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ABSTRACT
A precise understanding of the interfacial structure and dynamics is essential for the optimal design of various electrochemical devices.
Herein, we propose a method for classical molecular dynamics simulations to deal with electrochemical interfaces with polarizable elec-
trodes under the open circuit condition. Less attention has been given to electrochemical circuit conditions in computation despite being
often essential for a proper assessment, especially comparison between different models. The present method is based on the chemi-
cal potential equalization principle, as is a method developed previously to deal with systems under the closed circuit condition. These
two methods can be interconverted through the Legendre transformation so that the difference in the circuit conditions can be com-
pared on the same footing. Furthermore, the electrode polarization effect can be correctly studied by comparing the present method with
conventional simulations with the electrodes represented by fixed charges, since both of the methods describe systems under the open
circuit condition. The method is applied to a parallel-plate capacitor composed of platinum electrodes and an aqueous electrolyte solu-
tion. The electrode polarization effects have an impact on the interfacial structure of the electrolyte solution. We found that the difference
in circuit conditions significantly affects the dynamics of the electrolyte solution. The electric field at the charged electrode surface is
poorly screened by the nonequilibrium solution structure in the open circuit condition, which accelerates the motion of the electrolyte
solution.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093095

I. INTRODUCTION

Understanding electrochemical interfaces at an atomic level is
essential not only from the viewpoint of the fundamental chem-
istry but also for developing novel devices used as batteries or
electric double-layer capacitors (EDLCs). EDLCs are promising
energy devices,1–4 storing charges at the interfaces through the
adsorption of electrolyte ions. For optimization of the material
and device design, it is necessary to clarify both equilibrium and

nonequilibrium properties, including the structure of the electrolyte
solution and the dynamics of charging and discharging at the
interface. Molecular dynamics (MD) simulations, especially clas-
sical simulations using empirical force fields, have been widely
applied to EDLC systems.5–23 They have revealed, for example,
details about the interfacial structures of ionic liquids5–12,14,15 and
aqueous electrolytes,16–22 the capacitive properties, and operating
mechanisms.23,24 Studies on nonequilibrium dynamics, such as the
response of the electrolyte to changes in the total charge or potential
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of the electrode and the adsorption rate of electrolyte ions,25–34 are
also underway.

In some of these studies, charged electrodes were modeled with
a fixed (nonpolarizable) charge density or atomic charges on the
electrode surface14,16,18,25,35–38 (hereafter referred to as the constant σ
scheme). This absence of electrode local polarization, however, often
leads to severe problems. An alternative approach is the constant
potential scheme developed by Siepmann and Sprik,39 which was
later extended to the constant potential difference scheme (hereafter
referred to as the constant ΔV scheme) by Reed et al. for study-
ing double electrode systems.5,6 This scheme controls the electrode
potential and naturally incorporates the effects of electrode polariza-
tion, i.e., charge fluctuations on the electrode surface in response to
a chemical event and thermal motions of the electrolyte solution.
It may be stated that classical MD simulations with the constant
ΔV scheme are now the standard for studying charged capacitors
at atomic scales.

In such a situation, the effects of electrode polarization
at the electrode–electrolyte interface have been discussed so far
by comparing the results of the constant σ and constant ΔV
schemes.10,12,16,32,40–42 For example, Merlet et al. reported that an
ionic liquid electrolyte at the interface is strongly stabilized due
to electrode polarization in a constant ΔV simulation. The inter-
facial distribution of ions is significantly enhanced compared to
that of constant σ simulations.12 Inagaki and Nagaoka compared a
discharging process under constant σ and ΔV conditions and con-
cluded that the relaxation dynamics under a constant σ condition is
significantly faster.32 However, an assessment of the electrode polar-
ization effects through such a comparison can still be improved, as
the two schemes describe different electrochemical conditions: the
open and closed circuit conditions. In the constant σ simulations, the
total charge of each electrode is constant, corresponding to an open
circuit. On the other hand, the total charge of each electrode varies
under a constant ΔV condition as in a closed circuit. Therefore, a
method is needed to model polarizable electrodes under the open
circuit condition to correctly understand the electrode polarization
effects and the difference between the open and closed circuit con-
ditions. Although less attention may have been given to open circuit
systems in electrochemistry, important experimental measurements
are conducted under the open circuit condition (coulostatic con-
dition), such as the laser-induced potential transient43–47 and open
circuit potential transient measurements.48–50 In the former, a laser
is irradiated on the electrode film via a dielectric to increase the
local temperature of the electrode, and then the nonequilibrium
response of the electrochemical system is investigated. In the latter,
collisions of nanoparticles or emulsion droplets with the electrode
surface and the growth of an oxide layer on bismuth in acid solu-
tions are detected by measuring the electrode potential transients.
It should be mentioned that Dufils et al. recently developed a
method for treating a polarizable electrode under the open circuit
condition by using the finite field method and succeeded in devel-
oping an atomistic simulation of an amperometry measurement
process.51,52

