thickness of the mean-free-path of a molecule. The Knudsen
layer is just an example of such a non-equilibrium region. Note that the non-
equilibrium region extends much wider and possibly even to the entire region
in low pressure circumstances or in micro-scale physical systems. The variation
becomes steeper indefinitely in approaching the boundary, and the variation
rate diverges finally on the boundary. The diverging rate follows a universal-
ity such that it depends on the local geometry of the boundary. The detailed
discussions can be found in Ref. [3].

In the literature [4,5,3,6,7], the diverging rate has been discussed in the
connection with a jump discontinuity of the VDF both qualitatively and quan-
titatively. However, in those discussions it is supposed that the collision integral
can be split into the gain and the loss term, namely the case where the collision
frequency is finite. This means that the investigated molecular models are the
finite-range potentials or the cutoff potentials if the infinite-range potentials
are in mind [8,2]. The grazing collisions that change the molecular trajectory
only slightly have been studied intensively for the infinite range potentials as
an attractive mathematical topics in the last two decades, e.g., Refs. [9,10,11,
12,13,14,15,16,17,18], and are found to have a regularizing effect on the VDF
for such potentials.

In view of those mathematical studies, it is expected that the jump discon-
tinuity of the VDF is not allowed even on the boundary for the infinite-range
potential, which may, in turn, suppress the diverging gradient of macroscopic
quantities because of the absence of its origin. It motivates us to study whether
or not the diverging gradient occurs for the infinite range potentials by using
a mono-speed Lorentz-gas model equation. This model equation, in place of
the original Boltzmann equation, has already been used in Ref. [19] to inves-
tigate the propagation of the jump discontinuity in the initial data and has
been shown to capture the features of the propagation well. In this sense, the
present work may also be regarded as an extension of Ref. [19] to the steady
one-dimensional boundary-value problem. As will be clarified later, the graz-
ing collisions for the infinite range potential indeed do not allow the jump
discontinuity of the VDF on the boundary. Nevertheless, as the price for this
regularizing effect, the collision integral no longer remains finite; consequently,
the diverging gradient manifests itself more strongly than the case of the finite
range potential when approaching the boundary.
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The paper is organized as follows. First, the mono-speed Lorentz-gas model
is introduced and the one-dimensional boundary-value problem is set up in
Sec. 2. Thus, the singularity near the flat boundary will be investigated.1
Then, in Sec. 3, two numerical methods are introduced. One is a rather direct
approach that is particularly suitable for the study of the finite-range and the
cutoff potential and is briefly explained in Sec. 3.1. The other is the approach
based on the Galerkin method, applicable to the infinite-range potential as
well, and explained in detail in Sec. 3.2. The numerical results are presented
in Sec. 4. The results for the cutoff potential with various cutoff sizes and those
for the corresponding infinite-range potential are compared in the Maxwell-
molecule-type case. Furthermore, the diverging rate of the gradient of the
macroscopic quantity are identified for the same case in Sec. 4.2. A conjecture
on the diverging rate for other infinite range potentials is made in Sec. 4.3,
accompanied by the additional numerical evidence. The paper is concluded in
Sec. 5.

2 Lorentz-Gas Model

We consider the following mono-speed Lorentz-gas model that is two-dimensional
both in the position and the molecular velocity space in the present paper:

∂f

∂t
+ αi

∂f

∂xi
=

∫
|β|=1

b(|α · β|){f(t,x,α∗)− f(t,x,α)}dβ, (1a)

α∗ = α− 2(β ·α)β. (1b)

The same model was used in Ref. [19] for the study of the grazing collision
effects on the time evolution from the initial data with a jump discontinuity.
Here, f is the dimensionless velocity distribution function (VDF), t is the
dimensionless time, x is the dimensionless position vector, and α, α∗, and β
are unit vectors, where the reference scales of quantities are chosen in such a
way that both of the Strouhal and the Knudsen number are unity. The unit
vectors α and α∗ represent the dimensionless velocity of a molecule, the size
of which does not change by the present collision integral, i.e., the right-hand
side. The molecular velocity changes only its direction by the effect of the
right-hand side. The direction of change is represented by another unit vector
β. The function b represents the interaction effect and is non-negative. Here,
it is assumed to take the following form in order to mimic the hard-disk and

1 Although the Lorentz-gas model will be considered in two-dimensional space both in the
position and molecular velocity, the boundary that does not change its shape under a scale
change will be called the flat boundary, in place of the straight boundary, in the present
paper.
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the inverse-power-law potential model:2

b(|α · β|) = B−1
γ+2|α · β|γ , (−3 < γ ≤ 1), (2a)

Bγ =

∫
|β|=1

|α · β|γdβ. (2b)

As explained in Ref. [19], the setting γ = 1 is the hard-disk potential, while the
setting γ = −n+1

n−1 well mimics the angular singularity (or the grazing collision
effect) occurring in the Boltzmann equation for the (n−1)-th inverse-power-law
potential, where n = 5 (or γ = −3/2) corresponds to the celebrated Maxwell
molecule. It should be noted that Bγ is the (dimensionless) collision frequency
for the adopted interaction potential and remains finite as far as γ > −1. The
range −1 < γ < 1 is not covered by the inverse-power-law potential and the
collision integral can be split into the so-called gain and loss term safely; this
range of γ will be referred to the finite-range potential in the present paper. For
−3 < γ ≤ −1 (or n > 2), Bγ is no longer finite but diverges and the collision
term can be treated only when the collision integral is treated as a whole; this
range of γ will be referred to the infinite-range potential in the present paper.
The setting γ = −3 (or n = 2) corresponds to the Coulomb potential and the
collision term no longer remains finite. The factor Bγ+2 occurring in (2a) is
the effective collision frequency based on the momentum change in collisions.
As is seen from (2b), it does not diverge for γ > −3.

2.1 Problem and Formulation

In order to study the possibility of the diverging gradient of macroscopic quan-
tities, the following steady one-dimensional boundary-value problem is consid-
ered for the above Lorentz-gas model (1):

α1
∂f

∂x1
=

∫
|β|=1

b(|α · β|){f(x1,α∗)− f(x1,α)}dβ, (3a)

b.c. f =
1

2π
(1± c), x1 = ∓1

2
, α1 ≷ 0, (3b)

where 0 < c < 1 is a constant. The (dimensionless) density ρ is expressed as
the following moment of f :3

ρ =

∫
|α|=1

fdα, (4)

2 The present definition of b is different from that in Ref. [19] by the normalization factor.
3 The x1- and the x2-component of the (dimensionless) mass flow ρv1 and ρv2 are ex-

pressed as

ρv1 =

∫
|α|=1

α1fdα, ρv2 =

∫
|α|=1

α2fdα.

