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Automatic detection of alien plant species in action camera images using
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Monitoring and detection of invasive alien plant species are necessary for effective management and control
measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien
herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native
plants using deep learning on images captured by two action cameras. We created a model for each camera
using the chopped picture method. The models were able to detect the alien plant Solidago altissima (tall
goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically
detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that,
in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area
at a low cost.
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Introduction

Biological invasion contributes to the decrease in biodiver‐
sity and requires measures to be taken for prevention
(Levine et al. 2003). The impact of exotic plants on eco‐
systems includes competition with native species, inter‐
specific interactions (Pauchard and Shea 2006, Rai and
Singh 2020), and vegetation succession (Prach and Walker
2011). In addition, exotic plant species are fast growing
and can affect soil nutrient accumulation through litter
supply (Allison and Vitousek 2004); moreover, they facilitate
changes in microclimate (Ruckli et al. 2013) and changes
in fire frequency (Fusco et al. 2019). As it is challenging to
eradicate exotic species once they are established in the
field, prevention of invasion is the most effective and ideal
method of control (Leung et al. 2002). However, a risk of
invasion of alien species even while focusing on preven‐
tion, always exists. Hence, regular monitoring for early de‐
tection, and rapid responsiveness is essential (Hulme 2006).

Information on the distribution of invasive alien species
is essential for effective management; however, the infor‐
mation is often lacking (Jarnevich et al. 2006). It is not
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practical to manually investigate a broad area, as field sur‐
veys are labor-intensive. Hence, the use of remote sensing
technology has been the preferred method of surveying the
distribution of alien plants. For example, previous studies
employed high spatial resolution multispectral sensors to
estimate leaf water content to identify exotic plants (Carter
et al. 2009, Underwood et al. 2003). However, high-
resolution hyperspectral data are expensive and generally
limited to studies in small areas (Kganyago et al. 2018).
Additionally, most studies that employed remote sensing
techniques targeted non-native trees and shrubs; small
herbaceous species are difficult to identify (Müllerová et al.
2017). Unmanned aerial vehicles (UAVs) have recently
been used to survey exotic plants (Dash et al. 2019). UAVs
can survey hazardous or inaccessible areas (Manfreda et al.
2018) and acquire high-resolution images at a low cost.
However, there are areas that have banned UAVs, and thus,
cannot be surveyed owing to battery limitations.

Citizen science can be a useful measure for understand‐
ing the distribution of invasive species at a large scale
(Crall et al. 2015). It has a long history, with hobbyists and
volunteers involved in the monitoring; these citizens have
long been active in fields, such as astronomy and biology,
where observational skills are more important than ex‐
pensive equipment (Brown and Williams 2019). Science
as a profession became common in the late 19th century
(Silvertown 2009); until then, a considerable portion of the
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research was performed by non-professionals. While sci‐
ence has specialized further in the past 150 years, the pres‐
ence of amateur scientists has declined (Miller-Rushing
et al. 2012). However, in recent years, citizen science
has been used in various fields, as information and commu‐
nications technology (ICT) created an easily accessible
environment for citizens (Johnson et al. 2020). In addition,
citizen science enables large-scale data collection and
provides an opportunity for interaction between citizens
and nature, including improving citizens’ knowledge and
changing their attitudes toward nature (Schuttler et al.
2018). The implementation of citizen science in ecology
has also been reported worldwide and can be initiated
to detect invasive species and manage their population
(Maistrello et al. 2016, Miralles et al. 2016).

The growing development of citizen science is a result of
the spread of observation equipment. With the increasing
performance and popularity of digital cameras, small video
cameras, and smartphones, it has become possible for any‐
one to take high-quality images anywhere. In addition, the
use of platforms, such as eBird and iNaturalist simplifies
the transmission of information from the field in real-time
and enables ongoing citizen science projects to collect im‐
ages from citizens in many places. However, although a
large amount of data is easily collected, the effort required
to organize the data poses a challenge. Plant identification is
also challenging, thus making it difficult for non-specialists
to identify plants at the species level. This creates an issue
of accuracy of data (Crall et al. 2011, Dickinson et al. 2010).