In this study, we develop a method to model polarizable elec-
trodes so that the total charge of each electrode is constant (referred
to as the constant q method hereafter) and, then, apply the method
to open circuit systems. The method is derived through the chem-
ical potential equalization scheme,53–56 with which the constant

ΔV (= −Δμ, minus the chemical potential difference) method was
formulated in our previous work.57 Note that this constant q for-
mulation is essentially the same as that of the charge equilibration
(QEq) method used to model polarizable molecules and metal
clusters.54,58–60 The derivation shows that the constant q and ΔV
schemes can be interconverted through a Legendre transformation
with respect to a control variable. This indicates that a fair com-
parison of the open and closed circuit conditions can be made with
our unified polarizable electrode models. The electrode polarization
effects can also be appropriately studied by comparing the results
from our constant q and conventional constant σ simulations.

II. THEORY
We assume a system composed of two metal electrodes and an

electrolyte solution between the electrodes. The total energy of the
system is formally written as

E(qetrd; relyt
∣qetrd

L , qetrd
R ) = Eetrd

(qetrd; relyt
∣qetrd

L , qetrd
R )

+ Eetrd−elyt
(qetrd; relyt

)

+ Eelyt
(relyt
) +Unonele

(relyt
), (1)

where the first, second, third, and last terms on the right-hand side
represent the electrode internal energy, the electrostatic interaction
energy between the electrode and the electrolyte solution, the inter-
nal energy of the electrolyte solution, and the nonelectrostatic inter-
action in the system, respectively. qetrd

= (qetrd
1 , qetrd

2 , . . . , qetrd
NL+NR

)

denotes a collection of atomic charges on the electrodes, where
NL and NR are the number of atoms in the left and right elec-
trodes, respectively. The total charges of the left and right electrodes,
(qetrd

L , qetrd
R ), are given by

NL

∑
i∈L

qetrd
i = qetrd

L ,
NR

∑
i∈R

qetrd
i = qetrd

R . (2)

As shown below, they are treated as control variables for specifying
the charging states of the electrodes. We list (1) dynamical variables
that will be determined variationally, (2) variables such as relyt on
which the function parametrically depend, and (3) the control vari-
ables in parentheses for the energy functions. They are separated
with a semicolon and a vertical bar. The energy of the polarizable
electrodes is modeled using the following equation:

Eetrd
(qetrd; relyt

∣qetrd
L , qetrd

R ) = Eetrd
0 +

NL+NR

∑
i∈L,R

χ○i qetrd
i +

1
2

NL+NR

∑
i,j∈L,R

qetrd
i J○ij q

etrd
j ,

(3)

where Eetrd
0 is the sum of energies of isolated electrode atoms, χ○i is

the electronegativity of the electrode atom i, and J○ij is the interaction
kernel between the electrode atomic charges. The diagonal elements
of the {J○ij} matrix are the chemical hardness of the electrode atoms
(Jii
○
= U i

○
). We assume hereafter that both the electrodes are com-

posed of the same metal atoms; thus, χ○i = χ○ and U○i = U○. The
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electrostatic interaction energy between the electrode and electrolyte
solution is written as

Eetrd−elyt
(qetrd; relyt

) =

NL+NR

∑
i∈L,R

Nelyt

∑
a∈elyt

qetrd
i Diaqelyt

a , (4)

where qelyt
a is the charge of the ath atom of the electrolyte solution

and Dia is the interaction kernel between the ith electrode atom and
the ath atom of the electrolyte solution. The internal energy of the
electrolyte solution Eelyt is modeled with an empirical force field as in
most classical MD simulations. The reader may refer to our previous
works for its specific representation.21,57

The dynamical variables qetrd are determined variationally at
each relyt by minimizing the total energy with appropriate constraint
conditions that specify simulation conditions (constant q or con-
stant ΔV). In order to constrain the total charge on each electrode
and to perform simulations under the constant q condition, the
following objective function is introduced:

L(qetrd; relyt
∣qetrd

L , qetrd
R )=E(qetrd; relyt

∣qetrd
L , qetrd

R )

+ μL(
NL

∑
i∈L

qetrd
i − qetrd

L )+μR(
NR

∑
i∈R

qetrd
i − qetrd

R ),

(5)

with μL and μR being Lagrange multipliers. They are also the
chemical potentials of electrons of the left and right electrodes,
respectively, since

∂L/∂qetrd
i = 0 ⇒ μX = −∂E/∂qetrd

i (i ∈ X, X = L, R), (6)

indicating that the chemical potentials on the atoms are equalized in
each electrode. Note that qetrd

L and qetrd
R should be chosen so that the

total system becomes charge neutral. The variational equation (6)
results in the following equations for the atomic charges:

qetrd
i = −

1
U○
(χ○ + vi + μX) (i ∈ X, X = L, R), (7)

where vi is the electrostatic potential acting on the ith electrode
atom,

vi =
NL+NR

∑
j(≠i)∈L,R

J○ij q
etrd
j +

Nelyt

∑
a∈elyt

Diaqelyt
a . (8)

The constraint condition for the total charge [or the equalization of
the chemical potential in Eq. (6)] for each electrode leads to

μX = −(χ○ + v̄X +U○
qetrd

X

NX
) (i ∈ X, X = L, R), (9)

where v̄X = ∑
NX
i∈Xvi/NX. If we introduce the effective electrostatic

potential veff
i that includes the self-term as

veff
i = vi +U○qetrd

i , (10)

the chemical potentials can also be written as

μX = −(χ○ + v̄eff
X ) (i ∈ X, X = L, R), (11)

where v̄eff
X = ∑

NX
i∈Xv

eff
i /NX. Since here we assume χ○i = χ○ for all i, the

equalization of the chemical potential in Eq. (6) is reduced to the
following equation of the equalization of the effective electrostatic
potential:

veff
i = v̄

eff
X (i ∈ X, X = L, R). (12)

This equation should not be confused with the constant potential
condition. The potential v̄eff

X or μX (and also Δv̄ eff
= v̄eff

L − v̄
eff
R or

Δμ = μL − μR) fluctuates and is not constant during the simulation.
As shown in our previous work, the formulation for the con-

stant ΔV scheme to describe polarizable electrodes in closed circuits
can be derived by changing the control variables from (qetrd

L , qetrd
R )

to (qetrd
tot , ΔV) with qetrd

tot = qetrd
L + qetrd

R and ΔV = −Δμ in a partial
Legendre transformation, followed by constructing another objec-
tive function.61 It is worth restating that both the constant q and
ΔV schemes can be derived in a unified manner based on the
chemical potential equalization principle and be straightforwardly
interconverted via a Legendre transformation.

III. COMPUTATIONAL DETAILS
In the present work, we compare the results of the simula-

tions on a simple double-layer capacitor under our constant q and
ΔV and conventional constant σ conditions. The system is a slab
composed of NaCl aqueous electrolyte solution confined between
a pair of Pt electrodes. Each electrode models a Pt(111) surface
of six layers. Each layer is composed of 56 Pt atoms. The lattice
constant is 3.924 Å. The surfaces of the electrodes are parallel to
the xy plane. The first layer of the left and right electrodes, which
are exposed to the electrolyte solution, is located at z = 0.0 Å and
z = 50.0 Å, respectively. The simulation cell is 19.42 Å in the x direc-
tion, 19.22 Å in the y direction, and 100.0 Å in the z direction.
All the electrode atoms are fixed in position during the simula-
tions. The electronegativity χ○ and the chemical hardness U○ are set
to 5.6 eV and 8.5 eV/e2, respectively, following our previous find-
ing.61 The electrostatic interactions are evaluated by the 3D Ewald
summation augmented with the Yeh–Berkowitz correction.62 The
nonelectrostatic interactions between the electrodes and the elec-
trolyte solutions are described by the 12-6 LJ potential functions.
The LJ parameters of the Pt atoms are63 ϵPt = 32.63 kJ/mol and
σPt = 2.535 Å. The aqueous electrolyte solution is modeled by 569
SPC/E water molecules64 and 23 pairs of Na+ and Cl− ions, to set the
molar concentration to be 2M. The LJ parameters of Na+ and Cl−

are65 ϵNa+ = 0.011 72 kJ/mol, ϵCl− = 0.492 9 kJ/mol, σNa+ = 3.330 Å,
and σCl− = 4.417 Å.