The ρv1 is constant because of the mass conservation law obtained by the integration of
(3a) with respect to α. As for ρv2, the similarity solution compatible to the problem in
Sec. 2.3 leads to ρv2 ≡ 0. Hence, our primary target is to study the behavior of ρ near the
boundaries x1 = ±1/2.
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the behavior of which near the boundary x1 = −1/2 is the primary target of
the present study.

By noting the relation

|α · β| =
(1−α ·α∗

2

)1/2

, (5)

the above problem (3) is reduced to that for g ≡ (2πf − 1)/c:

sin θ
∂g

∂x1
= Cγ [g], (6a)

g = ±1, x1 = ∓1

2
, sin θ ≷ 0. (6b)

Here

Cγ [g] =
1

Bγ+2

∫ π

−π

(1− cos θ∗
2

)γ/2

{g(x1, θ + θ∗)− g(x1, θ)}dθ∗

=
1

Bγ+2

∫ π

−π

| sin ϕ− θ

2
|γ{g(x1, ϕ)− g(x1, θ)}dϕ, (7)

Bγ ≡
∫
|β|=1

|α · β|γdβ =

∫ π

−π

| cosφ|γdφ = 2

∫ π

0

| sin ϕ
2
|γdϕ, (8)

and θ and θ + θ∗ respectively indicate the clockwise angle of the unit vectors
α and α∗ measured from the x2-direction. Note that in (7), the range of
integration for ϕ is shifted by θ because of the 2π-periodicity. The density is
then reduced to the following moment of g:

ρ(x1) = 1 +
c

2π

∫ π

−π

g(x1, θ)dθ ≡ 1 + cρg(x1). (9)

2.2 Angular Cutoff

When −1 < γ, the Cγ defined in (7) can be treated separately as:

Cγ [g] = C+
γ [g]− νγg, (10a)

C+
γ [g] =

∫ π

−π

bγ(ϕ− θ)g(x1, ϕ)dϕ, (10b)

νγ =

∫ π

−π

bγ(ϕ− θ)dϕ =

∫ π

−π

bγ(ϕ)dϕ, (10c)

bγ(φ) ≡
1

Bγ+2
| sin φ

2
|γ . (10d)

It is not the case, however, when −3 < γ ≤ −1, since bγ(φ) is singular for
φ → 0 strongly enough for the integrability not to be assured. Physically, it
implies that the grazing events that are little effective to change the particle
velocity are all counted as the collision. Hence in the literature, the truncation
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of the range of φ, the so-called angular cutoff [8], is introduced in order to
avoid counting such an enormous amount of grazing events. The infinite-range
potential with the cutoff will be simply called the cutoff potential in what
follows. With the size of the cutoff ϵ, the following notations for the cutoff
potential are introduced here:

Cγ,ϵ[g] = C+
γ,ϵ[g]− νγ,ϵg, (11a)

C+
γ,ϵ[g] =

∫ π

−π

bγ,ϵ(ϕ− θ)g(x1, ϕ)dϕ, (11b)

νγ,ϵ =

∫ π

−π

bγ,ϵ(ϕ− θ)dϕ =

∫ π

−π

bγ,ϵ(ϕ)dϕ, (11c)

where

bγ,ϵ(φ) =

{
Bγ+2

Bγ+2,ϵ
bγ(φ), ϵ < φ < 2π − ϵ

0, otherwise
, (0 < φ < 2π), (12)

Bγ,ϵ = 2

∫ π

ϵ

| sin ϕ
2
|γdϕ, (13)

and the factor Bγ+2/Bγ+2,ϵ is used so that the effective collision cross-section
based on the momentum change [20,19] becomes common between the cutoff
and the infinite-range potential for the same γ.

2.3 Small Reduction Using Problem Symmetry

The g having the following symmetry matches the boundary-value problem
(6):

g(·, θ) = g(·, π − θ), (
π

2
< θ < π), (14a)

g(·, θ) = g(·,−π − θ), (−π < θ < −π
2
), (14b)

g(x1, θ) = −g(−x1,−θ), (0 < x1 <
1

2
, −π

2
< θ <

π

2
). (14c)

The properties (14a) and (14b) admit the following expression of ρg:

ρg(x1) =
1

π

∫ π/2

−π/2

g(x1, θ)dθ, (15)

and the following transformation of Cγ :

Cγ [g] =

∫ π

−π

bγ(ϕ− θ){g(x1, ϕ)− g(x1, θ)}dϕ
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=

∫ π/2

−π/2

bγ(ϕ− θ){g(x1, ϕ)− g(x1, θ)}dϕ

+

∫ −π/2

−π

bγ(ϕ− θ){g(x1, ϕ)− g(x1, θ)}dϕ

+

∫ π

π/2

bγ(ϕ− θ){g(x1, ϕ)− g(x1, θ)}dϕ

=

∫ π/2

−π/2

bγ(ϕ− θ){g(x1, ϕ)− g(x1, θ)}dϕ

+

∫ −π/2

−π

bγ(ϕ− θ){g(x1,−π − ϕ)− g(x1, θ)}dϕ

+

∫ π

π/2

bγ(ϕ− θ){g(x1, π − ϕ)− g(x1, θ)}dϕ

=

∫ π/2

−π/2

bγ(ϕ− θ){g(x1, ϕ)− g(x1, θ)}dϕ

+

∫ 0

−π/2

bγ(−ψ − π − θ){g(x1, ψ)− g(x1, θ)}dψ (ψ = −π − ϕ)

+

∫ π/2

0

bγ(π − ψ − θ){g(x1, ψ)− g(x1, θ)}dψ (ψ = π − ϕ)

=

∫ π/2

−π/2

{bγ(ϕ− θ) + bγ(π − ϕ− θ)}{g(x1, ϕ)− g(x1, θ)}dϕ, (16)

where the relation

bγ(−ψ − θ − π) = bγ(ψ + θ + π) = bγ(ψ + θ − π) = bγ(π − ψ − θ), (17)

has been used. Moreover, by using (14c), the problem (6) is reduced to the
following problem in −1/2 < x1 < 0 and −π/2 < θ < π/2:

sin θ
∂g

∂x1
= Cγ [g], (18a)

Cγ [g] =

∫ π/2

−π/2

{bγ(ϕ− θ) + bγ(π − ϕ− θ)}{g(x1, ϕ)− g(x1, θ)}dϕ, (18b)

b.c.

{
g(0, θ) = −g(0,−θ) −π/2 < θ < 0

g(−1/2, θ) = 1 0 < θ < π/2
. (18c)
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Since bγ,ϵ matches the same relation (17) as bγ , the problem (18) is written
for the corresponding cutoff potential by simply replacing Cγ with Cγ,ϵ:

sin θ
∂g

∂x1
= Cγ,ϵ[g], (19a)

Cγ,ϵ[g] =

∫ π/2

−π/2

{bγ,ϵ(ϕ− θ) + bγ,ϵ(π − ϕ− θ)}{g(x1, ϕ)− g(x1, θ)}dϕ,

(19b)

b.c.