Combining deep learning with citizen science may en‐
able the survey of a wider area, with higher accuracy. Re‐
cently, deep learning is being used to identify invasive
species in the field (James and Bradshaw 2020). As image
recognition technology is widely used to automatically ana‐
lyze large amounts of data with a certain level of accuracy,
citizen science has developed further. Unlike animals, ex‐
otic plants do not move, hence making them easier to spot
and photograph. In addition, exotic plants can be easily dis‐
tinguished from the surrounding plants at certain times of
the year, such as flowering and fall. Taking advantage of
this characteristic, it is possible to target species and focus
public attention on this species. In particular, flowers easily
attract people’s attention and can be distinguished from
other species without considerable difficulty, through their
color and shape, as compared to leaves and stems. If deep
learning can be used to identify alien flowers from images
captured by citizens, it may become a new method for un‐
derstanding the distribution of alien plants.

An increasing amount of research has been conducted on
the use of deep learning methods to detect plant species
from images recorded in the field (Jones 2020). Thus far,
most studies have focused mainly on leaves (Agarwal et al.
2006), but some have also focused on flowers (Rzanny et
al. 2019, Seeland et al. 2019). By using artificial intelli‐
gence to detect plants, species identification can be per‐
formed by the general public. Because there is a shortage of

taxonomic experts currently (Kim and Byrne 2006), bio‐
diversity assessments can be conducted more effectively if
plant species identification becomes easier via automation.
In fact, applications have been developed to identify plant
species in the field (Pärtel et al. 2021). The detection of ex‐
otic plants has also been conducted in the field. However,
most existing research has been performed using satellite
imagery and UAVs, and few examples of detecting specific
exotic plants from action cameras have been reported in the
relevant literature.

The purpose of this study was to identify flowers of the
Solidago altissima (tall goldenrod), which were chosen as
one of Japan’s worst 100 invasive species, from images
captured using a small video camera, through deep learn‐
ing. The challenges posed by this study are (1) whether it is
possible to obtain image data that can be automatically
identified using deep learning from commercially available
small cameras, and (2) whether the target species can be
effectively identified from a wide variety of objects in the
image data. Having achieved these goals enabled us to
monitor a wide range of areas, thus significantly improving
future measures against invasive species.

Materials and Methods

S. altissima
S. altissima, is a rhizomatous perennial herb of the Aster‐

aceae family, native to North America. It was chosen as one
of Japan’s 100 worst invasive species, by the Ecological
Society of Japan. The S. altissima was originally introduced
as an ornamental plant, but is now commonly found
throughout Japan, owing to its strong reproductive poten‐
tial. It grows in open disturbed areas and agricultural fields,
and its allelopathic effect inhibits the growth of other plant
species, which is why it grows in dense clusters. In Japan,
the growing season is March–October, and the flowering
season is October–November; during which period, many
small, dark yellow flowers appear.

Study area and image acquisition
Two small video cameras (action cameras), a GoPro

HERO 9, and a DJI Pocket2 were used to photograph the
S. altissima. A mirrorless camera (OLYMPUS, OM-D E-M1
Mark II) was used to compare the data. The date, location,
and image size of each camera are shown in Table 1, in
which, GoPro HERO 9 and DJI Pocket2 were set to shoot
videos at maximum resolution and converted to images us‐
ing the Free Video to JPG Converter. The training images
were created based on the number of pixels as follows:
First, the primary inflorescence branch was defined as a
part of the inflorescence that broke off from the inflores‐
cence axis, and the number of pixels was measured (Fig. 1).
The size of the primary inflorescence branch was then clas‐
sified into three classes: S (10–50 pixels), M (51–100 pix‐
els), and L (101–300 pixels). Further, the training images
were created using the chopped picture method (Ise et al.
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2018). This technique enables efficient automatic identifi‐
cation of vegetation by dividing the image into numerous
small squares, which enables the identification of irregu‐
larly shaped objects, such as plant coverage. This approach
has been used in previous research such as identification of
moss species from digital camera images and bamboo cov‐