The electrostatic interaction kernels in Eqs. (3) and (4) are
given by

J○ij =
1

∣retrd
i − retrd

j ∣
f (∣retrd

i − retrd
j ∣/sij), (13)
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FIG. 1. (a) Probability distributions of the electrode potential difference obtained from the equilibrium simulations under the constant q (in orange) and the constant σ (in
green) conditions. The results from the simulations with (qetrd

L , qetrd
R ) = (0, 0) and (qetrd

L , qetrd
R ) = (+2e,−2e) are displayed with the solid and broken lines, respectively.

(b) Probability distributions of the electrode total charges of the left (L) and right (R) electrodes obtained from the constant ΔV simulations with ΔV = 0 V (solid lines) and
ΔV = 0.96 V (broken lines).

Dia =
1

∣retrd
i − relyt

a ∣
f (∣retrd

i − relyt
a ∣/sia), (14)

where retrd
i and relyt

a denote the coordinates of the ith electrode
atom and the ath electrolyte atom, respectively. In order to circum-
vent the polarization catastrophe, the attenuation function f (v) is
introduced and modeled in this study as66,67

f (v) =
⎧⎪⎪
⎨
⎪⎪⎩

v4
− 2v3

+ 2v (v < 1),

1 (v ≥ 1).
(15)

sij in Eqs. (13) and (14) represents the attenuation distance between
the ith and jth atoms determined from66,67

sij = A(αiαj)
1/6. (16)

The coefficient A is set to 2.6, and αi is the atomic polarizability
of the ith atom. The values used in this work67–69 αH = 0.514 Å 3,
αO = 0.862 Å 3, αNa+ = 0.25 Å 3, αCl− = 3.25 Å 3, and αPt = 6.52 Å 3.
The attenuation distances then become sPt,Pt = 4.86 Å, sPt,H
= 3.18 Å, sPt,O = 3.46 Å, sPt,Na+ = 2.82 Å, and sPt,Cl− = 4.32 Å.

Equilibrium MD calculations are carried out under six differ-
ent conditions: the constant q and σ conditions with (qetrd

L , qetrd
R )

= (0, 0) or (+2e,−2e) and the constant ΔV condition with ΔV = 0

or 0.96 V. The reason for setting ΔV = 0.96 V is that it corresponds
to the mean potential difference between the electrodes obtained
from the constant q simulation with (qetrd

L , qetrd
R ) = (+2e,−2e) [see

Fig. 1(a)]. In the constant σ simulations, all the fixed atomic
charges on the electrodes are set to zero when (qetrd

L , qetrd
R ) = (0, 0),

but+0.0539e(−0.0539e),−0.0239e(+0.0239e),+0.0068e(−0.0068e),
and −0.0011e(+0.0011e) on the first, second, third, and fourth
layer of the left (right) electrodes, respectively, and zero on the
fifth and sixth layers when (qetrd

L , qetrd
R ) = (+2e,−2e). These values

are obtained from an equilibrium simulation under the constant
q condition with (qetrd

L , qetrd
R ) = (+2e,−2e) [see Figs. 2(b) and 2(c)

and Table I]. In order to obtain statistically converged results, 100
independent (uncorrelated) trajectories are obtained from both the
equilibrium and nonequilibrium simulations. The initial configura-
tions for the equilibrium simulations are prepared by extracting a
snapshot every 900 ps from a 90 ns trajectory at 800 K. They are
then gradually cooled down to 300 K over 4.5 ns runs. These cal-
culations are performed with all the electrode atomic charges set to
zero. A further equilibration run is carried out for each configuration
under the respective condition. The final configurations of the equi-
librium simulations [with ΔV = 0 and (qetrd

L , qetrd
R ) = (0, 0)] are used

as the initial configurations for the nonequilibrium simulations. For
the case of nonequilibrium dynamics, we deal with a charging pro-
cess. The potential difference or the total charges of the electrodes
are instantaneously changed at t = 0 from ΔV = 0 to ΔV = +0.96 V

FIG. 2. Probability distributions of the atomic charges on the first, second, and third layers of the electrodes obtained from the equilibrium simulations under the constant q
and ΔV conditions with (a) (qetrd

L , qetrd
R ) = (0, 0) or ΔV = 0 V, and (b) and (c) (qetrd

L , qetrd
R ) = (+2e,−2e) or ΔV = 2 V on the left and right electrodes, respectively.
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TABLE I. Mean values of charge on each electrode atom in the first three layers
under the constant q condition with (qetrd

L , qetrd
R ) = (+2e,−2e) and the constant

ΔV condition with ΔV = 0.96 V. The values for the left and right electrode atoms are
listed in this order.