{
g(0, θ) = −g(0,−θ) −π/2 < θ < 0

g(−1/2, θ) = 1 0 < θ < π/2
. (19c)

Remind that Cγ can be treated as

Cγ [g] = C+
γ [g]− νγg, (20a)

C+
γ [g] =

∫ π/2

−π/2

{bγ(ϕ− θ) + bγ(π − ϕ− θ)}g(x1, ϕ)dϕ, (20b)

only when −1 < γ. When −3 < γ ≤ −1, it is Cγ,ϵ which can be treated
separately:

Cγ,ϵ[g] = C+
γ,ϵ[g]− νγ,ϵg, (21a)

C+
γ,ϵ[g] =

∫ π/2

−π/2

{bγ,ϵ(ϕ− θ) + bγ,ϵ(π − ϕ− θ)}g(x1, ϕ)dϕ. (21b)

3 Methods of Numerical Analyses

In numerically treating the problem formulated in Sec. 2.3, the grid points
in θ-space are arranged to be symmetric with respect to θ = 0 in the region
−π/2 ≤ θ ≤ π/2 so as to make 2N small intervals in both the positive and
negative side:

0 = θ(0) < θ(1) < · · · < θ(2N−1) < θ(2N) =
π

2
, θ(−j) = −θ(j), (j = 1, . . . , 2N).

Two different methods are prepared. One is a method making use of the nu-
merical kernel [21] as in Ref. [22] and is referred to as the direct method in the
present paper. The direct method is able to treat (20) and (21) without numer-
ical (or unphysical) oscillation, even when g has a jump discontinuity at θ = 0
on the boundary; see Appendix A. This is the primary merit of the method
and makes it suitable for the finite-range and the cutoff potential cases. As
will be observed later through the results for the infinite-range potential, the
jump discontinuity tends to vanish as ϵ→ 0, but the collision integral instead
tends to diverge at θ = 0 on the boundary, i.e., in the direction parallel to the
boundary. This implies that a weaker formulation is unavoidable to study the
infinite-range potential and motivates another approach using the Galerkin
method.
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Since the jump discontinuity is expected not to appear for the infinite-range
potential, g(x1, θ) is approximated by the set of quadratic basis functions
continuously. Then, the problem (18) is discretized by the projection into
the space of the same basis functions in the Galerkin method. If the same
is applied to the cutoff potential (19), artificial oscillations occur due to the
jump discontinuity. However, as will be observed later in Sec. 4, it affects little
to the behavior of ρg.

3.1 Direct Method for the Finite-Range and the Cutoff Potential

For the finite-range and the cutoff potential, the collision integral can be split
into the loss and the gain term safely, and the problem is formally solved as

g(x1, θ) =



e−
ν

sin θ (x1+
1
2 ) +

∫ x1

−1/2

1

sin θ
C+[g](s, θ)e−

ν
sin θ (x1−s)ds,

(0 < θ < π/2, −1/2 < x1 < 0),

−g(0,−θ)e− ν
sin θ x1 +

∫ x1

0

1

sin θ
C+[g](s, θ)e−

ν
sin θ (x1−s)ds,

(−π/2 < θ < 0, −1/2 < x1 < 0),

where the subscript γ and ϵ are omitted in C+ and ν, since there is no need
of discrimination in the present context, while the arguments of C+[g] are
indicated explicitly for clarity. The same omission convention will be applied
in what follows, unless any confusions/ambiguities are expected. In the direct
method, the solution g is constructed by iteration from its initial guess. In this
process, by substituting g of the following approximation (the expansion in
terms of the quadratic basis functions {Yj(θ)}, see Appendix A):

g(x1, θ) =

2N∑
j=−2N

gj(x1)Yj(θ), (22)

with gj≷0 being the value on the grid points in θ ≷ 0, the C+[g] at the grid
point θ = θ(i) is expressed as C+[g](s, θ(i)) =

∑2N
j=−2N gj(s)C

+[Yj ](θ
(i)). In

this expression, the discrimination between j = ±0 is made when there is a
jump discontinuity of g at θ = 0. Although the analytical expression of C+[Yj ]
in θ is obtained [see Appendix A, especially the descriptions below (35) there,
for more details], C+[Yj ](θ

(i)) at the grid point of θ are stored beforehand as
the numerical kernel [21] in order to avoid repeating the same computation
in the iteration in solving g. The integration with respect to s is performed
analytically after the quadratic interpolation of the data C+[g](s, θ) at the
discrete position in s.
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3.2 Galerkin Method

In the Galerkin method [23], irrespective of whether or not g has a jump dis-
continuity in θ, the approximate expression (22) of g in terms of the quadratic
basis functions {Yj(θ)} is used as it stands, i.e., without the discrimination
between j = ±0. More precisely, even for the finite-range and the cutoff po-
tential, where g is expected to have a jump discontinuity, (22) with g0 = g−0

will be used in the solution process (see Appendix A). Before going into de-
tails, it should be noted that, thanks to the symmetric arrangement of the grid
points θ(j), it holds that Yj(θ) = Y−j(−θ) and that gj(x1) = −g−j(−x1) from
the property (14c).

In order to construct the numerical procedure by the Galerkin method, first
substitute (22) into (18a) with (18b) and then integrate the result multiplied
with Yi(θ) (i = −2N, . . . , 2N) with respect to θ. The result is that

2N∑
j=−2N

Ai,j
dgj
dx1

=

2N∑
j=−2N

Di,jgj , (23)

Ai,j =

∫ π/2

−π/2

Yi(θ)Yj(θ) sin θ dθ,

Di,j =

∫ π/2

−π/2

Yi(θ)C[Yj ](θ)dθ.

Here again the subscripts γ and ϵ to C are omitted. Note that the integration
in the definitions of Ai,j and Di,j can be done analytically and that

Ai,j = Aj,i = −A−i,−j , (i, j = 0,±1, . . . ,±2N), (24a)
A−i,j = Ai,−j = 0, (i, j = 1, . . . , 2N), (24b)

by definition. Moreover, Di,j = Dj,i holds, since C is self-adjoint. In order to
solve (23), it is relevant to check whether or not the following (4N+1)×(4N+
1)-symmetric matrix A is regular:

A ≡ [Ai,j ] =



A−2N,−2N · · · A−2N,−1 A−2N,0 A−2N,1 · · · A−2N,2N

...
. . .

...
...

...
. . .

...
A−1,−2N · · · A−1,−1 A−1,0 A−1,1 · · · A−1,2N

A0,−2N · · · A0,−1 A0,0 A0,1 · · · A0,2N

A1,−2N · · · A1,−1 A1,0 A1,1 · · · A1,2N

...
. . .