Table 1. Camera, date, location, and image size in this study

Camera Date Location Image size
(pix)

OLYMPUS, OM-D E-M1 Mark II October 2020 Kyoto
Shiga 5184 × 3888

GoPro HERO 9 October 2020 Kyoto 5120 × 2880
DJI Pocket2 October 2020 Shiga 1920 × 1080

Fig. 1. The primary inflorescence branch of S. altissima is used as a
reference for measurement. The size of the training image was classi‐
fied according to the number of pixels of the white arrow in the picture.

erage from Google earth images (Ise et al. 2018, Watanabe
et al. 2020). Image identification using deep learning, such
as convolutional neural network (CNN), requires that the
shape of the object be in a similar form. However, vegeta‐
tion coverages are often highly amorphous, and the usage
of conventional methods such as CNN is not reasonable.
Semantic segmentation can be used for amorphous objects,
but preparation of training images for this method is highly
labor-intensive. The chopped picture method enables us to
identify vegetation coverage with irregular shapes, and also
improves the efficiency of preparing training images. If this
cost-effective method is used to distinguish specific inva‐
sive plants, it is expected to enable the implementation of
effective invasive species countermeasures. In this study,
we first prepared two images, one containing the yellow
flowers of S. altissima (positive), and the other without
S. altissima (negative). The images were then chopped into
small 30-pixel squares that overlapped 50% horizontally
and vertically (Supplemental Code 1). The images used
and the outline of the approach are shown in Fig. 2.

Dataset
In this study, two models were created for each camera.

We created a model using images captured by each camera
for both, positive and negative images. This model is de‐
noted by Model 1. However, many false positives exist in
Model 1; for example, leaves and yellow flowers other than
S. altissima were detected as S. altissima. Therefore, we
collected 85 objects from all camera images detected as
false positives and added these images to negative images
to reduce false negatives. This model is denoted by Model
2. To create each dataset, images classified into S, M, and
L sizes were mixed and randomly extracted to include

Fig. 2. Overview of the approach adopted in this research. As positive data, only the flowering parts of S. altissima were prepared. After cut‐
ting an image of S. altissima produces a large number of squares. Only images where most of the squares were S. altissima were selected as
positive images. The majority of the squares contained leaves that were removed, but some leaves were included in the positive data.
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training images of each size. The details of each dataset are
listed in Table 2. When we created positive data, we
selected 30-pixel squares that are mostly covered by yellow
flowers. Still, some of the positive data include a small part
of green leaves. However, the percentage of green leaves
was kept under 20% by manual removal of inappropriate
images.

Data augmentation
The chosen data augmentation techniques were wide

shift, horizontal shift, horizontal flipping, and image zoom‐
ing. Data augmentation can expand the training data and
prevent overfitting. Because the pixel intensities of the im‐
age data were in the range 0–255, we normalized the data
to an intensity between 0 and 1, by dividing by 255. Nor‐
malization was applied to the training and validation data.