Constant q Constant ΔV

First (+0.0551e,−0.0529e) (+0.0552e,−0.0532e)
Second (−0.0255e,+0.0223e) (−0.0255e,+0.0225e)
Third (+0.0075e,−0.0062e) (+0.0075e,−0.0062e)

or from (qetrd
L , qetrd

R ) = (0, 0) to (qetrd
L , qetrd

R ) = (+2e,−2e). All the
production runs are carried out in the NVT ensemble at 300 K
with a timestep of 3 fs. The temperature is controlled by using the
Nosé–Hoover thermostat70 with a relaxation time of 0.5 ps. This
thermostat is used even in the nonequilibrium simulations since a
sudden change in the total charge of the electrodes under the con-
stant q and σ conditions significantly raises the system temperature.
We verify from comparative simulations that the dependence of
the dynamics on the relaxation time of the thermostat is insignifi-
cant under the present simulation conditions. The potential of mean
force (PMF) profiles of ions approaching the electrode surface are
calculated by integrating the mean force in the z direction. In the
PMF calculations, the target ion can translate in the x and y direc-
tions but is fixed in the z direction by using the RATTLE algorithm.71

The mean force at each place is sampled from six independent
900 ps trajectories. All the MD calculations are carried out by using
our modified version of DL_POLY Classic 1.1072 with which our
constant q and ΔV schemes are implemented.

IV. RESULTS AND DISCUSSION
A. Equilibrium properties
1. Potential and charge fluctuation on the electrodes

In the constant q and σ simulations, the total charge of each
electrode is constant, but the electrode potential difference fluctu-
ates. Conversely, in the constant ΔV simulations, the total charge
of each electrode fluctuates, but the electrode potential difference
remains constant. Figure 1(a) displays the probability distributions
of the electrode potential difference obtained from the equilibrium
simulations with the total electrode charge being constant. These
probability distributions produced by the constant q and σ simu-
lations are almost the same and look like a Gaussian in the case of
both (qetrd

L , qetrd
R ) = (0, 0) and (qetrd

L , qetrd
R ) = (+2e,−2e). Figure 1(b)

shows the probability distribution of the total charge of the left and
right electrodes produced by the equilibrium simulations under the
constant ΔV condition. The total charge on each electrode fluc-
tuates around zero when ΔV = 0 and ±2e when ΔV = 0.96 V as
expected.

Further insight into electrode polarization is obtained by
inspecting the probability distributions of the atomic charges for
each layer (from the first to the third) under the constant q and ΔV
conditions as shown in Fig. 2. The average values for each layer are
listed in Table I. The probability distributions and the average val-
ues obtained from the different (open and closed circuit) conditions
are quite similar to each other. The asymmetric distribution of the

atomic charges on the first layer, as observed in the present and pre-
vious constant ΔV simulations,11,13,31,42,73,74 is also obtained from the
constant q simulation.

2. Interfacial distribution of ions
Next, we focus on the interfacial structure of the electrolyte ions

that can be affected by the electrode local polarization. The num-
ber density profiles and their running integration number profiles
are illustrated in the top and middle panels of Fig. 3(a) under the
constant q and σ conditions with (qetrd

L , qetrd
R ) = (0, 0) and under the

constant ΔV conditions with ΔV = 0 V. There are non-negligible
differences in the distribution and population of Na+ and Cl− ions
within 5 Å distance from the electrode surface between the constant
σ simulation and the constant q and ΔV simulations, as expected.
These differences arise from the stabilization of the adsorbed ions
by the electrode local polarization present only in the constant q and
ΔV simulations. The effect can be seen more clearly by calculating
the PMF profiles of a Na+ and a Cl− ion approaching the elec-
trode surface under the constant q and σ conditions. The difference
indicates that the electrode polarization can change the adsorption
distance of a Na+ species as the PMF starts to arise at a closer dis-
tance from the surface. The PMF profile for a Cl− species has two
minima at z = 3.4 and 6.0 Å regardless of the presence or absence
of the electrode local polarization effects. However, the effects make
it easier for a Cl− ion to approach the electrode surface with no net
charge.