...
...

...
. . .

...
A2N,−2N · · · A2N,−1 A2N,0 A2N,1 · · · A2N,2N


.

By direct calculations, it was observed that A is not full rank and is rank
deficient by one when N = 1, 2, 3. This strongly suggests that the rank defi-
ciency is due to the factor sin θ in front of the spatial derivative of g in (18a)
is zero and the differential equation degenerates at θ = 0; thus the same rank
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deficiency is expected for other integer N . In what follows, the numerical pro-
cedure is constructed by supposing rankA = 4N , i.e., the rank deficiency by
one.

Thanks to the property (24), the matrix A is expressed as

A = [Ai,j ] =

[
A(−) 0

0 A(+)

]
(i < 0)
(i > 0)

, (25)

(j < 0), (j > 0)

where indicates the row i = 0,
∣∣∣ indicates the column j = 0, and A(+)

and A(−) are 2N × 2N symmetric matrices. The row i = 0 and the column
j = 0 vector are non-zero. From (24), it is clear that A0,0 = 0 and that
A

(+)
i,j = −A(−)

−i,−j , implying that both A(+) and A(−) are regular under the
assumption rankA = 4N . Consequently, it follows that the j > 0 part of the
row i = 0 of A is expressed by the linear combination of the row vectors of A(+),
while the j < 0 part of the same row is expressed by the linear combination of
the row vectors of A(−). That is, there are two sets of constants {c1, . . . c2N}
and {c̃1, . . . c̃2N} such that

A0,j =

2N∑
i=1

ciA
(+)
i,j , (j > 0),

A0,−j =

2N∑
i=1

c̃iA
(−)
−i,−j = −

2N∑
i=1

c̃iA
(+)
i,j , (j > 0).

Since A0,−j = −A0,j by (24), it follows that ci = c̃i and that

ci =

2N∑
j=1

A0,jA
(+)−1
j,i , (i = 1, 2, . . . 2N).

By the same ci, it is seen that

2N∑
i=1

ci(Ai,0 +A−i,0) =

2N∑
i=1

ci(Ai,0 −Ai,0) = 0 = A0,0.

Hence, the row vector i = 0 of A is recovered by the linear combination of the
other row vectors with coefficients {ci}.

Now, on one hand, (23) with i = 0 is

2N∑
j=−2N

A0,j
dgj
dx1

=

2N∑
j=−2N

D0,jgj ,
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while, on the other hand, since A0,j is expressed by the combination of the
other rows, the left-hand side is rewritten as

L.H.S. =
2N∑

j=−2N

{
2N∑
i=1

ci(Ai,j +A−i,j)}
dgj
dx1

=

2N∑
j=−2N

{
2N∑
i=1

ci(Di,j +D−i,j)}gj .

Hence, it follows that

2N∑
j=−2N

{
D0,j −

2N∑
i=1

ci(Di,j +D−i,j)
}
gj = 0.

By putting

D̃j ≡ D0,j −
2N∑
i=1

ci(Di,j +D−i,j), (j = −2N, . . . 2N),

and further assuming D̃0 ̸= 0,4 g0 is expressed as

g0 = − 1

D̃0

2N∑
j=1

(D̃jgj + D̃−jg−j). (26)

After the preparation above, the problem is reduced to solving the following
problem for gj with j ̸= 0 that is obtained by the substitution of (26) to (23):∑

j ̸=0

Ai,j
dgj
dx1

=
∑
j ̸=0

Di,jgj , (i = ±1, · · · ± 2N),

Ai,j = Ai,j −
Ai,0

D̃0

D̃j , Di,j = Di,j −
Di,0

D̃0

D̃j .

It should be noted that, although A without i = 0 row and without j = 0
column is regular, it is not clear whether or not A = [Aij ] is regular. Never-
theless, it is natural to suppose that A is regular. Then, the problem is further
reduced to

dgi
dx1

=
∑
j ̸=0

Di,jgj , (i = ±1, · · · ± 2N), (27)

Di,j =
∑
k ̸=0

A
−1

i,kDk,j , (i, j = ±1, · · · ± 2N),

and to the eigenvalue problem of the new 4N × 4N matrix D = [Di,j ].

4 The validity of this assumption should be checked numerically. It is reasonable, however,
since the derivative term degenerates when θ = 0 and the solution for θ = 0 is determined
solely by the collision term C[g]. Equation (26) below is its reflection.
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In order to study the eigenvalue problem of D, first go back to the (4N +
1) × (4N + 1) matrix D ≡ [Di,j ], which is a discrete version of C[g]. Then,
the (4N + 1)-dimensional unit vector t(1, . . . , 1)/

√
4N + 1 corresponding to

g = 1/π, the null (or the collision invariant) of C, is the eigenvector for the
eigenvalue zero of D, where the superscript t indicates the transpose of the
row vector. Then, since Di,0 = 0 by construction, it holds that Du(0) = 0

and Du(0) = 0, where D ≡ [Di,j ] (i, j = ±1, . . . ,±2N) is a 4N × 4N matrix
and u(0) ≡ t(1, . . . , 1)/

√
4N is a 4N -dimensional unit vector. That is, u(0)

is the eigenvector for the eigenvalue zero of D and D. Moreover, thanks to
the symmetric arrangement of grid points in θ-space and the symmetry of the
problem (14c), the eigenvalues of D appear pairwise in the sense that if λ is
a nonzero-eigenvalue, −λ is also the eigenvalue and the eigenvector for λ and
that for −λ have the reversed order of components each other. Because of the
pairwise occurrence of nonzero eigenvalues, the eigenvalue zero ought to be
multiple, since D has 4N eigenvalues. Now assume that the multiplicity of the
eigenvalue zero is two and denote the other 4N − 2 non-zero eigenvalues by
λq (q = ±1,±2, . . . ,±2N ∓ 1), where it is set that λq = −λ−q and the real
part of λq>0 is positive. Further supposing that λq ̸= λp for q ̸= p,5 the unit
eigenvectors u(q) for the eigenvalue λq form the basis of the 4N -dimensional
vector space together with the unit eigenvector u(0) and the unit generalized
eigenvector u∗ for the eigenvalue zero, where u∗ is chosen to be perpendicular
to u(0) for the later convenience. Then, making the matrix P as

P = [u(−2N+1), . . . ,u(−1),u(1), . . . ,u(2N−1),u(0),u∗]

and multiplying its inverse P−1 with (27) from the left result in

dzi
dx1

=
∑
j ̸=0

Mi,jzj , (i = ±1, · · · ± 2N), (28)

where

z = P−1g, (29)

M = P−1DP =



λ−2N+1

. . . 0
λ−1

λ1
. . .