Neural network
In this study, we used a convolutional neural network

(CNN) to identify S. altissima. A CNN is a neural network
that consists of a convolution layer and a pooling layer. We
used Keras, a deep learning framework, for the implemen‐
tation of CNN. The parameters of the model are listed in
Table 3, the network used is shown in Fig. 3. In convolu‐
tion layer, zero padding was implemented, such that the
size of the output image remained constant. The activation
function converted the input value into a different number
while it outputs one neuron after the other. In this study, we
used a rectified linear unit (ReLU) as the activation func‐
tion of convolution layer. This function outputs 0 when the
input value is less than or equal to 0; and a value equivalent
to the input value when the input value is greater than 0. It
has become a standard activation function for deep neural
networks because it tackles the problem of the vanishing
gradient, and improves learning speed. The activation func‐

Table 3. Parameter settings

Settings Selected options

Training epochs 30
Batch size 128
Dropout 0.2
Learning rate 0.001

tion for the final output of the model was sigmoid because
the identification of S. altissima is a two-class classifica‐
tion. The optimization was based on Adam, and binary
cross-entropy was used as the loss function. ResNet (He et
al. 2016) and EfficientNet (Tan and Le 2019) have been
proposed in recent years and have shown high identifica‐
tion accuracy. However, because we used small images as
training and validation data in this study, we constructed
our network with shallow network layers.

Fig. 3. Architecture of the network used in this study.

Table 2. Number of training images

Model name Camera
Original images Chopped images

S. altissima Other S. altissima Other

Model 1

OLYMPUS, OM-D E-M1 Mark II 7 30 15374 30720
GoPro HERO 9 26 30 11520 30720

DJI Pocket2 209 30 15216 28777
All 70 29 7416 28744

Model 2

OLYMPUS, OM-D E-M1 Mark II 7 115 15374 62349
GoPro HERO 9 26 115 11520 62349

DJI Pocket2 209 115 15216 62349
All 70 115 7416 62349
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Accuracy assessment
Some of previous studies created ground truth manually

to measure the performance of automatic detection. In this
study, we evaluated the classification performance of our
model using the method reported by Watanabe et al. (2020).
This is because the flower of S. altissima is too small and
dense to create the ground truth. Furthermore, the chopped
picture method does not assume pixel-level discrimination,
contrary to the semantic segmentation method. However,
although semantic segmentation can identify objects with
high accuracy, it requires considerable effort to create a
deep learning model. The chopped picture method can sig‐
nificantly reduce the effort required to create training data
compared to conventional methods. In addition, performing
pixel-level identification using the chopped picture method
is difficult; however, the percentage of objects in an image
can be estimated using this method, which can facilitate
tasks such as invasive plant control. First, we selected the
images obtained from three different cameras that were not
used for training. From these images, we collected the ones
that were nearly 100% covered by S. altissima, and not
covered by S. altissima. Next, the randomly selected im‐
ages were chopped into pieces of 30 pixels with 50% overlap
in height and width, and 500 units of test data were obtained.
Finally, each model identified test data that contained
S. altissima, and those that did not contain S. altissima.
We further counted the number of images identified as
S. altissima and not S. altissima. The number of images
identified as true positive (TP), false negative (FN), false
positive (FP), and true negative (TN) were calculated. The

same process was applied to all models, and the follow‐
ing equations were used to calculate each index: Accu‐
racy = (TP + TN)/(TP + TN + FP + FN), Recall rate = TP/
(TP + FN), Precision rate = TP/(TP + FP). The kappa coeffi‐
cient (Cohen’s kappa) was also calculated to evaluate the
model (Cohen 1960).

Transferability test
S. altissima is established in diverse environments such

as riparian areas, farmlands, and urban areas. In addition, in
the application of this technology in citizen science, various
camera hardware would be expected to be used by citizens
based on their availability. Therefore, it is essential to de‐
termine whether a model created with images captured by a
particular camera can identify images captured by other
cameras. Hence, after creating a model for each camera, we
conducted an accuracy assessment using an image captured
with a different camera as a test image.