Charging each electrode or applying a finite electrode poten-
tial difference attracts ions of opposite charge and the peaks of the
distributions become much higher as shown in the top panels in
Figs. 3(b) and 3(c). The corresponding integration number profiles
are also shown in the middle panels. In these simulations, the differ-
ences between the constant q, σ, and ΔV conditions seem to have
small but complicated effects on the ion distributions. While the
first peaks in the Cl− distributions at the positively charged (left)
electrode surface are similar to each other under all the conditions,
small peaks in the Na+ distributions emerge only in the constant q
and ΔV simulations at around 2.3 Å distance from the negatively
charged (right) electrode surface. These observations are consistent
with the difference in the PMF profiles obtained from the constant
q and σ simulations shown in the bottom panels in Figs. 3(b) and
3(c). Note that we find the distribution functions of the atoms of
water molecules are similar to each other but small differences are
observed especially in the highest peak heights in close proximity
to the electrode surface between the constant q and ΔV simulations
with (qetrd

L , qetrd
R ) = (+2e,−2e) and ΔV = 0.96 V (not shown here).

Such difference at the adsorbed water layer seems to affect the ion
distributions further away from the electrode surface than their first
peaks. These differences indicate that differences in the circuit con-
dition could affect the interfacial structure of the electrolyte solution,
though the electrode surface polarizes in almost the same way on
average as shown in Fig. 2.

B. Nonequilibrium dynamics
Here, we discuss the interfacial dynamics in response to a sud-

den change in the total electrode charges from (qetrd
L , qetrd

R ) = (0, 0)
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FIG. 3. Number density profiles (top panels), running integration number profiles (middle panels), and PMF profiles (bottom panels) for Na+ (in orange) and Cl− (in
green) (a) at the electrode interfaces with (qetrd

L , qetrd
R ) = (0, 0) or ΔV = 0 V, (b) and (c) at the left (positive) and right (negative) electrode interfaces, respectively, with

(qetrd
L , qetrd

R ) = (+2e,−2e) or ΔV = 0.96 V. The solid, dotted, and broken lines represent the results from the constant q, σ, and ΔV simulations, respectively. Only the
results from the constant q and σ simulations are displayed for the PMF profiles.

to (+2e,−2e) in the constant q and σ simulations, and from ΔV = 0
V to 0.96 V in the constant ΔV simulation. First, it should be noted
that the absolute value of the electrode total charge in the constant
ΔV simulation is significantly smaller than 2e just after the change
in electrode potential [see Fig. 4(b)] because the interfacial struc-
ture at the moment is considerably different from the equilibrium
double-layer structure and the electrostatic screening is insufficient.
Following previous works,10,25,31,32 we investigate the time evolution
of the electrode potential difference Δv̄ eff

(= ΔV) under the constant
q and σ conditions, and of the electrode total charges (qetrd

L , qetrd
R )

under the constant ΔV condition as displayed in Fig. 4. The relax-
ation under the constant q condition seems almost identical with
that under the constant σ condition: The electrode potential dif-
ference jumps to over 40 V at the moment of the electrode total
charge switching, indicating a strong electric field is created in the
cell. It, then, drops down to around 5 V with oscillations within
0.6 ps and quickly decays to around 0.96 V (the equilibrium value)

within 150 ps. This similarity between the results from the constant
q and σ simulations indicates that it is the change in the elec-
trode total charge that dominates the interfacial dynamics in such
a simple parallel-plate capacitor and the electrode local polarization
plays a minor role. On the other hand, they are qualitatively dif-
ferent from the relaxation dynamics observed in the constant ΔV
simulation. The total electrode charges vary by less than ±0.05e
just after the electrode potential switching, then gradually approach
the equilibrium state of (qetrd

L , qetrd
R ) = (+2e,−2e) in longer than

500 ps. This slower relaxation dynamics in the closed circuit com-
pared to that in the open circuit is consistent with those observed
in different systems in which the electrolyte solutions are ionic
liquids.10,32

We assume that these relaxation dynamics can be attributed to
the rotational motion of the water molecules and the drift-diffusion
motion of the ions in the cell. In order to investigate the dynamics
of the water molecules at the electrode–electrolyte interface and in
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FIG. 4. (a) Time evolution of electrode
potential difference ΔV under the con-
stant q (in orange) and σ (in green)
conditions, and (b) time evolution of elec-
trode total charges (qetrd

L in red and
qetrd

R in blue) under the constant ΔV
condition. The electrode total charges
are switched from (qetrd