0 λ2N−1

0 ξ
0 0


, (30)

5 The property λq ̸= λp for q ̸= p has been confirmed numerically. It has also been found
that λ’s are all real, though they are not obvious beforehand.
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with ξ being a certain constant. It is easy to solve (28) as

z =



η−2N+1e
λ−2N+1(x1+

1
2 )

...
η−1e

λ−1(x1+
1
2 )

η1e
λ1(x1− 1

2 )

...
η2N−1e

λ2N−1(x1− 1
2 )

η∗ξx1 + η0
η∗


,

and thus g(= Pz) is obtained in the form:

g(x1) =

2N−1∑
q=1

{ηqeλq(x1− 1
2 )u(q) + η−qe

λ−q(x1+
1
2 )u(−q)}

+ (η∗ξx1 + η0)u(0) + η∗u∗

=

2N−1∑
q=1

{ηqeλq(x1− 1
2 )u(q) + η−qe

−λq(x1+
1
2 )u(−q)}

+ (η∗ξx1 + η0)u(0) + η∗u∗, (31)

where λq = −λ−q has been used. The η0, η∗, η±1, . . . , η±(2N−1) are unknown
constants and will be determined by using the conditions at x1 = 0 and x1 =
−1/2.

Consider first the condition at x1 = 0. Let a− be a with its component
order reversed. Then, the condition at x1 = 0 is written as g(0) = −g−(0). In
the meantime, the expression (31) yields

g(0) =

2N−1∑
q=1

ηqe
−λq/2u(q) +

2N−1∑
q=1

η−qe
−λq/2u(−q) + η0u(0) + η∗u∗, (32)

and thus

g−(0) =

2N−1∑
q=1

e−λq/2{ηqu−
(q) + η−qu

−
(−q)}+ η0u

−
(0) + η∗u

−
∗ .

Since u(q) = u−
(−q), the second equation above is rewritten as

g−(0) =

2N−1∑
q=1

e−λq/2{ηqu(−q) + η−qu(q)}+ η0u(0) + η∗u
−
∗ , (33)
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where u(0) = u−
(0) has been used as well. Since u∗ ⊥ u(0), it also holds that

u−
∗ ⊥ u−

(0); thus u−
∗ is also perpendicular to u(0). Now let u−

∗ expressed as

u−
∗ = ζ0u(0) + ζ∗u∗ +

2N−1∑
q=1

(ζ−qu(−q) + ζqu(q)).

Since {u−
(q)} and {u(q)} span the same vector space, neither u∗ nor u−

∗ belongs
to that space. Hence, by putting the first two terms on the right-hand side to
the left-hand side:

u−
∗ − ζ∗u∗ − ζ0u(0) =

2N−1∑
q=1

(ζ−qu(−q) + ζqu(q)),

it is found that ζ±q = 0 (q = 1, . . . , 2N − 1). Then, the inner product with
u(0) shows that ζ0 = 0. Therefore,

u−
∗ = ζ∗u∗,

and the substitution into (33) gives

g−(0) =

2N−1∑
q=1

e−λq/2{ηqu(−q) + η−qu(q)}+ η0u(0) + η∗ζ∗u∗.

Finally, comparing with (32) and taking account of the property g(0) =
−g−(0), the following relations are obtained:

η0 = 0, η∗ = −η∗ζ∗, ηq = −η−q (q = 1, . . . , 2N − 1).

Note that u∗ is a unit vector and thus |ζ∗| = 1. It is numerically checked that
u−
∗ = −u∗ actually, i.e., ζ∗ = −1. Therefore, η∗ and ηq (q = 1, . . . 2N − 1) still

remains unknown. In order to determine them, finally consider the condition
at x1 = −1/2. To this end, use the expression

g(−1/2) =

2N−1∑
q=1

ηqe
−λqu(q) +

2N−1∑
q=1

η−qu(−q) −
1

2
η∗ξu(0) + η∗u∗

=

2N−1∑
q=1

ηq{e−λqu(q) − u−
(q)} −

1

2
η∗ξu(0) + η∗u∗,

and take its components with a positive subscript, where g =t [g−2N, . . . , g−1, g1, . . . , g2N ].
Then, by the condition at x1 = −1/2, the components g1, . . . , g2N at x1 =
−1/2 are all unity and thus the above expression gives 2N equations for 2N
unknown constants η∗ and ηq (q = 1, . . . 2N −1). Thus the construction of the
numerical procedure is completed.

To summarize, in the construction process, it is optimistically supposed
that
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1. rankA = 4N ;
2. D̃0 ̸= 0;
3. A is regular;
4. the multiplicity of the eigenvalue zero is two and nonzero eigenvalues are

not multiple: λp ̸= λq for p ̸= q.

These properties have been confirmed numerically to be valid, so that the
constructed procedure has worked well actually.

Before closing this section, there are two things that should be remarked.
Firstly, the present method is applicable for infinite-range potentials with γ >
−2 only, since the piecewise quadratic approximation of g does not guarantee
the continuity of its derivative with respect to θ. Secondly, on the boundary
x1 = −1/2, the boundary condition is adopted to represent the value of g+0

in the computation, since g+0 for x1 = −1/2 does not necessarily coincides
with the value of g0 ≡ g−0. It is, however, expected that g±0 are the same
for −3 < γ ≤ −1, because of the regularizing effect of the grazing collision.
Indeed, the computed g0 is very close to g+0, and furthermore, as the grid
intervals are refined, the tiny difference of the computed g0 from g+0 tends to
vanish.

4 Results and Discussions

4.1 Numerical Results

According to the literature, e.g., Refs. [3,4,5,6,24], in the case of a hard-sphere
gas and the relaxation-type models [e.g., the Bhatnagar–Gross–Krook (BGK),
the Ellipsoidal Statistical (ES) model], the velocity distribution function has
a jump discontinuity on the boundary in the molecular velocity space in the
direction parallel to the boundary, which causes the diverging derivative of
moment in the normal direction in approaching the boundary (the moment
singularity, for short). In the case of the flat boundary, the diverging rate is
logarithmic in the distance from the boundary [4,5,25,24], which was first
pointed out in the analyses of the Rayleigh problem by Sone [25] and of the
structure of the Knudsen layer [24] on the basis of the BGK model. The essence
of the logarithmic moment singularity can be understood by the damping
model in Ref. [4] that is based on the strong damping of the jump discontinuity
on the boundary by the loss term for the finite-range potential. The jump
discontinuity and logarithmic moment singularity for the finite-range and the
cutoff potential are the key tests of the present approach via of the Lorentz-gas
model.