Results

Variation in accuracy and loss of learning
In Model 1, the validation accuracy ranged between

99.3% to 99.9%, with a mean of 99.7%. Validation loss
ranged between 0.003 to 0.024, with a mean of 0.012
(Fig. 4). In Model 2, the validation accuracy ranged be‐
tween 99.4% to 99.8%, with a mean of 99.6%. Validation
loss ranged between 0.007 to 0.018, with a mean of 0.012
(Fig. 5). In all models, it was observed that the accuracy
increased and the loss decreased, which suggests that

Fig. 4. Validation accuracy and loss in model1. (A) OLYMPUS, OM-D E-M1 Mark II, (B) GoPro HERO 9, (C) DJI Pocket2, (D) All.
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the models were able to effectively learn the features of
S. altissima and did not overfit the datasets.

Performance of the model for each camera
In Model 1, all models were able to identify S. altissima,

as shown in Fig. 6. The classification accuracy for each
camera in Model 1 ranged between 65% to 100%, with an
average of 94% (Fig. 7). The kappa values ranged from
0.30 to 1.00, as displayed in Table 4. The classification ac‐
curacy for each camera in Model 2 ranged between 59% to
99%, with an average of 84% (Fig. 8). The kappa values

Fig. 6. The results of Model 1 for the identification of S. altissima.
All of the models identified S. altissima. (a) OLYMPUS, OM-D E-M1
Mark II, (b) GoPro HERO 9, (c) DJI Pocket2, (d) All. The red cells
indicate that the model identified S. altissima, and the green cells indi‐
cate that the model identified something other than S. altissima.

ranged from 0.17 to 0.99, as listed in Table 5. The average
classification accuracy for Model 1 and Model 2 was 89%.
Models trained with only datasets of sizes S, M, and L were
created, and the performance of these models is shown as
Supplemental Table 1.

Fig. 7. Comparison of classification performance in Model 1.

Fig. 5. Validation accuracy and loss in model2. (A) OLYMPUS, OM-D E-M1 Mark II, (B) GoPro HERO 9, (C) DJI Pocket2, (D) All.
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Transferability of the model
In Model 1, the performance of the model using mirror‐

less camera images for the test data was superior (Fig. 7).
The accuracy of said model in identifying the DJI test data
was significantly lower; however, the transferability of the
other models was high. Additionally, there were false posi‐
tives for yellow flowers and leaves exposed to strong sun‐

Fig. 8. Comparison of classification performance in Model 2.

light (Figs. 9, 10). For Model 2, false positives were
reduced, and kappa values were higher when the model and
test images were the same (Supplemental Fig. 1). Models
captured with DJI images were able to identify other mod‐
els; however, GoPro and mirrorless camera models were
not able to identify DJI models. The model with a mixture
of all images was able to identify all the S. altissima in
each camera (Fig. 11). However, the cloudy images did not
facilitate the identification of the S. altissima (Fig. 12).

Discussion

In this study, we have demonstrated the identification of
S. altissima using action camera images using the chopped
picture method. Recently satellite images and UAVs have
been used to detect invasive alien plants. However, the low
resolution of satellite images and the flight restrictions on
UAVs have posed an issue. On the other hand, the action
camera has a high resolution and can acquire images in ur‐
ban areas where UAVs are often restricted. Model 1 identi‐
fied S. altissima with an average accuracy of 94%, while
Model 2 demonstrated an average accuracy of 84%. It sug‐
gests that effective identification models can be prepared
using inexpensive cameras, and it may open possibilities
for citizen science in this field.

Image recognition techniques have been used for plant
disease and species identification (Pärtel et al. 2021, Singh
et al. 2018). However, few studies have used deep learning
for detecting alien plant species. Moreover, most of those
studies used UAVs (James and Bradshaw 2020, Qian et al.
2020), and few studies combined it with action cameras for
plant species identification. The use of action cameras will
enable the automatic identification of invasive species even
in areas where UAV flights are difficult. In addition, pixel-

Table 4. The kappa value in Model 1

Model
Test data

OLYMPUS, OM-D E-M1 Mark II GoPro HERO 9 DJI Pocket2 All

OLYMPUS, OM-D E-M1 Mark II 0.98 0.96 0.30 0.77
GoPro HERO 9 1.00 1.00 0.73 0.91
DJI Pocket2 1.00 1.00 0.98 1.00
All 0.96 1.00 0.58 0.86
Average 0.99 0.99 0.65 0.89