L , qetrd
R ) = (0, 0)

to (+2e,−2e) or the electrode poten-
tial difference is switched from ΔV = 0
V to 0.96 V at t = 0. The inset in (a)
is an enlarged view of the moment of
switching.

the bulk region separately, we first calculate the ensemble average
of cos ϕz , i.e., ⟨cos ϕz⟩, as functions of time, where ϕz is the angle
between the dipole moment of a water molecule and the z axis in the
interfacial region within 4 Å (including only the first adsorbed water
layer) from the electrode surface [Figs. 5(a) and 5(c)]. The values
of ⟨cos ϕz⟩ is nearly zero at t < 0 since most of the interfacial water
molecules are directed almost parallel to the electrode surface. They
approach the new equilibrium values at large t. In the constant q and
σ simulations, the value of ⟨cos ϕz⟩ jumps up just after the switch-
ing. It indicates the interfacial water molecules quickly rotate so that
their dipole moments are tilted toward the z axis, the direction of the
large electric field produced by the charged electrodes. The values
of ⟨cos ϕz⟩ decay with oscillations mostly in about 0.6 ps, indicat-
ing that the librational motion of the water molecules is excited by
the sudden switching and then quickly attenuated. The difference
in the results is small between the constant q and σ conditions. In
contrast, in the constant ΔV simulation, the average direction of the
interfacial water molecules varies more calmly since the electric field
created by the switching is much smaller than that in the constant
q and σ simulations. It takes around 10 ps or more for the initial
(relatively) fast relaxation to be mostly completed.

Next, we investigate the results for the bulk region shown in
Fig. 5(b). The sampled water molecules are more than 10 Å away
from the electrode surfaces. In the constant q and σ simulations,
the water molecules are forced to be tilted toward the direction of
the electric field within 0.6 ps after the switching as at the interface.
They then decay exponentially in several hundred ps to be random-
ized in orientation. A qualitatively different relaxation dynamics is
observed in the constant ΔV simulation. The water molecules ini-
tially rotate toward the z axis as those at the interface in about 10 ps,
but gradually start to rotate randomly in 400 ps. The former dynam-
ics is a manifestation of the dielectric relaxation of water molecules.
The curve fitting at 0 ps <t < 10 ps with an exponential function gives
the time constant of 4.3 ps, in reasonable agreement with that of the
dielectric relaxation (∼7 ps) at 300 K.75

These orientational relaxations of the water molecules observed
in all of the simulations last in a time scale (several hundred ps
or longer) much longer than that of the dielectric relaxation of
bulk water. They are thus expected to be coupled with a slower
relaxation process related to the motion of the ions. Figure 6
shows the time evolution of the difference in the number of ions
(ΔN = NNa+ −NCl−) in the region within 10 Å distance from the

FIG. 5. Time evolution of the ensemble average of cos ϕz with ϕz being the angle between the z axis in the simulation cell and the dipole moment of a water molecule. The
averages are taken for the water molecules (a) within 4 Å distance from the left electrode surface, (b) more than 10 Å away from both the electrode surfaces, and (c) within
4 Å distance from the right electrode surface. The results from the constant q, σ, and ΔV simulations are depicted with orange, green, and blue lines, respectively.
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FIG. 6. Time evolution of the difference between the numbers of Na+ and Cl−

within 10 Å distance from the left and right electrode surfaces. “L,” “R,” “q,” “σ,” and
“ΔV” in the figure legends represent the left electrode interface, the right electrode
interface, the constant q condition, the constant σ condition, and constant ΔV
condition, respectively.

TABLE II. Time constants (in ps) obtained by fitting curves obtained from the constant
q, σ, and ΔV simulations with an exponential function in the range of t > 20 ps. The
curves represent the functions of time for the difference in the number of ions (ΔN)
and the electrode potential difference or the electrode total charge (ΔV or q). The left
and right figures separated with a slash represent the time constants for the process
on the left and right electrodes, respectively.

Const. σ Const. q Const. ΔV

ΔN 30/81 45/67 159/207
ΔV or q 30 30 160/160

electrode surfaces. The values are around zero at t < 0 (before the
switching) since each electrode has no total charge on average in
all of the simulations. They approach ±2 at large t in equilibrium
as expected. The results from the constant q and σ simulations are
similar to each other, and it takes less than 300 ps to reach the
equilibrium value. In contrast, it takes more than 600 ps under
the constant ΔV condition. These curves are fitted well with an
exponential function in the range of t > 20 ps. The relaxation time
constants for each case are listed in Table II. The smaller time con-
stants in the open circuit (constant q and σ) systems than those in the
closed circuit (constant ΔV) system come from the drift dynamics
of the ions significantly accelerated by the large electric field, cre-
ated by the charged electrode surfaces that are poorly screened by
the nonequilibrium solution structures.