Figure 1 shows the profiles of g for the finite-range potential with γ = 1
(the hard-disk) and the cutoff potential with γ = −3/2 (the cutoff Maxwell
molecule). As is seen in Fig. 1(a), there is a jump discontinuity at θ = 0
on the boundary x1 = −1/2, which vanishes even immediately away from
the boundary [Figs. 1(b) and (c)]. Figure 2(a) shows the profile of ρg, more
precisely |SE[ρg]| = |ρg(x1) − ρg(−1/2)| divided by the distance from the
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Fig. 1 Reduced VDF g for the finite-range (γ = 1) and the cutoff potential (γ = −3/2)
with ϵ = 0.1 and 0.01. (a) x1 = −1/2, (b) x1 = −1/2 + 0.106 × 10−3, and (c) x1 =
−1/2 + 0.520× 10−1.

boundary (see Appendix B), near the boundary for the same case as Fig. 1
with the abscissa being the logarithmic scale. Because it shows a nearly straight
line for s ≡ x1+1/2 ≲ 10−6, SE[ρg] (or ρg) changes in proportion to s ln s from
its value on the boundary. In other words, dρg/dx1 diverges logarithmically in
approaching the boundary. Hence, the moment singularity studied in Refs. [4,
5,24,7] is well reproduced by the present Lorentz-gas model.

Next, the results for the cutoff potential with γ = −3/2 for various values
of ϵ down to 10−6 from 10−1 are shown in Figs. 2(b) and 2(c). Again, |SE[ρg]|
divided by the distance from the boundary is shown in Fig. 2(b), but as the
log-log plot. It is observed that the profiles for different ϵ forms an envelope
outside the region of logarithmic change in Fig. 2(a) and that the envelope ex-
tends towards the boundary as ϵ decreases. Although it is not enough clear in
Fig. 2(b), the envelope follows the power law of the distance s, which is clearly
demonstrated in Fig. 2(c), where |KR[ρg]| (in place of |SE[ρg]|) divided by the
distance is shown as the log-log plot, following an efficient estimate method by
Koike [26] (see Appendix B for the definition of KR), in order to pick up the
asymptotic behavior of ρg near the boundary efficiently. The envelope part be-
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Fig. 2 Variations of ρg near the boundary as a function of the normal distance s ≡ x1+1/2
from the boundary for the finite-range (γ = 1) and the cutoff potential (γ = −3/2) with
various sizes of cutoff ϵ. (a) |SE[ρg ]|/s in the semilog plot, (b) |SE[ρg ]|/s in the log-log plot,
and (c) |KR[ρg ]|/s.

comes nearly straight in Fig. 2(c) with its slope very close to −1/5;6 |KR[ρg]|
divided by the distance is proportional to s−1/5 there. Furthermore, the en-
velope extends again toward the boundary as ϵ → 0. This strongly suggests
that, for the infinite range potential, the logarithmic divergence observed in
the cutoff potential does not occur and instead the diverging rate becomes
stronger, here s−1/5 for γ = −3/2. In order to confirm it, the computation
for the infinite-range potential with γ = −3/2 has been carried out by the
Galerkin method. The result is shown in Fig. 3. The results obtained by the
Galerkin method applied to the cutoff potential are also shown for compar-
isons with those obtained by the direct method for the reliability assessment of
both methods. Excellent agreement is achieved both in Figs. 3(a) and 3(b). As
expected, the envelope extends indeed down to the boundary for the infinite-
range potential. From Fig. 3(b), the slope of |KR[ρg]| divided by the distance

6 The horizontal straight part shows that |KR[ρg ]| divided by the distance s is proportional
to ln s there.
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Fig. 3 Variations of ρg near the boundary as a function of the normal distance s ≡ x1+1/2
from the boundary for the infinite-range and the corresponding cutoff potential (γ = −3/2).
(a) |SE[ρg ]|/s and (b) |KR[ρg ]|/s. The solid lines indicate the results by the Galerkin method.
The dashed lines the results by the direct method. The latter agree well with the former
and are almost invisible except for the left end in (b).

is estimated as −1/5. This confirms that dρg/dx1 diverges with the rate s−1/5

in approaching the boundary (i.e., as s→ 0).
Incidentally, the computation of |KR[ρg]| can be sensitive to the round off

errors, compared with the simpler computation of |SE[ρg]|. Accordingly, the
unnatural change of profile is observed for very small value of s in the results
of the direct method, because its numerical code makes use of the double
precision arithmetic. Such unnatural behavior is not observed in the results of
the Galerkin method, where the numerical code fully makes use of the multiple
precision arithmetic with the aid of efficient libraries: exflib [27] by Fujiwara
and Python-FLINT [28] by Johansson.

4.2 Discussions

In viewing the existing works for the finite-range potential, the diverging gra-
dient of macroscopic quantities originates from the jump discontinuity of the
VDF on the boundary. In this sense, it is striking that the singularity of diverg-
ing gradient occurs (more strongly) for the infinite-range potential in spite of
the fact that the grazing collision regularizes g to have no jump discontinuity
on the boundary as shown in Fig. 4(a); see also Fig. 4(b) for other values of γ.
We show below two clue observations that give the hints to this unexpected
result.

The first clue is the collision term C[g]. For the finite-range potential, the
singular feature of C[g] is confined in the loss term as the jump discontinuity
of g and the gain term C+[g] behaves smoothly as demonstrated in Fig. 5 (see
the case γ = 1). For the cutoff potential, however, C+[g] changes steeply for
θ ∼ 0, losing the smooth feature observed for the finite range potential (see
Fig. 5 for γ = −3/2 with small ϵ). Accordingly, even after combined with the
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Fig. 4 Reduced VDF g for the infinite-range potential on and away from the boundary. (a)
γ = −3/2, (b) γ = −4/3 and −7/6.

Fig. 5 Gain term divided by the collision frequency for the finite-range (γ = 1) and the
cutoff potential (γ = −3/2) with ϵ = 0.1, 0.01, 0.001: C+

−3/2,ϵ
[g]/ν−3/2,ϵ and C+

1 [g]/ν1. (a)
x1 = −1/2, (b) x1 = −1/2 + 0.106× 10−3, and (c) x1 = −1/2 + 0.520× 10−1.
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Fig. 6 Collision integral for the finite-range (γ = 1) and the cutoff potential (γ = −3/2)
on the boundary x1 = −1/2: C−3/2,ϵ[g] and C1[g]. (a) C−3/2,ϵ[g] and C1[g] as functions of
θ/π, (b) close-up of (a), and (c) C−3/2,ϵ[g] for |θ| ≥ ϵ. In (c), the data C−3/2,ϵ[g] are plotted
for various values of ϵ and the data at |θ| = ϵ are indicated by a symbol.

loss term, the collision integral C[g] changes steeply and tends to diverge as
θ → 0; see Figs. 6(a) and 6(b). Figure 6(c) shows the behavior of C−3/2,ϵ[g] on
the boundary for various values of ϵ, which strongly suggests that C−3/2[g] on
the boundary diverges in the limit θ → 0 with the rate |θ|−3/10.7 The grazing
collision induces, even if locally, the divergence of the collision integral, as the
price for regularizing the VDF. The trade-off makes the situation worse in the
moment singularity.