Table 5. The kappa value in Model 2

Model
Test data

OLYMPUS, OM-D E-M1 Mark II GoPro HERO 9 DJI Pocket2 All

OLYMPUS, OM-D E-M1 Mark II 0.99 0.56 0.25 0.61
GoPro HERO 9 0.92 0.92 0.24 0.70
DJI Pocket2 0.45 0.17 0.97 0.54
All 0.98 0.93 0.67 0.87
Average 0.84 0.65 0.53 0.68
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based and object-based image analysis have been used in
previous studies for automated image classification (Dash
et al. 2019). In contrast to these methods, the chopped pic‐
ture method facilitates the acquisition of training images,
allowing us to create a specific model for each region.
Since the established alien species vary from region to re‐

Fig. 9. Results of yellow flower identification in DJI model. (a)
Before adding yellow flowers to the negative images in Model 1. (b)
After adding the yellow flowers to the negative images in Model 2.

Fig. 10. Main false positives. In Model 1, false positives were found
on leaves exposed to strong sunlight, but in Model 2, false positives
were reduced. The figure shows the results of identification in the all
model, with (a) and (c) showing the results for Model 1 and (b) and
(d) for Model 2.

Fig. 11. Results of identifying the test images with the all model in
Model 2. (a) and (b) show images in which the S. altissima is small.
(c) and (d) show images in which the S. altissima is large.

gion, this method creates region-specific alien species iden‐
tification models.

The results were high in accuracy and low in recall rate,
suggesting that the model used in this study performed con‐
servative classification with a relatively high number of
false negatives. Comparing the results of each model, the
kappa value was higher when the mirrorless camera was
used for the test image. Because the resolution of the mirror‐
less camera was the highest among the cameras used in this
study, the image resolution had a significant impact on the
performance. On the other hand, the model created with
DJI images, which had the lowest resolution, had the low‐
est kappa value, suggesting that a higher resolution camera
would be preferable to identify S. altissima. We have cre‐
ated a new model for each size, and the performance of
these models is now shown as a Supplemental Table 1. By
comparing the results, we found that the performance of
size-specialized models was better than the general model
in the main manuscript, indicating that the size separation
can improve the performance. However, variations and un‐
certainties in the pictures (e.g., light conditions) were
present and the comparison was somewhat vague. Since
these factors may have affected the results, the performance
evaluation should be conducted under uniform conditions
in the future.

For the model transferability, the kappa value was high
when the images used for the training data of the model and
those used for performance evaluation, were the same. Previ‐
ous studies have also proved that the conditions at the local
scale of the training data affect the classification accu‐
racy (Watanabe et al. 2020). Therefore, to create a high-
performance CNN model, it is necessary to create training
images based on the region. Because the chopped picture
method simplifies the creation of training images, it enables
the construction of CNN models suitable for specific re‐
gion with low effort. Furthermore, it is an effective method
for detecting invasive alien plants, such as S. altissima in a

Fig. 12. Results of identifying the cloudy images. (a) and (c) show
image before identification. (b) and (d) show results of identification.
Because the image was taken in the evening, the appearance of the
image differs from other images.
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wide area.
The reason why all models were able to identify the

S. altissima was probably the color of the flowers. Because
this species has bright yellow flowers, it can easily be dis‐
tinguished from surrounding objects. Another reason is that
there were no other plants with yellow flowers in the im‐
ages used for identification. In this study, we focused on
flowers that were easy to identify using deep learning. Al‐
though plant identification is difficult for non-specialists, it
is easy to distinguish flowers from other species in the
field. There are many cases in which herbaceous plants in‐
troduced for ornamental purposes became invasive species,
and by focusing on flowers, these plants are easy to identify
with high accuracy. Furthermore, in a previous study, the
number of flowers was measured by deep learning (Palacios
et al. 2020), so it may be possible to identify factors that
influence the expansion of the distribution of alien species
by clarifying the number of flowers and individuals using
deep learning, in the future.