V. CONCLUSIONS
We have introduced the constant q method for classical MD

simulations to describe a pair of polarizable electrodes with the
total charge of each electrode being constant. This method resolves
the problem of neglecting the local polarization effects of elec-
trodes in conventional simulations that put the constant charge
density (atomic charges) on the electrode surfaces (constant σ sim-
ulations). The formulation is based on the chemical potential equal-
ization principle as that of the constant electrode potential difference

(constant ΔV) method. These can be interconverted through a
Legendre transformation with respect to a variable that controls
the charging state of the electrodes. It, thus, enables us to com-
pare the circuit conditions on the same footing to correctly model
electrode–electrolyte interfaces in open and closed circuits with
the electrode polarization effects being fully included. The elec-
trode polarization effects themselves are also correctly studied by
comparing the constant q and σ simulations.

We applied the three schemes, the constant q, σ, and ΔV
schemes, to a typical parallel-plate capacitor composed of two metal
electrodes and an aqueous electrolyte solution in order to investigate
the effects of electrode polarization and the difference between open
and closed circuit conditions on the structure and dynamics at the
interface. A comparison of the constant q and σ simulations shows
that the electrolyte ions are attracted more strongly to the electrode
surface by the electrode local polarization. Though the electrode
surfaces polarize similarly on average in the constant q and ΔV sim-
ulations, the surface structures of the electrolyte solution are slightly
different even in this simple system. This result implies that not only
the electrode polarization but also the circuit condition could affect
the interfacial structure in microscopic systems.

The dynamics were studied through the relaxation processes
after sudden switching of the total charge on each electrode or
of the electrode potential difference. The fact that the difference
in the results between the constant q and σ simulations is small
indicates that the electrode local polarization plays a minor role
in the relaxation dynamics in this system. In contrast, there is a
significant difference in the relaxation times between the constant
q and ΔV (the open and closed circuit) conditions, as discussed
(approximately) in previous works that compare the constant σ
and ΔV simulations. The relaxation dynamics under the constant
q condition is considerably faster than that under the constant ΔV
condition. This is because the drift motion of the ions is significantly
accelerated by the large electric field produced by the charged elec-
trodes. Under the constant ΔV condition, only a small amount of
charge builds up on each electrode to realize the potential difference
applied by the switching and a small electric field acts on the ions.
Both the large electric field in the open circuit and the small amount
of electrode charge in the closed circuit originate from the com-
mon factor that the electrode surfaces are electrostatically poorly
screened by the nonequilibrium solution structures in the relaxation
process.

Although the comparison between the constant q and σ simu-
lations indicates that the effects of the electrode local polarization
are small, they may have non-negligible impacts on the structure
and dynamics of ions and solvent molecules intercalated in an elec-
trode, such as a graphite electrode, since many of them can be in
close proximity to the electrode surfaces. Due to the formulation
being independent of the type of an electrolyte solution, the con-
stant q method can be applied to more complex systems (as long as
the electrodes are metallic) including, for example, ionic liquids in
nanoporous carbon electrodes, the structure and dynamics of which
have attracted much attention.26,76–78 Use of the constant q method
can pave the way for computational investigations of open circuit
systems experimentally studied by laser-induced or open circuit
potential transient measurements mentioned in Sec. I by control-
ling the electrode total charge. Furthermore, our approach unifying
the constant ΔV and q methods could facilitate the understanding
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of possible differences in the rapid (especially in the timescale from
fs to ns) relaxation dynamics of an electric double layer43,79 just
after applying a potential or charge impulse to the electrode under
closed and open circuit conditions, which could be observed by
a potentiostatic method and a coulostatic method, respectively.80

Note also that the constant ΔV and q methods can also be used
to perform computational voltammetry and amperometry to study
the dynamics of a capacitor modeled with double electrodes by
varying the control variable ΔV or qetrd

L (= −qetrd
R ) in time at a con-

stant rate as Dufils et al. did with their finite field method for
a single electrode system.52 We hope that our approaches real-
izing classical MD simulations of capacitors or more generally
electrochemical cells contribute toward unraveling the interfacial
structure and dynamics occurring under different electrochemical
conditions.
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