The second clue is the correspondence among the eigenvalues λ±1, · · · , λ±(2N−1)

and coefficients η±1, · · · , η±(2N−1) that occur in the exponential elements; see
(31). Thanks to (22), ρg is expressed as

ρg(x1) =

2N∑
j=−2N

gj(x1)wj , wj =
1

π

∫ π/2

−π/2

Yj(θ)dθ.

7 The diverging rate is expected to be |θ|γ
γ+1
γ−1 (or |θ|γ/n) by additional observations for

other values of γ in ]− 3,−1[, though they are omitted in the present paper.
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Then, the substitution of (26) gives

ρg(x1) =
∑
j ̸=0

gj(x1){wj −
D̃j

D̃0

w0},

which is further transformed by the substitution of (31) as follows:

ρg(x1) =
∑
j ̸=0

[ 2N−1∑
q=1

{ηqeλq(x1− 1
2 )u(q)j + η−qe

−λq(x1+
1
2 )u(−q)j}

+ η∗ξx1u(0)j + η∗u∗j

]
{wj −

D̃j

D̃0

w0}

=

2N−1∑
q=1

{W(q)e
λq(x1− 1

2 ) +W(−q)e
−λq(x1+

1
2 )}+ ξx1W(0) +W∗

=

2N−1∑
q=1

W(q){eλq(x1− 1
2 ) − e−λq(x1+

1
2 )}+ ξx1W(0) +W∗,

where

W(q) =
∑
j ̸=0

{wj −
D̃j

D̃0

w0}ηqu(q)j = −W(−q),

W(0) =
∑
j ̸=0

{wj −
D̃j

D̃0

w0}η∗u(0)j , W∗ =
∑
j ̸=0

{wj −
D̃j

D̃0

w0}η∗u∗j ,

and η0 = 0 has been used. Figure 7 shows W(q) vs λq and ∆λq vs λq for
the infinite-range potential with γ = −3/2, where ∆λq = λq − λq−1 and λq

increases indefinitely as q → ∞. From the figure, it is seen that W(q) ∝ λ
−4/5
q

and ∆λq ∝ λq as λq (or q) increases. Then, as is often done in the statistical
mechanics for large N , the summation with respect to q is well estimated by
the integration as

∑2N−1
q=1 W(q)e

−aλq =
∫∞
λ1
W (λ)e−aλdλ for a > 0, where W ,

λ, and dλ are the appropriate continuous counterparts of W(q)/∆λq, λq, and
∆λq. For the present purpose of the diverging rate estimate, the lower bound of
the integration range λ1 may be replaced by unity, because only the behavior
of the integrand for large λ is relevant.

Hence, because of Fig. 7, W (λ) ∼ λ−9/5 for γ = −3/2, and the singular
behavior of ρg can be estimated by∫ ∞

1

λ−9/5 exp(−λs)dλ =
5

4
−

5π sec( 3π10 )

4Γ ( 45 )
s4/5 +O(s).

By taking the derivative with respect to s, the diverging rate s−1/5 of dρg/dx1
is reproduced.
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Fig. 7 Weight W(q) and the interval of eigenvalues ∆λq against the eigenvalue λq for the
infinite-range potential (γ = −3/2). (a) W(q) and (b) ∆λq . In the plot, the data for the
grid system for θ with N = 688 are used, where the grid points next to the origin are
θ(±1) = ±1.05× 10−17.

4.3 Conjecture on the Diverging Rate for Infinite-Range Potentials

From the detailed observations on the case γ = −3/2, it is conjectured for
γ < −1 that

W (λ) ∼ λ
2

γ−1−1 = λ
1
n−2 as λ→ ∞, (34)

and that the diverging rate of dρg/dx1 is s−
γ+1
γ−1 = s−1/n. Indeed, this conjec-

ture recovers the second clue part of Sec. 4.2. When γ = −7/6 (or n = 13), it
gives

W (λ) ∼ λ−25/13 as λ→ ∞,∫ ∞

1

λ−25/13 exp(−λs)dλ =
13

12
−

13π sec( 1126π)

12Γ ( 1213 )
s12/13 +O(s),

and predicts the diverging rate of s−1/13; when γ = −4/3 (or n = 7), it gives

W (λ) ∼ λ−13/7 as λ→ ∞,∫ ∞

1

λ−13/7 exp(−λs)dλ =
7

6
−

7π sec( 5
14π)

6Γ ( 67 )
s6/7 +O(s),

and predicts the diverging rate of s−1/7. The prediction rates for γ = −4/3,−7/6
are also confirmed numerically, as shown in Fig. 8.

Furthermore, when γ = −2 (or n = 3), it gives

W (λ) ∼ λ−5/3 as λ→ ∞,∫ ∞

1

λ−5/3 exp(−λs)dλ =
3

2
−

√
3π

Γ ( 23 )
s2/3 +O(s),
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Fig. 8 W(q)/∆λq against the eigenvalue λq and the variation of ρg near the boundary for
the infinite-range potential in the case γ = −4/3,−7/6. (a) W(q)/∆λq and (b) |KR[ρg ]|.
In (b) the cases for the finite-range potential (γ = 1 and γ = ±1/2) are also shown for
reference. For (a), see the caption of Fig. 7 as well.

Fig. 9 Variation of ρg for the cutoff potential for γ = −2 and −7/3 with various sizes of
cutoff ϵ. (a) γ = −2 and (b) γ = −7/3. See (38) in Appendix B for KR[ρg ].

and predicts the diverging rate of s−1/3; when γ = −7/3 (or n = 5/2), it gives

W (λ) ∼ λ−8/5 as λ→ ∞,

∫ ∞

1

λ−8/5 exp(−λs)dλ =
5

3
−

5π sec( π
10 )

3Γ ( 35 )
s3/5 +O(s),

and predicts the diverging rate of s−2/5. Although the direct numerical as-
sessment is not available for γ ≤ −2 at present, an alternative assessment is
possible by numerically observing the asymptotic behavior of the envelope in
|KR[ρg]|/s for small ϵ’s by using the direct method; the results support the
prediction for γ = −2 and −7/3; see Fig. 9.