In this study, we obtained all images on the same day in
geographically similar locations, and the weather of the day
was mostly sunny. These facts may positively affect the ac‐
curacy of object identification by deep learning. To make
the model robust for citizen science, in the future, images
captured under various environmental conditions such as
location and weather should be added to the training im‐
ages.

In addition, it was possible to identify the flowers regard‐
less of their size. This may also be because training images
were created and trained for each flower size. Another rea‐
son may be that the color of the flowers is distinguishable
from their surroundings. In Japan, there are other non-
native species with yellow flowers, such as Coreopsis
lanceolata. Because automatic identification of non-native
plants with yellow flowers is relatively easy, it is necessary
to investigate whether this method can be applied to other
non-native plants in the future.

In the present model, there were a few false positives for
the sky and mountains. It is assumed that the sky and
mountains were easily distinguishable, were included in the
images captured by all the cameras, and that there were
enough images in the training images. However, there were
false positives for leaves and stems that were strongly ex‐
posed to sunlight. When the sunlight is strong, it is assumed
that it may be difficult to distinguish yellow flowers from
green leaves and stems. This may have been a result of the
training image used in this study being exposed to intense
sunlight. In addition, the performance of the model was im‐
proved by adding false-positive images to the training im‐
ages; hence, the lack of variation in the training images
may also be a contributor. Although S. altissima flowers
have the same color in all regions, the backgrounds of the
captured images vary. Therefore, it is essential to prepare
negative images based on the region to create a model for
identifying S. altissima in each area.

It has been difficult for deep learning to identify irregu‐

larly shaped objects such as plants. However, by utilizing
the chopped picture method, a wide range of plants can be
identified. This method can also be applied in plant breed‐
ing for selecting individuals with beneficial traits and for
effective daily management. For example, by identifying
the timing of flowering or fruition, proper management can
be achieved. It may also be possible to identify individuals
with the best traits for breeding.

Owing to their growing popularity worldwide, small,
high-performance video cameras can be purchased at low
prices. Small video cameras that are lightweight, durable,
and waterproof can capture high-resolution images; they
have long battery life and can be easily used in the field, as
they have begun to be used in the field of ecology
(Claassens and Hodgson 2018, Gilpin et al. 2017). Various
methods have been devised to detect invasive alien species
in the early stages of their invasion, and combining small
cameras with deep learning may become a new method for
the detection of alien species. In particular, the widespread
use of smartphones makes it easier to take photos, even
outdoors. In the future, citizen science will be used to un‐
derstand the distribution of invasive alien species over a
wide area, using deep learning to analyze a vast number of
images obtained from the citizens.

In this study, we created a model that can identify the in‐
vasive alien plant species, S. altissima, by combining the
chopped picture method and deep learning. As the model
was able to identify the invasive species from images taken
with an ordinary camera, it may become a valuable method
in citizen science, for understanding the distribution of in‐
vasive species. Because deep learning makes it possible to
analyze large amounts of data, it enables research on a scale
that was previously difficult to analyze. For example, drive
recorders are being extensively used, and an environment is
being created in which images of the area around roads can
be easily acquired. If alien plants can be identified from the
images of citizens’ drive recorders, we can also receive
data from people who are not consciously participating in
citizen science. Privacy issues can be avoided by process‐
ing the data provided using deep learning, rather than by
humans. Furthermore, once we create a system to share
drive recorder images in real-time, we will be able to un‐
derstand the distribution of invasive species while updating
the data at a high frequency. By further improving the
model and overcoming technical issues, it is possible to re‐
alize this innovative invasive species management system
in the future.
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