25

To summarize, the diverging rate is logarithmic for the finite-range (−1 <
γ ≤ 1) and the cutoff potential [see Fig. 2 and Fig. 8(b) for γ = ±1/2], while
it is s−

γ+1
γ−1 = s−1/n for the infinite-range potential with −3 < γ < −1.8

5 Conclusion

Using a mono-speed Lorentz-gas model, the moment singularity near the flat
boundary has been investigated. First, the logarithmic moment singularity in
approaching the boundary is checked to be reproduced for the finite-range
and the cutoff potentials by the Lorentz-gas model. The jump discontinuity
of the velocity distribution function is also reproduced well on the bound-
ary. Then, by using the Galerkin method for the infinite-range potential, it
is demonstrated that the grazing collision indeed has the regularizing effect
on the velocity distribution function and that the jump discontinuity disap-
pears on the boundary. Surprisingly however, the moment singularity is not
weakened but rather strengthened to be of the inverse power of the distance
from the boundary. This is due to the fact that the collision integral becomes
locally infinite in the molecular velocity direction parallel to the boundary
(θ = 0) as the price for the regularization of the VDF on the boundary. By
detailed analyses of the high-resolution numerical data, a conjecture is made
for the prediction of the diverging rate for the infinite range potential with
−3 < γ < −1. The validity of prediction is numerically confirmed for different
values of γ. In conclusion, the diverging rate is logarithmic for the finite-range
(−1 < γ ≤ 1) and the cutoff potential, while it is s−

γ+1
γ−1 = s−1/n for the

infinite-range potential with −3 < γ < −1.
Finally, by the present work, it is strongly suggested that for the infinite-

range potential the collision integral of the standard Boltzmann equation does
not remain finite on the boundary and that the moment singularity is induced
as well near the boundary. The rate expected near the planar boundary is of
the inverse-power which is stronger than the logarithmic rate for the finite-
range and the cutoff potential.

A Basis Functions

For the sake of the numerical convenience, the grid points in θ-space are arranged to be
symmetric with respect to θ = 0 in the region −π/2 ≤ θ ≤ π/2 so as to make 2N small
intervals in both the positive and negative side:

0 = θ(0) < θ(1) < · · · < θ(2N−1) < θ(2N) = π/2, θ(−j) = −θ(j), (j = 1, . . . , 2N).

The size of the intervals is not uniform and is smaller near θ = 0 so that many grid points
are around there. Then the following basis function set {Yi(θ)} (i = −2N, . . . , 2N) is used

8 For γ = −1, the above conjecture predicts the logarithmic rate. This setting is, however,
not realized by a fixed value of n, but realized only in the limit n → ∞. The case γ = −1
is thus marginal. Indeed, the decisive evidence was not obtained numerically by the direct
method for the cutoff case, even from the data ranging from ϵ = 10−1 down to 10−9.
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for the piecewise quadratic approximation of a function of θ:

Y2ℓ(θ) =



(θ − θ(2ℓ+1))(θ − θ(2ℓ+2))

(θ(2ℓ) − θ(2ℓ+1))(θ(2ℓ) − θ(2ℓ+2))
, θ(2ℓ) < θ < θ(2ℓ+2), −N ≤ ℓ < N,

(θ − θ(2ℓ−1))(θ − θ(2ℓ−2))

(θ(2ℓ) − θ(2ℓ−1))(θ(2ℓ) − θ(2ℓ−2))
, θ(2ℓ−2) < θ < θ(2ℓ), −N < ℓ ≤ N,

0, otherwise,

Y2ℓ+1(θ) =


(θ − θ(2ℓ))(θ − θ(2ℓ+2))

(θ(2ℓ+1) − θ(2ℓ))(θ(2ℓ+1) − θ(2ℓ+2))
, θ(2ℓ) < θ < θ(2ℓ+2), −N ≤ ℓ < N,

0, otherwise.

By definition, Yj(θ) = Y−j(−θ) and that Y0(θ) is even in θ.
In the direct method, Y±0(θ) = Y0(θ)H(±θ) is also prepared to express the jump

discontinuity of g at θ = 0, where H(θ) is the Heaviside function. Using the notation
g±0(x1) = g(x1, θ = ±0), the g having a jump discontinuity at θ = 0 is approximated by

g(x1, θ) =

2N∑
i=1

{g−i(x1)Y−i(θ) + gi(x1)Yi(θ)}+ g−0(x1)Y−0(θ) + g+0(x1)Y+0(θ). (35)

If there is no jump discontinuity, g is simply approximated by g =
∑2N

i=−2N giYi(θ) with the
simplified notation g0(x1) ≡ g±0(x1). Accordingly, the numerical kernel used in the direct
method takes the form C+[g] =

∑2N
i=1{g−iC

+[Y−i]+giC
+[Yi]}+g−0C+[Y−0]+g+0C+[Y+0]

or C+[g] =
∑2N

i=−2N giC
+[Yi], depending on whether the jump discontinuity exists or not.

The analytical expression of C+[Yi] is available with the aid of the series expansion of
| sin φ

2
|γ . Although it is truncated by a finite number of terms, the expression is helpful to

perform the accurate numerical computation. The same applies to the Galerkin method, i.e.,
both Aij and Dij can be obtained analytically as well even for the infinite-range potential.
The highly accurate computations with the multiple precision arithmetic are achieved in
this way.

B Acceleration Method for Estimating the Asymptotic Behavior

In the present study, an acceleration method proposed in Ref. [26] that makes use of the
Richardson extrapolation is found to be very powerful in estimating the asymptotic behavior
of the density in approaching the boundary. The method is briefly explained in this appendix.

Suppose that a function f of x(≥ X) behaves

f(x) ∼ f(X) + aαs
α + a1s+ o(s), (36)

for x ∼ X, where s = x−X and 0 < α < 1 is an unknown constant. In the application to the
present work, put X = −1/2. The idea of the method is composed of killing the third term
to clearly pick up the second term on the right-hand side, thereby improving the estimate
of the exponent α by the linear regression on the log-log plot.

The straightforward estimate (SE) for the exponent α is just to take

SE[f ] ≡ f(x)− f(X) ∼ aαs
α + a1s+ o(s), (37)

and to use the linear regression. As is clear from the most-right-hand side, however, the
O(s) term may affect the linear regression unless a clear difference of scale appears in the
data at hands. In Ref. [26], the following combination of f that makes use of the Richardson
extrapolation is proposed by Koike (the KR method, for short):

KR[f ] ≡ f(x)− 2f(X + s/2) + f(X). (38)
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Then, it behaves
KR[f ] ∼ aα(1− 21−α)sα + o(s),

and accordingly there is no longer influence of the term O(s) in the linear regression. Hence,
the estimate of α should be improved.

Practically, there is a possible drawback such that KR[f ] would require more significant
digits than SE[f ] in order to avoid the influence of the round-off error. Indeed, in Figs. 2(c)
and 3(b), the influence can be observed in the results by the direct method but not in the
results by the Galerkin method. The difference comes from that the computation code for
the former uses the double precision arithmetic, while that for the latter uses the multiple
precision arithmetic and does not make a discretization in x1.
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